
Security of Pseudo-Random
Number Generators With Input

Damien Vergnaud

École normale supérieure – INRIA – PSL

wr0ng
April, 30th 2017

(with Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault & Daniel Wichs)

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 1 / 36

About this Talk

examine randomness generation for cryptography

give
I security definitions

I a construction meeting the formalized requirements.

analyze
I a previous construction proposed by Barak and Halevi in 2005

I Linux random generators /dev/random and /dev/urandom

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 2 / 36

Contents

1 Pseudorandom Generators

2 Security Models
Barak-Halevi Security Model
Dodis et al. Security Model
On the Security of Barak-Halevi Construction

3 A Provably Secure Construction

4 Linux PRNG /dev/random and /dev/urandom

5 Conclusion

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 3 / 36

True Random Number Generators
Natural randomness in real world previous talks

Find a regular but random event and monitor

but, need special hardware to do this

but, often slow

but, problems of bias or uneven distribution

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 4 / 36

True Random Number Generators
Natural randomness in real world previous talks

Find a regular but random event and monitor

but, need special hardware to do this

but, often slow

but, problems of bias or uneven distribution

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 4 / 36

Random Sources and Extractors

What kinds of random sources are useful ?
I impredictable must have sufficient entropy
I in cryptography: use min-entropy:

H∞(X) = min
x $←X
{− log Pr[X = x]}

Build deterministic extractor ?
I f : {0,1}n → {0,1},

s.t. for X over {0,1}n with H∞(X) ≥ n − 1, Pr[f (X) = 0] = 1/2
I cannot exist

 Randomness extractors
I use a small family of functions
I parametrized by a seed
I in cryptography: public or private ?

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 5 / 36

Random Sources and Extractors

What kinds of random sources are useful ?
I impredictable must have sufficient entropy
I in cryptography: use min-entropy:

H∞(X) = min
x $←X
{− log Pr[X = x]}

Build deterministic extractor ?
I f : {0,1}n → {0,1},

s.t. for X over {0,1}n with H∞(X) ≥ n − 1, Pr[f (X) = 0] = 1/2
I cannot exist

 Randomness extractors
I use a small family of functions
I parametrized by a seed
I in cryptography: public or private ?

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 5 / 36

Random Sources and Extractors

What kinds of random sources are useful ?
I impredictable must have sufficient entropy
I in cryptography: use min-entropy:

H∞(X) = min
x $←X
{− log Pr[X = x]}

Build deterministic extractor ?
I f : {0,1}n → {0,1},

s.t. for X over {0,1}n with H∞(X) ≥ n − 1, Pr[f (X) = 0] = 1/2
I cannot exist

 Randomness extractors
I use a small family of functions
I parametrized by a seed
I in cryptography: public or private ?

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 5 / 36

(Deterministic) Pseudorandom Number Generators
0110100100101001010110010

01100010111101001010101111110101111010000101110. . .

output determined by a secret initial value
output approximates the properties of random numbers
fast and reproducible

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 6 / 36

Security of a PRNG

0110001011110100101010111111010111101000010111. . .

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 7 / 36

Security of a PRNG

0110001011110100101010111111010111101000010111. . .

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 7 / 36

Security of a PRNG

0110001011110100101010111111010111101000010111. . .

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 7 / 36

Security of a PRNG

0110001011110100101010111111010111101000010111. . .

What if the key is compromised ?

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 7 / 36

Pseudorandom Number Generators with Inputs

0110100100101001010110010

01100010111101001010101111110101111010000101110. . .

Examples:
I Linux RNG : /dev/random, Yarrow, Fortuna, Havege, . . .

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 8 / 36

Pseudorandom Number Generators with Inputs

0110100100101001010110010

01100010111101001010101111110101111010000101110. . .

Examples:
I Linux RNG : /dev/random, Yarrow, Fortuna, Havege, . . .

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 8 / 36

Expected Security Properties

Resilience: output looks random w/o knowledge of internal state

I Unknown/Known/Chosen input attacks

Security After State Compromise
I Forward security:
 earlier output looks random with knowledge of current state

I Backward security:
 future output looks random with knowledge of current state

How to formalize these security notions ?

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 9 / 36

Expected Security Properties

Resilience: output looks random w/o knowledge of internal state

I Unknown/Known/Chosen input attacks

Security After State Compromise
I Forward security:
 earlier output looks random with knowledge of current state

I Backward security:
 future output looks random with knowledge of current state

How to formalize these security notions ?

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 9 / 36

Expected Security Properties

Resilience: output looks random w/o knowledge of internal state

I Unknown/Known/Chosen input attacks

Security After State Compromise
I Forward security:
 earlier output looks random with knowledge of current state

I Backward security:
 future output looks random with knowledge of current state

How to formalize these security notions ?

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 9 / 36

Contents

1 Pseudorandom Generators

2 Security Models
Barak-Halevi Security Model
Dodis et al. Security Model
On the Security of Barak-Halevi Construction

3 A Provably Secure Construction

4 Linux PRNG /dev/random and /dev/urandom

5 Conclusion

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 10 / 36

Barak-Halevi Security Model (2005)
G = (refresh,next) is a PRNG with input

I refresh(S, I) = S′ ∈ {0,1}n.
I next(S) = (S′,R) ∈ {0,1}n × {0,1}`

Security notion: Robustness

G1 proc. good-refresh(D) proc. bad-refresh(x) proc. set-state(S′) proc. next-ror()

x $← D S ← refresh(S, x) OUTPUT S (R,S′)← next(S)
S ← refresh(S, x) S ← S′ S ← S′

OUTPUT R

G2 proc. good-refresh(D) proc. bad-refresh(x) proc. set-state(S′) proc. next-ror()

x $← D S ← refresh(S, x) IF corrupt (R,S′)← next(S)
S ← refresh(S, x) OUTPUT S S ← S′
corrupt← false ELSE IF corrupt

OUTPUT
$← {0, 1}m OUTPUT R

S ← S′ ELSE

corrupt← true OUTPUT
$← {0, 1}`

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 11 / 36

Barak-Halevi Security Model (2005)
G = (refresh,next) is a PRNG with input

I refresh(S, I) = S′ ∈ {0,1}n.
I next(S) = (S′,R) ∈ {0,1}n × {0,1}`

Security notion: Robustness

G1 proc. good-refresh(D) proc. bad-refresh(x) proc. set-state(S′) proc. next-ror()

x $← D S ← refresh(S, x) OUTPUT S (R,S′)← next(S)
S ← refresh(S, x) S ← S′ S ← S′

OUTPUT R

G2 proc. good-refresh(D) proc. bad-refresh(x) proc. set-state(S′) proc. next-ror()

x $← D S ← refresh(S, x) IF corrupt (R,S′)← next(S)
S ← refresh(S, x) OUTPUT S S ← S′
corrupt← false ELSE IF corrupt

OUTPUT
$← {0, 1}m OUTPUT R

S ← S′ ELSE

corrupt← true OUTPUT
$← {0, 1}`

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 11 / 36

Defects in Barak-Halevi Model

Entropy accumulation
null or high entropy inputs,
but, entropy could be accumulated slowly in S.
a PRNG should recover from state compromise
(if the amount of accumulated entropy crosses some threshold)

Need for a setup procedure
deterministic randomness extractors do not exist!
Two options:

I restrict the family of permitted high-entropy distributions.

I add a setup procedure which outputs some public parameters
(used by next and refresh)

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 12 / 36

Defects in Barak-Halevi Model

Entropy accumulation
null or high entropy inputs,
but, entropy could be accumulated slowly in S.
a PRNG should recover from state compromise
(if the amount of accumulated entropy crosses some threshold)

Need for a setup procedure
deterministic randomness extractors do not exist!
Two options:

I restrict the family of permitted high-entropy distributions.

I add a setup procedure which outputs some public parameters
(used by next and refresh)

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 12 / 36

Defects in Barak-Halevi Model

State Pseudorandomness
BH model ensures that S is indistinguishable from random

But technical parameters do not need to be random
(e.g. Linux contains (predictable) entropy estimators).

Pseudorandomness of the state is not actually a requirement

Only pseudorandomness of the output is !

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 13 / 36

New Model Description

G = (setup, refresh,next) is a PRNG with input
I setup output public parameters seed
I refresh(S, I) = S′ ∈ {0,1}n.
I next(S) = (S′,R) ∈ {0,1}n × {0,1}`

Adversary divided into two parts (A,D)

D : σ → (σ′, I, γ, z) is a legitimate distribution sampler
I σ = state of D.
I I = next input for refresh
I γ = entropy estimation of I
I z = leakage about I given to A
I H∞(Ij | I1, . . . , Ij−1, Ij+1, . . . , IqD , z1, . . . , zqD , γ1, . . . , γqD) ≥ γj

seed is not passed to D but is given to A

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 14 / 36

Security Games

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. get-state
c ← 0, corrupt← true
OUTPUT S

proc. set-state(S∗)
c ← 0, corrupt← true
S ← S∗

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 15 / 36

Security Games

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. get-state
c ← 0, corrupt← true
OUTPUT S

proc. set-state(S∗)
c ← 0, corrupt← true
S ← S∗

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 15 / 36

Resilience

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 16 / 36

Backward Security

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. set-state(S∗) (single first call)
c ← 0, corrupt← true
S ← S∗

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 17 / 36

Forward Security

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. get-state (single last call)
c ← 0, corrupt← true
OUTPUT S

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 18 / 36

Robustness

proc. initialize

seed $← setup; σ ← 0; S $← {0, 1}n;

c ← n; corrupt← false; b $← {0, 1}
OUTPUT seed

proc. finalize(b∗)
IF b = b∗ RETURN 1
ELSE RETURN 0

proc. D-refresh

(σ, I, γ, z) $← D(σ)
S ← refresh(S, I)
c ← c + γ
IF c ≥ γ∗,

corrupt← false
OUTPUT (γ, z)

proc. next-ror
(S,R0)← next(S)

R1
$← {0, 1}`

IF corrupt = true,
c ← 0, RETURN R0

ELSE RETURN Rb

proc. get-next
(S,R)← next(S)
IF corrupt = true,

c ← 0
OUTPUT R

proc. get-state
c ← 0, corrupt← true
OUTPUT S

proc. set-state(S∗)
c ← 0, corrupt← true
S ← S∗

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 19 / 36

Barak-Halevi Construction

Extract : {0,1}p −→ {0,1}n a randomness extractor
G : {0,1}n −→ {0,1}n+` a (deterministic) PRNG

Barak-Halevi Construction
refresh(S, I) = [G(S ⊕ Extract(I))]n1
next(S) = G(S)

 robust in BH model

Simplified Barak-Halevi Construction
refresh(S, I) = S ⊕ Extract(I)
next(S) = G(S)

 robust in BH model (if one drops state pseudorandomness)

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 20 / 36

Barak-Halevi Construction

Extract : {0,1}p −→ {0,1}n a randomness extractor
G : {0,1}n −→ {0,1}n+` a (deterministic) PRNG

Barak-Halevi Construction
refresh(S, I) = [G(S ⊕ Extract(I))]n1
next(S) = G(S)

 robust in BH model

Simplified Barak-Halevi Construction
refresh(S, I) = S ⊕ Extract(I)
next(S) = G(S)

 robust in BH model (if one drops state pseudorandomness)

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 20 / 36

Barak-Halevi Construction
Simplified Barak-Halevi Construction

refresh(S, I) = S ⊕ Extract(I)
next(S) = G(S)

 robust in BH model (if one drops state pseudorandomness)

but, does not accumulate entropy!
is not backward secure in [DPRVW13] model

D : σ = ∅ → (σ′, I, γ, z) = (∅,bp,1, ∅) with b $← {0,1}
is a (stateless) legitimate distribution sampler
A

I calls set-state(0n) (S0 = 0n),
I makes γ∗ calls to D-refresh (Sj = D-refresh(Sj−1,bp))
I makes many calls to next-ror.

Y (b) = Extract(bp) S2j ∈ {0n,Y (0)⊕ Y (1)} and S2j+1 ∈ {Y (0),Y (1)}

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 21 / 36

Barak-Halevi Construction
Simplified Barak-Halevi Construction

refresh(S, I) = S ⊕ Extract(I)
next(S) = G(S)

 robust in BH model (if one drops state pseudorandomness)

but, does not accumulate entropy!
is not backward secure in [DPRVW13] model

D : σ = ∅ → (σ′, I, γ, z) = (∅,bp,1, ∅) with b $← {0,1}
is a (stateless) legitimate distribution sampler
A

I calls set-state(0n) (S0 = 0n),
I makes γ∗ calls to D-refresh (Sj = D-refresh(Sj−1,bp))
I makes many calls to next-ror.

Y (b) = Extract(bp) S2j ∈ {0n,Y (0)⊕ Y (1)} and S2j+1 ∈ {Y (0),Y (1)}

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 21 / 36

Contents

1 Pseudorandom Generators

2 Security Models
Barak-Halevi Security Model
Dodis et al. Security Model
On the Security of Barak-Halevi Construction

3 A Provably Secure Construction

4 Linux PRNG /dev/random and /dev/urandom

5 Conclusion

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 22 / 36

A Provably Secure Construction

G : {0,1}m −→ {0,1}n+` a (deterministic) PRNG

Construction

setup(·) = seed = (X ,X ′) $← {0,1}2n.
refresh(S, I) = S · X + I ∈ F2n .
next(S) = G([X ′ · S]m1).

it preserves security
it accumulates entropy
 robust in [DPRVW13] model !

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 23 / 36

A Provably Secure Construction

Lemma 1
This construction preserves security.

if the state S0 starts uniformly random and uncompromised,
and is refreshed with (adversarial) samples I1, . . . , Id Sd ,
(S′,R) = next(Sd)

then R looks indistinguishable from uniform

Proof.
Sd := S · X d + Id−1 · X d−1 + · · ·+ I1 · X + I0.

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 24 / 36

A Provably Secure Construction

Lemma 1
This construction preserves security.

if the state S0 starts uniformly random and uncompromised,
and is refreshed with (adversarial) samples I1, . . . , Id Sd ,
(S′,R) = next(Sd)

then R looks indistinguishable from uniform

Proof.
Sd := S · X d + Id−1 · X d−1 + · · ·+ I1 · X + I0.

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 24 / 36

A Provably Secure Construction

Lemma 2
This construction accumulates entropy.

if the state S0 starts is compromised to some arbitrary value
and is refreshed with D-refresh samples I1, . . . , Id Sd ,
(S′,R) = next(Sd)

then R looks indistinguishable from uniform

Proof.

h∗X ,X ′ (̄I) :=

X ′ ·
d−1∑
j=0

Ij · X j

m

1

.

is 2−m(1 + d · 2m−n)-universal.

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 25 / 36

A Provably Secure Construction

Lemma 2
This construction accumulates entropy.

if the state S0 starts is compromised to some arbitrary value
and is refreshed with D-refresh samples I1, . . . , Id Sd ,
(S′,R) = next(Sd)

then R looks indistinguishable from uniform

Proof.

h∗X ,X ′ (̄I) :=

X ′ ·
d−1∑
j=0

Ij · X j

m

1

.

is 2−m(1 + d · 2m−n)-universal.

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 25 / 36

Contents

1 Pseudorandom Generators

2 Security Models
Barak-Halevi Security Model
Dodis et al. Security Model
On the Security of Barak-Halevi Construction

3 A Provably Secure Construction

4 Linux PRNG /dev/random and /dev/urandom

5 Conclusion

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 26 / 36

The Linux Random Number Generator

part of the Linux kernel since 1994
from Theodore Ts’o and Matt Mackall

only definition in the code (with comments) :
I About 1700 lines

Previous Analysis:
I Barak-Halevi, 2005: almost no mentioning of the Linux RNG
I Gutterman-Pinkas-Reinman, 2006: some weaknesses
I Lacharme-Röck-Strubel-Videau, 2012: detailed description

Two different versions :
I /dev/random: limits the number of bits by the estimated entropy
I /dev/urandom: generates as many bits as the user asks for

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 27 / 36

The Linux Random Number Generator

part of the Linux kernel since 1994
from Theodore Ts’o and Matt Mackall

only definition in the code (with comments) :
I About 1700 lines

Previous Analysis:
I Barak-Halevi, 2005: almost no mentioning of the Linux RNG
I Gutterman-Pinkas-Reinman, 2006: some weaknesses
I Lacharme-Röck-Strubel-Videau, 2012: detailed description

Two different versions :
I /dev/random: limits the number of bits by the estimated entropy
I /dev/urandom: generates as many bits as the user asks for

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 27 / 36

General Overview of LINUX PRNG

dev/urandom

dev/random

Non Blocking
Ouput Pool

Blocking
Ouput Pool

Input

Pool
Input

|I| = 96, |S| = 6144, |R| = 80
refresh and next uses a Mixing function and a Hash function
all transfers between pools rely on Entropy Estimators

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 28 / 36

dev/urandom Output Request

Input

Pool

dev/urandom

Is there enough entropy in Non Blocking Output Pool ?

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 29 / 36

dev/urandom Output Request

Input

Pool

00110101101

Is there enough entropy in output pool ?
Yes, output the requested bytes !

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 29 / 36

dev/urandom Output Request

dev/urandom

Is there enough entropy in output pool ?
No, ask the input pool !

I Is there enough entropy in input pool ?

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 29 / 36

dev/urandom Output Request

00110101101

Is there enough entropy in output pool ?
No, ask the input pool !

I Is there enough entropy in input pool ?
I Yes, transfer from input pool to output pool and generate!

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 29 / 36

dev/urandom Output Request

0011010110

Is there enough entropy in output pool ?
No, ask the input pool !

I Is there enough entropy in input pool ?
I No, generate output anyway !

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 29 / 36

Difference with dev/random

dev/random

Is there enough entropy in output pool ?
No, ask the input pool !

I Is there enough entropy in input pool ?
I No, do not generate output and wait !

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 30 / 36

Defects of LINUX PRNG

if input pool contains enough
entropy, don’t refresh
(before [DPRVW13])

there exists D0, H∞(D0) = 0,
that LINUX estimates high

there exists D1, H∞(D1) = 64,
that LINUX estimates 0

there exists D2, H∞(D2) = 1,
for which LINUX does not
accumulate

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 31 / 36

dev/random was not Robust

first step : get-state

D-refresh with D0 (H∞ = 0),
until input pool is full

D-refresh with D1 (H∞ = 64),
which are ignored

next: H∞(R) = 0 0011010110

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 32 / 36

dev/urandom was not Robust

first step : get-state

D-refresh with D1 (H∞ = 64),
which are not transfered

next : H∞(R) = 0 0011010110

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 33 / 36

Contents

1 Pseudorandom Generators

2 Security Models
Barak-Halevi Security Model
Dodis et al. Security Model
On the Security of Barak-Halevi Construction

3 A Provably Secure Construction

4 Linux PRNG /dev/random and /dev/urandom

5 Conclusion

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 34 / 36

Follow-up Works
Other Attacks
(Cornejo-Ruhault – ACM CCS 2014)

Security against Premature Next
(Dodis, Shamir, Stephens-Davidowitz, Wichs – Crypto 2014)

Analysis of Intel’s Secure Key RNG
(Shrimpton, Terashima – Eurocrypt 2015)

Backdoored PRNGs
(Degabriele, Paterson, Schuldt, Woodage – Crypto 2016)
Kenny’s talk . . .

Sponge-Based PRNGs
(Gaži, Tessaro – Eurocrypt 2016)
see next talk . . .

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 35 / 36

Conclusion

Generation of random numbers is too important to be left to chance . . .

Analysis of BH model and construction.

DPRVW13 security model for PRNG with input.

Attacks on LINUX PRNGs
I using entropy estimator
I using mixing function (see paper)

Construction provably secure and efficient.

Damien Vergnaud (ENS) Security of PRNG with Input April, 30th 2017 36 / 36

	Pseudorandom Generators
	Security Models
	Barak-Halevi Security Model
	Dodis et al. Security Model
	On the Security of Barak-Halevi Construction

	A Provably Secure Construction
	Linux PRNG /dev/random and /dev/urandom
	Conclusion

