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For the large-scale search and rescue (S&R) scenarios, the centralized and distributed multi-UAV multitask assignment algorithms
for multi-UAV systems have the problems of heavy computational load andmassive communication burden, which make it hard to
guarantee the effectiveness and convergence speed of their task assignment results. To address this issue, this paper proposes a
hierarchical task assignment strategy. Firstly, a model decoupling algorithm based on density clustering and negotiation
mechanism is raised to decompose the large-scale task assignment problem into several nonintersection and complete small-
scale task assignment problems, which effectively reduces the required computational amount and communication cost. Then, a
cluster head selection method based on multiattribute decision is put forward to select the cluster head for each UAV team.
These cluster heads will communicate with the central control station about the latest assignment information to guarantee the
completion of S&R mission. At last, considering that a few targets cannot be effectively allocated due to UAVs’ limited and
unbalanced resources, an auction-based task sharing scheme among UAV teams is presented to guarantee the mission coverage
of the multi-UAV system. Simulation results and analyses comprehensively verify the feasibility and effectiveness of the
proposed hierarchical task assignment strategy in large-scale S&R scenarios with dispersed clustering targets.

1. Introduction

Due to the advantages of no casualties, high flexibility,
strong maneuverability, etc. [1–3], unmanned aerial vehi-
cles (UAVs) are widely used in various search and rescue
(S&R) scenarios, e.g., earthquake-hit areas or forest fire
zones. Single UAV with limited capability and capacity
cannot guarantee the multidimensional and extensive cov-
erage of mission area [4, 5]. In order to carry out timely
search and rescue to survivors in the S&R scenarios, the
cooperative task assignment strategy for multi-UAV sys-
tem is studied in this paper [6].

For multi-UAV system in the S&R scenarios, the cooper-
ative multi-UAV task assignment problem (CMTAP) has
two characteristics: the time coupling constraints of tasks
and the heterogeneity of UAVs.

(1) Each survivor needs to perform search (S) and rescue
(R) tasks in sequence to achieve effective rescue.
Thus, for the same target, the execution of S and R
tasks needs to satisfy the task precedence constraint
and task completion constraint. Besides, to ensure
timely treatment of each survivor, its S and R tasks
need to be carried out within a certain time window

(2) Different UAVs have different capabilities. Search
UAVs equipped with various reconnaissance sensors
can perform S tasks to assessing damage and moni-
toring the environment, while rescue UAVs equipped
with drugs, food, and other resources can perform R
tasks to retrieve the wounded or dying survivors

To solve the CMTAP model in the S&R scenarios, many
scholars have raised two kinds of task assignment methods:
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centralized and distributed algorithms. However, these two
kinds of algorithms both have some limitations in the large-
scale S&R scenarios.

CMTAP is a nondeterministic polynomial-time hard
(NP-hard) combinational optimization problem [7, 8]. Cen-
tralized task assignment methods including the optimization
methods (decision tree method [9], dynamic programming
[10], etc.) and the intelligent optimization algorithms (ant
colony algorithm [11, 12], particle swarm optimization algo-
rithm [13, 14], genetic algorithm [15–17], etc.) depend on the
central control station to make the execution plan for the
multi-UAV system. With the increase of CMTAP scale, the
optimization methods are faced with the risk of exponentially
computational burden [18, 19]. [20] shows that when 2
UAVs need to perform search and strike mission against 3
targets, the optimization method can quickly search the
entire solution space and obtain the optimal solution. How-
ever, when 8 UAVs are assigned to perform search and strike
mission against 5 targets, the optimization method takes
more than three weeks to produce the task assignment solu-
tion. Then, CMTAP is a combinational optimization prob-
lem with multiple constraints, and the intelligent
optimization algorithms rely on iterations to obtain quick
task assignment solutions. However, with the increase of
CMTAP scale, there will be a large number of invalid solu-
tions that violate the constraints in the iteration process,
which seriously affects the efficiency of algorithms [4].

Distributed task assignment algorithms including
auction-based algorithm [21, 22], contract net method [23,
24], and consensus-based bundle algorithm (CBBA) [25–
27] can produce timely execution plan for the multi-UAV
system through the continuous communication and negotia-
tion among all UAVs. The auction-based algorithm and con-
tract net method have low communication efficiency and
large communication cost, which is not conducive to realiz-
ing quick response in large-scale S&R scenarios [21]. CBBA
has been developed into many extensions. [28] presents the
grouped CBBA to improve the communication efficiency
when ensuring the robustness and convergence of decentra-
lized task assignment solution. Considering the scenario that
some tasks must be allocated, [29] raises an extended CBBA
to solve the decentralized task assignment problem with crit-
ical tasks. Further considering the fuel or time constraints in
real-time scenarios, [30] extends CBBA to improve its assign-
ment efficiency for the task allocation problem with spatially
and temporally constraints. Besides, [31] evolves the swarm-
generalized assignment problem method for better suitability
for solving the task allocation problem in dynamic scenarios.

Overall, the centralized and distributed task assignment
algorithms have been greatly developed to solve different task
assignment problems for multi-UAV systems. However, with
the increase of CMTAP scale, the multi-UAV systems are
faced with frequent and massive communication burden
[32, 33]. Neither centralized nor distributed algorithms can
produce real-time solution for the large-scale multi-UAV
multitask assignment problem.

Besides, in practical large-scale S&R scenarios, survivors
tend to gather at different locations [34, 35]. That is, there
will be dispersed clustering targets in the large-scale S&R sce-

narios. To realize the prompt response in the large-scale S&R
scenarios with dispersed clustering targets, a hierarchical task
assignment strategy is proposed to handle the multi-UAV
multitask assignment problem.

To effectively solve the task assignment problem in the
large-scale S&R scenarios with dispersed clustering targets,
the proposed hierarchical task assignment strategy is applied
by the following procedures.

(1) Firstly, a model decoupling algorithm based on den-
sity clustering and negotiation mechanism is pro-
posed to effectively decompose the whole task
assignment model into several nonintersection and
complete submodels with partial targets and UAVs.
Then, the algorithm named CBBA with task coupling
constraints [36] is applied to solve the local task
assignment problem in each submodel. These two
procedures ensure that the hierarchical task assign-
ment strategy can produce conflict-free solution sat-
isfying the time coupling constraints of tasks and
the heterogeneity of UAVs in S&R scenarios and
simultaneously reduces the computational amount
and communication cost

(2) After that, the cluster head selection method based on
multiattribute decision is put forward to select the
cluster head for each UAV team according to the
overall analyses of UAVs’ four factors including the
mission execution time, the number of its undertaken
tasks, the total score value, and the residual task
capacity loads. These cluster head will communicate
with the central control station about the local task
assignment information to ensure the effective oper-
ation of S&R mission

(3) Finally, to realize the mission coverage in the S&R
scenarios, an auction-based task sharing scheme
among UAV teams is raised to assign the tasks that
cannot be allocated within their submodels. The cen-
tral control station and the cluster heads will partici-
pate in the auction process of unallocated targets to
achieve the effective assignment of all tasks in the
mission area

The rest of this paper is constructed as follows. Section 2
illustrates the multi-UAV multitask assignment problem in
the S&R scenarios and introduces the corresponding solution
algorithm: CBBA with task coupling constraints. Then, Section
3 elaborates the hierarchical task assignment strategy including
the hierarchical task assignment model, the model decoupling
process, the cluster head selection, and the task sharing scheme.
Simulations are given in Section 4 to demonstrate the effective-
ness of the proposed hierarchical task assignment strategy in
the large-scale S&R scenarios with dispersed clustering targets.
At last, Section 5 concludes this paper.

2. Multi-UAV Multitask Assignment Problem

In the S&R scenarios, heterogeneous multiple UAVs need to
successively perform search (S) and rescue (R) tasks on
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multiple stationary ground targets. Notably, in this paper,
we assume that the mission area has been scouted, and
the information (number, locations, etc.) of survivors is
known [37, 38].

2.1. UAVs.Assume that there areNU heterogeneous UAVs in
the multi-UAV system, the set of UAVs is

U = U type
1 ,U type

2 ,⋯,U type
NU

n o
, ð1Þ

where the superscript type ∈ fS, Rg respectively denotes the
search and rescue UAVs.

The heterogeneity of UAVs reflects on different capabili-
ties and kinematics parameters.

(1) Firstly, search UAV (S-UAV) equipped with various
reconnaissance sensors is only capable to perform S
task, while rescue UAV (R-UAV) equipped with
drugs, food, and other resources is only capable to
perform R task

(2) Then, different UAV has different cruise speed and
fuel consumption rate

v =
v1, v2,⋯,vNU

� �
m

s
, ð2Þ

f =
f1, f2,⋯,f NU

n o
km

:
ð3Þ

The cruise speeds and fuel consumption rates of UAVs
are respectively introduced to describe the flight cost of
UAVs and the fuel cost of UAVs. [39] reveals that the fuel
consumption rate of actual flight is close to be linear to
UAV’s flight distance. Thus, the fuel consumptions of UAVs
are assumed to be constant in this paper.

Besides, to simulate the practical S&R scenarios, assume
that UAV Uiði = 1, 2,⋯,NUÞ can be assigned a maximum of
Lit tasks. That is, the task capacity of each UAV is limited.

2.2. Tasks. Suppose that there are NT stationary ground tar-
gets in the S&R mission, each target has two tasks MT = fS,
Rg(S, R separately represent the search and rescue tasks)
need to be performed successively. The set of tasks is

T = TS
1, T

S
2,⋯,TS

NT
, TR

1 , T
R
2 ,⋯,TR

NT

n o
= T1, T2,⋯,TNt

� �
,

ð4Þ

where TS
j , TR

j ðj = 1, 2,⋯,NTÞ separately represent the S, R
tasks of target j and Nt = 2NT is the number of tasks.

The time coupling constraints of tasks in the S&R scenar-
ios reflect on task precedence constraint, task completion
constraint, and time-sensitive constraint.

(1) For each target, the execution of two tasks should fol-
low strict task precedence constraint that R task can
be performed only if S task is completed

(2) The task completion constraint means that S and R
tasks should be both assigned to guarantee the suc-
cessful rescue of certain survivor

(3) To ensure the effective rescue of each survivor, its S
and R tasks should be performed within certain time
window

Suppose that the performing times of S and R tasks of tar-
get j are separately tSj , tRj , the time window of target j is ½
tstartj , tendj �, the execution durations of S and R tasks are sepa-
rately tΔ1, tΔ2; the time coupling constraints can be defined as
follows.

tstartj ≤ tSj < tRj ≤ tendj , ð5Þ

tSj + tΔ1 ≤ tRj , ð6Þ

tRj + tΔ2 ≤ tendj : ð7Þ
2.3. Task Assignment Model. The multi-UAV multitask
assignment problem in the S&R scenarios is described as
NU heterogeneous UAVs need to consecutively perform S
and R tasks on NT stationary ground targets (total Nt = 2
NT tasks). The objective of the task assignment model is to
find a conflict-free matching of tasks to UAVs that maxi-
mizes the global reward and simultaneously satisfies the time
coupling constraints of tasks and heterogeneity of UAVs.

max 〠
NU

i=1
〠
Nt

j=1
cij xi, pið Þxij

 !
, ð8Þ

subject to

〠
Nt

j=1
xij ≤ Lit , ð9Þ

〠
NU

i=1
〠
Nt

j=1
xij ≤Nmin ≜ Nt , 〠

NU

i=1
Lit

( )
, ð10Þ

〠
NU

i=1
xij ≤ 1, ð11Þ

〠
NU

i=1
xi j+NTð Þ ≤ 1, ð12Þ

〠
NU

i=1
xij + 〠

NU

i=1
xi j+NTð Þ = 0, 2f g, ð13Þ

tstartj ≤ t j < t j+NT
≤ tendj , ð14Þ

t j + tΔ1 ≤ t j+NT
, ð15Þ

t j+NT
+ tΔ2 ≤ tendj ,

∀i = 1, 2⋯,NU , j = 1, 2⋯,NT :
ð16Þ
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According to (4), T j, T j+NT
∈ T separately represents S

and R tasks of target j. xij, xiðj+NT Þ ∈ f0, 1g is the decision var-
iable. xij, xiðj+Nt /2Þ = 1 if and only if task T j, T j+Nt /2 is allocated

to UAV Ui ∈U. xi ∈ f0, 1gNt is the decision vector, whose jth

element is xij. pi ∈ ðT ∪ f∅gÞLit represents the ordered task

sequence of UAV Ui, whose k
th element is T j if UAV Ui con-

ducts task T j at k
th waypoint along its task path, and becomes

∅ (empty task) if UAV conducts less than k tasks. The scor-
ing function cijðxi, piÞ ≥ 0 is assumed to be a certain nonneg-
ative function of xi or its path pi. The summation term inside
the first parenthesis represents the local reward for UAV Ui,
which is the sum of the rewards of its assigned tasks in path pi
.

The multi-UAVmultitask assignment problem described
above satisfies the time coupling constraints of tasks and the
heterogeneity of UAVs in the S&R scenarios.

(1) The decision variable xij, xiðj+NT Þ should meet the
constraint on different capabilities of UAVs. That is,
only S-UAV can perform S task of target j, and only
R-UAV can perform its R task

(2) The different kinematics parameters of UAVs reflect
on different cruise speed and fuel consumption rate,
thus reflect on the scoring function cijðxi, piÞ in the
task assignment model. The scoring value of UAV
Ui performing task T j is defined as

cij xi, pið Þxij = Rj0 + e−λ j ti j−tstartjð ÞRju tij
� �

− f iΔDij, ð17Þ

where Rj0, Rjðj = 1, 2,⋯,NtÞ separately represents the fixed
reward and initial reward associated with task T j, λj is the
value decrement factor, tij is the execution time of task T j

in UAV Ui’s path pi, uij is the binary variable that shows if
the constraint of time window is satisfied (defined below),
and ΔDij is the distance from UAV Ui’s initial location to
task T j’s location.

u tij
� �

=
1 if tstartj ≤ tij ≤ tendj

0 otherwise
:

(
ð18Þ

(3) Considering the limited payload of UAVs, each UAV
has limited capacity (9). That is, UAV Ui can per-
form a maximum of Lit limited tasks

(4) We can see from (13) that the S and R tasks of each
target should be both assigned; otherwise, the target
cannot be effectively rescued. Thus, task completion
constraint is well described

(5) The task precedence constraint and time-sensitive
constraint are reflected on (14)–(16). That is, S and
R tasks of target j should be performed in sequence,

and both S and R tasks should be performed in cer-
tain time window

2.4. CBBA-TCC. To solve the multi-UAV multitask assign-
ment problem with time coupling constraints of tasks and
the heterogeneity of UAVs in the S&R scenarios, an exten-
sion of CBBA, named consensus-based bundle algorithm
with task coupling constraints (CBBA-TCC), has been raised
in [29]. The flow diagram of CBBA-TCC is given in Figure 1.
Details about CBBA-TCC please see [29].

CBBA-TCC can realize conflict-free task assignment
through the iterations between inner and outer consensus
stages. The inner consensus stage can guarantee that the task
assignment solution meets the task precedence constraint
and time-sensitive constraint in (14)–(16), while the outer
consensus stage is raised to ensure that the task completion
constraint in (13) is satisfied. [29] proves that CBBA-TCC
can produce feasible and conflict-free task assignment solu-
tion in the S&R scenarios. Therefore, the multi-UAV multi-
task assignment problem in Section 2.3 is properly solved.

Take the communication topology of the multi-UAV sys-
tem as an undirected graph, the shortest path between two
UAVs Ui,Ukði, k = 1, 2,⋯,NUÞ is dik <∝. Thus, the network
diameter of the communication topology is defined as

D = max
i,k=1,2,⋯,NU

dik: ð19Þ

Accordingly, each UAV needs to communicate a maxi-
mum of D times to get consensus solution. Besides, the worse
situation is that only one task is assigned in one iteration of
communication and negotiation. Thus, multi-UAV system
needs a maximum ofNmin iterations to get global task assign-
ment result. Therefore, the maximum communication
amount of CBBA-TCC to produce feasible and conflict-free
task assignment solution is

Y =NminD: ð20Þ

3. Hierarchical Task Assignment Strategy

In the large-scale S&R scenarios, survivors tend to gather in
different locations. Due to potential problems of exponen-
tially computational complexity and massive communication
burden, it is impractical to use centralized or distributed task
assignment algorithms to produce real-time task assignment
solutions for the large-scale S&R scenarios. Thus, the hierar-
chical task assignment strategy is proposed for the large-scale
S&R scenarios with dispersed clustering targets.

Firstly, the hierarchical task assignment model of the
large-scale S&R scenarios is discussed. The theoretical analy-
sis about the communication amount of the hierarchical task
assignment strategy is deduced to prove the effectiveness of
the proposed algorithm in the large-scale S&R scenarios.
Then, the proposed hierarchical task assignment strategy
consists of three main innovations: model decoupling of the
large-scale task assignment problem, cluster head selection
of NC submodels, and the task sharing scheme among
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multiple UAV teams. Thus, these three procedures of the
proposed algorithm are also elaborated.

3.1. Hierarchical Task Assignment Model. Firstly, the large-
scale task assignment model with NU UAVs and NT targets
can be decomposed into NC submodels. The UAV set and
target set in these submodels are defined as U1,U2,⋯,UNC

and T1, T2,⋯, TNC
.

To produce conflict-free solution for the whole task
assignment problem, UAVs and targets in these submodels
should be nonintersection and complete.

Up ∩Uq =∅, ð21Þ

U1 ∪U2∪⋯∪UNC
=U , ð22Þ

U1k k + U2k k+⋯+ UNC

�� �� = Uk k =NU , ð23Þ
Tp ∩ Tq =∅, ð24Þ

T1 ∪ T2∪⋯∪TNC
= T , ð25Þ

T1k k + T2k k+⋯+ TNC

�� �� = Tk k =NT ,

∀p, q = 1, 2,⋯,NC:
ð26Þ

(22) and (23) and (25) and (26) reflect that the total num-
ber of UAVs (targets) in all submodels should equal to that of
the whole task assignment model. (21) and (24) reflect that
there is no overlap of UAVs (targets) among different
subteams.

Accordingly, the large-scale task assignment problem
with dispersed clustering targets has been decomposed into
NC nonintersection and complete submodels.

Then, suppose that the UAV set and task set in qthðq =
1, 2,⋯,NCÞ submodel are separately Uq = fU type

1 ,U type
2 ,⋯,

U type
NUq

g and Tq = fTS
1, TS

2,⋯,TS
NTQ

, TR
1 , TR

2 ,⋯,TR
NTQ

g = fT1,
T2,⋯,TNTq

g, the corresponding multi-UAV multitask

assignment model is shown below.

max 〠
Ui∈Uq

〠
T j∈Tq

cij xi, pið Þxij

0
@

1
A, ð27Þ

subject to

〠
T j∈Tq

xij ≤ Lit , ð28Þ

〠
Ui∈Uq

〠
T j∈Tq

xij ≤Nq,min = NTq
, 〠
Ui∈Uq

Lit

( )
, ð29Þ

〠
Ui∈Uq

xij ≤ 1, ð30Þ

〠
Ui∈Uq

x
i j+NTQ

� � ≤ 1, ð31Þ

〠
Ui∈Uq

xij + 〠
Ui∈Uq

x
i j+NTQ

� � = 0, 2f g, ð32Þ

tstartj ≤ t j < t j+NTQ
≤ tendj , ð33Þ

t j + tΔ1 ≤ t j+NTQ
, ð34Þ

t j+NTQ
+ tΔ2 ≤ tend, ð35Þ

∀i = 1, 2,⋯,NUq
, j = 1, 2,⋯,NTQ

, where NUq
,NTQ

, and

Build
can-do list

Build
can-do list

Build
can-do list

Greedy task
selection

Greedy task
selection

Greedy task
selection

Consensus
strategy
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Communication Communication
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Figure 1: CBBA-TCC.
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NTq
respectively denote the numbers of UAVs, targets, and

tasks in qth submodel.
Apparently, the multi-UAV multitask assignment model

in submodel can be solved by CBBA-TCC.
According to (20), the maximum communication

amount of qth submodel is

Yq =Nq,minDq: ð36Þ

Then, the maximum communication amount of the hier-
archical task assignment model is

Y ′ = 〠
NC

q=1
Yq = 〠

NC

q=1
Nq,minDq

� �
≤ 〠

NC

q=1
Nq,minD
� �

= 〠
NC

q=1
Nq,min

 !
×D

=NminD = Y:

ð37Þ

Obviously, through effective model decomposition, the
hierarchical task assignment model has less communication
requirements than the original task assignment model. Nota-
bly, when NC is large, there will be a great deal of submodels.
Under this circumstance, Y ′ ≪ Y ; thus, the required commu-
nication amount is well reduced.

3.2. Model Decoupling Algorithm Based on Density Clustering
and Negotiation Mechanism. Last section proves that the
hierarchical task assignment model effectively reduces the
required communication amount. Thus, the core is to study
the dimensional reduction method that can break the large-
scale task assignment model with dispersed clustering targets
into several nonintersection and complete submodels. To
address this issue, a model decoupling algorithm based on
density clustering and negotiation mechanism (MDA-
DCNM) is put forward. The schematic diagram of MDA-
DCNM is given in Figure 2.

According to Figure 2, MDA-DCNM consists of two pro-
cedures. Firstly, the density clustering method is applied to
effectively cluster these dispersed clustering targets. Then,
according to UAVs’ limited resources and different task
requirements of these clustered targets, negotiation mecha-
nism is utilized to form heterogeneous UAV teams for these
clustered targets. Therefore, the large-scale task assignment
problem with dispersed clustering targets can be decomposed
into several nonintersection and complete small-scale task
assignment problems, which effectively reduces the required
computational amount and communication cost.

3.2.1. Density Clustering of Targets. According to the distri-
bution of targets in the mission area, the central control sta-
tion firstly introduces the density clustering method to divide
NT targets into NC subclusters. Since density clustering
method finds different clusters by constantly connecting
high-density points in the neighborhood, there are only two
parameters needed: neighborhood size MinPts and density
threshold ε. Thus, different from K-mean clustering method,
density clustering method can find clusters with different
shapes and scales, which is suitable to divide these dispersed
clustering targets into multiple different subteams [40, 41].

The algorithmic flow of density clustering method in this
paper is shown in Algorithm 1.

Therefore, NT targets have been clustered into NC target
sets: T1, T2,⋯, TNC

. The task sets in these target clusters are
�T1, �T2,⋯, �TNC

, where q = 1, 2,⋯NC , �Tq = fTS
1, TS

2,⋯,TS
NTQ

,
TR
1 , TR

2 ,⋯, TR
NTQ

g.

3.2.2. Negotiation-Based Assignment of UAVs. Different
UAVs have different limited task capacities, and different
subclusters have different number of targets. According to
the different requirements of tasks in different subclusters,
negotiation-based assignment algorithm is proposed to allo-
cate different UAV teams to these subclusters.

As NT targets have been clustered to NC target sets: T1,
T2,⋯, TNC

, the requirements for S and R tasks in these sub-
clusters are separately defined as

ReS = ReS1, Re
S
2,⋯, ReSNC

n o
, ð38Þ

ReR = ReR1 , Re
R
2 ,⋯, ReRNC

n o
: ð39Þ

Suppose that there are NSS-UAVs and NRR-UAVs in the
multi-UAV system, the UAV sets that can perform S and R
tasks are separately defined as

US = U1,U2,⋯,UNS

� �
, ð40Þ

UR = U1,U2,⋯,UNR

� �
: ð41Þ

In this paper, assume that S-UAV has unlimited capacity,
while R-UAV has limited task capacity due to its limited
goods payload. Thus, the negotiation mechanism is only
applied to assign R-UAVs to these subclusters. After that, S
-UAVs will be correspondingly allocated based on the assign-
ment of R-UAVs.

Firstly, the limited task capacities of R-UAVs are respec-
tively defined as

LRt = L1t , L
2
t ,⋯,LNR

t

n o
: ð42Þ

The negotiation-based assignment of R-UAVs is given in
Algorithm 2.

Then, the S-UAV teams of NC submodels can be propor-
tionally assigned based the assignment results of R-UAVs.
The number of S-UAVs in qthðq = 1, 2,⋯,NCÞ submodel is

NS
Uq

=
NR

Uq

∑NC
p=1N

R
Up

×NS: ð43Þ

An example is given to illustrate the negotiation-based
assignment of UAVs.

Suppose that the whole task assignment model with NU
= 14 UAVs and NT = 40 dispersed clustering targets can be
divided into NC = 3 subclusters according to density cluster-
ing method, the number of targets in NC = 3 subteams is k
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T1k = 8, kT2k = 12, kTNC
k = 20. Thus, the requirements of R

tasks in NC = 3 subclusters are

ReR = ReR1 , Re
R
2 , Re

R
3

� �
= 8,12,20f g: ð44Þ

Assume that the multi-UAV system has NS = 7S-UAVs
and NR = 7R-UAVs, the UAV set is

U = U1
S,U

2
S,⋯,U7

S,U
1
R,U

2
R,⋯,U7

R

� �
: ð45Þ

Besides, the limited task capacities of NR R-UAVs are

LRt = L1t , L
2
t ,⋯,L7t

� �
= 9,10,6, 5, 7, 8, 4f g: ð46Þ

Table 1 shows the demonstration of the negotiation-
based assignment of R-UAVs.

According to Table 1, the assignment results of NC = 3R
-UAV teams are

UR
1 = UR

5 ,U
R
7

� �
, ð47Þ

UR
2 = UR

1 ,U
R
3

� �
, ð48Þ

UR
3 = UR

2 ,U
R
6 ,U

R
4

� �
, ð49Þ

After that, the NC UAV teams can be derived as

U1 = US
1,U

S
2,U

R
5 ,U

R
7

� �
, ð50Þ

U2 = US
3,U

S
4,U

R
1 ,U

R
3

� �
, ð51Þ

U3 = US
5,U

S
6,U

S
7,U

R
2 ,U

R
6 ,U

R
4

� �
: ð52Þ

In Table 1, after 7th negotiation, ReR = f−3,−3,−3g, which
means that the residual task capacities of NC UAV teams
against targets’ requirements on R tasks all equal to 3.
Accordingly, the negotiation-based assignment algorithm
can form corresponding UAV teams when balancing the
residual task capacities of different UAV teams.

Besides, there is no overlap of UAVs (targets) among dif-
ferent subteams. Therefore, the proposed MDR-DCNM
effectively divides the large-scale task assignment model with
dispersed clustering targets into multiple small-scale and
nonoverlapping task assignment problem.

After that, CBBA-TCC is adopted to solve these small-
scale task assignment problems. It is obvious that the solu-
tions of these nonintersection and complete small-scale task
assignment problems are conflict-free. Thus, MDR-DCNM

Central control station

Density clustering of targets

Target
cluster 1

Target
cluster 2

Target
cluster NC

...

Negotiation-based assignment of UAVs

UAV team
cluster 1

UAV team
cluster 2

UAV team
cluster Nc

...

Figure 2: MDA-DCNM.

Input NT targets, clustered parameters MinPts, ε.
Output NC clustered target sets T1, T2,⋯, TNC

.
1: Ω =∅
2: for j ∈ T do
3: if jNεðjÞj ≥MinPts do
4: Ω =Ω ∪ fjg
5: end if
6: end for
7: k = 0, Γ = T
8: while Ω ≠∅ do
9: eΓ = T
10: H= o, random choose o ∈Ω
11: Γ = Γ \ fog
12: while H ≠∅ do
13: if jNεðhÞj ≥MinPts do, h ∈H
14: Δ =NεðhÞ ∩ Γ
15: H=H ∪ Δ
16: Γ = Γ \ Δ
17: end if
18: end while
19: k = k + 1
20: Tk = eΓ \ T
21: Ω =Ω \ Tk
22: end while

Algorithm 1: Density clustering of targets.
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can realize conflict-free task assignment for the large-scale
S&R scenarios.

3.3. Cluster Head Selection Based on Multiattribute Decision.
The local task assignment problem in these subclusters has
been well solved. Then, the cluster head of each UAV team
should send these local task assignment solutions back to
central control station for further management. Apparently,
the cluster head of each UAV team undertakes extracommu-
nication burden. Besides, since CBBA-TCC depends on com-
munications to generate consensus task assignment solution,
the selection of cluster head in each UAV team affects the
efficiency of local task assignment. To address this issue, a
cluster head selection approach based on multiattribute deci-
sion (CHS-MAD) is put forward to choose the cluster head of
each UAV team according to the overall analyses of UAVs’
four factors including the mission execution time, the num-
ber of undertaken tasks, the total score values, and the resid-
ual task capacities.

Firstly, suppose that there are NUq
UAVs assigned to

qthðq = 1, 2,⋯,NCÞ submodel, where the number of S-UAVs
and R-UAVs is respectively NS

NUq
and NR

NUq
, the UAV set

can be defined as

Uq = US
1,U

S
2,⋯,US

NS
NUq

,UR
1 ,U

R
2 ,⋯,UR

NR
NUq

� �
= U1,U2,⋯,UNUq

n o
:

ð53Þ

According to the local task assignment solution in qth

submodel, four attributes of NUq
UAVs can be defined as

tUq
= t1, t2,⋯,tNUq

n o
, ð54Þ

nUq
= n1, n2,⋯,nNUq

n o
, ð55Þ

cUq
= c1, c2,⋯,cNUq

n o
, ð56Þ

γUq
= γ1, γ2,⋯,γNUq

n o
: ð57Þ

(54) denotes the mission execution time of NUq
UAVs. If

certain UAV has longer mission execution time, it means
that the UAV has less unoccupied time; thus, its probability
to be chosen as the cluster head is less.

(55) denotes the number of UAVs' undertaken tasks. If
certain UAV has larger number of undertaken tasks, it
reflects that the UAV carries out more tasks; thus, its proba-
bility to be chosen as the cluster head is less.

(56) denotes the total score value of UAVs. If certain
UAV has bigger score value, it means that the UAV has
greater roles in the sub-model; thus, its probability to be cho-
sen as the cluster head is less.

(57) denotes the residual task capacities of UAVs. If cer-
tain UAV has larger residual task capacity, it reflects that the
UAV has stronger flexibility during the task execution; thus,
its probability to be chosen as the cluster head is bigger.

Input ReR, LRt .
Output NC R-UAV teams: UR

1 ,UR
2 ,⋯,UR

NC
.

1: U1 =∅,U2 =∅,⋯ ,UNC
=∅

2: while LRt ≠∅ do
3: jT = argmax ReR
4: jU = argmaxLRt
5: Re ðjTÞ = Re ðjTÞ − LjU

t

6: LjU
t = 0

7: UR
jT
=UR

jT
∩ fjUg

8: end while

Algorithm 2: Negotiation-based assignment of R-UAVs.

Table 1: Demonstration of R-UAV allocation based on negotiation
mechanism.

Procedures Assignment information

Step 0
ReR = 8,12,20f g, LRt = 9,10,6, 5, 7, 8, 4f g

UR
1 =∅,UR

2 =∅,UR
3 =∅

Step 1

jT = 3, jU = 2

ReR = 8,12,10f g, LRt = 9, 0, 6, 5, 7, 8, 4f g
UR

1 =∅,UR
2 =∅,UR

3 = UR
2

� �

Step 2

jT = 2, jU = 1

ReR = 8, 3, 10f g, LRt = 0, 0, 6, 5, 7, 8, 4f g
UR

1 =∅,UR
2 = UR

1
� �

,UR
3 = UR

2
� �

Step 3

jT = 3, jU = 6

ReR = 8, 3, 2f g, LRt = 0, 0, 6, 5, 7, 0, 4f g
UR

1 =∅,UR
2 = UR

1
� �

,UR
3 = UR

2 ,UR
6

� �

Step 4

jT = 1, jU = 5

ReR = 1, 3, 2f g, LRt = 0, 0, 6, 5, 0, 0, 4f g
UR

1 = UR
5

� �
,UR

2 = UR
1

� �
,UR

3 = UR
2 ,UR

6
� �

Step 5

jT = 2, jU = 3

ReR = 1,−3, 2f g, LRt = 0, 0, 0, 5, 0, 0, 4f g
UR

1 = UR
5

� �
,UR

2 = UR
1 ,UR

3
� �

UR
3 = UR

2 ,UR
6

� �

Step 6

jT = 3, jU = 4

ReR = 1,−3,−3f g, LRt = 0, 0, 0, 0, 0, 0, 4f g
UR

1 = UR
5

� �
,UR

2 = UR
1 ,UR

3
� �

UR
3 = UR

2 ,UR
6 ,UR

4
� �

Step 7

jT = 1, jU = 7

ReR = −3,−3,−3f g, LRt = 0, 0, 0, 0, 0, 0, 0f g
UR

1 = UR
5 ,UR

7
� �

,UR
2 = UR

1 ,UR
3

� �
UR

3 = UR
2 ,UR

6 ,UR
4

� �
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Then, DS evidence theory is adopted to form the multiat-
tribute decision approach. DS evidence theory is a multi-
source fusion method with quick response and well
measurement about uncertain information [42]. Multiattri-
bute decision based on DS evidence theory can comprehen-
sively consider the complementarity and redundancy of
four attributes to select the suitable cluster head for each sub-
team [43]. The DS fusion equation is

M Uið Þ = 1
1 − K

〠
∩H=Ui

Y
1≤f≤4

mf Hð Þ
 !

, ð58Þ

where K is the conflict factor that defined as

K = 〠
∩H=∅

Y
1≤f≤4

mf Hð Þ
 !

: ð59Þ

The mass functions mf ðHÞ, f = 1, 2, 3, 4 respectively
denote UAVs’ probabilities to be selected as the cluster-
head according to four attributes in (54)–(57).

m1 Uið Þ = t∧i
−2

∑
NUq

p=1 t∧i
−2
, ð60Þ

m2 Uið Þ = n∧i
−2

∑
NUq

p=1 n∧i
−2
, ð61Þ

m3 Uið Þ = c∧i
−2

∑
NUq

p=1 c∧i
−2
, ð62Þ

m4 Uið Þ = γi

∑
NUq

p=1 γp

, ð63Þ

where

t̂i =
ti

max
i=1,2,⋯,NUq

ti
, ð64Þ

n̂i =
ni

max
i=1,2,⋯,NUq

ni
, ð65Þ

ĉi =
ci

max
i=1,2,⋯,NUq

ci
: ð66Þ

Finally, the UAV with largest probability in the fusion
result MðUiÞ will be chosen as the cluster head of qth sub-
model.

Ji = arg max
f

M U f

� �
: ð67Þ

3.4. Auction-Based Task Sharing Scheme among UAV
Teams. A problem occurs when a subteam is unable to
perform all of its assigned tasks due to UAVs’ limited

and unbalanced resources [44]. Thus, an auction-based
task-sharing scheme among UAV teams (ATS-UT) is
raised to allocate the unassigned tasks. In the proposed
algorithm, the central control station and cluster heads
of all UAV teams will participate in the auction process
of the unallocated tasks to achieve the effective assignment
of all tasks in the mission area and further guarantee the
mission coverage of the multi-UAV system in the entire
S&R scenarios. The algorithmic diagram of ATS-UT is
shown in Figure 3.

In Figure 3, CBBA-PR represents CBBA with partial
replanning that raised in [45, 46]. CBBA-PR partially resets
original task schedules to efficiently and quickly allocate the
new task. Thus, CBBA-PR is adopted to solve the allocation
of unassigned task in this paper.

Firstly, the central control station will announce the unal-
located tasks to all UAV teams once at a time. Then, cluster
head of each UAV team will use CBBA-PR to calculate the
score increment of the announced task and send it back to
the central control station. Finally, the central control station
will choose the UAV team with highest score increment to
perform the announced task. After iterations of ATS-UT,
all unallocated tasks can be well assigned.

Central control
station

Cluster
head Ch1

Cluster
head Ch2

Cluster
head ChNC

...

Task
announcement

Biddings

Awading

CBBA-PR CBBA-PR CBBA-PR

Figure 3: ATS-UT.

Table 2: Simulation parameters of UAVs.

UAVs
Task

capacity Lit

Cruise speed vi
(m/s)

Fuel consumption rate
f i (/km)

Search
UAV

Unlimited 80 8

Rescue
UAV

Random 60 5

Table 3: Simulation parameters of tasks.

Tasks
Fixed

reward Rj0

Initial
reward Rj

Value decrement
factor λj

Execution
duration(s)

S 10 90 0.02 5

R 10 90 0.02 15
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4. Simulations

In this paper, MDA-DCNM is the main component of the
hierarchical task assignment strategy, which is used to realize
model decomposition. CHS-MAD is raised to achieve effec-
tive communications between the central control station
and multiple UAV teams. ATS-UT in the hierarchical task
assignment strategy is only applied when some tasks are
not effectively assigned through MDA-DCNM. To prove
the feasibility and superiority of the proposed hierarchical
task assignment strategy, five simulations are conducted in
various large-scale S&R scenarios.

4.1. Feasibility of MDA-DCNM. Suppose that NT = 40 targets
randomly gather at different locations in 5 km × 5 km mis-
sion area, NU = 14 UAVs need to perform S&R mission on
all targets within time window [0,200] s. The UAV set is

U = US
1,U

S
2,⋯,US

7,U
R
1 ,U

R
2 ,⋯,UR

7
� �

, ð68Þ

where NS = 7,NR = 7.
The simulation parameters of UAVs and tasks are sepa-

rately shown in Tables 2 and 3.

The randomly distributed targets are shown in Figure 4.
The realization of MDA-DCNM is illustrated as follows.
Firstly, the central control station uses density clustering

to cluster the dispersed clustering targets in S&R mission
area. Thus, NC = 3 subclusters are generated. The target sets
of NC = 3 subclusters are

T1 = T1, T2,⋯,T12f g, ð69Þ

T2 = T13, T14,⋯,T24f g, ð70Þ

T3 = T25, T26,⋯,T40f g: ð71Þ

Comparing the clustering results in (69)–(71) with target
distribution in Figure 4, we can derive that the dispersed clus-
tering targets have been properly clustered. Besides, we can
see from (69) to (71) that:

(1) The numbers of targets in NC = 3 subclusters are sep-
arately kT1k = 12, kT2k = 12, and kT3k = 16. Appar-
ently, kT1k + kT2k + kT3k =NU , and
T1 ∪ T2 ∪ T3 = T

0 1000 2000 3000 4000 5000

x/m

0
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1000

1500

2000

2500
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3500
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4500

5000

y/
m

Target distribution

T1

T2

T3 T4

T9T5
T11 T6

T7T8

T10
T12

T14T13
T15

T16
T17

T18

T19T20

T21

T22

T23
T24

T25T29
T28

T36 T26T27
T30

T31
T32T33

T34

T35

T37T38
T39

T40

Figure 4: NT = 40 randomly distributed targets.

Table 4: Relevant elements of NC = 3 subproblems.

Elements 1st subproblem 2nd subproblem 3rd subproblem
Tq T1, T2,⋯,T12f g T13, T14,⋯,T24f g T25, T26,⋯,T40f g
ReRq 12 12 16

Uq US
1,U

S
2,U

R
4 ,U

R
7

� �
US

3,U
S
4,U

R
3 ,U

R
1

� �
US

5,U
S
6,U

S
7,U

R
5 ,U

R
2 ,U

R
6

� �
LRt {10,7} {9,8} {10,9,7}

γq 5 5 10

Chq US
2 US

3 US
7
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(2) The targets inNC = 3 subclusters are nonintersection.
That is, T1 ∩ T2 =∅, T1 ∩ T3 =∅, and T2 ∩ T3 =∅

Thus, the targets in NC = 3 subclusters satisfy the nonin-
tersection and complete demands of the hierarchical task
assignment model in (24)–(26).

Then, the central control station applies negotiation
mechanism to assign different UAV teams to NC = 3
subclusters.

Assume that the limited task capacities of R-UAVs are

LRt = L1t , L
2
t ,⋯,L7t

� �
= 8, 9, 9,10,10,7, 7f g: ð72Þ

The NC = 3 UAV teams can be formed based on Algo-
rithm 2.

U1 = US
1,U

S
2,U

R
4 ,U

R
7

� �
, ð73Þ

U2 = US
3,U

S
4,U

R
3 ,U

R
1

� �
, ð74Þ

U3 = US
5,U

S
6,U

S
7,U

R
5 ,U

R
2 ,U

R
6

� �
: ð75Þ

Similarly, the UAVs in NC = 3 subclusters satisfy the
nonintersection and complete demands of the hierarchical
task assignment model in (21)–(23).

Therefore, MDA-DCNM decomposes the NU = 14,NT
= 40 task assignment problem into NC = 3 nonintersection
and complete small-scale task assignment problems.

The corresponding elements of NC = 3 subproblems are
shown in Table 4, where Tq,Uqðq = 1, 2,⋯,NCÞ separately

represents the target and UAV sets of qth submodel, ReRq rep-
resents the requirements for R tasks, LRt represents the lim-
ited capacity of R-UAVs, and γq, Chq separately represents
the residual task capacities and cluster heads of NC = 3
submodels.

In Table 4, the large-scale task assignment model has
been decomposed into NC = 3 submodels. E.g., in the 1st sub-
model, UAVs fUS

1,US
2,UR

4 ,UR
7g are assigned to perform

tasks fT1, T2,⋯,T12g. The requirement of R tasks is kT1k
= 12; the task capacities of R-UAVs UR

4 ,UR
7 are separately

{10,7}. Apparently, the residual task capacities in the 1st sub-
model are γ1 = 10 + 7 − 12 = 5. Through the DS fusion
method,US

2 is selected as the cluster head of the 1st submodel.
Accordingly, NC = 3 submodels are established. Consid-

ering the time coupling constraints of tasks and the heteroge-
neity of UAVs in these subproblems, CBBA-TCC is adopted
to produce effective and conflict-free task assignment
solutions.

Figure 5 shows the task assignment results of MDA-
DCNM. In Figure 5, NU = 14UAVs from the same base need
to perform S&Rmission on NT = 40 targets. The x-axis and y
-axis represent the locations of targets; the z-axis is the time.
By contrast to Figure 4, the black “×” represents the locations
of targets, the black dotted lines indicate the time windows of
targets: [0,200] s. “Δ,◯” separately represent S and R tasks,
and their corresponding z-axis values are their execution
time. Blue and red segments separately represent the task
performing process of S-UAVs and R-UAVs.

Figure 6 shows the UAV schedules of MDA-DCNM. In
Figure 6, the blue and red segments separately represent that

0
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MDA-DCNM: score = 2940.6876

1000
Base
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500045000 40003500300025002000150010005000

Figure 5: Task assignment results.
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the corresponding UAVs are performing S and R tasks, and
the length of each segment indicates the execution duration
of corresponding task.

We can see from Figures 5 and 6 that:

(1) Figure 5 reveals that only S tasks (Δ) are assigned to S
-UAVs (blue), while only R tasks (◯) are assigned to

R-UAVs (red). That is, the constraint on different
capabilities of UAVs is satisfied

(2) (72) shows that the limited task capacities of R-UAVs
are LRt = fL1t , L2t ,⋯,L7t g = f8, 9, 9,10,10,7, 7g. Figure 6
shows that for each R-UAV, the number of assigned
tasks is less than its task capacity. Thus, the con-
straint on limited payloads of R-UAVs is satisfied

(3) Figure 5 reflects that both S and R tasks of each target
are effectively assigned. That is, the task completion
constraint in (13) is satisfied

(4) Figure 5 indicates that for each target, its R task is
always performed after the completion of S task. Thus,
the task precedence constraint in (14)–(16) is satisfied

(5) Figure 6 directly reflects that all tasks are performed
within time window [0,200] s. Thus, the time-
sensitive constraint in (14)–(16) is satisfied

0
1
2

U
A

V
1

UAV schedules: score = 2940.6876

0
1
2

U
A

V
2

0
1
2

U
A

V
3

0
1
2

U
A

V
4

0
1
2

U
A

V
5

0
1
2

U
A

V
6

0
1
2

U
A

V
7

0
1
2

U
A

V
8

0
1
2

U
A

V
9

0
1
2

U
A

V
10

0
1
2

U
A

V
11

0
1
2

U
A

V
12

0
1
2

U
A

V
13

Time/s

0
1
2

U
A

V
14

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

Figure 6: UAV schedules.

Table 5: Scores of two algorithms under different target
distributions.

Target distributions
Algorithms

MDA-DCNM CBBA-TCC

NC = 2 2785.6575 2635.3650

NC = 3 3018.6522 2827.3469

NC = 4 2012.4958 1952.2485

NC = 5 2658.5116 2344.8481

NC = 6 2504.3999 2456.2380
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Overall, the proposed MDA-DCNM can produce effec-
tive and conflict-free solutions in the large-scale S&R scenar-
ios with dispersed clustering targets.

Besides, the multi-UAV system relies on communica-
tions and negotiations to produce feasible and conflict-free
task assignment solution in S&R scenarios. We can derive
from Figure 5 that MDA-DCNM successfully decomposes
the large-scale task assignment problem into several small-
scale submodels, where UAVs only communication with cor-
responding UAVs in the same subteam to realize the assign-
ment of tasks in corresponding submodel. Therefore,
compared with direct task assignment strategy, the proposed
MDA-DCNM greatly reduces the communication amount
and cruise path of UAVs.

4.2. Different Distributions of Targets. Suppose that NU = 14
,NS = 7,NR = 7, and NT = 40 task assignment problem exists
in 5 km × 5 km mission area, and the randomly generated
targets are dispersed clustering at NC = 2 − 6 locations. Other
simulation parameters are the same as Section 4.1. Based on
100 Monte Carlo simulations, the score values and conver-
gence performance of MDA-DCNM and CBBA-TCC are
respectively shown in Tables 5 and 6.

We can see from Table 5 that under different target distri-
bution situations, the proposed MDA-DCNM always pro-
duces solutions with higher score values than CBBA-TCC.
Table 6 reveals that the proposed MDA-DCNM always has
less convergence time and communication amount than
CBBA-TCC. Therefore, compared with CBBA-TCC, the
decomposition process of MDA-DCNM not only greatly
reduces the cruise consumption of UAVs but also greatly
reduces the required communication burden. That is, the

proposed MDA-DCNM can produce feasible and conflict-
free solution with higher scores and less convergence time.

Besides, we can see from Table 6 that for the same num-
ber of targetsNT = 40, the more dispersed these targets are,
the smaller these submodels are, and the less convergence
time and communication amount the proposed MDA-
DCNM needs. Thus, the decomposition process of the
large-scale task assignment model can be strengthened by
adjusting the parameters MinPts and ε of density clustering
algorithm to obtain finer dimension reduction results, which
can help the multi-UAV system get the task assignment solu-
tions more quickly.

4.3. Different Size of Mission Area. Suppose that the ran-
domly generated NT = 40 targets are dispersed clustering at
NC = 3 locations in different size of mission area, NU = 14,
NS = 7, and NR = 7 UAVs need to perform S&R mission on
these targets. Based on 100 Monte Carlo simulations, the
score values and convergence performance of MDA-
DCNM and CBBA-TCC are respectively shown in Tables 7
and 8.

We can see from Tables 7 and 8 that under different size
of mission area, the proposed MDA-DCNM always produces
solutions with higher score, less convergence time, and less
communication amount than CBBA-TCC.

Besides, Table 8 shows that the convergence time and
communication amount of CBBA-TCC in 20 km × 20 km
mission area are separately 178 s and 522 times, which is
not suitable for real-time task assignment requirement. The
decomposition process of MDA-DCNM greatly reduces the
required convergence time and communication amount to
0.8 s and 26 times, which effectively achieves the real-time
requirement in S&R scenarios.

4.4. Different Model Scales. To further discuss the superiority
of the proposed MDA-DCNM, 100 Monte Carlo simulations
are conducted in different scales of mission models. The mis-
sion area is 10 km × 10 km, and targets are gathering at NC
= 3 locations. Tables 9 and 10 separately give the score values
and convergence performance of MDA-DCNM and CBBA-
TCC.

Apparently, Tables 9 and 10 show that under different
S&R mission scales, the proposed MDA-DCNM always pro-
duces solutions with higher score, less convergence time, and
less communication amount than CBBA-TCC.

Table 6: Convergence performance of two algorithms under different target distributions.

Target distributions
Algorithms

MDA-DCNM CBBA-TCC
Convergence time Communication amount Convergence time Communication amount

NC = 2 1.1751 s 35 4.7843 s 40

NC = 3 0.4230 s 25 4.8277 s 47

NC = 4 0.1798 s 23 2.7072 s 36

NC = 5 0.0627 s 14 3.8543 s 42

NC = 6 0.0197 s 9 4.4150 s 40

Table 7: Scores of two algorithms under different mission sizes.

Size of mission area
Algorithms

MDA-DCNM CBBA-TCC

5 km × 5 km 5529.9229 5245.2512

10 km × 5 km 4917.3263 4513.8468

10 km × 10 km 4834.5632 4413.3940

20 km × 10 km 4335.3501 3958.5015

20 km × 20 km 3311.3769 3189.3496
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Besides, Table 10 reveals that when the whole task assign-
ment model is clustered as NC = 3 sub-models, even the con-
vergence time of MDA-DCNM cannot always meet the real-
time task assignment requirement of S&R mission. E.g.,
when NU = 40,NT = 100, the average numbers of UAVs
and targets in NC = 3 submodels are separately 13 and 33.
Under this circumstance, these submodels cannot be solved
quickly. Accordingly, we can derive that further refinement
of model decomposition process can increase the number
of submodels, reduce the scale of submodels, and thus
shorten the convergence time of MDA-DCNM. This just
echoes the analyses of Table 6: the larger the whole task
assignment model is decomposed (larger NC), the faster the
proposed MDA-DCNM converges.

4.5. R-UAV Has Unbalanced Resources. The above simula-
tions have proved the feasibility and superiority of MDA-
DCNM. Under the circumstance of UAVs’ limited and
unbalanced resources, a few tasks cannot be effectively allo-
cated through their corresponding UAV teams. Thus, ATS-
UT in hierarchical task assignment strategy is triggered to
realize the mission coverage in the large-scale S&R scenarios.

Suppose that NT = 40 targets randomly gather at NC = 3
locations in 5 km × 5 km mission area, NU = 14 UAVs need
to perform S&R mission on all targets within time window
[0,200] s. The limited and unbalanced task capacities of R-
UAVs are LRt = fL1t , L2t ,⋯,L7t g = f4, 7, 8, 6, 7, 6, 4g, and other
relevant simulation parameters are the same as Section 4.1.

Through the model decomposition process of MDA-DCNM,
NC = 3 submodels are obtained. The corresponding elements
of these submodels are shown in Table 11.

In Table 11, the large-scale task assignment model has
been decomposed into NC = 3 submodels.

In the 1st and 3rd submodels, the residual task capacities
are separately γ1 = 6 + 7 − 12 = 1 and γ3 = 8 + 6 + 4 − 16 = 2.
Obviously, the small-scale task assignment problems in the
1st and 3rd models can be handled well.

In the 2nd submodel, the residual task capacity is γ2 = 7
+ 4 − 12 = −1. That is, in the 2nd submodel, the task capacity
of UAV team is less than the requirement for R tasks. Thus,
due to limited and unbalanced task capacities of R-UAVs,
the UAV team in the 2nd submodel cannot guarantee the
effective assignment of all tasks in the subcluster.

Under this circumstance, the task assignment results and
UAV schedules of MDA-DCNM are respectively shown in
Figures 7 and 8.

Similarly to Figures 5 and 6, we can derive from Figures 7
and 8 that the task assignment solutions of MDA-DCNM
satisfy the constraint on different capabilities of UAVs, con-
straint on limited payloads of R-UAVs, the task completion
constraint, task precedence constraint, and time-sensitive
constraint. Hence, MDA-DCNM can produce feasible and
conflict-free task assignment solutions in the large-scale
S&R scenarios.

Table 11 reflects that the residual task capacity of the 2nd
submodel is γ2 = −1. Obviously, due to unbalanced task capac-
ities of R-UAVs, the R-UAVs in the 2nd submodel do not have
sufficient resources to perform all corresponding R tasks.

Then, in Figure 7, the purple “∗” represents the unallo-
cated target T14; the purple segment indicates its time win-
dow. Figure 7 reveals that due to the limited task capacities
of R-UAVs in the 2nd submodel, the target T14 in the 2nd sub-
model is not assigned.

After the central control station receives the feedback
information from cluster heads US

2,US
3,US

6 of NC = 3 submo-
dels, ATS-UT is triggered to assign the unallocated target T14
and further achieve the mission coverage of S&R scenarios.

After receiving the task announcement from the central
control station, the 1st and 3rd UAV teams will apply CBBA-
PR to assign the unallocated target T14. Based on CBBA-PR,
the score increments will be sent to the central control station
as the biddings for the unallocated target T14.

Table 8: Convergence performance of two algorithms under different mission sizes.

Size of mission area
Algorithms

MDA-DCNM CBBA-TCC
Convergence time Communication amount Convergence time Communication amount

5 km × 5 km 0.9864 s 27 35.9210 s 59

10 km × 5 km 0.7505 s 25 40.3384 s 57

10 km × 10 km 0.6596 s 20 43.5121 s 59

20 km × 10 km 0.4255 s 21 28.6688 s 60

20 km × 20 km 0.8207 s 26 178.5785 s 522

Table 9: Scores of two algorithms under different model scales.

Model scales
Algorithms

MDA-DCNM CBBA-TCC

NU = 10,NT = 40 4339.1163 3861.5895

NU = 20,NT = 40 4611.0305 4269.6223

NU = 20,NT = 60 6427.3621 6167.5756

NU = 20,NT = 80 8782.4890 7379.5571

NU = 30,NT = 60 6987.2419 6544.5443

NU = 30,NT = 80 8986.3012 8189.2356

NU = 30,NT = 100 10636.9559 9919.5550

NU = 40,NT = 80 9286.5631 8527.9601

NU = 40,NT = 100 11108.0804 10466.3619
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Table 10: Convergence performance of two algorithms under different model scales.

Model scales
Algorithms

MDA-DCNM CBBA-TCC
Convergence time Communication amount Convergence time Communication amount

NU = 10,NT = 40 0.3526 s 20 16.5170 s 41

NU = 20,NT = 40 0.9182 s 29 39.3825 s 58

NU = 20,NT = 60 3.3564 s 36 105.5134 s 70

NU = 20,NT = 80 8.5320 s 42 256.0116 s 83

NU = 30,NT = 60 5.2269 s 41 201.1032 s 81

NU = 30,NT = 80 14.3678 s 45 303.2863 s 90

NU = 30,NT = 100 25.5909 s 51 590.8205 s 105

NU = 40,NT = 80 22.8850 s 54 467.8749 s 117

NU = 40,NT = 100 36.1597 s 58 858.5061 s 121

Table 11: NC = 3 submodels with unbalanced capacities of R-UAVs.

Elements 1st subproblem 2nd subproblem 3rd subproblem
Tq T1, T2,⋯,T12f g T13, T14,⋯,T24f g T25, T26,⋯,T40f g
ReRq 12 12 16

Uq US
1,U

S
2,U

R
4 ,U

R
5

� �
US

3,U
S
4,U

R
2 ,U

R
7

� �
US

5,U
S
6,U

S
7,U

R
3 ,U

R
6 ,U

R
1

� �
LRt {6,7} {7,4} {8,6,4}

γq 1 -1 2
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Figure 7: Task assignment results of MDA-DCNM with unbalanced capacities of R-UAVs.
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The auction information of the 1st and 3rd UAV teams
are respectively shown in Figures 9 and 10.

Figure 9 only gives the task performing information of
the 1st UAV team. On the basis of its original task assignment
solution in Figure 7, the 1st UAV team will apply CBBA-PR
to realize the effective assignment of the unallocated target
T14. Figure 9 shows that for the 1st UAV team, the score
increment of T14 is 140.5928. Then, the cluster head of the
1st UAV team US

2 will send the score increment 140.5928 to
the central control station as its auction value for T14.

Figure 10 only gives the task performing information of
the 3rd UAV team. Similarly, Figure 10 reveals that for the
3rd UAV team, the score increment of T14 is 261.9860. Then,
the cluster head of the 3rd UAV team US

3 will send the score

increment 261.9860 to the central control station as its auc-
tion value for T14.

Finally, as the objective of the task assignment model is to
maximize the global reward when satisfying multiple con-
straints, the central control station will chose the 3rd UAV
team with higher bidding to perform the S and R tasks of
the unallocated target T14.

Accordingly, the unallocated target T14 has been well
assigned through ATS-UT. Hence, ATS-UT successfully
guarantees the mission coverage in the large-scale S&R sce-
narios even UAVs has limited and unbalanced sources.

Overall, MDA-DCNM can realize the feasible decompo-
sition of the large-scale task assignment model, which avail-
ably reduces the required communication amount and

UAV schedules: score = 3462.6175

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

0
1
2

0 20 40 60 80 100 120 140 160 180 200

U
A

V
1

U
A

V
2

U
A

V
3

U
A

V
4

U
A

V
5

U
A

V
6

U
A

V
7

U
A

V
8

U
A

V
9

U
A

V
10

U
A

V
11

U
A

V
12

U
A

V
13

U
A

V
14

Time/s

Figure 8: UAV schedules of MDA-DCNM with unbalanced capacities of R-UAVs.
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computational burden of the multi-UAV system. When
UAVs have limited and unbalanced sources, a few task can-
not be effectively assigned. Then, ATS-UT is triggered to

guarantee the efficient assignment of unallocated tasks.
Therefore, the effectiveness of the proposed hierarchical task
assignment strategy has been well illustrated.
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Figure 9: CBBA-PR auction information of the 1st UAV team.
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5. Conclusions

To solve the multi-UAV multitask assignment problem in
the large-scale S&R scenarios with dispersed clustering tar-
gets, this paper proposes a hierarchical task assignment strat-
egy. Firstly, the model decoupling algorithm based on density
clustering and negotiation mechanism is proposed to decom-
pose the large-scale task assignment model with dispersed
clustering targets into several nonintersection and complete
small-scale task assignment models. The model decomposi-
tion process greatly reduces the required computational
amount and communication cost. Then, a cluster head selec-
tion based on DS fusion decision is raised to select rational
cluster head for each UAV team according to the overall
analyses of UAVs’ four attributes including the mission exe-
cution time, the number of undertaken tasks, the total score
values, and the residual task capacities. At last, considering
the unallocated targets caused by UAVs’ limited and unbal-
anced resources, an auction-based task-sharing scheme
among UAV teams is raised to achieve the effective assign-
ment of unallocated tasks and further guarantee the mission
coverage in the large-scale S&R scenarios. Simulation results
comprehensively prove that under the large-scale task assign-
ment model with dispersed clustering targets, the proposed
hierarchical task assignment strategy can quickly generate
effective, reliable, and conflict-free task assignment solutions
that conform to multiple constraints.

In the future research, we will study the application of the
proposed hierarchical task assignment strategy in the urban
S&R scenarios. There are many buildings, trees, and other
obstacles in urban environment. Thus, the next study will
focus on how to ensure the effectiveness of the hierarchical
task assignment strategy under complex urban environment.
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