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About this Talk

examine randomness generation for cryptography

give
I security definitions

I a construction meeting the formalized requirements.

analyze
I a previous construction proposed by Barak and Halevi in 2005

I Linux random generators /dev/random and /dev/urandom
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True Random Number Generators
Natural randomness in real world previous talks

Find a regular but random event and monitor

but, need special hardware to do this

but, often slow

but, problems of bias or uneven distribution
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Random Sources and Extractors

What kinds of random sources are useful ?
I impredictable must have sufficient entropy
I in cryptography: use min-entropy:

H∞(X ) = min
x $←X
{− log Pr[X = x ]}

Build deterministic extractor ?
I f : {0,1}n → {0,1},

s.t. for X over {0,1}n with H∞(X ) ≥ n − 1, Pr[f (X ) = 0] = 1/2
I cannot exist

 Randomness extractors
I use a small family of functions
I parametrized by a seed
I in cryptography: public or private ?
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(Deterministic) Pseudorandom Number Generators
0110100100101001010110010

01100010111101001010101111110101111010000101110. . .

output determined by a secret initial value
output approximates the properties of random numbers
fast and reproducible
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Security of a PRNG

0110001011110100101010111111010111101000010111. . .
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Security of a PRNG

0110001011110100101010111111010111101000010111. . .

What if the key is compromised ?
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Pseudorandom Number Generators with Inputs

0110100100101001010110010

01100010111101001010101111110101111010000101110. . .

Examples:
I Linux RNG : /dev/random, Yarrow, Fortuna, Havege, . . .
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Expected Security Properties

Resilience: output looks random w/o knowledge of internal state

I Unknown/Known/Chosen input attacks

Security After State Compromise
I Forward security:
 earlier output looks random with knowledge of current state

I Backward security:
 future output looks random with knowledge of current state

How to formalize these security notions ?
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Barak-Halevi Security Model (2005)
G = (refresh,next) is a PRNG with input

I refresh(S, I) = S′ ∈ {0,1}n.
I next(S) = (S′,R) ∈ {0,1}n × {0,1}`

Security notion: Robustness

G1 proc. good-refresh(D) proc. bad-refresh(x) proc. set-state(S′) proc. next-ror()

x $← D S ← refresh(S, x) OUTPUT S (R,S′)← next(S)
S ← refresh(S, x) S ← S′ S ← S′

OUTPUT R

G2 proc. good-refresh(D) proc. bad-refresh(x) proc. set-state(S′) proc. next-ror()

x $← D S ← refresh(S, x) IF corrupt (R,S′)← next(S)
S ← refresh(S, x) OUTPUT S S ← S′
corrupt← false ELSE IF corrupt

OUTPUT
$← {0, 1}m OUTPUT R

S ← S′ ELSE

corrupt← true OUTPUT
$← {0, 1}`
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Defects in Barak-Halevi Model

Entropy accumulation
null or high entropy inputs,
but, entropy could be accumulated slowly in S.
a PRNG should recover from state compromise
(if the amount of accumulated entropy crosses some threshold)

Need for a setup procedure
deterministic randomness extractors do not exist!
Two options:

I restrict the family of permitted high-entropy distributions.

I add a setup procedure which outputs some public parameters
(used by next and refresh)
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Defects in Barak-Halevi Model

State Pseudorandomness
BH model ensures that S is indistinguishable from random

But technical parameters do not need to be random
(e.g. Linux contains (predictable) entropy estimators).

Pseudorandomness of the state is not actually a requirement

Only pseudorandomness of the output is !
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New Model Description

G = (setup, refresh,next) is a PRNG with input
I setup output public parameters seed
I refresh(S, I) = S′ ∈ {0,1}n.
I next(S) = (S′,R) ∈ {0,1}n × {0,1}`

Adversary divided into two parts (A,D)

D : σ → (σ′, I, γ, z) is a legitimate distribution sampler
I σ = state of D.
I I = next input for refresh
I γ = entropy estimation of I
I z = leakage about I given to A
I H∞(Ij | I1, . . . , Ij−1, Ij+1, . . . , IqD , z1, . . . , zqD , γ1, . . . , γqD ) ≥ γj

seed is not passed to D but is given to A
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Security Games

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. get-state
c ← 0, corrupt← true
OUTPUT S

proc. set-state(S∗)
c ← 0, corrupt← true
S ← S∗
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Resilience

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R
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Backward Security

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. set-state(S∗) (single first call)
c ← 0, corrupt← true
S ← S∗
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Forward Security

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. get-state (single last call)
c ← 0, corrupt← true
OUTPUT S
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Robustness

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. get-state
c ← 0, corrupt← true
OUTPUT S

proc. set-state(S∗)
c ← 0, corrupt← true
S ← S∗
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Barak-Halevi Construction

Extract : {0,1}p −→ {0,1}n a randomness extractor
G : {0,1}n −→ {0,1}n+` a (deterministic) PRNG

Barak-Halevi Construction
refresh(S, I) = [G(S ⊕ Extract(I))]n1
next(S) = G(S)

 robust in BH model

Simplified Barak-Halevi Construction
refresh(S, I) = S ⊕ Extract(I)
next(S) = G(S)

 robust in BH model (if one drops state pseudorandomness)
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Barak-Halevi Construction
Simplified Barak-Halevi Construction

refresh(S, I) = S ⊕ Extract(I)
next(S) = G(S)

 robust in BH model (if one drops state pseudorandomness)

but, does not accumulate entropy!
is not backward secure in [DPRVW13] model

D : σ = ∅ → (σ′, I, γ, z) = (∅,bp,1, ∅) with b $← {0,1}
is a (stateless) legitimate distribution sampler
A

I calls set-state(0n) (S0 = 0n),
I makes γ∗ calls to D-refresh (Sj = D-refresh(Sj−1,bp))
I makes many calls to next-ror.

Y (b) = Extract(bp) S2j ∈ {0n,Y (0)⊕ Y (1)} and S2j+1 ∈ {Y (0),Y (1)}

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 21 / 36



Barak-Halevi Construction
Simplified Barak-Halevi Construction

refresh(S, I) = S ⊕ Extract(I)
next(S) = G(S)

 robust in BH model (if one drops state pseudorandomness)

but, does not accumulate entropy!
is not backward secure in [DPRVW13] model

D : σ = ∅ → (σ′, I, γ, z) = (∅,bp,1, ∅) with b $← {0,1}
is a (stateless) legitimate distribution sampler
A

I calls set-state(0n) (S0 = 0n),
I makes γ∗ calls to D-refresh (Sj = D-refresh(Sj−1,bp))
I makes many calls to next-ror.

Y (b) = Extract(bp) S2j ∈ {0n,Y (0)⊕ Y (1)} and S2j+1 ∈ {Y (0),Y (1)}

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 21 / 36



Contents

1 Pseudorandom Generators

2 Security Models
Barak-Halevi Security Model
Dodis et al. Security Model
On the Security of Barak-Halevi Construction

3 A Provably Secure Construction

4 Linux PRNG /dev/random and /dev/urandom

5 Conclusion

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 22 / 36



A Provably Secure Construction

G : {0,1}m −→ {0,1}n+` a (deterministic) PRNG

Construction

setup(·) = seed = (X ,X ′) $← {0,1}2n.
refresh(S, I) = S · X + I ∈ F2n .
next(S) = G([X ′ · S]m1 ).

it preserves security
it accumulates entropy
 robust in [DPRVW13] model !
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A Provably Secure Construction

Lemma 1
This construction preserves security.

if the state S0 starts uniformly random and uncompromised,
and is refreshed with (adversarial) samples I1, . . . , Id  Sd ,
(S′,R) = next(Sd )

then R looks indistinguishable from uniform

Proof.
Sd := S · X d + Id−1 · X d−1 + · · ·+ I1 · X + I0.

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 24 / 36



A Provably Secure Construction

Lemma 1
This construction preserves security.

if the state S0 starts uniformly random and uncompromised,
and is refreshed with (adversarial) samples I1, . . . , Id  Sd ,
(S′,R) = next(Sd )

then R looks indistinguishable from uniform

Proof.
Sd := S · X d + Id−1 · X d−1 + · · ·+ I1 · X + I0.

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 24 / 36



A Provably Secure Construction

Lemma 2
This construction accumulates entropy.

if the state S0 starts is compromised to some arbitrary value
and is refreshed with D-refresh samples I1, . . . , Id  Sd ,
(S′,R) = next(Sd )

then R looks indistinguishable from uniform

Proof.

h∗X ,X ′ (̄I) :=

X ′ ·
d−1∑
j=0

Ij · X j

m

1

.

is 2−m(1 + d · 2m−n)-universal.
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The Linux Random Number Generator

part of the Linux kernel since 1994
from Theodore Ts’o and Matt Mackall

only definition in the code (with comments) :
I About 1700 lines

Previous Analysis:
I Barak-Halevi, 2005: almost no mentioning of the Linux RNG
I Gutterman-Pinkas-Reinman, 2006: some weaknesses
I Lacharme-Röck-Strubel-Videau, 2012: detailed description

Two different versions :
I /dev/random: limits the number of bits by the estimated entropy
I /dev/urandom: generates as many bits as the user asks for
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General Overview of LINUX PRNG

dev/urandom

dev/random

Non Blocking
Ouput Pool

Blocking
Ouput Pool

Input

Pool
Input

|I| = 96, |S| = 6144, |R| = 80
refresh and next uses a Mixing function and a Hash function
all transfers between pools rely on Entropy Estimators
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dev/urandom Output Request

Input

Pool

dev/urandom

Is there enough entropy in Non Blocking Output Pool ?
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dev/urandom Output Request

Input

Pool

00110101101

Is there enough entropy in output pool ?
Yes, output the requested bytes !
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dev/urandom Output Request

dev/urandom

Is there enough entropy in output pool ?
No, ask the input pool !

I Is there enough entropy in input pool ?
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dev/urandom Output Request

00110101101

Is there enough entropy in output pool ?
No, ask the input pool !

I Is there enough entropy in input pool ?
I Yes, transfer from input pool to output pool and generate!
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dev/urandom Output Request

0011010110

Is there enough entropy in output pool ?
No, ask the input pool !

I Is there enough entropy in input pool ?
I No, generate output anyway !
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Difference with dev/random

dev/random

Is there enough entropy in output pool ?
No, ask the input pool !

I Is there enough entropy in input pool ?
I No, do not generate output and wait !
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Defects of LINUX PRNG

if input pool contains enough
entropy, don’t refresh
(before [DPRVW13])

there exists D0, H∞(D0) = 0,
that LINUX estimates high

there exists D1, H∞(D1) = 64,
that LINUX estimates 0

there exists D2, H∞(D2) = 1,
for which LINUX does not
accumulate
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dev/random was not Robust

first step : get-state

D-refresh with D0 (H∞ = 0),
until input pool is full

D-refresh with D1 (H∞ = 64),
which are ignored

next: H∞(R) = 0 0011010110
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dev/urandom was not Robust

first step : get-state

D-refresh with D1 (H∞ = 64),
which are not transfered

next : H∞(R) = 0 0011010110
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Follow-up Works
Other Attacks
(Cornejo-Ruhault – ACM CCS 2014)

Security against Premature Next
(Dodis, Shamir, Stephens-Davidowitz, Wichs – Crypto 2014)

Analysis of Intel’s Secure Key RNG
(Shrimpton, Terashima – Eurocrypt 2015)

Backdoored PRNGs
(Degabriele, Paterson, Schuldt, Woodage – Crypto 2016)
Kenny’s talk . . .

Sponge-Based PRNGs
(Gaži, Tessaro – Eurocrypt 2016)
see next talk . . .
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Conclusion

Generation of random numbers is too important to be left to chance . . .

Analysis of BH model and construction.

DPRVW13 security model for PRNG with input.

Attacks on LINUX PRNGs
I using entropy estimator
I using mixing function (see paper)

Construction provably secure and efficient.
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