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,e k-means algorithm is sensitive to the outliers. In this paper, we propose a robust two-stage k-means clustering algorithm based
on the observation point mechanism, which can accurately discover the cluster centers without the disturbance of outliers. In the first
stage, a small subset of the original data set is selected based on a set of nondegenerate observation points. ,e subset is a good
representation of the original data set because it only contains all those points that have a higher density of the original data set and
does not include the outliers. In the second stage, we use the k-means clustering algorithm to cluster the selected subset and find the
proper cluster centers as the true cluster centers of the original data set. Based on these cluster centers, the rest data points of the
original data set are assigned to the clusters whose centers are the closest to the data points.,e theoretical analysis and experimental
results show that the proposed clustering algorithm has the lower computational complexity and better robustness in comparison
with k-means clustering algorithm, thus demonstrating the feasibility and effectiveness of our proposed clustering algorithm.

1. Introduction

Clustering is an important research branch of data mining.
,e k-means algorithm is one of the most popular clustering
methods [1]. When performing k-means clustering, we
usually use a local search to find the solution [2, 3], i.e.,
selecting k points μ1, μ2, . . . , μk as the initial cluster centers
and then optimizing them by an iterative process to minimize
the following objective function (see, for example, [4, 5]):

E � 􏽘
k

i�1
􏽘

Xj∈Ci

Xj − μi

�����

�����
2

2
, (1)

where Xj is the j-th data point belonging to the i-th cluster
Ci. It is well known that the solution of equation (1) is
affected by the initial values of μi(i � 1, 2, . . . , k).

In order to choose μi properly, the k-means++ algorithm
[6] picks out a set of points as the initial center points whose
distances between each other are as large as possible.
However, this method for choosing the initial center points
is sensitive to outliers [7–9]. Some methods use the subsets
of the original data set to determine μi. For instance, the
CLARA [10] and CLARANS [11] algorithms use PAM [12]
to calculate the initial cluster centers from the random
subsets of the original data set. ,e sampling-based methods
weaken the sensitivity because the sampling process can
discard some outliers in the original data set, but it cannot
guarantee all outliers to be ignored in the sampling process.
,erefore, the remaining outliers in subsets still affect the
clustering results.

,e automatic clustering algorithms are attracting more
and more attention from the academic community, e.g., the
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density-based spatial clustering of applications with noise
(DBSCAN) algorithm [13–15], depth difference-based
clustering algorithm [16], and Tanir’s method [17]. Recently,
a new automatic clustering algorithm named I-nice was
proposed in [18]. Inspired by the observation point mech-
anism of I-nice algorithm, we propose a two-stage k-means
clustering algorithm in this paper to find the cluster centers
from a subset of the original data set with all outliers re-
moved. In the first stage, we select a small subset of original
data set based on a set of nondegenerate observation points.
,e subset contains only all the higher density points of the
original data set and does not have the outliers. ,erefore, it
is a good representation of the original data set for finding
the proper cluster centers. In the second stage, we perform
the k-means algorithm on the subset to obtain a set of cluster
centers and then the other points in the original data set can
be clustered accordingly.

Selecting the subset in the first stage is based on a set of
d + 1 nondegenerate observation points that are assigned to
the data space Rd, where d is the dimension of data points.
For each observation point, we compute a set of distances
between it and all data points in the original data set. ,e set
of distances generates a distance distribution with respect to
the observation point. From the distance distribution, we
identify the dense areas and extract the subset of data points
in the dense areas. ,en, we take the intersection of all d + 1
subsets of data points in all dense areas from those d + 1
distance distributions. After refining this intersection subset
of data points, we obtain a subset without outliers of the
original data set. ,erefore, it can be used to find the proper
cluster centers. Finally, we conduct some convictive ex-
periments to validate the effectiveness of our proposed al-
gorithm and the experimental results demonstrate that our
proposed algorithm is robust to outliers.

,e remainder of this paper is organized as follows. We
describe the related mathematical principles of our algo-
rithm in Section 2. ,e details of two-stage k-means clus-
tering algorithm and its pseudocode are presented in Section
3. In Section 4, we present a series of experiments to validate
the feasibility of our proposed algorithm. Finally, we
summarize the conclusions and future work in Section 5.

2. Mathematical Principles

Definition 1. Suppose D � X1, X2, . . . , XN􏼈 􏼉 is a data set
including N data points with d dimensions. Given an ob-
servation point O ∈ Rd, we say 􏽥D � d(Xi, O): i �􏼈

1, 2, . . . , N} is a generated distance set of D with respect to
the observation point O, where d(X, Y) denotes the Eu-
clidean distance between X and Y.

Given a data set D and an observation point O, we have

|d(X, O) − d(Y, O)|≤ d(X, Y), (2)

by the triangle inequality for every X, Y ∈ D. Hence, the
distance between two data points in D is larger than the
difference of their corresponding two distances in 􏽥D.
,erefore, for any positive number r and a point X ∈ D, the
number of points in D with distances to X less than r is not

greater than the number of points in 􏽥D whose distances to
d(X, O) are less than r. In particular, if X is a proper cluster
center inD, d(X, O) will be a data point in 􏽥Dwhich hasmore
points close to it. ,at is to say, if X is a dense point inD, it is
also corresponding to a dense point in 􏽥D.

Unfortunately, the converse is not true. Because two
points in 􏽥D which have a small distance may correspond to
two points in D that have a large distance, a proper cluster
center of 􏽥D may not be corresponding to a proper cluster
center of D. Hence, we can deduce that 􏽥D retains the partial
clustering information of D. In order to obtain more
clustering information of D, one possible way is to choose
more observation points to generate more distance sets and
then combines all those different clustering information
together. ,is is the main idea behind our new algorithm.
We provide the following two theorems to guarantee the
correctness of the abovementioned statements.

Definition 2. Given a set of d + 1 points O0, O1, . . . , Od􏼈 􏼉

where Oi � (ai1, ai2, . . . , ai d) for i � 0, 1, 2, . . . , d, define the
generating matrix A of O0, O1, . . . , Od􏼈 􏼉 as

A �

a11 − a01 a12 − a02 · · · a1d − a0d

a21 − a01 a22 − a02 · · · a2d − a0d

⋮ ⋮ ⋮

ad1 − a01 ad2 − a02 · · · add − a0d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

If the determinant of A is not equal to zero, we say A is
nondegenerate and O0, O1, . . . , Od􏼈 􏼉 is a set of nondegen-
erate points.

Theorem 1. Suppose O0, O1, . . . , Od􏼈 􏼉 is a set of nonde-
generate points and let X1, X2 ∈ Rd. If

d X1, Oi( 􏼁 � d X2, Oi( 􏼁, (4)

for all i � 0, 1, . . . , d, then X1 � X2.

Proof. Assume X1 � (x11,x12, . . . ,x1d) and X2 � (x21,x22, . . . ,

x2d). For each i � 1,2, . . . ,d, we have

d X1, Oi( 􏼁􏼂 􏼃
2

− d X1, O0( 􏼁􏼂 􏼃
2

� d X2, Oi( 􏼁􏼂 􏼃
2

− d X2, O0( 􏼁􏼂 􏼃
2
,

(5)

i.e.,

􏽘

d

t�1
x1t − ait( 􏼁

2
− 􏽘

d

t�1
x1t − a0t( 􏼁

2
� 􏽘

d

t�1
x2t − ait( 􏼁

2

− 􏽘
d

t�1
x2t − a0t( 􏼁

2
.

(6)

By simplifying equation (6), we can obtain

􏽘

d

t�1
2x1t − ait − a0t( 􏼁 a0t − ait( 􏼁 � 􏽘

d

t�1
2x2t − ait − a0t( 􏼁 a0t − ait( 􏼁.

(7)
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,us, we have

􏽘

d

t�1
ait − a0t( 􏼁 x1t − x2t( 􏼁 � 0, i � 1, 2, . . . , d. (8)

Since the coefficient matrix of (8) is nondegenerate, we
can get that

x1t − x2t � 0, t � 1, . . . , d. (9)

,us, X1 � X2. □

Remark 1. For the convenience of calculation, we can

choose O0 � (0, 0, . . . , 0), Oi � (0, . . . , 0
i−1

, 1
i

, 0
i+1

, . . . , 0), i �

1, 2, . . . , d as the set of nondegenerate observation points. In
fact, if X � (x1, x2, . . . , xd), then for each i, it has

d X, Oi( 􏼁
2

� 􏽘
j

xj − oij􏼐 􏼑
2

� 􏽘
j≠ i

xj − 0􏼐 􏼑
2

+ xi − 1( 􏼁
2

� 􏽘
j

x
2
j − 2∗xi + 1 � d X, O0( 􏼁

2
− 2∗ xi + 1.

(10)

,us, if we have obtained the distance between X and O0,
then computing the square of the distance between X and
Oi(i � 1, 2, . . . , d) will convert to addition operation three
times, which will decrease the time complexity in generating
those distance sets.

Remark 2. If the number of observation points is less than
d + 1,,eorem 1 does not hold true. For example, if we choose

O0 � (0, 0), O1 � (1, 0), O2 � (0, 1), X1 � (0.2, 0.2),

X2 � (0.6, 0.6),

(11)

then, it has

d X1, O1( 􏼁 � d X2, O1( 􏼁,

d X1, O2( 􏼁 � d X2, O2( 􏼁,
(12)

but X1 ≠X2. By,eorem 1, we can confirm that all different
clustering points can be distinguished by choosing a set of
nondegenerate points as the observation points. ,us, d + 1
is the minimum number of the observation points to dis-
tinguish all the cluster centers of the original data set.

Theorem 2. Suppose O0 � (0, 0, . . . , 0), Oi � (0, . . . , 0
i−1

,

1
i

, 0
i+1

, . . . , 0), i � 1, 2, . . . , d. Let X1, X2 ∈ Rd and set

d Xj, Oi􏼐 􏼑 � dji, (13)

for i � 0, 1, . . . , d and j � 1, 2. If, for each i � 0, 1, . . . , d,

d1i − d2i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< r,

M � max
j�1,2, i�0,1,...,d

dji􏽮 􏽯,
(14)

then,

d X1, X2( 􏼁≤ 2
��
d

√
Mr. (15)

Proof. For j � 1, 2, we set Xj � (xj1, xj2, . . . , xj d). We have

􏽘

d

t�1
x
2
jt � d

2
j0, j � 1, 2;

􏽘

d

t�1
x
2
jt − 2xji + 1 � d

2
ji, i � 1, 2, . . . , d, j � 1, 2.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

Solving the system of equation (16) results in

xji �
1
2

1 + d
2
j0 − d

2
ji􏼐 􏼑, i � 1, 2, . . . , d, j � 1, 2. (17)

,en, we can obtain

d X1, X2( 􏼁
2

� 􏽘
d

t�1
x1t − x2t( 􏼁

2

� 􏽘
d

t�1

1
2

1 + d
2
10 − d

2
1t􏼐 􏼑 −

1
2

1 + d
2
20 − d

2
2t􏼐 􏼑􏼔 􏼕

2

�
1
4

􏽘

d

t�1
d
2
10 − d

2
20􏼐 􏼑 − d

2
1t − d

2
2t􏼐 􏼑􏽨 􏽩

2

≤
1
4

􏽘

d

t�1
r d10 + d20 + d1t + d2t( 􏼁􏼂 􏼃

2

≤ 4 dM
2
r
2
,

(18)

which yields d(X1, X2)≤ 2
��
d

√
Mr. □

Remark 3. If we normalize the original data set D, for ex-
ample, we perform themin-max normalization onD, and we
can deduce that M≤

��
d

√
.

Remark 4. Suppose A is a generated distance set of D with
respect to the observation point O. We cannot confirm
whether two elements inA which have a small difference are
corresponding to two data points in D which also have a
small distance. But by ,eorem 2, if all the d + 1 pairs of
generated distances of X and Y have a small difference, then
Xmust have a small distance to Y.,is can be used to adjust
the dense of the selected subset.

Remark 5. ,e observation point mechanism aims to
transform the original multidimensional data points into
one-dimensional distance points, which is different from the
landmark point or representative point mechanisms. ,e
landmark point [19] is the core of landmark-based spectral
clustering (LSC) algorithm which generates some repre-
sentative data points as the landmarks and represents the
remaining data points as linear combinations of these
landmarks. ,e representative points [20] are the subset of
original data set and used in the ultrascalable spectral
clustering (U-SPEC) algorithm to alleviate the huge com-
putational burden of spectral clustering. ,e observation
points are designed to enhance the robustness of k-means
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clustering, while the landmark points or representative
points are used to speed up the spectral clustering.

3. The Proposed Two-Stage k-Means
Clustering Algorithm

Given a data setDwithN objects, we want to partitionD into
k clusters.,emain idea of our two-stage k-means clustering
algorithm is that we only need to deal with a small subset of
D which has a similar clustering structure to D. In order to
select a proper subset with the abovementioned property, we
need to discard all outliers inD and retain a portion of those
points that are close to the cluster centers.

3.1. Description of Algorithm

3.1.1. Generating d + 1 Distance Sets in the First Stage.
First of all, we conduct the normalization operation on the
original data set D. Set D � X1, X2, . . . , XN􏼈 􏼉, where Xj �

(xj1, xj2, . . . , xj d) for j � 1, 2, . . . , N. Suppose

M � max
j�1,2,...,N; i�1,2,...,d

xji􏽮 􏽯 and m � min
j�1,2,...,N; i�1,2,...,d

xji􏽮 􏽯.

(19)

,en, we transform D into 􏽥D with Xj � (xj1, xj2, . . . ,

xj d) corresponding to 􏽥Xj � (((xj1 − m)/(M − m)),

((xj2 − m)/(M − m)), . . . , ((xj d − m)/(M − m))). Obvi-
ously, the transformation on D is a composition of a
translation transformation and a dilation transformation.
,e dilation factor 1/(M − m) is the same for each di-
mension; hence, the dilation transformation does not change
the cluster structure. Because the translation transformation
also does not change the cluster structure of a dataset, the
cluster structure ofD is totally the same as that of 􏽥D. We also
note that the value of every component of 􏽥Xj is in the
interval [0, 1].

Let

O0 � (0, 0, . . . , 0),

Oi � (0, . . . , 0
i−1

, 1
i

, 0
i+1

, . . . , 0), i � 1, 2, . . . , d,

(20)

be the set of observation points. Denote 􏽥Dj the generated
distance set of 􏽥D with respect to the observation point
Oj(j � 0, 1, . . . , d), and we get d + 1 sets 􏽥D0,

􏽥D1, . . . , 􏽥Dd.
For each data point 􏽥X, we actually have mapped it
to a (d + 1)-dimensional vector (d( 􏽥X, O0), d( 􏽥X, O1), . . . ,

d( 􏽥X, Od)). ,eorem 1 shows that we can identify 􏽥X by the
(d + 1)-dimensional vector, and hence, it is reasonable to
expect that the clustering structure about 􏽥D can be deduced
by those d + 1 distance sets.

3.1.2. Selecting a Representative Subset of 􏽥D in the First Stage.
For each 􏽥Di, we can get a set Si consisting of all candidate
higher density points of 􏽥Di by using the grid-based clustering
methods (e.g., [21]). For example, first, we arrange 􏽥Di in the
ascending order. Second, a fixed value δi is selected to be a
quantile of diff( 􏽥Di). ,ird, for each s in 􏽥Di, we counter the

number of elements of 􏽥Di in the interval (s − δi, s + δi).,us,
we obtain a positive integer sequence, where each member
indicates the relative size of the density of the corresponding
element of 􏽥Di. Finally, we select out those s in 􏽥Di such that
the corresponding integer number is either a local maximum
or beyond a threshold.

In the following experiments, we will set δi as two times
the p-th percentile of set diff(Di) for some p, whereDi is the
rearrangement of 􏽥Di in the ascending order and diff(Di) is
the sequence of the first-order difference onDi. DenoteN as
the cardinality of 􏽥Di. If N is small, we usually choose a
smaller p; for example, p � 75. If N is very large, we choose a
bigger p; e.g., p � 99. Otherwise, we can choose a proper p
between them; e.g., p � 90.

Now, we have obtained d + 1 sets S0, S1, . . . , Sd with each
one containing all the higher-density points of the corre-
sponding distance set. By the triangle inequality, we have the
following property:

If there is an i ∈ 0, 1, . . . , d{ } such that di � d(X, Oi) is
not in Si, then X cannot be a higher-density point of 􏽥D.

According to this property, we can select a subset S of 􏽥D

whose distances to the i-th observation point are in Si for all
i ∈ 0, 1, . . . , d{ }.

For each point X ∈ 􏽥D, we have mapped it to a
(d + 1)-dimensional vector. By Remark 4 of ,eorem 2, all
the d + 1 pairs of the corresponding components of two
points that belong to the same cluster will have a little
difference between them. But it is possible that there are
some data points which have some components that have
the little difference with that of one cluster center and have
the other components that have the little difference with that
of another cluster center. In such case, few outliers may be
missed by the above selection criterion. To discard those few
outliers in S and decrease the number of elements of S, we
need to refine S. We have the following criterion according
to Remark 4 of ,eorem 2.

Suppose X1 has been selected. Given a data point X2,
if, for every i ∈ 0, 1, . . . , d{ }, d1i � d(X1, Oi) and
d2i � d(X2, Oi) have a small difference, then we discard X2.

We denote S � Y1, Y2, . . . , Ym􏼈 􏼉 and set

Sc � ∅,

Sa � ∅.
(21)

We also need a counter to indicate the density of each
data point of Sa. Firstly, we let Y1 ∈ Sa and make the in-
dicative number of Y1 to be 1. We then sequentially choose
the data points in S and dynamically construct Sc and Sa

according to the following process. Suppose we choose Yi

from S, then we compute the distance between Yi and each
data point in Sa. If there are some distances less than a
threshold value δ, we add 1 to each of the counter of data
point that corresponds to these distances and then discard
Yi. Meanwhile, if the counter number of a data point in Sa is
bigger than another threshold value n, then we remove this
data point from Sa and add it into Sc. But if each one of the
point in Sa has distance to Yi bigger than δ, we continue to
check whether there is a point in Sc that has distance to Yi

less than δ; we will discard Yi if there is any and we will add
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Yi to Sc if not. Finally, we obtain a set Sc that closely
represents the original data set and the size of it is smaller
than that of the original data set. Furthermore, all outliers of
original data set are not included in this selected subset.

3.1.3. Clustering Sc and 􏽥D in the Second Stage. Since the
selected set has discarded all outliers and has a smaller size
than the original data set, the running time will decrease
significantly when performing the k-means algorithm on the
selected subset. Furthermore, because the subset closely
represents the original data set, the cluster centers will also
be suitable to be chosen as the cluster centers of the original
data set. When we have identified the cluster centers, it is
easy to cluster the whole data set. ,e pseudo-code of our
proposed algorithm is presented in Algorithm 1.

3.2. Analysis of Computational Complexity. In this section,
we analyze the computational complexity of the proposed
algorithm. When running the classical k-means algorithm,
each iteration needs to compute the distances between each
data point in the whole data and those new modified cluster
centers, which has a time complexity of O(Nk d). In our
algorithm, the time cost in the first stage mainly consists of
four parts. ,e first part is to generate d + 1 one-dimensional
data sets, which has a time complexity of O(N d). ,e second
one is to find those intervals which contain the local maxi-
mum of distances, which has a time complexity of O(N). ,e
third part is to select S, which has the time complexity
O(N d). In the fourth part, we refine S and obtain the subset
Sc, which has the time complexity O( 􏽥N

2
), where 􏽥N denotes

the cardinality of S. ,us, the time complexity of the first
stage is O(N d + 􏽥N

2
). At the second stage, we will perform

the k-means algorithm on Sc and each iteration will have a
time complexity less than 􏽥N1k d, where 􏽥N1 denotes the
cardinality of Sc. Because 􏽥N1 < 􏽥N, the total time complexity
of the new algorithm is O(N d + 􏽥Nk d + 􏽥N

2
).

We note that the time complexity of the fourth part in
the first stage is usually much less than O( 􏽥N

2
). Since many

data points have been discarded when constructing the sets
Sc and Sa, we do not have to compute the distances with all
􏽥N data points in S.

4. Experimental Results and Analysis

We have conducted a series of experiments on 6 synthetic
data sets and 3 benchmark data sets (UCI [22] and KEEL
[23]) to validate the effectiveness of the proposed two-stage
k-means clustering algorithm in this section. ,e synthetic
data sets can be downloaded from BaiduPan (https://pan.
baidu.com/s/1MfS8JfQdJLHYSlpZdndLUQ) with the ex-
traction code “p3mc.” We first present the clustering results
of our proposed algorithm and the k-means algorithm on
two synthetic data sets, i.e., the data set #1 and data set #2.
,e experimental results are shown in Figures 1 and 2. For
simplicity, we only use the experimental results on data set
#1 to explain the advantage of our proposed algorithm.
,ere are two clusters in data set #1, where each cluster

includes 41 data points. ,e data points obey the 2-di-
mensional normal distributions with mean vectors (3, 11)

and (12, 5) and covariance matrices 3 0
0 2􏼠 􏼡 and 2 0

0 3􏼠 􏼡,

respectively. ,ere are also two outliers in data set #1.
Figure 1(b) gives the selected data points of normalized

data points corresponding to the data set #1 as shown in
Figure 1(a). In Figure 1(b), we can find that outliers have
been removed in the first stage of our proposed method.
Figure 1(c) shows the clustering result of the k-means al-
gorithm. We can see that outliers seriously impact the
clustering result of the k-means algorithm, although there
are only two outlier data points in the data set #1. ,e
clustering result of our proposed method is presented in
Figure 1(d), where the cluster center can be found correctly
without the disturbance of outliers.,e similar results can be
found in Figure 2 for the data set #2 which includes 7 clusters
and 10 outliers. ,e experimental results reflect that our
proposed two-stage k-means clustering algorithm is not
sensitive to outliers and can obtain the better clustering
results than that of k-means clustering algorithm.

Furthermore, we choose another four synthetic data
sets as shown in Figure 3 (only 2-dimensional illustration)
and three real-world data sets to compare the clustering
performances of our proposed algorithm with the k-
means algorithm. ,e details of these data sets and ex-
perimental results are summarized in Table 1, where N is
the number of the elements of the data set, t is the pro-
portion of the outlier in the data set, k is the number of
clusters, d is the dimension of data point, p is the per-
centile number, nc is the cardinality of selected subset,
ARIkmeans and Timekmeans are the adjusted Rand index
(ARI) and time consumption of k-means algorithm, and
ARIour and Timeour are ARI and time consumption of our
proposed algorithm. In Table 1, we can see that our
proposed algorithm obtains the larger ARIs with the lower
time consumption in comparison with k-means clustering
algorithm on these synthetic data sets. For the real data
sets without outliers, our algorithm can obtain the ARIs
comparable to that of k-means algorithm. Nevertheless,
the ARIs of k-means algorithm are severely degraded
when the outliers are deliberately arranged in the real data
sets, while the experimental results in Table 1 demonstrate
that our proposed clustering algorithm is robust to the
outliers. Table 2 shows the details of comparison on four
large-scale synthetic data sets. ,e variables in Table 2
have the same meaning as that in Table 1. ,e comparison
of time complexity between our proposed algorithm and
k-means algorithm in Table 2 reflects that our algorithm
has less time consumption than k-means algorithm. Es-
pecially, we can find that the superiority of our proposed
method on time consumption is more obvious for data set
with the larger size and dimension. Furthermore, the most
time-consuming procedure in our algorithm, i.e., the
selection of high-density distances for each generated
distance set can be ran in the parallel way, which make our
algorithm to be easily extended to perform the clustering
task for large-scale data set.
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Figure 1: Experimental results on synthetic data set #1 (the red ‘+’s are the cluster centers). (a) Normalized data. (b) Selected subset. (c)
Clustering centers of k-means algorithm. (d) Clustering centers of our proposed algorithm.

Input:
,e number of clusters: k;
,e number of percentile: p;
,e original data set: D � Xi � (xi1, xi2, . . . , xi d): i � 1, 2, . . . , N􏼈 􏼉;

Method:
Normalize D and generate 􏽥D � 􏽥Xi: i � 1, 2, . . . , N􏼈 􏼉;

for t � 0 to d do
Set 􏽥Dt � dit: i � 1, 2, . . . , N􏼈 􏼉 where dit � d( 􏽥Xi, Ot);
Generate Dt by rearranging 􏽥Dt in ascending order and set δt be p-th percentile of diff(Dt);
Set mt � minDt and Mt � ([(maxDt)/δt] + 1)∗δt;
Equally divide the interval [mt, Mt] into intervals with length δt;
Let St be the union of those intervals that contain local maximum number of elements in Dt;

end for
Select out a subset S: Xi ∈ S if and only if dit ∈ St for all t � 0, 1, . . . , d;
Refine S and obtain the subsets Sc:
Perform the k-means algorithm on Sc;
Assign each 􏽥Xi(i � 1, 2, . . . , N) to the nearest center of the obtained cluster of Sc;

Output:
,e result of clustering.

ALGORITHM 1: Two-stage k-means clustering algorithm.
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Figure 2: Experimental results on synthetic data set #2 (the red ‘+’s are the cluster centers). (a) Normalized data. (b) Selected subset. (c)
Clustering centers of k-means algorithm. (d) Clustering centers of our proposed algorithm.
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Figure 3: Continued.
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Figure 3: Two-dimensional illustrations corresponding to four synthetic data sets (the red data points are outliers.). (a) Data set 3 (five
clusters). (b) Data set 4 (six clusters). (c) Data set 5 (six clusters). (d) Data set 6 (seven clusters).

Table 1: Comparison between k-means clustering algorithm and our proposed clustering algorithm.

Data sets N t (%) k d p nc ARIkmeans ARIour Timekmeans Timeour
Synthetic #1 84 2.3 2 2 75 27 0.084 0.954 0.020 0.000
Synthetic #2 236 4.2 7 2 80 107 0.791 0.860 0.063 0.016
Synthetic #3 2557 2.2 5 3 92 761 0.774 0.972 0.047 0.031
Synthetic #4 3670 1.9 6 4 96 656 0.815 0.977 0.188 0.063
Synthetic #5 3655 1.5 6 5 96 573 0.816 0.982 0.313 0.078
Synthetic #6 2830 1.1 7 6 95 296 0.848 0.988 0.250 0.063
Iris 150 0 3 4 80 27 0.730 0.730 0.031 0.016
Iris∗ 152 1.3 3 4 82 26 0.531 0.743 0.031 0.016
Seeds 210 0 3 7 80 37 0.717 0.728 0.047 0.016
Seeds∗ 212 0.9 3 7 80 37 0.462 0.694 0.047 0.016
Wine 178 0 3 13 81 6 0.870 0.850 0.031 0.016
Wine∗ 180 1.1 3 13 81 10 0.365 0.882 0.031 0.016
∗,e real data set which includes two synthetic outliers as shown in our BaiduPan.

Table 2: Comparison between k-means clustering algorithm and our proposed clustering algorithm on large-scale data sets.

Data sets N k d p nc ARIkmeans ARIour Timekmeans Timeour
Synthetic #7 22501 5 4 99 1413 1 1 0.858 0.718
Synthetic #8 50001 5 4 99.5 1148 1 1 1.732 1.248
Synthetic #9 60001 6 4 99.5 1257 1 1 2.262 1.466
Synthetic #10 60001 6 5 99.5 1038 1 1 2.387 1.810

(a) (b)

Figure 4: Application of tyre inclusion identification. (a) Tyre #1. (b) Tyre #2.
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Figure 5: Clustering results on Tyre #1 (318× 80 pixels, p � 99, N � 25440, and nc � 7696). (a) Our algorithm with k� 2. (b) k-means with
k� 2. (c) Our algorithm with k� 3. (d) k-means with k� 3. (e) Our algorithm with k� 4 (f) k-means with k� 4.
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Figure 6: Continued.
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In addition, we provide a real application, i.e., the tyre
inclusion identification, to validate the clustering perfor-
mance of our proposed clustering algorithm. Figure 4 shows
two tyres with different kinds of inclusions, where each
picture includes 1027× 768 pixels. Figures 5 and 6 present the
clustering results of our proposed algorithm and k-means
clustering algorithm on Tyre #1 and Tyre #2, respectively. In
these figures, we can see that our proposed method can
accurately identify the cluster centers without the disturbance
of outliers. ,e inclusions can be clearly recognized by our
proposed algorithm in the tyres, while the k-means clustering
algorithm does not find the inclusions distinctly, e.g.,
Figures 6(b), 6(d), and 6(f) include not only the inclusions but
also the tyre traces. Above all, the experimental results
demonstrate the better clustering performance in comparison
with the classical k-means clustering algorithm when han-
dling the clustering tasks with the disturbance of outliers.

5. Conclusions and Future Work

In this paper, we proposed a robust two-stage k-means
clustering algorithm which can accurately identify the
cluster centers without the disturbance of outliers. As the
direct application of the observation point mechanism of
I-nice [18], we select a small subset from the original data
set based on a set of nondegenerate observation points in
the first stage. In the second stage, we use the k-means
clustering algorithm to cluster the selected subset and
make these cluster centers as the true cluster centers of the
original data set. ,e theoretical analysis and experimental
verification demonstrate the feasibility and effectiveness
of proposed clustering algorithm. ,e future studies will
be focused on three directions. First, we will try to use the
k-nearest neighbors (kNN) method to improve the se-
lection of observation points. Second, we will seek the real
applications for the two-stage k-means clustering algo-
rithm. ,ird, we will extend our proposed algorithm to
cluster big data based on the random sample partition
model [24].
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