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Statistical Learning Theory

..Setting:
▸ The instance space Z = X ×Y
▸ The unknown probability distibution D
▸ The hypotheses class H
▸ The loss function ℓ ∶H × (X ×Y)↦ R

Given: S = ((x1, y1),⋯, (xn, yn)) ∼ Dn

Solve:

minh∈H [LD(h) = E(x,y)∼D [ℓ(h, (x, y))]]
in the Probably (w.p. 1 − δ) Approximately Correct (up to ϵ) sense

Sample Complexity: n(δ, ϵ) ∶ (0,1) × (0,1)→ N, the number of examples
required to achieve ϵ accuracy with probability at least 1 − δ
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Empirical Risk Minimization (ERM)

..
+ Minimize the EMPIRICAL loss: LS(h) = 1

n ∑
n
i=1 ℓ (h, (xi, yi))

+ UNIFORM CONVERGENCE: If for any distribution D over X and for any
sample S drawn i.i.d from D it holds that for

∀h ∈H, ∣LS(h) −LD(h)∣ ≤ ϵ

+ ERM with inductive bias
3 Restricting the H
3 Analytical properties of loss function ℓ(⋅, ⋅)
3 Assumption on distribution D
3 Sparsity
3 Margin

+ Fundamental Theorem of Learning Theory [Vapnik and Chervonenkis, 1971]

..Finite Dim.. Uniform Convegrence. Learnable with ERM. Learnable
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Property Testing of Learning

..Assumption:

The target risk ϵ is known to the learner!

Question: Can we utilize this PRIOR KNOWLEDGE in the learning
to improve the sample complexity?

+ Previous prior knowledges usually enter into the generalization
bounds and have not been exploited in the learning process!
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Lower Bounds

..
+ PAC Setting

Ω(1
ϵ
(log 1

ϵ
+ log 1

δ
))

+ AGNOSTIC PAC Setting

Ω( 1
ϵ2
(log 1

ϵ
+ log 1

δ
))

[Ehrenfeucht et al., 1989; Blumer et al., 1989; Anthony and Bartlett, 1999]



Fast and Optimistic Sample Complexities

..
+ Analytical properties of loss function ( Smoothness and Strong
Convexity) yield improved bounds:

+ FAST RATES [Strorng Convexity]

O (1
ϵ
(log 1

ϵ
+ log 1

δ
))

[W. Lee and P. Bartlett (COLT’98), S. Kakade, A. Tewari (NIPS’08), S. Shalev-Shwartz, N. Srebro, K. Sridharan

(NIPS’08)]

+ OPTIMISTIC RATES [Smoothness]

O (1
ϵ
(
ϵopt + ϵ

ϵ
)(log3 1

ϵ
+ log 1

δ
))

[N. Srebro, K. Sridharan, A. Tewari (NIPS’11)]
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Main Result on Sample Complexity
..

+ We assume that the learner is given the target expected risk in
advance which we refer to as ϵprior

+ Surprisingly, we obtain an exponential improvement in the sample
complexity:

O (dκ4 (log 1
ϵprior

log log 1
ϵprior
+ log 1

δ))

+ How?



Assumptions

..
+ Strong convexity:

ℓ(w1) ≥ ℓ(w2) + ⟨∇ℓ(w2),w1 −w2⟩ +
α

2
∥w1 −w2∥2, ∀w1,w2 ∈H.

+ Smoothness:

ℓ(w1) ≤ ℓ(w2) + ⟨∇ℓ(w2),w1 −w2⟩ +
β

2
∥w1 −w2∥2, ∀w1,w2 ∈H.

+ Target risk assumption:

ϵprior ≥ ϵopt

Example: Regression with squared loss when the data matrix is
not rank-deficient and β = λmax(X⊺X)



Convex Learnability
and

The Curse of Stochastic Oracle



Learning without Uniform Convergence

..
Not true in Convex Learning Problems !
[N. Srebro, O. Shamir, K. Sridharan (COLT’09,JMLR’11)]

Not true in Multiclass Learning Problems !
[A. Daniely, S. Sabato, S. Ben-David (COLT’11)]

Stochastic Convex Optimization⇐⇒ Learnability in General Setting



Stochastic Optimization for Risk Minimization

..+ ERM as Sample Average Approximation (SAA)

+ Alternatively, directly minimize the expected loss:

min
w∈H
[LD(w) = E(x,y)∼D [ℓ(w, (x, y))] ]

+ Stochastic Gradient Descent (SGD):

wt+1 = ΠH (wt − ηtĝt),
+ Stability as a necessary and sufficient condition for learnability
[S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan JMLR’11]

+ Lipschitzness or smoothness is necessary and boundedness and
convexity alone are not sufficient!

..∃ Stable AERM . Learnable with AERM. Learnable
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Intuition: The Curse of Stochastic Oracle

..

Lower Bound for Stochastic Optimization

For any α-strongly convex and β smooth loss function and for any
stochastic oracle with E[ĝ] = ∇L(w) and E [∥ĝ −∇L(w)∥2] ≤ σ2 ,
the following lower bond on the oracle complexity holds:

O(1)
⎛
⎝

√
β

α
log(β∥w0 −w∗∥2

ϵ
) +

σ2

αϵ
⎞
⎠
.

[Nemirovski and Yudin, 1983]

ä Life is easy if E [∥ĝ −∇L(w)∥2] ≈ O(ϵ)!

ä There is no control on the Stochastic Gradient Oracle!

ä Solution: Modify SGD to tolerate the noise in the gradients.



Intuition: The Curse of Stochastic Oracle

..

Lower Bound for Stochastic Optimization

For any α-strongly convex and β smooth loss function and for any
stochastic oracle with E[ĝ] = ∇L(w) and E [∥ĝ −∇L(w)∥2] ≤ σ2 ,
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SGD with Target Risk



Three Pillars

..
Three main changes we have made to SGD:

+ Run in Multi-stages with a FIXED size

+ Clip the stochastic gradients

+ Shrink the domain at each stage

..SGD

.

. .



Clipping the Stochastic Gradients
..

[vt
k]i = clip(γk, [g

t
k]i) = sign([g

t
k]i)min(γk, ∣[gt

k]i∣)

.. [gt
k]i.

[vt
k]i

.
γk

.
γk

....

Good news: reduces the variance
Bad news: unbiasedness of gradients no longer holds!

E[vt
k] ≠ [∇L(w

t
k) = E[g

t
k]]
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Shrinking the Hypothesis Space H
..
At each stage k we use a different hypothesis space Hk defined
as:

Hk = {w ∈H ∶ ∥w − ŵk∥ ≤∆k}

where ∆k+1 =
√

ε∆2
k + τϵprior



SGD with Target Risk

..
Initialization: ŵ1 = 0, ∆1 = R, and H1 =H
for k = 1, . . . ,m [Epoch]

Set wt
k = ŵk and γk = 2ξβ∆k

for t = 1, . . . , T1 [SGD]
Receive training example (xt, yt)
Compute the gradient ĝt

k and its clipped version vt
k

Update the solution wt+1
k = ΠHk

(wt
k − ηv

t
k).

end

Update ∆k as ∆k+1 =
√

ε∆2
k + τϵprior . [Shrinking]

Compute the average solution ŵk = ∑T1
t=1 ŵ

t
k/T1

Update the domain as Hk+1 = {w ∈H ∶ ∥w − ŵk∥ ≤∆k+1}
end
Return ŵm+1
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k = ŵk and γk = 2ξβ∆k

for t = 1, . . . , T1 [SGD]
Receive training example (xt, yt)
Compute the gradient ĝt
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Convergence Rate

..

Convergence Rate

Assume that the hypothesis space H is compact and the loss
function ℓ is α-strongly convex and β-smooth, and ϵprior be the
target expected loss given to the learner in advance such that
ϵopt ≤ ϵprior holds. Then,

L(ŵm+1) ≤
βR2

2
εm + (1 + τ

1 − ε
) ϵprior,



Sample Complexity

..

Sample Complexity

If

T ≥ O (dκ4 (log 1

ϵprior
log log

1

ϵprior
+ log 1

δ
))

holds, then with a probability 1 − δ, the final solution ŵ attains a
risk of O(ϵprior), i.e., L(ŵ) ≤ (1 + c)ϵprior.

+ κ = β/α denotes the condition number of the loss function and d is
the dimension of data.



Proof Sketch I

..

Theorem 1

For a fixed stage k, if ∥ŵk −w∗∥ ≤∆k, then, with a probability
1 − δ, we have

∥ŵk+1 −w∗∥2 ≤ a∆2
k + b ϵprior

By the β-smoothness of L(w), it implies that

L(ŵm+1) −L(w∗) ≤
β

2
∥ŵm+1 −w∗∥2 ≤ β

2
εm∆2

1 +
τ

1 − ε
ϵprior,

≤ βR2

2
εm + τ

1 − ε
ϵprior,



Proof Sketch II
..
Key tools in proving the bound:

Lemma 1: Deviation of a Clipped RV

Let X be a random variable, let X̃ = clip(X,C) and assume that
∣E[X]∣ ≤ C/2 for some C > 0. Then

∣E[X̃] −E[X]∣ ≤ 2

C
∣Var[X]∣

[E. Hazan and T. Koren (ICML’12)]

Lemma 2: Self-boundedness of Smooth Functions
For any β-smooth non-negative function f ∶ R→ R, we have
∣f ′(w)∣ ≤

√
4βf(w)

[S. Shalev-Shwartz, Phd Thesis’07]

+ Bernstein’s inequality for martingales

+ Peeling process



Conclusions and Open Problems

..
Summary:

+ We have studied passive learning with target risk as prior knowledge!

+ We proposed modified SGD with three pillars: multi-staging, clipping,
and shrinking which exploits the target risk in the learning

+ We showed that the sample complexity is log 1
ϵprior

Open Problems:

+ Extension to non-parametric setting where hypotheses lie in a
functional space of infinite dimension.

+ Relation of target risk assumption we made to the low noise margin
condition which is often made in active learning.
[(Hanneke, 2009; Balcan et al., 2010]

+ Improving the dependency on d and the condition number κ
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