Specifying Web Workflow Services for Finding Partners in the Context of Loose Inter-Organizational Workflow

Eric Andonoff, Lotfi Bouzguenda (Phd), Chihab Hanachi

IRIT Laboratory, Toulouse, France

- Context and definition of the problem
- Requirements for a Workflow Web Service description language
- Limitations of current languages
- Our approach: from Petri Nets with Objects to OWL-S
- **Implementation:** matchflow
- **Conclusion and future work**

1. Context: from workflow to interorganizational workflow

- **Workflow**: Automation of a business process within an organization.
- Workflow models :

Context: from workflow to interorganizational workflow

- Transition= task
- Input Place = required resource (info, performer)
- Output Place = result produced
- PN Structure : coordination of tasks
- Token= available resource
- Distribution of tokens=state of the process.

Context: Inter-organizational workflow

- N business partners put in common their workflow ⇒ Value Added Service
- IOW = n local Wf + A coordination model
- Coordination model :
 - To rule/manage the interactions between local Wf.
 - Constraints: heterogeneity, distribution, autonomy, confidentiality.
 - Solutions: composition, event publish/subscribe models, contract net allocation protocol, mediator, ...
 - Remains an Open issue notably with the emergence of semantic web-based technology.

Context: 2 possible scenarios to study coordination in IOW [Divitini 01]

Tight IOW :

- Structural cooperation between organizations
- Well-identified partners
- Well-established coordination rules.

Loose IOW :

- Occasional cooperation
- Free of structural constraints
- Organizations involved and their number are not pre-defined.

Context : Coordination issues in Loose IOW

- Research of Partners:
 - Description, Publication of workflow services offers and requests
- Selection of partners:
 - Preferences, Matching mechanisms, Mediator.
- Negotiation with partners:
 - Protocols to reach agreement and establish contracts.
- Monitoring Execution and Managing Contracts.

Remark: amenable to multi-agent system

Problem being addressed

- Context:
 - Research of partners in Loose IOW
- Question :
 - * How to describe workflow services through the web, in the same way as web service, in order to enable their <u>publication</u>, <u>discovering</u>, invocation and composition?
 - What language for Workflow Web Services (W2S) description: should we define a new language or should we choose an existing one?

2. Requirements for Workflow Service Description Languages.

- Appropriate expressive power:
 - Description the three Wf aspects and their interactions.
 - Representing most of the « control patterns » involved in a process definition
- To ease syntactic and semantic interoperability:
 - Accessible via the Web ⇒ XML-like syntax
 - Context representation, semantic conflicts solving, matching process easing ⇒ Ontologies
- Formal + operational semantics :
 - Non ambiguous language
 - ◆ Analyses and simulation to validate and verify services ⇒ guaranteeing good properties before their publication.

4. Limitations existing languages: WSDL, BPEL4WS, WSFL, YAWL and OWL-S

	WSDL	BPEL4WS	WSFL	YAWL	ØWL-S
An appropriate expressive power	-	+	+	+	++
Semantic Interoperability	-	-	-		++
Syntactic Interoperability	++	++	++	++	++
Formal with operational semantics			-	++	-

4. Our approach

- Specification of workflow services with P etri
 Nets with Objects (PNO):
 - Formal and graphic
 - With an Operational semantics: executable specifications
 - Integrating the three aspects of worklfow
 - Capturing all the OWL-S (control) patterns
- Analyze, Simulation, Checking and Validation of the workflow service behaviour.
- Automatic derivation of the previous workflow specification onto OWL-S specification (rules and algorithms)
- Publication of the workflow services by means of OWL -S.

OWL-S Specification

• OWL-S

- Semantic markup language
- Refers to an ontology of services organized as hierarchy of classes, extensible according to the business domain considered.
- Service Profile (Interface level: info. needed to discover, compare and select services).
 - Attributes identifying the service : serviceName, TextDescription, contactInformation
 - Attributes describing the service capacity: inputs, outputs, preconditions and effects
 - o Attributes classifying the service : serviceCategory, qualityRating, serviceParameter
- Service Model (Process/Operational level: how does it work?)
 - Atomic processes and composite processes thanks to constructors (sequence, iterate, choice, split, split-join, ...)
 - o For each process: inputs, outputs, preconditions, and effects
- Service Grounding (Exploitation level: how to access to it?)

Petri Nets with Objects through an example [Sibertin 1985]

Formal definition of PNO

A PNO is defined as a 9-uplet (C,P, T, V, PreCond, A, EmR, Pre, Post) as follows:

C is a set of object classes,

P is a set of places, typed by a function $P \rightarrow C^*$,

T is a set of transitions, each transition being identified by a name,

V is a set of object variables, typed by a type function $V \rightarrow C$,

PreCond is a set of preconditions, each one being necessary to trigger a transition,

A is a set of actions, each action being triggered by a transition,

EmR is a set of emission rules, each one corresponding to a logical expression

Pre is the forward incidence function: PxT→MultiSet(V*); Pre associates a multi-set of object variables to a (place, transition) couple,

Post is the backward incidence function: PxTxEmR→MultiSet(V*); Post associates a multi-set of object variables to a (place, transition, emission rule) triplet.

Advantages of using PNO for workflow description

- Advantages of using PN [Van Der Aalst 98]:
 - Adequate Expressiveness (patterns description).
 - Graphical representation
 - Operational semantics: simulation, execution.
 - ***** Theoretical foundations ⇒ analyse
 - Verification of behavioural properties (ending, accessibility, liveness),
 - * performance evaluation (average waiting time, occupation of resources, ...).
- Specific advantages of PNO:
 - Coherent description of the 3 workflow models;
 - May refer classes (of on ontology).

Hierarchical Specification of a Workflow Service using PNO

The corresponding PNO tree


```
Node {Transition

Pattern

InT {In,PreCdt},

OutT{Out,PostCdt}

}
```

Mapping PNO with OWL-S Service Profile

PNO	OWL-S Service Profile	
source place : I-(I∩O))	Parameter Name of an Input <pre><pre><pre><pre><pre><pre>cprofile:input></pre></pre></pre></pre></pre></pre>	
sink place : O-(O∩I)	Parameter Name of an Output	
Precondition associated to a source	Parameter Name of a Precondition	
Emission rule associated to a sink place	Parameter Name of an Effect	

Mapping PNO Tree with OWL-S Service Process

PNO tree	OWL-S Service Process	
Name of a node	Name of a Process	
(InputName, PreCondition) of a node	Input of a Process Precondition associated to the Input	
(OutputName, EmRule) of a node	Output of a Process Effect associated to the Output	
Terminal node (leaves)	Atomic Process	
Non Terminal node	Composite Process	

Implementation: MatchFlow

- Matchmaker:
 - connecting workflow service requesters and workflow service providers.
 - Offers and requests are specified using PNO and stored in OWL-S format.
 - Different comparison modes: exact, relaxed.
- Implemented with MADKIT:
 - Multi-Agent platform : java, distributed mode.
 - Based on an organizational abstractions (agent, role, group)
 - ⇒ Good abstractions to deal with autonomy, distribution, heterogeneity and coordination.

Partial implementation: MatchFlow

Conclusion and future work

- OWL-S is convenient for workflow web service publication:
 - Appropriate expressive power;
 - Includes ontology that eases semantic interoperability, matchmaking mechanism;
 - describes reasonably workflow services
 - No guarantee of their correct execution.
- PNOs are convenient for workflow specification:
 - Glue between the different workflow models;
 - Formal and executable specifications, simulation and validation;
 - Not web oriented
- An Appropriate combination of PNO and OWL-S compensates these drawbacks.
- Automatic derivation of PNO specification onto OWL-S.
- Future work:
 - refining OWL-S ontology to integrate workflow properties and performance evaluations checked on the PNO.
 - Described as a sub-class of the process properties.

Exemple: BravoAirReservation

OWL-S Service Process

В Derive DAML-S Service Process from PNOTree	
TransitionName: BookFlight Pattern: Sequence ParentTransitionName: BravoAir	
Inputs:(InputPlaceName,ObjectClassName)	
Outputs:(OutputPlaceName,ObjectClassName)	PNOTree □
Preconditions:(Expression, ObjectClassName)	BravoAir GetDesiredFlightDetails GookFlight ConfirmReservation Login SelectAvailableFlight
EmissionRule:(Expression, ObjectClassName)	
TreeLevel 1 AtomicTransition Create Node Visualize PNOTree Derive DAML-S Service Process Clear Form	

Hierarchical Design of a Workflow Service using PNO

Properties of PN

- Ending: does a process effectively end?)
- Liveness: is a given task (transition) always possible?
- Boundedness: is the number of possible configurations of a process finite?
- Reachability: is there an evolution in the process leading to a given configuration (desired or not)?)
- Quasi-Liveness: does a configuration exist where a given task is possible?.

Performance evaluations

- Average throughput time;
- Average waiting time;
- Occupation rates of resources.

1. Context: from workflow to interorganizational workflow

• **Business Process**: a set of coordinated tasks, within an organization, to achieve a well-defined business outcome.

Workflow:

- technology for understanding, modelling and automating business processes.
- Automation of a business process

