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Setting:
» The instance space Z =X x )
» The unknown probability distibution D
» The hypotheses class H
» The loss function £: H x (X xY) » R

Given: 8 = ((X1,91), (Xn,Yn)) ~ D"

Solve:

minhe% [Lp(h) = IE:(x,y)~D [f(h, (X, y))]]

in the Probably (w.p. 1 - 6) Approximately Correct (up to €) sense

Sample Complexity: n(d,€) : (0,1) x (0,1) — N, the number of examples
required to achieve e accuracy with probability at least 1 - 9
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Empirical Risk Minimization (ERM)

s= Minimize the EMPIRICAL loss: Ls(h) = = i, € (h, (Xi,y:))

= UNIFORM CONVERGENCE: If for any distribution D over & and for any
sample S drawn i.i.d from D it holds that for

VheH, |Ls(h)-Lo(h)|<e

= ERM with inductive bias
v Restricting the H
v Analytical properties of loss function £(-,-)
v Assumption on distribution D
v Sparsity
v Margin
= Fundamental Theorem of Learning Theory (vapnik and Chervonenkis, 1971]

[ Finite Dim. }:}[ Uniform Convegrence )Z}C Learnable with ERM ):)C Learnable ]
A |
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Property Testing of Learning

Assumption:

The target risk ¢ is known to the learner!

Question: Can we utilize this PRIOR KNOWLEDGE in the learning
to improve the sample complexity?

1= Previous prior knowledges usually enter into the generalization
bounds and have not been exploited in the learning process!
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Lower Bounds

1z PAC Setting
Q (l(log1 +log 1))
€ € 0

= AGNOSTIC PAC Setting

1 1 1

[Ehrenfeucht et al., 1989; Blumer et al., 1989; Anthony and Bartlett, 1999]
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Fast and Optimistic Sample Complexities

== Analytical properties of loss function ( Smoothness and Strong
Convexity) yield improved bounds:

i FAST RATES [Strorng Convexity]

O (1 (log1 + log 1))
€ € )

[W. Lee and P. Bartlett (COLT’98), S. Kakade, A. Tewari (NIPS’08), S. Shalev-Shwartz, N. Srebro, K. Sridharan
(NIPS’08)]
iz OPTIMISTIC RATES [Smoothness]

19 (1 (M) (10g3 L log 1))
€ € € )

[N. Srebro, K. Sridharan, A. Tewari (NIPS'11)]



Main Result on Sample Complexity

= We assume that the learner is given the target expected risk in
advance which we refer to as epyior

ez Surprisingly, we obtain an exponential improvement in the sample
complexity:

O (d/<a4 ( —— log %))

i How?




Assumptions

= Strong convexity:

U(w1) > l(w2) + (VI(w2), w1 — W) + %le —wal?, ¥ wi,wa e H.
= Smoothness:

(1) < £(w2) + {TE(w2), w1~ o) + w1 = w2, ¥ wi,ws € M.
1= Target risk assumption:

€prior 2 €opt

Example: Regression with squared loss when the data matrix is
not rank-deficient and 3 = A\pax (X7 X)



Convex Learnability
and
The Curse of Stochastic Oracle



Learning without Uniform Convergence

Not true in Convex Learning Problems !

[N. Srebro, O. Shamir, K. Sridharan (COLT’09,JMLR’11)]

Not true in Multiclass Learning Problems !

[A. Daniely, S. Sabato, S. Ben-David (COLT’11)]

Stochastic Convex Optimization < Learnability in General Setting



Stochastic Optimization for Risk Minimization
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= Alternatively, directly minimize the expected loss:

min [ Lo (w) = Ege)-p [£w, (x,9)] ]
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Stochastic Optimization for Risk Minimization

i ERM as Sample Average Approximation (SAA)

= Alternatively, directly minimize the expected loss:
min [ L (w) = Eqxy)-n [((w, (X,))] |
&z Stochastic Gradient Descent (SGD):

w1 = Iy (Wt - ﬁt@t),
ez Stability as a necessary and sufficient condition for learnability
[S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan JMLR’'11]
= Lipschitzness or smoothness is necessary and boundedness and
convexity alone are not sufficient!

(3 Stable AERM }<«—>{ Learnable with AERM }<=>(  Learnable )




Intuition: The Curse of Stochastic Oracle

Lower Bound for Stochastic Optimization

For any a-strongly convex and 8 smooth loss function and for any
stochastic oracle with E[g] = VL(w) and E[|g - VL(w)|?] < 0?2,
the following lower bond on the oracle complexity holds:

2
o) (\/glog (M) + %) .

[Nemirovski and Yudin, 1983]
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Intuition: The Curse of Stochastic Oracle

Lower Bound for Stochastic Optimization

For any a-strongly convex and 8 smooth loss function and for any
stochastic oracle with E[g] = VL(w) and E[|g - VL(w)|?] < 0?2,
the following lower bond on the oracle complexity holds:

2
o) (\/glog (M) + %) .

[Nemirovski and Yudin, 1983]
> Life is easy if E[|g - VL(w)[*] » O(e)! ©
» There is no control on the Stochastic Gradient Oracle! @

» Solution: Modify SGD to tolerate the noise in the gradients. v



—/

rget Risk




Three Pillars

Three main changes we have made to SGD:

w= Run in Multi-stages with a FIxeb size
v Clip the stochastic gradients

= Shrink the domain at each stage

]SGDI



Clipping the Stochastic Gradients

[vi]i = clip(yk, [8].]:) = sign([g}.]:) min(yk, [[g}.]i])




Clipping the Stochastic Gradients

[vi]i = clip(yk, [8].]:) = sign([g}.]:) min(yk, [[g}.]i])

Good news: reduces the variance
Bad news: unbiasedness of gradients no longer holds!

E[vi] = [VL(w}) = E[g}]]




Shrinking the Hypothesis Space #

At each stage k& we use a different hypothesis space H; defined
as:

Hi={weH: |w-W[ <Ay}

where Ay, =\/eA2 + Teprior

P



SGD with Target Risk
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end




SGD with Target Risk

Initialization: w; =0, A1 =R,and H1 = H
fork=1,....m [Epoch]
Set wi, = Wy, and v, = 2684,

fort=1,....7 [SGD]
Receive training example (x¢, y:)
Compute the gradient g}, and its clipped version v,
Update the solution wit! =1y, (wi - nvi).

end

Compute the average solution Wy, = ¥/, 4 /Ty

Update the domain as Hy.1 = {w e H: |w - Wi | < Apiq}
end
Return w,,,41



Convergence Rate

Convergence Rate

Assume that the hypothesis space # is compact and the loss
function ¢ is a-strongly convex and 3-smooth, and ;i be the
target expected loss given to the learner in advance such that
€opt < €prior NOIAS. Then,

R r
L(Wm+1) < %Em + (1 + 1 E) €prior)



Sample Complexity

Sample Complexity
If

1 1 1
T>0 (d/@4 (log log log + log —))

€prior €prior o

holds, then with a probability 1 - 6, the final solution w attains a
risk of O(fprior): i-e-, L(W) < (1 + C)eprior-

=¥ ;= 3/« denotes the condition number of the loss function and d is
the dimension of data.



Proof Sketch |

Theorem 1

) |

For a fixed stage k, if |[Wy — w.| < Ag, then, with a probability
1-0, we have

”V’V'k_,_l - W, H2 < CLA% +b €prior

By the 5-smoothness of L(w), it implies that

_ B B T
L(Wmi1) = L(w,) < 5\\Wm+1 —w.|? < 5 e™AT + T2 Cprior
< /B_‘R2 moy T

5 € 1__€€prior>



Proof Sketch Il

Key tools in proving the bound:

Lemma 1: Deviation of a Clipped RV

Let X be a random variable, let X = clip(X, C) and assume that
[E[X]| < C/2 for some C > 0. Then

[E[X] - E[X]| <  [Var[X]|

Qo

[E. Hazan and T. Koren (ICML12)]

Lemma 2: Self-boundedness of Smooth Functions

For any g-smooth non-negative function f : R - R, we have

|f"(w)] < /4B f(w)

[S. Shalev-Shwartz, Phd Thesis’07]

iz Bernstein’s inequality for martingales

= Peeling process



Conclusions and Open Problems

Summary:
= We have studied passive learning with target risk as prior knowledge!

iz \We proposed modified SGD with three pillars: multi-staging, clipping,
and shrinking which exploits the target risk in the learning

1

€prior

iz We showed that the sample complexity is log



Conclusions and Open Problems

= We have studied passive learning with target risk as prior knowledge!

iz \We proposed modified SGD with three pillars: multi-staging, clipping,
and shrinking which exploits the target risk in the learning
1

€prior

iz We showed that the sample complexity is log

= Extension to non-parametric setting where hypotheses lie in a
functional space of infinite dimension.

ez Relation of target risk assumption we made to the low noise margin
condition which is often made in active learning.
[(Hanneke, 2009; Balcan et al., 2010]

= Improving the dependency on d and the condition number x
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