FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

JunJie Liang*, **Wenbo Guo***, Tongbo Luo, Vasant Honavar, Gang Wang, Xinyu Xing Pennsylvania State University & UIUC

Background.

- Deep learning techniques have been broadly adopted in cybersecurity.
 - Malware Analysis.
 - Transcend, USENIX Security'17.
 - Drebin, NDSS'14.
 - Intrusion Detection.
 - Deeplog, CCS'17.
 - Log2vec, CCS'19
 - Binary Analysis.
 - Function start identification, USENIX Security'15.
 - DEEPVSA, USENIX Security'19.
 - Etc.

Background.

- The success of DL heavily relies on *accurate and sufficient labeled training data*.
- This requirement can be easily broken in security applications low-quality labels.
 - E.g., malware detection.
 - Labeling malware requires tremendous efforts from domain experts.
 - Short of domain experts/efforts large volume of unlabeled data and malware classes.
 - A malware family could evolve into thousands of subfamilies in a short period of time.
 - Missing knowledge of these subfamilies coarse-grained labels.

Professional analysts: malware? Time: hours or days. Highly likely to make an error.

Dev a thousands of subfamilies.

- Problem Scope & Definition.
- Key technique: **FARE F**ine-grained **A**ttack Categorization through **R**epresentation **E**nsemble.
- Evaluation.
- Discussion & Conclusion.

• Problem Scope & Definition.

- Key technique: **FARE F**ine-grained **A**ttack Categorization through **R**epresentation **E**nsemble.
- Evaluation.
- Discussion & Conclusion.

Problem Scope.

- Missing classes labeled data cannot cover all classes.
 - E.g., malware classification.
 - Unrealistic to assume the knowledge of all malware families.
 - Leave the unseen classes as unlabeled data.
- Coarse grained labels mistakenly group several classes into one group.
 - E.g., malware classification.
 - Only aware of the parent malware class.
- A small proportion of labeled data in each known class.
- Noisy/corrupted labels random label errors/poison labels in the known classes.

Problem Definition.

Given a dataset with *n* true classes.

- Missing classes.
 - Labels of *n_c* classes are completely missing.
 - The other $(n n_c)$ classes only have 1% of labeled samples.
- Coarse-grained labels.
 - Original n_g classes are labeled as one union class.
 - These $(n n_g + 1)$ classes only have 1% of labeled samples.
- Goal: recover the true clustering structure of the input data.
 - Identify there are *n* clusters.
 - Correctly assign all the data to the *n* clusters.

• Problem Scope & Definition.

- Key technique: FARE Fine-grained Attack Categorization through Representation Ensemble.
- Evaluation.
- Discussion & Conclusion.

Technical Overview.

- Utilize various unsupervised learning methods to cluster the entire dataset.
 - Extract useful/reliable categorization information from the input data.
 - Ensemble the clustering results with the given labels .
- *Contrastive learning* Use the fused labels to train an input transformation net.
 - Transform the high dimensional data into a *lower latent space*.
 - Distance is well defined *Euclidean distance*.
 - Similar samples have a *shorter* distance.
- Final clustering perform clustering at the latent space.
 - *K-means* clustering with *Euclidean distance* as the distance measure.

- Problem Scope & Definition.
- FARE Fine-grained Attack Categorization through Representation Ensemble.
- Evaluation.
- Conclusion.

Experiment Setup and Design.

- Datasets randomly split datasets into training/validation/testing set.
 - Android Malware: one benign class and five malicious classes; 270,000 samples.
 - Features: 100 dimensions, encoding of sand-box behaviors.
 - Network intrusion (KDDCUP'99): 9 classes; 493,346 samples; imbalance.
 - Features: 120 dimensions, network behaviors.
- Evaluation metric AMI (widely used unsupervised metric) and Accuracy.
- Experiment design:
 - FARE vs. baselines approach in *no label settings*.
 - FARE vs. baselines approach in *missing class settings*.
 - FARE vs. baselines approach in *coarse-grained label settings*.

Experiment Results (in no label setting).

Dataset		MALWARE			Network Intrusion		
Metric		AMI	Accuracy	Runtime (s)	AMI	Accuracy	Runtime (s)
	Unsup. FARE	0.74 ± 0	0.81 ± 0.01	432.12	0.78 ± 0	0.99 ± 0	8,942.52
Full Training set	Kmeans	0.47 ± 0.12	0.51 ± 0.04	26.99	0.39 ± 0.18	0.64 ± 0.12	16.30
	DBSCAN	0.69 ± 0.03	0.77 ± 0.02	174.63	0.38 ± 0.1	0.66 ± 0.04	8,918.36
	DEC	0.37 ± 0.09	0.47 ± 0.07	342.42	0.64 ± 0.12	0.85 ± 0.04	725.58
10%	Unsup. FARE	0.72 ± 0.01	0.80 ± 0.01	77.33	0.76 ± 0	0.98 ± 0	1,801.74
Training set	CSPA	0.5 ± 0.04	0.61 ± 0.06	176.29	0.36 ± 0.11	0.64 ± 0.08	2,013.77
	HGPA	0.57 ± 0.03	0.69 ± 0.05	90.1	0.4 ± 0.09	0.79 ± 0.06	1,804.82

- FARE is more effective than existing clustering and ensemble clustering methods.
- FARE's computational cost depends on the base clustering methods (Kmean, DBSCAN, DEC); significantly less computationally intensive than ensemble approaches (CSPA, HGPA).

Experiment Results (in missing class setting).

	Num. of missing classes (n_c)							
Methods	Malware $(N = 6)$			Intrusion $(N = 9)$				
	0	2	4	0	1	4	7	
FARE	6 ± 0	6 ± 0	6 ± 0	6 ± 0	6 ± 0	8 ± 1.25	10 ± 1.89	
MixMatch	6 ± 0	4 ± 0	4 ± 0	5 ± 0.47	4 ± 0	6 ± 1.69	5 ± 1.41	
Ladder	4 ± 0	4 ± 0	5 ± 0	5 ± 0	6 ± 2.44	6 ± 0	7 ± 2.36	
DNN+	6 ± 0	5 ± 0.82	4 ± 0	5 ± 0.92	6 ± 0	6 ± 0	4 ± 0	

(a) Malware categorization.

(b) Intrusion detection.

- Supervised DNN performs extremely poor.
- FARE is more effective than baselines.
 - Recovering the correct classes.
 - Assigning samples correctly (Higher AMI).

Experiment Results (in coarse-grained label setting).

	Num. of mistaken grouped classes (n_g)						
Methods	Malwar	e(N = 6)	Intrusion $(N = 9)$				
	2	4	1	4	7		
FARE	6 ± 0	6 ± 0	5 ± 0	5 ± 0.47	4 ± 0		
MixMatch	5 ± 0	4 ± 0	5 ± 0.47	5 ± 0.47	7 ± 1.25		
Ladder	4 ± 0	5 ± 0.47	5 ± 0.47	7 ± 2.05	16 ± 3.77		
DNN+	5 ± 0	5 ± 5.44	5 ± 0.47	6 ± 1.7	15 ± 2.49		

(b) Intrusion detection.

- Supervised DNN performs extremely poor.
- FARE is more effective than baselines.
 - Recovering the correct classes.
 - Assigning samples correctly (Higher AMI).

Real-world Application.

- FARE fraudulent accounts identification for an e-commerce service company.
 - Dataset *200,000* active users; *264*-dimensional feature vectors; *0.5%* fraudulent/*0.1%* trustworthy users.
 - A/B test experiment verify the FARE results.
 - Group-A: Fraudulent accounts identified by FARE; Group-B: Labeled trustworthy accounts.
 - Force a two-step authentication and monitor login attempt rate (LAR)/authentication pass rate (APR).
 - Experiment results.

Group	1-day	1-week	1-month	
_	(LAR, APR)	(LAR, APR)	(LAR, APR)	
A: FARE-detected	$(\mathbf{20.9\%}, \mathbf{0.0\%})$	$(\mathbf{25.3\%}, \mathbf{0.0\%})$	$(\mathbf{39.3\%}, \mathbf{0.0\%})$	
B: Confirmed-legit.	(22.1%, 100%)	(27.9%, 100%)	(30.9%, 100%)	

- *None* of the FARE-detected fraudulent accounts pass the two-step authentication.
- A manual analysis of the identified fraudulent clusters *discover unseen behaviors*.
 - Deal-hunter: over-Heavy coupon usages.
 - Click-farm: regularly buy products from certain retailers and leave positive reviews, then return and get a refund.

- Problem Scope & Definition.
- FARE Fine-grained Attack Categorization through Representation Ensemble.
- Evaluation.
- Conclusion.

Conclusion.

- Low-quality labels pose a crucial challenge to deploy supervised DNNs in security applications.
- Contrastive Learning with ensemble clustering enables fine-grained attack categorization.
- FARE can serve as an effective tool for attack categorization in real-world security applications.

Thank you very much!

Code and data can be found @ <u>https://github.com/junjieliang672/FARE</u>

Wenbo Guo

http://www.personal.psu.edu/wzg13/

Discussion.

- FARE vs. semi-supervised learning (SSL) & few-shot learning.
 - SSL a small proportion of labeled data from each class.
 - FARE similar with SSL setup but with missing classes/coarse-grained labels.
 - Few-shot learning transfer learning (little knowledge about the second task), require side information.
- Computational complexity quadratic to the batch size.
 - Depend on the cost of base clustering methods (DBSCAN could be slow).
- Hyper-parameters selecting via a validation set.
- Adversarial resistance (Poisoning labels) FARE's performance slightly drops as more labels are corrupted.