
Fast Learning of
Restricted Regular Expressions and DTDs

Dominik D. Freydenberger1 Timo Kötzing2

1Johann-Wolfgang-Goethe-Universität,
Frankfurt am Main

2Friedrich-Schiller-Universität,
Jena

ICDT 2013

1 / 15

Schema Inference

Schema specification

in principle, XML documents
are supposed to have a schema
specification

allows validation

various tools expect presence
of a schema

The bitter truth

In most XML documents in the real
world, the schema is specified
incorrectly or not at all.

Solution: Schema inference

Automatically generate a “good”
schema from positive examples.

Why focus on DTDs?

essential part of learning XSD

useful for learning RELAX NG

human readable

still widely used

2 / 15

Schema Inference

Schema specification

in principle, XML documents
are supposed to have a schema
specification

allows validation

various tools expect presence
of a schema

The bitter truth

In most XML documents in the real
world, the schema is specified
incorrectly or not at all.

Solution: Schema inference

Automatically generate a “good”
schema from positive examples.

Why focus on DTDs?

essential part of learning XSD

useful for learning RELAX NG

human readable

still widely used

2 / 15

Schema Inference

Schema specification

in principle, XML documents
are supposed to have a schema
specification

allows validation

various tools expect presence
of a schema

The bitter truth

In most XML documents in the real
world, the schema is specified
incorrectly or not at all.

Solution: Schema inference

Automatically generate a “good”
schema from positive examples.

Why focus on DTDs?

essential part of learning XSD

useful for learning RELAX NG

human readable

still widely used
2 / 15

A closer look at DTDs

The biggest challenge for learning:

Element type declarations

〈!ELEMENT book (title, author+, dedication?, chapter∗)〉
〈!ELEMENT chapter ((figure|paragraph)∗)〉

element name

, list operator

+ one or more

? zero or one

∗ zero or more

| choice

letter

concatenation

Kleene +

union with {ε}
Kleene *

union

Central observation

every element type declaration is a
(deterministic) regular expression

3 / 15

A closer look at DTDs

The biggest challenge for learning:

Element type declarations

〈!ELEMENT book (title, author+, dedication?, chapter∗)〉
〈!ELEMENT chapter ((figure|paragraph)∗)〉

element name

, list operator

+ one or more

? zero or one

∗ zero or more

| choice

letter

concatenation

Kleene +

union with {ε}
Kleene *

union

Central observation

every element type declaration is a
(deterministic) regular expression

3 / 15

A closer look at DTDs

The biggest challenge for learning:

Element type declarations

〈!ELEMENT book (title, author+, dedication?, chapter∗)〉
〈!ELEMENT chapter ((figure|paragraph)∗)〉

element name

, list operator

+ one or more

? zero or one

∗ zero or more

| choice

letter

concatenation

Kleene +

union with {ε}
Kleene *

union

Central observation

every element type declaration is a
(deterministic) regular expression

3 / 15

Problem statement

Original problem

Given a finite set of XML documents, find a good DTD.

Actual problem

Given a finite set of words, find a good regular expression.

finite set of words
S

=⇒

good regular expression:

deterministic

generates superset of S

must avoid overgeneralization

should be concise

setting is similar to Learning in the Limit (Gold 1967)
aka Gold-style Learning, Explanatory Learning, Inductive Inference
Gold: impossible for the full class of (det.) regular expressions
⇒ need good restrictions

4 / 15

Problem statement

Original problem

Given a finite set of XML documents, find a good DTD.

Actual problem

Given a finite set of words, find a good regular expression.

finite set of words
S

=⇒

good regular expression:

deterministic

generates superset of S

must avoid overgeneralization

should be concise

setting is similar to Learning in the Limit (Gold 1967)
aka Gold-style Learning, Explanatory Learning, Inductive Inference
Gold: impossible for the full class of (det.) regular expressions
⇒ need good restrictions

4 / 15

Problem statement

Original problem

Given a finite set of XML documents, find a good DTD.

Actual problem

Given a finite set of words, find a good regular expression.

finite set of words
S

=⇒

good regular expression:

deterministic

generates superset of S

must avoid overgeneralization

should be concise

setting is similar to Learning in the Limit (Gold 1967)
aka Gold-style Learning, Explanatory Learning, Inductive Inference
Gold: impossible for the full class of (det.) regular expressions
⇒ need good restrictions

4 / 15

Problem statement

Original problem

Given a finite set of XML documents, find a good DTD.

Actual problem

Given a finite set of words, find a good regular expression.

finite set of words
S

=⇒

good regular expression:

deterministic

generates superset of S

must avoid overgeneralization

should be concise

setting is similar to Learning in the Limit (Gold 1967)
aka Gold-style Learning, Explanatory Learning, Inductive Inference
Gold: impossible for the full class of (det.) regular expressions
⇒ need good restrictions

4 / 15

Problem statement

Original problem

Given a finite set of XML documents, find a good DTD.

Actual problem

Given a finite set of words, find a good regular expression.

finite set of words
S

=⇒

good regular expression:

deterministic

generates superset of S

must avoid overgeneralization

should be concise

setting is similar to Learning in the Limit (Gold 1967)
aka Gold-style Learning, Explanatory Learning, Inductive Inference
Gold: impossible for the full class of (det.) regular expressions
⇒ need good restrictions

4 / 15

Previous work

Bex, Neven, Schwentick, Tuyls:
Inference of concise DTDs from XML data. VLDB 2006.

Bex, Neven, Schwentick, Vansummeren:
Inference of concise regular expressions and DTDs. ACM TODS 2010.

SORE

Single Occurrence Regular Expression
Every letter occurs only once in the expression.

Example

((a | b)+c?)+
(a b)+c

CHARE

Chain Regular Expression
SORE, and only a concatenation of chain factors
(a1 | · · · | an)◦, where ◦ ∈ {?,+ ,∗ , ε}

Example

(a | b)(c | d)
(a | b | c)+ d?

5 / 15

Previous work

Bex, Neven, Schwentick, Tuyls:
Inference of concise DTDs from XML data. VLDB 2006.

Bex, Neven, Schwentick, Vansummeren:
Inference of concise regular expressions and DTDs. ACM TODS 2010.

SORE

Single Occurrence Regular Expression
Every letter occurs only once in the expression.

Example

((a | b)+c?)+
(a b)+c

CHARE

Chain Regular Expression
SORE, and only a concatenation of chain factors
(a1 | · · · | an)◦, where ◦ ∈ {?,+ ,∗ , ε}

Example

(a | b)(c | d)
(a | b | c)+ d?

5 / 15

Previous work

Bex, Neven, Schwentick, Tuyls:
Inference of concise DTDs from XML data. VLDB 2006.

Bex, Neven, Schwentick, Vansummeren:
Inference of concise regular expressions and DTDs. ACM TODS 2010.

SORE

Single Occurrence Regular Expression
Every letter occurs only once in the expression.

Example

((a | b)+c?)+
(a b)+c

CHARE

Chain Regular Expression
SORE, and only a concatenation of chain factors
(a1 | · · · | an)◦, where ◦ ∈ {?,+ ,∗ , ε}

Example

(a | b)(c | d)
(a | b | c)+ d?

5 / 15

Some Difficulties

Key assumptions of Gold style(-ish) learning

target language T belongs to the target class C
S contains sufficient information to identify T

Bex et al. give algorithms that learn CHAREs or SOREs if
these conditions are satisfied

But what if. . .

. . . the target language T does not belong to C?

. . . the information in the sample S is insufficient?

existing algorithms compute generalizations of T . . .
. . . these might be overgeneralizations

Question

Is there an aesthetic and efficient solution to these problems?

6 / 15

Some Difficulties

Key assumptions of Gold style(-ish) learning

target language T belongs to the target class C
S contains sufficient information to identify T

Bex et al. give algorithms that learn CHAREs or SOREs if
these conditions are satisfied

But what if. . .

. . . the target language T does not belong to C?

. . . the information in the sample S is insufficient?

existing algorithms compute generalizations of T . . .
. . . these might be overgeneralizations

Question

Is there an aesthetic and efficient solution to these problems?

6 / 15

Some Difficulties

Key assumptions of Gold style(-ish) learning

target language T belongs to the target class C
S contains sufficient information to identify T

Bex et al. give algorithms that learn CHAREs or SOREs if
these conditions are satisfied

But what if. . .

. . . the target language T does not belong to C?

. . . the information in the sample S is insufficient?

existing algorithms compute generalizations of T . . .
. . . these might be overgeneralizations

Question

Is there an aesthetic and efficient solution to these problems?

6 / 15

Descriptive Generalization

Good news!

There is a model that
addresses these problems:
Descriptive Generalization
(F., Reidenbach; COLT 2010)

similar to Gold-style learning

Descriptive Representations

Let R be a set of language representations.
δ ∈ R is R-descriptive of a language S if

1 L(δ) ⊇ S, and

2 there is no γ ∈ R with
L(δ) ⊃ L(γ) ⊇ S.

Descriptive Generalization

Instead of trying to find an exact representation of T ,
we try to compute a δ ∈ R that is R-descriptive of S.

Classical R: pattern languages (Angluin 1979)

We use CHAREs or SOREs as R
⇒ compute descriptive CHAREs/SOREs

7 / 15

Descriptive Generalization

Good news!

There is a model that
addresses these problems:
Descriptive Generalization
(F., Reidenbach; COLT 2010)

similar to Gold-style learning

Descriptive Representations

Let R be a set of language representations.
δ ∈ R is R-descriptive of a language S if

1 L(δ) ⊇ S, and

2 there is no γ ∈ R with
L(δ) ⊃ L(γ) ⊇ S.

Descriptive Generalization

Instead of trying to find an exact representation of T ,
we try to compute a δ ∈ R that is R-descriptive of S.

Classical R: pattern languages (Angluin 1979)

We use CHAREs or SOREs as R
⇒ compute descriptive CHAREs/SOREs

7 / 15

Descriptive Generalization

Good news!

There is a model that
addresses these problems:
Descriptive Generalization
(F., Reidenbach; COLT 2010)

similar to Gold-style learning

Descriptive Representations

Let R be a set of language representations.
δ ∈ R is R-descriptive of a language S if

1 L(δ) ⊇ S, and

2 there is no γ ∈ R with
L(δ) ⊃ L(γ) ⊇ S.

Descriptive Generalization

Instead of trying to find an exact representation of T ,
we try to compute a δ ∈ R that is R-descriptive of S.

Classical R: pattern languages (Angluin 1979)

We use CHAREs or SOREs as R
⇒ compute descriptive CHAREs/SOREs

7 / 15

Main Results

Observation

The algorithms by Bex et al. do not (always)
compute descriptive CHAREs/SOREs.

This already holds for very small alphabets.

Our algorithms

Given a sample S, we can compute

a CHARE-descriptive CHARE in time
O(ln+m) (Bex et al.: O(ln+ n3))

a SORE-descriptive SORE in time
O(ln+mn) (Bex et al.: O(ln+ n5))

l: size of the sample S
(=

∑
w∈S |w|)

m: number of different
2-factors in S, m ≤ n2

n: size of the alphabet

Our algorithms are more precise and (probably) more efficient.

8 / 15

Main Results

Observation

The algorithms by Bex et al. do not (always)
compute descriptive CHAREs/SOREs.

This already holds for very small alphabets.

Our algorithms

Given a sample S, we can compute

a CHARE-descriptive CHARE in time
O(ln+m) (Bex et al.: O(ln+ n3))

a SORE-descriptive SORE in time
O(ln+mn) (Bex et al.: O(ln+ n5))

l: size of the sample S
(=

∑
w∈S |w|)

m: number of different
2-factors in S, m ≤ n2

n: size of the alphabet

Our algorithms are more precise and (probably) more efficient.

8 / 15

Practical Examples

We used a prototype implementation to create a few examples.

Test data

Mondial database

MEDLINE/PubMed

Why those?

come with DTDs. . .

. . . that are non-trivial

Observations

Most of the element type declarations in the DTDs are CHAREs,

all element type declarations are SOREs,

(mostly) identical expressions are found by our algorithms.

There are original declarations that are too general (according to
the data).

9 / 15

Practical Examples

We used a prototype implementation to create a few examples.

Test data

Mondial database

MEDLINE/PubMed

Why those?

come with DTDs. . .

. . . that are non-trivial

Observations

Most of the element type declarations in the DTDs are CHAREs,

all element type declarations are SOREs,

(mostly) identical expressions are found by our algorithms.

There are original declarations that are too general (according to
the data).

9 / 15

Example 1: island (Mondial)

Original DTD

〈!ELEMENT island
(name,islands?,located*,area?,elevation?, longitude?,latitude?)〉

Descriptive CHARE

〈!ELEMENT island
(name,islands?,located*,area?,elevation?, longitude?,latitude?)〉

Descriptive SORE

〈!ELEMENT island
(name,islands?,located*,area?,elevation?,(longitude,latitude)?)〉

Observation

SOREs can model dependencies

10 / 15

Example 1: island (Mondial)

Original DTD

〈!ELEMENT island
(name,islands?,located*,area?,elevation?, longitude?,latitude?)〉

Descriptive CHARE

〈!ELEMENT island
(name,islands?,located*,area?,elevation?, longitude?,latitude?)〉

Descriptive SORE

〈!ELEMENT island
(name,islands?,located*,area?,elevation?,(longitude,latitude)?)〉

Observation

SOREs can model dependencies

10 / 15

Example 1: island (Mondial)

Original DTD

〈!ELEMENT island
(name,islands?,located*,area?,elevation?, longitude?,latitude?)〉

Descriptive CHARE

〈!ELEMENT island
(name,islands?,located*,area?,elevation?, longitude?,latitude?)〉

Descriptive SORE

〈!ELEMENT island
(name,islands?,located*,area?,elevation?,(longitude,latitude)?)〉

Observation

SOREs can model dependencies

10 / 15

Example 2: author (Medline)

CollectiveName LastName

ForeName

Initials

Suffix

Official DTD

((LastName, ForeName?, Initials?, Suffix?)
| CollectiveName), Identifier*

Descriptive CHARE

(LastName | CollectiveName), ForeName?,
Initials?, Suffix?

Descriptive SORE

(LastName, (ForeName, Initials)?, Suffix?)
| CollectiveName

Observation

CHAREs have to serialize choice

11 / 15

Example 2: author (Medline)

CollectiveName LastName

ForeName

Initials

Suffix

Official DTD

((LastName, ForeName?, Initials?, Suffix?)
| CollectiveName), Identifier*

Descriptive CHARE

(LastName | CollectiveName), ForeName?,
Initials?, Suffix?

Descriptive SORE

(LastName, (ForeName, Initials)?, Suffix?)
| CollectiveName

Observation

CHAREs have to serialize choice

11 / 15

Example 2: author (Medline)

CollectiveName LastName

ForeName

Initials

Suffix

Official DTD

((LastName, ForeName?, Initials?, Suffix?)
| CollectiveName), Identifier*

Descriptive CHARE

(LastName | CollectiveName), ForeName?,
Initials?, Suffix?

Descriptive SORE

(LastName, (ForeName, Initials)?, Suffix?)
| CollectiveName

Observation

CHAREs have to serialize choice

11 / 15

Example 3: MedlineCitation (Part 1/2)

MedlineCitation from the MEDLINE files

Official DTD

〈!ELEMENT MedlineCitation (PMID, DateCreated, DateCompleted?,
DateRevised?, Article, MedlineJournalInfo, ChemicalList?,
SupplMeshList?, CitationSubset*, CommentsCorrectionsList?,
GeneSymbolList?, MeshHeadingList?, NumberOfReferences?,
PersonalNameSubjectList?, OtherID*, OtherAbstract*,
KeywordList*, SpaceFlightMission*, InvestigatorList?, GeneralNote*)〉

Result of SOA2DescriptiveChare

〈!ELEMENT MedlineCitation (PMID, DateCreated, DateCompleted,
DateRevised?, Article, MedlineJournalInfo, ChemicalList?,
SupplMeshList?, CitationSubset*, CommentsCorrectionsList?,
GeneSymbolList?, MeshHeadingList?, NumberOfReferences?,
PersonalNameSubjectList?, OtherID*, OtherAbstract*,
KeywordList*, SpaceFlightMission*, InvestigatorList?, GeneralNote*)〉

12 / 15

Example 3: MedlineCitation (Part 1/2)

MedlineCitation from the MEDLINE files

Official DTD

〈!ELEMENT MedlineCitation (PMID, DateCreated, DateCompleted?,
DateRevised?, Article, MedlineJournalInfo, ChemicalList?,
SupplMeshList?, CitationSubset*, CommentsCorrectionsList?,
GeneSymbolList?, MeshHeadingList?, NumberOfReferences?,
PersonalNameSubjectList?, OtherID*, OtherAbstract*,
KeywordList*, SpaceFlightMission*, InvestigatorList?, GeneralNote*)〉

Result of SOA2DescriptiveChare

〈!ELEMENT MedlineCitation (PMID, DateCreated, DateCompleted,
DateRevised?, Article, MedlineJournalInfo, ChemicalList?,
SupplMeshList?, CitationSubset*, CommentsCorrectionsList?,
GeneSymbolList?, MeshHeadingList?, NumberOfReferences?,
PersonalNameSubjectList?, OtherID*, OtherAbstract*,
KeywordList*, SpaceFlightMission*, InvestigatorList?, GeneralNote*)〉

12 / 15

Example 3: MedlineCitation (Part 2/2)

MedlineCitation from the MEDLINE files

Official DTD

〈!ELEMENT MedlineCitation (PMID, DateCreated, DateCompleted?,
DateRevised?, Article, MedlineJournalInfo, ChemicalList?,
SupplMeshList?, CitationSubset*, CommentsCorrectionsList?,
GeneSymbolList?, MeshHeadingList?, NumberOfReferences?,
PersonalNameSubjectList?, OtherID*, OtherAbstract*,
KeywordList*, SpaceFlightMission*, InvestigatorList?, GeneralNote*)〉

Result of SOA2DescriptiveSore

〈!ELEMENT MedlineCitation (PMID, DateCreated, DateCompleted,
DateRevised?, Article, MedlineJournalInfo, ChemicalList?,
SupplMeshList?, CitationSubset*, CommentsCorrectionsList?,
GeneSymbolList?, (MeshHeadingList, NumberOfReferences?)?,
PersonalNameSubjectList?, (OtherID+, OtherAbstract*)?, KeywordList*,
SpaceFlightMission*, InvestigatorList?, GeneralNote*)〉

13 / 15

Summary

Summary

our algorithms for learning CHAREs or SOREs. . .

generalize optimally (and less than previous algorithms)
are efficient (and more efficient than previous algorithms)
can be extended like the previous algorithms

we did not use results on descriptive generalization of
pattern languages, but those results told us where to look

Possible extensions:

numerical parameters

integration into learning
algorithms for other
schema languages

Potential next steps:

implementation and tests

k-OREs

learning regular expressions with
backreferences (regex)

14 / 15

Summary

Summary

our algorithms for learning CHAREs or SOREs. . .

generalize optimally (and less than previous algorithms)
are efficient (and more efficient than previous algorithms)
can be extended like the previous algorithms

we did not use results on descriptive generalization of
pattern languages, but those results told us where to look

Possible extensions:

numerical parameters

integration into learning
algorithms for other
schema languages

Potential next steps:

implementation and tests

k-OREs

learning regular expressions with
backreferences (regex)

14 / 15

Final Slide

Thank you for your attention.

15 / 15

