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In recent years, sensor applications have been critical in many fields, especially 
food safety and pesticides. Organophosphorus pesticides (OPPs) can be detected 
using a potentiometric biosensor with a membrane electrode made of a new 
natural material based on cellulose acetate (CA). Acetylcholinesterase was 
immobilized to 15% modified CA membrane electrodes using glutaraldehyde 
(GTA) as crosslinking agent and gold (Au) electrode. An indirect method used an 
acetylthiocholine chloride (ATCl) substrate to find OPPs like chlorpyrifos, 
profenophos, and diazinon. The working electrode was an CA/GTA membrane 
electrode, and the reference electrode was an Ag/AgCl electrode, whose potential 
value was measured with a potentiometer. The surface morphology of the 
biosensor membrane was investigated using scanning electron microscopy with 
energy-dispersive X-ray spectroscopy (SEM/EDX). It showed that the CA 
membrane has a smooth, porous surface and is very dense, and its structure 
consists of 71.27% carbon (C) and 28.73% oxygen (O) with an average diameter of 
562.33 nm. A potentiometric biosensor based on AChE inhibition for the detection 
of OPPs showed a limit of detection (LoD) of 1×10−6 μg/L with a linearity range of 
1×10−6–1.0 μg/L. The %inhibition value for the chlorpyrifos pesticide was 14.44 to 
73.08%, profenophos was 11.98 to 77.98%, and diazinon was 18.58 to 83.27%. 
Therefore, higher inhibitor concentrations (OPPs) have a greater ability to 
prevent the AChE enzyme from breaking down the acetylcholine substrate. The 
biosensor with the CA membrane has a wide linearity range and a low detection 
limit. The potentiometer rapidly detects pesticide residues. 

 

1. Introduction 

Farmers use a variety of pesticides to protect crops 
and seeds from diseases and pests before and after 
harvest [1]. The term “pesticide” refers to a toxic 
chemical that can kill various pests, such as rodents, 
weeds, insects, and fungi [1, 2]. Pesticides are classified 
into five groups based on their chemical composition: 
organochlorine compounds, organophosphorus (OP), 
carbamates, pyrethrins, and pyrethroids. OP compounds 
have a wide range of applications as insecticides, 
nematicides, fungicides, and herbicides and have been 
used in agricultural pest control for over five decades [2, 

3]. The widespread use of organophosphorus pesticides 
(OPPs) will contaminate foodstuffs, endangering animal 
and human health [1, 2]. 

The growing concern about pesticides causing food 
pollution in agriculture necessitates a concerted effort to 
identify polluters using dependable, cost-effective, and 
timely methods. As a result, a wide range of practical and 
affordable diagnostic tools are now available to rapidly 
screen for specific pesticide residues in food and the 
environment [4, 5, 6]. Methods for determining pesticide 
residues generally use HPLC, LC-MS/MS, and GC-MS/MS 
[7, 8, 9]. Although this method has a high level of 
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sensitivity, it is costly, time-consuming, and requires a 
substantial amount of reagent samples [10]. Due to these 
limitations, an alternative methodology has been 
proposed in recent years: developing biosensor methods 
to detect pesticides [11, 12]. 

Biosensors are devices integrating biological 
elements (e.g., enzymes, DNA probes, antibodies) for the 
detection of analytes (e.g., enzyme substrates, 
complementary DNA, antigens) and transduction 
elements used to convert signals of analyte interactions 
with bio-receptors into electronics [1]. Based on signal 
transduction techniques, biosensors are classified into 
electrochemical, optical, piezoelectric, and mechanical. 
Electrochemical enzyme-based biosensors have been 
widely utilized to detect pesticide compounds rapidly 
because of their minimal pre-treatment, brief analysis, 
and high sensitivity and selectivity [13, 14, 15]. In 
addition, it is low cost, simple design, and small size, 
making it an excellent method for developing portable 
biosensors [16]. 

Bio-sensing can identify OP compounds by 
measuring the activity of residual enzymes, such as 
acetylcholinesterase (AChE), a hydrolase enzyme that 
plays an essential role in the central nervous system 
(CNS) and whose inactivity can result in respiratory 
system disorders, paralysis, and death [17]. All OP 
compounds are anti-AChE and work through the general 
mechanism of phosphorylation of AChE. The OP 
compound disables AChE to catalyze acetylcholine in 
synaptic membranes into choline, along with the 
excessive formation of acetate enzymes that cause 
cholinergic toxicity [18]. Inhibitors of OP compounds 
form a covalent bond with serine located on the active site 
of AChE, resulting in enzyme inactivation [19, 20, 21]. The 
intensity of AChE inhibition is proportional to the 
concentration of the OP compounds and is used as the 
principle of the OP compound concentration detection 
method [19, 20, 21, 22]. 

Membrane materials for biosensor electrodes must 
have several properties, including good mechanical 
properties, thermal stability, and chemical resistance. 
Cellulose acetate (CA) has recently been studied for its 
outstanding thermal stability, chemical resistance, 
biocompatibility, and biodegradability [12]. It can be used 
for various applications (e.g., films, membranes, or 
fibers). Recent trends in CA applications applicable to 
surface device diagnostic kits and sensing materials have 
been reviewed in this section. According to the literature 
review, CA can achieve at least three sensing approaches, 
including optical, colorimetric, and electrochemical 
methods. 

The CA is only used as a supporting membrane for 
immobilizing biological elements in electrochemical 
methods (i.e., enzymes, antibodies, and aptamers). 
Before enzyme immobilization, CA is usually activated. 
CA modifications can improve attachment to biological 
elements or sensing processes through various 
mechanisms. Crosslinking agents are the most common 
in CA activation among the different methods. 
Crosslinking agents containing glutaraldehyde (GTA) can 

activate membrane CA. GTA is also used to create new 
bioelectronic devices with high stability and selectivity 
[23]. The enzymes, such as AChE, can then be 
immobilized on activated CA membranes [16]. 

A working electrode made of inert Au wire covered 
with CA and GTA membranes was used in this process. 
The GTA as a crosslinker with CA was based on forming 
a bond between the CA functional group and the carbonyl 
group of GTA. The interaction of CA with GTA occurred 
through covalent bonds. The crosslinker concentration 
dramatically affects the formation of the electrode 
membrane, research by Koseoglu-Imer et al. [22], 
Aburabie et al. [23], Wu et al. [24], and Kumar and 
Sundramoorthy [25] showed that 25% GTA concentration 
is stable. Using the crosslinking agent GTA, the cellulose 
acetate membrane produces OH groups, C−H stretching, 
and C−O−H and C−O−C asymmetric stretching. The –OH 
and –C–O–C groups increase in intensity as the 
crosslinking reaction increases. Based on its structure, 
GTA has two reactive aldehyde groups. The aldehyde 
group is very reactive to the hydroxyl group in CA, so the 
aldehyde group will form a covalent bond with the 
hydroxyl group. The compound will form a layer or matrix 
in which the enzyme molecules on the surface of the 
electrode will be trapped because of how the structure is 
completed. One of the advantages of using the 
immobilization method is that the enzyme is 
electrostatically bound to be stable with the transducer. 

A pesticide biosensor based on the AChE enzyme 
immobilized CA and GTA membrane as a crosslinker. The 
success factor is the ability of an enzyme to bind to the 
surface of the biosensor membrane and remain active 
during application [26]. This study discusses using an 
AChE enzyme-based biosensor connected to a simple 
potentiometer transducer to detect OPPs based on the 
measurement of %inhibition of enzyme performance and 
electrode response time to produce electrodes with 
optimal electrode performance. 

2. Methodology 

2.1. Materials and Instrumentations 

Acetylcholinesterase (AChE) 1.17 mg with activity of 
425.94 units per mg (EC. 3.1.1.7), acetylthiocholine 
chloride (ATCl), cellulose acetate (CA), glutaraldehyde 
(GTA), potassium chloride, chlorpyrifos, profenophos, 
and diazinon pesticide were bought from Sigma Aldrich 
(St. Louis, MI, USA). Ethanol, acetone, and phosphate 
buffer solution (PBS) pH of 8.0 were prepared by mixing 
standard stock solutions of Na2HPO4 and NaH2PO4 
obtained from Merck (Darmstadt, Germany). The 
potentiometer is the instrument used to measure the 
potential values. For electrochemical biosensors, a gold 
(Au) electrode was used as a working electrode, a 
platinum (Pt) as a catalyst to accelerate the electrolysis 
process, and an Ag/AgCl as a reference electrode. 
SEM- EDX-mapping using Phenom Desktop ProXL at the 
Terpadu Laboratory University of Islam Indonesia. 

2.2. Process of Ag/AgCl Electrolysis 

The Ag/AgCl standard electrode was created by 
electrolyzing Ag wire in a 0.1 M KCl solution for 
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25 minutes. The thickness of AgCl on the Ag wire was 
affected by the electrolysis time. Furthermore, the formed 
Ag/AgCl wire was allowed to dry in the open air. As an 
Ag/AgCl comparison electrode, an Ag/AgCl wire was then 
inserted into the electrode body. 

2.3. Preparation of Enzyme-immobilized Membranes 

The Au electrode was dipped in a CA membrane 
solution with a concentration of 15% (w/v). Once the CA 
layer was formed, the electrodes were rinsed with 
distilled water three times. The CA membrane-coated 
part of the Au electrode was soaked in a 25% GTA solution 
for 6 hours. Furthermore, electrodes were rinsed with 
distilled water and PBS (pH 8), then formed into an 
electrode membrane (EM). Phosphate buffer helped to 
maintain the optimum pH, allowing enzymes to continue 
functioning optimally. The EM was then incubated in the 
enzyme AChE for 48 hours at 4°C. Unused EM was stored 
in PBS solution (pH 8.0) at 4°C. The measurement 
components, such as standard electrodes, working 
electrodes, ATCl substrates, and inhibitor solutions, must 
be kept for approximately 2 hours at ambient temperature 
before measuring the biosensor response. The condition 
of the component was stable and capable of producing 
a good response. 

2.4. Enzyme Inhibition Measurements 

The inhibition percentage (%I) represents the 
pesticide’s (the inhibitor’s) ability to inhibit enzyme 
performance. After interacting with the inhibitor, the 
inhibited enzyme rate correlated with the inhibitor 
concentration and interaction time (incubation time, 20 ± 
1 minutes). As a result, the enzyme’s activity was 
inversely proportional to the inhibitor concentration. 
Potential measurement using potentiometric methods 
was conducted to determine enzyme inhibition for 
pesticide detection. After the biosensor electrode had 
stabilized, the potential value in the presence of ATCl 
substrate (1×10−3 M) was measured, denoted as E0. The 
enzyme activity was then inhibited by adding a known 
variation of pesticide concentration, and the potential 
value (E1) was measured, which was proportional to the 
inhibitor concentration in the solution. Eq. (1) shows the 
formula to calculate the inhibition percentage (%I). 

 % I = E0 - E1

E0
 × 100% (1) 

where, E0 is the initial potential value, and E1 is the 
potential value after enzyme inhibition. 

3. Results and Discussion 

3.1. Component of Biosensors 

This study used CA as a membrane electrode because 
it is stable and has a mechanical strength that can hold 
small materials. The potential value of the enzyme-
catalyzed reaction against the analyte determines by the 
medium, which is the electrode membrane. The 
performance of the biosensor depends on the 
compositional parameters of the Au electrode membrane. 
When making CA membranes through the phase 
inversion method using instantaneous liquid-liquid 
demising, a polymer base material was changed from the 

liquid phase to the solid phase by removing the solvent 
with a solvent that has different properties. The solvent 
that coats the CA membrane was removed using distilled 
water to obtain a porous CA membrane. Then, the GTA 
crosslinking method was used to stop the AChE enzyme 
from moving around. The function of GTA was as a 
bifunctional reagent between CA and enzymes [27, 28]. 

The biosensor consists of a receptor (biological 
recognition element), a transducer, and a signal detector 
(Figure 1). Biological recognition elements (enzymes) 
must be analyte-specific to detect analytes in different 
samples accurately. Due to the near position proximity of 
the recognition elements and analytes, chemical changes 
are likely to occur, such as the formation of electroactive 
species, reduction in the form of by-products, and 
consumption of oxygen [29]. Chemical changes are 
detected through the transducer, i.e., potentiometric, and 
displayed on the control system. 

 

Figure 1. The basic components of an electrochemical 
biosensor 

In this study, an AChE enzyme-based OPP biosensor 
has been designed. OPPs work mostly by stopping the 
AChE enzyme from doing its job, which causes problems 
with how the CNS works. AChE is the primary CNS enzyme 
that catalyzes the hydrolysis of the neurotransmitter 
acetylcholine into choline and the enzyme acetate 
formation. In the case of AChE inhibition-based OP 
biosensors, the resulting signal is inversely proportional 
to the concentration of the OP compound. In other words, 
an increase in the attention of the OP compound causes a 
weak signal. AChE biosensor works on the inhibitory 
effect, where AChE is used as a biorecognition element to 
detect toxic organophosphates [20, 30]. If inhibitors 
(OPPs) are absent in the analyte, acetylthiocholine is 
converted to thiocholine and acetic acid. However, if the 
inhibitor is present in the analyte, the thiocholine 
concentration decreases, or no thiocholine and acetic acid 
are produced. In other words, it is completely inhibited 
[31]. 

3.2. Characterizations of CA/GTA Membrane 

SEM microscopy (Figure 2) revealed several 
important aspects regarding changes in membrane 
surface morphology. CA membranes with GTA as a 
crosslinker presented low surface porosity due to the 
crosslinking effect caused by covalent interactions 
between aldehyde and hydroxyl groups on the membrane 
surface. In the CA and GTA membrane functionalization 
phase, AChE enzyme immobilization showed the 
presence of clumps on the membrane surface. Figure 3a, 
an analysis of membrane morphology, shows a mean pore 
size diameter of 562.33 nm. Figure 3b, clearly defined for 
the C and O atoms, identifies the atomic dispersion and 
the non-porous and smooth membrane surface. 
Elements C and O were detected in the EDX element 
analysis (Figure 3c), indicating CA/GTA fibers within the 
membrane. 
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Figure 2. Characterizations of CA/GTA membrane after 
AChE enzyme immobilization by using (a) SEM, 

(b) SEM-mapping of (b1) carbon and (b2) oxygen, 
(c) SEM- EDX 

3.3. Inhibition of Enzymatic Biosensor 

The inhibition percentage (%I) represents the 
pesticide’s (the inhibitor’s) ability to inhibit enzyme 
performance. Pesticide biosensor designs typically rely 
on quantitative enzyme activity measurements before 
and after contact with the substrate. The %I produced 
after interacting with the inhibitor will be proportional to 
the inhibitor concentration and interaction time 
(incubation time). As a result, the activity of the enzyme 
residue is inversely related to the concentration of the 
inhibitor. The biosensor responds to the AChE enzyme 
reaction due to contact with the ATCl substrate, 
determined by the resulting product concentration on the 
enzyme surface. If the enzyme activity increases, it is not 
entirely replaced by a transfer in the substrate due to the 
diffusion process. Therefore, only one of the enzyme’s 
active sites can interact with an acetylcholine substrate. 
The presence of an inhibitor influences the sensitivity of 
the immobilized enzyme to inactivity [30]. 

 

Figure 3. Calibration curves for (a) profenofos, 
(b) diazinon, and (c) chlorpyrifos in PBS (pH 8.0) at an 

ATCl concentration of 10−3 M, (d) Inhibitions for various 
pesticides using EM CA/GTA 

Linear ranges and LOD of biosensors were analyzed 
for the pesticides chlorpyrifos, profenofos, and diazinon 
with a potentiometer. Linear relationships were obtained 
for E (mV vs. Ag/AgCl) vs. OPP concentrations in the 
concentration range 1×10−6 to 1.0 μg/L with coefficients of 
0.9832, 0.9813, and 0.9805, respectively (Figure 3a-c). An 
increase in pesticide concentration causes a decrease in 
potential value due to inhibiting enzyme activity. LOD was 
obtained from the 1×10−6 μg/L biosensor. 

The administration of inhibitors can affect the 
enzyme activity and the concentration of the resulting 

product, so the potential value is small. The percentage 
inhibition curve shows the results of biosensor analysis 
with CA and GTA membranes. The curve shows the 
relationship between the percentage of inhibition (%I) to 
–log [OPPs] at a substrate concentration of 1×10−3 M from 
the lowest measurement of profenophos inhibitor 
concentration (1×10−6 μg/L) to the highest concentration 
(1.0 μg/L) (Figure 3d). The %inhibition value for the 
chlorpyrifos pesticide was 14.44 to 73.08%, profenophos 
was 11.98 to 77.98%, and diazinon was 18.58 to 83.27% 
(Figure 3d). Therefore, it can be assumed that the higher 
the inhibitor concentration (OPPs), the higher the 
inhibitor’s ability to inhibit the AChE enzyme activity in 
hydrolyzing the acetylcholine substrate [31]. The 
capability of the inhibitors to limit enzyme activity shows 
that the Au/CA/GTA@AChE electrodes function 
admirably in pesticide detection. 

3.4. Response Time of Enzymatic Biosensor 

Due to the equilibrium of the electrode membrane 
reaction with the analyte testing, a response time is 
needed for the electrode to give a constant response. 
When making a biosensor, it is essential to consider how 
fast electrons move from the enzyme’s surface to the 
electrode’s surface [26]. This transfer should be quick to 
provide an accurate measurement response. Changing the 
concentration of inhibitors (OPPs) was used to determine 
how long coated wire electrodes took to respond. The 
potential value of each inhibitor concentration was 
measured every 1 to 10 minutes to obtain a constant 
potential from low to high concentrations. The response 
time given by the biosensor electrode to pesticides was 
5 minutes (Figure 4). The average response time for the 
potentiometric biosensor was 5 minutes, and the analysis 
results were the same for all different concentrations of 
the pesticide inhibitor. Several studies have shown a fast 
response, as in the research by Zhang et al. [32] on the 
Prussian blue nanocubes/reduced graphene oxide 
electrode membrane with the AChE enzyme to detect 
organophosphate pesticides [33]. It gave a faster response 
of 10.9 seconds. Even though this study delivered an 
average response of 5 minutes, it showed that the 
biosensor with a potentiometer circuit had a stable 
potential value at 5 minutes. This biosensor type is 
suitable for field monitoring because it is easy to use and 
gives quick results. 

 

Figure 4. Response time of enzymatic biosensor 
(a) profenofos, (b) diazinon, and (c) chlorpyrifos 
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4. Conclusion 

For organophosphate compounds like chlorpyrifos, 
profenophos, and diazinon, potentiometric biosensors 
can be made by crosslinking the AChE enzyme on the Au–
CA surface electrode membrane with GTA. Overall, it can 
be concluded that for inhibitor concentrations of 
1×10−6– 1.0 μg/L, SEM revealed the morphology of the 
CA/GTA membranes to have smooth and agglomerated 
surfaces. As an OPP detector, the electrode membrane 
biosensor is based on a potentiometric approach, a 
significant inhibition value depending on the 
concentration of the inhibitor (pesticide), and a response 
time of 5 minutes. The results show that these biosensors 
could be used as a promising analytical tool to test for 
traces of pesticides in food crops. 
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