Contextual Combinatorial Cascading Bandits

Shuai Li¹, Baoxiang Wang¹, Shengyu Zhang¹, Wei Chen²

1 The Chinese University of Hong Kong

2 Microsoft Research

ICML 2016

Multi-armed Bandit Problem

- A special case of reinforcement learning
- There are *m* arms (machines)
- Arm i has an unknown reward distribution with unknown mean μ_i
 - best arm $\mu^* = \max \mu_i$

Multi-armed Bandit Problem

- In each round t, the learning agent selects one arm i_t to play and observes the reward $R_t(i_t)$
- Regret after playing *T* rounds: Always play the best arm

Regret = $T\mu^* - \mathbb{E}\left[\sum_{t=1}^T \mathbf{R}_t(i_t)\right]$

- Objective: minimize regret in ${\cal T}$ rounds
- Balancing tradeoff between exploitation and exploration
 - Exploration: try options that have not been tried much before
 - Exploitation: try options that yield good results so far

Multi-armed Bandit Problem

• UCB (Upper Confidence Bound) [Auer, Cesa-Bianchi, Fischer 2002]

where T_i is the played times of arm *i*.

- Gap-dependent bound $O(\log T \sum_{i:\Delta_i > 0} 1/\Delta_i)$, $\Delta_i = \mu^* \mu_i$, match lower bound
- Gap-free bound $O(\sqrt{mT \log T})$, tight up to a factor of $\sqrt{\log T}$

Combinatorial Multi-Armed Bandit

- Action is combinatorial
 - Selecting a matching, a routing path, a sequence of ads to display, a list of movies to recommend
- May observe some feedback on elements involved (e.g. semi-bandit feedback)
- Challenges
 - Exponential number of actions --- cannot be fully explored
 - Offline optimization may already be hard

oogie		Ŷ
	All Images News Videos Books More -	Recommended For You
ence end	About 21,400,000 results (0.58 seconds) Machine Learning Course - coursera.org Coursera.org/machine-learning × Get Certiifed in Machine Learning Earn a U of Washington Certifi Top Instructors - Flexible Schedule - Top Universities - Learn 24/7 Machine Learning Guide - "Statistics & Machine Course - "Statistics & Machine Course - "Statistics - Learning × Download the Free Paper. Statistical Analytics - Predictive Analytics - Business Analytics	+ Wei zhuang zhe (TV series 2015-) Drama ★8.4 Kai Wang, Dong Jin, Ge Hu + The Terminator (1984) ■ ■ ■ 1 h 47 min - Action Sci-Fi
fully	In the news Machine Learning Is Redefinir Forbes - 2 days ago Bottom line: Machine learning is providir applications, and A Gentle Introduction to the Basics of Machine Learning miguelgfierro.com - 20 hours ago	*8.1 B3 Metascore Arnold Schwarzenegger, Linda Hamilton, Michael Biehn Back to the Future (1985) PG 1 h 56 min - Adventure Comed. *8.5 B6 Metascore Michael J. Fox, Christopher Lloyd, Lea Thompson
	SAPVoice: Welcome to the Machine (Learning) Forbes - 2 days ago More news for machine learning Machine learning - Wikipedia, the free encyclope https://en.wikipedia.org/wiki/Machine_learning * Machine learning is a subfield of computer science that evolved f and computational learning theory in artificial intelligence. In 1959 learning as a "Field of study that gives computers the ability to lea	Breaking Bad (TV series 2008-2013) 49 min - Crime Drama Thriller *9.5 Bryan Cranston, Aaron Paul, Anna
	programmed".	Algo (2012)

Google machine learning

.1. 0

Motivation of Cascading Bandit

- Websites search results
- Recommended movies
- Etc.
- All are sequential lists
 - Users are likely to go through the list from top down
 - Stop at the first satisfactory item
 - Click as the feedback
 - Online feedback helps improving list quality

Contextual Combinatorial Cascading Bandit

Contexts

- User profiles, search keywords
- Important for search, recommendations
- Combinatorial
 - Action is selection of a sequence
 - May have other combinatorial constraints (children movies)

machine learning	Le Commended For You		
All Images News Videos Books More •			
About 21,400,000 results (0.58 seconds)	+ Wai zhuang zha		
Machina Learning Courses acturates and	(TV series 2015-)		
Machine Learning Course - coursera.org Ad www.coursera.org/machine-learning ▼	Drama		
Get Certiifed in Machine Learning Earn a U of Washington Certifi	Auto S Clama		
Top Instructors · Flexible Schedule · Top Universities · Learn 24/7	*8.4		
	Kai Wang, Dong Jin, Ge Hu		
Machine Learning Guide - "Statistics & Machine			
Download the Free Paper.	The Terminator (1984)		
Statistical Analytics · Predictive Analytics · Business Analytics All Analytics Products - Buy SAS Analytics - Analytics White Pane	R 1 h 47 min - Action Sci-Fi		
	+81 Matasara		
	Arnold Schwarzenegger Linda		
In the news	Hamilton, Michael Biehn		
Machine Learning Is Redefinir			
Forbes - 2 days ago	+ Pack to the Euture (1095)		
Bottom line: Machine learning is provide	Back to the Future (1985)		
Applications, and	Adventure Conied.		
Types dial terrary partners and anone	*8.5 B6 Metascore		
A Gentle Introduction to the Basics of Machine Learning miguelafierro.com - 20 hours ago	Michael J. Fox, Christopher Lloyd,		
SAPVoice: Welcome to the Machine (Learning)	Lea Thompson		
Forbes - 2 days ago			
More news for machine learning	Ereaking Bad		
	(TV series 2008-2013)		
	49 min - Crime Drama Thriller		
Machine learning - Wikipedia, the free encyclope	*9.5		
https://en.wikipedia.org/wiki/ Machine_learning ▼	Breaking Bryan Cranston, Aaron Paul, Anna		
and computational learning theory in artificial intelligence. In 1959			
learning as a "Field of study that gives computers the ability to lea	+ Argo (2012)		
programmed".	IIB - 2 h - Biography Drama History		

Our Contribution

- Formulate the Contextual Combinatorial Cascading Bandits problem
- Proposed C³-UCB algorithm, handles
 - contextual information
 - cascading feedback
 - position discount (top positions may be more important)
 - general reward function

	context	cascading	Position discount	General reward
Combinatorial UCB ¹	No	Yes	No	Yes
Contextual Combinatorial UCB ²	Yes	No	No	Yes
Comb-Cascade ³	No	Yes	No	No
C ³ -UCB(ours)	Yes	Yes	Yes	Yes

• Theoretical analysis and empirical evaluation

1 Chen et al. 2013

2 Qin et al. 2014

3 Kveton et al. 2015

Setting & Algorithms

Setting of C³B

- $E = \{1, \dots, L\}$: set of base arms
- Action $A = (a_1, ..., a_k)$: a sequence of base arms
 - There is a feasible action set S.
- At each time $t \ge 1$
 - set of contexts $\{x_{t,a}\}_{a \in E}$ are given (e.g. user/keyword features)
 - learning agent selects a feasible action $\mathbf{A}_t = (\mathbf{a}_1^t, \dots, \mathbf{a}_{|\mathbf{A}_t|}^t)$
 - The user checks from the first item and stops at **O**_t-th item.
 - Feedback: observe weights of first O_t items, $R_t(a_k^t)$, $k \leq O_t$.

$$\mathbb{E}[\mathbf{R}_{t}(a)] = \theta_{*}^{\top} \cdot x_{t,a} = w_{t,a}$$

Fixed but unknown

Setting of C³B

- Assume the expected reward of an action A is a function of $w_t = \{w_{t,a}\}_{a \in E}$ of each base arm, $f(A, w_t)$. • Pegret in T rounds
- Regret in *T* rounds $Regret = \sum_{t=1}^{T} f_t^* - \mathbb{E} \left[\sum_{t=1}^{T} f(A_t, w_t) \right]$
 - f_t^* : max expected reward in round t

Example – movie recommendation

- Each movie i has a feature vector m_i
- At time *t*,
 - A random user comes with feature vector u_t
 - Use $x_{i,t} = g(m_i, u_t)$, a function of m_i and u_t , (e.g. direct sum, outer-product) as context
 - The learning agent recommends a list of movies A_t
 - The user checks from the first movie and stops at the attractive one.
 - The learning agent receives reward γ_k if the user stops at position k.

 $1 = \gamma_k \ge \cdots \ge \gamma_k \ge 0$

Recommended For You

Back to the Future (1985) PG 1 h 56 min - Adventure | Comed... (i)

(i)

(i)

★8.5 86 Metascore Michael J. Fox, Christopher Lloyd, Lea Thompson

Breaking Bad (TV series 2008-2013) 49 min - Crime | Drama | Thriller

★9.5 Bryan Cranston, Aaron Paul, Anna...

Argo (2012) IIB - 2 h - Biography I Drama I History LZ

C³-UCB Algorithm

- For round $t = 1, 2, \dots, T$
 - obtain context: $\{x_{t,a}\}_{a \in E}$
 - From $\mathbb{E}[\mathbf{R}(a)] = \theta_*^{\mathsf{T}} x_a = w_a$, we get an estimate $\widehat{\theta}_{t-1}$ of θ_* . (use linear regression, details omitted.) With high probability $w_{t,a} \in (\widehat{\theta}_{t-1}^{\mathsf{T}} x_{t,a} - \beta_{t-1} \| x_{t,a} \|_{V_{t-1}^{-1}}, \qquad \widehat{\theta}_{t-1}^{\mathsf{T}} x_{t,a} + \beta_{t-1} \| x_{t,a} \|_{V_{t-1}^{-1}})$
 - The upper confidence bound (UCB) of base arms:

$$U_{t}(a) = \min \left\{ \widehat{\theta}_{t-1}^{\top} x_{t,a} + \beta_{t-1} \| x_{t,a} \|_{V_{t-1}^{-1}}, 1 \right\}$$

- use offline oracle to find the best action for UCB: $A_t = O_{\mathcal{S}}(U_t)$
- play action A_t , observe prefix feedback $R_t(a_k^t), j \leq O_t$
- update observations (details omitted)

Result

• Regret bound in *T* rounds:

$$Regret = O\left(\frac{d}{p^*}\sqrt{TK}\ln(T)\right)$$

- *d*: dimension of latent and feature vectors
- p^* : minimum probability of triggering all arms in a sequence
- *K*: largest length of the sequence
- Regret bound of disjunctive objective in T rounds:

$$Regret = O\left(\frac{d}{1-f^*}\sqrt{TK}\ln(T)\right)$$

• $f^* = \max f_t^*$: the maximal expected reward in T rounds.

Result

	context	cascading	Position discount	General reward	Regret bound
Combinatorial UCB ¹	No	Yes	No	Yes	$O(m\sqrt{mT\log T})$
Contextual Combinatorial UCB ²	Yes	No	No	Yes	$O(d\sqrt{T}\log T)$
Comb- Cascade ³	No	Yes	No	No	$O(\sqrt{\frac{KLT\log T}{f^*}})$
C ³ -UCB (ours)	yes	Yes	Yes	Yes	$O\left(\frac{dB}{p^*}\sqrt{TK}\ln(T)\right)$

1 Chen et al. 2013 2 Qin et al. 2014 3 Kveton et al. 2015

Experimental Results

Regret comparisons in Synthetic Data

100 items, select 4 items latent and feature vector dimension = 4

Reward comparisons in MovieLens

MovieLens dataset, 200 movies, select 4 items d= 400 (By SVD decomposition)

Conclusions

- Incorporating contextual information to cascading bandit
- Advancing the research in combinatorial online learning
- Application potential
 - Any sequential list recommendation (search, ads, mobile recommendations)
 - Need online (real-time) feedback
- Future work
 - Theoretical lower bounds
 - Other non-sequential click models

Thank you! Q&A