
On the complexity of scheduling checkpoints
for computational workflows

Yves Robert1,2,3, Frédéric Vivien4,1, and
Dounia Zaidouni4,1

1. Ecole Normale Supérieure de Lyon
2. Institut Universitaire de France

3. University of Tennessee Knoxville

4. INRIA

June 28, 2012



Motivation

Framework

Application task graph, a DAG where nodes represent tasks
and edges correspond to dependences between them.

Application DAG to be executed on a failure-prone platform of
p identical processors.

Each task is executed in parallel on the p processors.

1

2

3

p

...

4
T4T3T1 T2

T1 T2 T3 T4

p processors

Resilience provided through coordinated checkpointing.



Motivation

Framework

Application task graph, a DAG where nodes represent tasks
and edges correspond to dependences between them.

Application DAG to be executed on a failure-prone platform of
p identical processors.

Each task is executed in parallel on the p processors.

1

2

3

p

...

4
T4T3T1 T2

T1 T2 T3 T4

p processors

Resilience provided through coordinated checkpointing.



Objective and Questions

Objective : Minimizing the expectation of the total execution time.

Questions :

In which order should we execute the tasks?

At the end of the execution of each task Ti, should we
perform a checkpoint or should we proceed directly with the
computation of another task?

C4T3T1 T4T2C1 C2

? ? ?

C3



Objective and Questions

Objective : Minimizing the expectation of the total execution time.
Questions :

In which order should we execute the tasks?

At the end of the execution of each task Ti, should we
perform a checkpoint or should we proceed directly with the
computation of another task?

C4T3T1 T4T2C1 C2

? ? ?

C3



State of the art

Bouguerra et al [1], Daly [3] and Young [4]:

Periodic checkpointing strategies.

Bouguerra, Trystram, and Wagner [2]:

Checkpointing strategies for computational tasks with linear
chains (with single processor).

They cannot aim at minimizing the expected execution time.

Maximizing the amount of work done before the first failure.

We solve the original problem that is minimizing the expected
execution time (At least for Exponential failures)



State of the art

Bouguerra et al [1], Daly [3] and Young [4]:

Periodic checkpointing strategies.

Bouguerra, Trystram, and Wagner [2]:

Checkpointing strategies for computational tasks with linear
chains (with single processor).

They cannot aim at minimizing the expected execution time.

Maximizing the amount of work done before the first failure.

We solve the original problem that is minimizing the expected
execution time (At least for Exponential failures)



State of the art

Bouguerra et al [1], Daly [3] and Young [4]:

Periodic checkpointing strategies.

Bouguerra, Trystram, and Wagner [2]:

Checkpointing strategies for computational tasks with linear
chains (with single processor).

They cannot aim at minimizing the expected execution time.

Maximizing the amount of work done before the first failure.

We solve the original problem that is minimizing the expected
execution time (At least for Exponential failures)



Outline

1 Expected time needed to execute a work and to checkpoint it

2 Complexity of the general scheduling problem

3 Dynamic Programming algorithm for linear chains

4 Conclusion and extensions



Outline

1 Expected time needed to execute a work and to checkpoint it

2 Complexity of the general scheduling problem

3 Dynamic Programming algorithm for linear chains

4 Conclusion and extensions



Hypothesis

Full parallelism: Each task is executed by all the p processors.

Poisson process: Platform failure inter-arrival times follow an
Exponential distribution of parameter λ = pλproc .

W : Duration of Work

C : Checkpoint cost

D : Downtime (hardware replacement by spare,
or software rejuvenation via rebooting)

R: Recovery cost after failure



Hypothesis

Full parallelism: Each task is executed by all the p processors.

Poisson process: Platform failure inter-arrival times follow an
Exponential distribution of parameter λ = pλproc .

W : Duration of Work

C : Checkpoint cost

D : Downtime (hardware replacement by spare,
or software rejuvenation via rebooting)

R: Recovery cost after failure



Hypothesis

Full parallelism: Each task is executed by all the p processors.

Poisson process: Platform failure inter-arrival times follow an
Exponential distribution of parameter λ = pλproc .

W : Duration of Work

C : Checkpoint cost

D : Downtime (hardware replacement by spare,
or software rejuvenation via rebooting)

R: Recovery cost after failure



Hypothesis

Full parallelism: Each task is executed by all the p processors.

Poisson process: Platform failure inter-arrival times follow an
Exponential distribution of parameter λ = pλproc .

W : Duration of Work

C : Checkpoint cost

D : Downtime (hardware replacement by spare,
or software rejuvenation via rebooting)

R: Recovery cost after failure



Hypothesis

Full parallelism: Each task is executed by all the p processors.

Poisson process: Platform failure inter-arrival times follow an
Exponential distribution of parameter λ = pλproc .

W : Duration of Work

C : Checkpoint cost

D : Downtime (hardware replacement by spare,
or software rejuvenation via rebooting)

R: Recovery cost after failure



Hypothesis

Full parallelism: Each task is executed by all the p processors.

Poisson process: Platform failure inter-arrival times follow an
Exponential distribution of parameter λ = pλproc .

W : Duration of Work

C : Checkpoint cost

D : Downtime (hardware replacement by spare,
or software rejuvenation via rebooting)

R: Recovery cost after failure



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

E(T (W ,C ,R)) =



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

the work W
to compute

Time needed

Psucc(W + C ) (W + C )

E(T (W ,C ,R)) =



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

of success
Probability

Psucc(W + C ) (W + C )

E(T (W ,C ,R)) =



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

Psucc(W + C ) (W + C )

E(T (W ,C ,R)) =



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W ,C ,R)))

Psucc(W + C ) (W + C )

E(T (W ,C ,R)) =



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

Time elapsed

before the failure

occured

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W ,C ,R)))

+

Psucc(W + C ) (W + C )

E(T (W ,C ,R)) =



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

to perform

downtime

and recovery

Time needed

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W ,C ,R)))

+

Psucc(W + C ) (W + C )

E(T (W ,C ,R)) =



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

Time needed

to compute W
from scratch

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W ,C ,R)))

+

Psucc(W + C ) (W + C )

E(T (W ,C ,R)) =



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

Probability of failure

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W ,C ,R)))

Psucc(W + C ) (W + C )

E(T (W ,C ,R)) =



Problem statement

Compute the expected time E(T (W,C ,R)) to execute a work of
duration W followed by a checkpoint of duration C .

Recursive Approach :

+

(1− Psucc(W + C )) (E(Tlost(W + C )) + E(Trec) + E(T (W ,C ,R)))

Psucc(W + C ) (W + C )

E(T (W ,C ,R)) =



Computation of E(T (W ,C ,R))

E(T (W,C ,R)) = Psuc(W + C )(W + C )

+(1−Psuc(W+C )) [E(Tlost(W + C )) + E (Trec) + E(T (W,C ,R))]

With an exponential failure distribution, we have :

Psuc(W + C ) = e−λ(W+C)

E(Tlost(W + C )) =
∫∞
0 xP(X = x |X <W + C )dx

E(Tlost(W + C )) = 1
λ −

W+C
eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W,C ,R)) = eλR
(
1
λ + D

)
(eλ(W+C) − 1)



Computation of E(T (W ,C ,R))

E(T (W,C ,R)) = Psuc(W + C )(W + C )

+(1−Psuc(W+C )) [E(Tlost(W + C )) + E (Trec) + E(T (W,C ,R))]

With an exponential failure distribution, we have :

Psuc(W + C ) = e−λ(W+C)

E(Tlost(W + C )) =
∫∞
0 xP(X = x |X <W + C )dx

E(Tlost(W + C )) = 1
λ −

W+C
eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W,C ,R)) = eλR
(
1
λ + D

)
(eλ(W+C) − 1)



Computation of E(T (W ,C ,R))

E(T (W,C ,R)) = Psuc(W + C )(W + C )

+(1−Psuc(W+C )) [E(Tlost(W + C )) + E (Trec) + E(T (W,C ,R))]

With an exponential failure distribution, we have :

Psuc(W + C ) = e−λ(W+C)

E(Tlost(W + C )) =
∫∞
0 xP(X = x |X <W + C )dx

E(Tlost(W + C )) = 1
λ −

W+C
eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W,C ,R)) = eλR
(
1
λ + D

)
(eλ(W+C) − 1)



Computation of E(T (W ,C ,R))

E(T (W,C ,R)) = Psuc(W + C )(W + C )

+(1−Psuc(W+C )) [E(Tlost(W + C )) + E (Trec) + E(T (W,C ,R))]

With an exponential failure distribution, we have :

Psuc(W + C ) = e−λ(W+C)

E(Tlost(W + C )) =
∫∞
0 xP(X = x |X <W + C )dx

E(Tlost(W + C )) = 1
λ −

W+C
eλ(W+C)−1

E(Trec) = e−λR(D+R)+(1−e−λR)(D+E(Tlost(R))+E(Trec))

E(T (W,C ,R)) = eλR
(
1
λ + D

)
(eλ(W+C) − 1)



Outline

1 Expected time needed to execute a work and to checkpoint it

2 Complexity of the general scheduling problem

3 Dynamic Programming algorithm for linear chains

4 Conclusion and extensions



Problem statement

The general scheduling problem is :

Given a time bound K , can we find an ordering for the
execution of several independent tasks, and decide after which
tasks to checkpoint, so that the expected execution time does
not exceed K?

Proposition

Consider n independent tasks, T1, ..., Tn, with task Ti of duration
Wi for 1 ≤ i ≤ n. All checkpoint and recovery times are equal to
C, and there is no downtime (D = 0). The problem to schedule
these tasks, and to decide after which tasks to checkpoint, so as to
minimize the expected execution time, is NP-complete in the
strong sense.



Problem statement

The general scheduling problem is :

Given a time bound K , can we find an ordering for the
execution of several independent tasks, and decide after which
tasks to checkpoint, so that the expected execution time does
not exceed K?

Proposition

Consider n independent tasks, T1, ..., Tn, with task Ti of duration
Wi for 1 ≤ i ≤ n. All checkpoint and recovery times are equal to
C, and there is no downtime (D = 0). The problem to schedule
these tasks, and to decide after which tasks to checkpoint, so as to
minimize the expected execution time, is NP-complete in the
strong sense.



Proof of NP-completeness

We use a reduction from 3-PARTITION, which is NP-complete in
the strong sense.

General instance I1 of 3-PARTITION:

3n integers a1, . . . , a3n;∑
1≤j≤3n aj = nT , and T

4 < aj <
T
2 for 1 ≤ j ≤ 3n,

Does there exist a partition in n subsets B1, . . . ,Bn of
{a1, . . . , a3n} such that for all 1 ≤ i ≤ n,

∑
aj∈Bi

aj = T .

Note that necessarily in any solution, each Bi has cardinal 3.

BnB1 B2

C C

. . .

. . .
T T T C



Proof of NP-completeness

We use a reduction from 3-PARTITION, which is NP-complete in
the strong sense.

General instance I1 of 3-PARTITION:

3n integers a1, . . . , a3n;∑
1≤j≤3n aj = nT , and T

4 < aj <
T
2 for 1 ≤ j ≤ 3n,

Does there exist a partition in n subsets B1, . . . ,Bn of
{a1, . . . , a3n} such that for all 1 ≤ i ≤ n,

∑
aj∈Bi

aj = T .

Note that necessarily in any solution, each Bi has cardinal 3.

BnB1 B2

C C

. . .

. . .
T T T C



Proof of NP-completeness

Instance I2 of our problem :

3n independent tasks: task1, ..., task3n, taski being of size
Wi = ai .
Does there exist a partition in m subsets B1, . . . ,Bm∑m

i=1 Ti = nT and m checkpoints.
We let: λ = 1

2T , C = R = 1
λ (ln(2)− 1

2 ), and

D = 0, K = n eλC

λ (eλ(T+C) − 1).

Ti C

. . .

. . .
C

Bm

Tm

. . .

T1

B1

C

. . .
Bi



Outline

1 Expected time needed to execute a work and to checkpoint it

2 Complexity of the general scheduling problem

3 Dynamic Programming algorithm for linear chains

4 Conclusion and extensions



Problem statement

We want to compute the optimal expected execution time, that is:

the expectation E of the time needed to process all the tasks
of an applications whose DAG is a linear chain.

Problem:

Decide whether to checkpoint or not after the completion of
each given task.

C4T3T1 T4T2C1 C2

? ? ?

C3



Dynamic programming

1

1

1

1

T1 T2 C2 T3 C3 T4 C4C1

?? ?

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

DPMAKESPAN(1,4)



Dynamic programming

Algorithm 1: DPMAKESPAN(x , n)

if x = n then
return (E(T (Wn,Cn,Rn−1)), n)

best ← E(T (
∑n

i=xWi ,Cn,Rx−1))
numTask ← n
for j = x to n − 1 do

(exp succ , num Task)← DPMAKESPAN(j + 1 , n)
Cur ← exp succ

+E(T (
∑j

i=xWi ,Cj ,Rx−1))
if Cur < best then

best ← Cur
numTask ← j

return (best, numTask)



Linear complexity

Proposition

Algorithm1 provides the optimal solution for a linear chain of n
tasks. Its complexity is O(n2).



Outline

1 Expected time needed to execute a work and to checkpoint it

2 Complexity of the general scheduling problem

3 Dynamic Programming algorithm for linear chains

4 Conclusion and extensions



Extensions

General model of checkpointing costs:

The checkpoint after a task Ti may depend on Ti and on some
other tasks that have been executed since the last checkpoint.

Alleviating the full parallelism assumption:

Variable parallelism.
Ressource allocation problem.

Using general failure laws than Exponential distributions:

First difficulty: Approximating the failure distribution of a
platform of p processors.
Second difficulty: Estimating the expected execution time of a
work W.



Conclusion

Important results:

Closed-form formula for the expected execution time of a
computational workflows followed by its checkpoint (using
Exponential failure distribution).

The strong NP-hardness of the problem for independent tasks
and constant checkpoint costs.

Dynamic programming algorithm for linear chains of tasks
with arbitrary checkpoint costs.



Bibliography

M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent.
A flexible checkpoint/restart model in distributed systems.
In PPAM, volume 6067 of LNCS, pages 206–215, 2010.

M.-S. Bouguerra, D. Trystram, and F. Wagner.
Complexity analysis of checkpoint scheduling with variable
costs.
Computers, IEEE Transactions on, 2012.

J. T. Daly.
A higher order estimate of the optimum checkpoint interval for
restart dumps.
Future Generation Computer Systems, 22(3):303–312, 2004.

J. W. Young.
A first order approximation to the optimum checkpoint
interval.
Communications of the ACM, 17(9):530–531, 1974.


	Expected time needed to execute a work and to checkpoint it
	Complexity of the general scheduling problem
	Dynamic Programming algorithm for linear chains
	Conclusion and extensions

