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Abstract 

 
Autism spectrum disorder (ASD) is a heterogeneous 

neurodevelopmental disorder that has been confirmed 

to be related to some genetics risk factors which can 

lead to different clinical phenotypes. At present, ASD is 

mainly diagnosed based on some behavior and 

cognitive scales, which can not reveal the mechanism 

of disease occurrence, development and prognosis. In 

recent years, some studies have applied omics 

techniques into ASD research, but these studies are 

only based on single omics data source such as 

genomics, proteomics or transcriptomic without 

investigating ASD subtypes from integration of multi-

omics data. In this study, we proposed an ASD 

subtyping framework that integrates clinical and multi-

omics data to identify and analyze ASD subtypes at the 

molecular level. Due to the heterogeneity of different 

data modalities, a fusion clustering strategy was used 

to produce more accurate and interpretable clusters. 

Based on ASD subtyping results, we also proposed a 

classification framework to predict the subtype of new 

ASD patients. Deep learning method was used to 

extract features from each data modality, then all 

extracted features were integrated by the multiple 

kernel learning method to improve the classification 

accuracy.  

 

1. Introduction  

 
Autism Spectrum Disorder (ASD) is a 

neurodevelopmental disorder characterized by 

impaired communication and social interaction as well 

as restricted and repetitive interests and behaviors [1]. 

ASD is now diagnosed mainly based on Diagnostic 

and Statistical Manual of Mental Disorders, Fifth 

Edition (DSM-5) criteria and various behavior scales 

such as Autism Diagnostic Observation Schedule 

(ADOS) , Autism Diagnostic Interview, Revised (ADI-

R) [2]. However, this behavior-based diagnosis method 

does not define any subtypes that can reflect 

phenotypic heterogeneity of ASD and facilitate better 

understanding of etiology of the condition. In recent 

years, some ASD subtyping studies based on clinical 

manifestation or behavioral symptoms have emerged 

[3, 4], but the symptoms on ASD patients change 

significantly with the increase of age, resulting in 

subjective and unreliable subtyping results that are also 

difficult to elucidate the etiology of each ASD 

phenotype. With the wide application of artificial 

intelligence on medical image analysis, a large body of 

research has emerged using multiple Magnetic 

Resonance Imaging (MRI) techniques finding impaired 

functional and structural connectivity between brain 

regions. And these abnormalities in connectivity 

sometimes can be used as biomarkers for the diagnosis 

of ASD in clinic. 

However, the biomarkers obtained in these imaging 

studies are not always consistent, making it impossible 

to achieve clinical reliability by relying only on 

medical imaging [5, 6]. The reason for this 

inconsistence is that each ASD subtype has its distinct 

characterizations in brain, while most imaging studies 

do not take into account the heterogeneity between 

different ASD subtypes. So if considering patient 

subtypes in imaging analysis, it can improve the 

reliability of ASD clinical diagnosis and treatment. At 

present, there are studies explaining the imaging 

heterogeneity of ASD patients from molecular 

perspective. For example, Qureshi et al found that 

16p11.2 chromosome deletion leads to an increase in 

brain volume, while its duplication leads to a decrease 

in brain volume [7]. Some studies also revealed how 

ASD risk genes (such as CNTNAP2, MET) affect 

brain structure and function networks [8, 9]. These 
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studies have emphasized the important role of 

inheritability in ASD diseases. And combining genes 

and imaging can facilitate the discovery of more 

accurate ASD imaging biomarkers. 

Behavioral assessment and imaging diagnosis both 

have certain limitations and neither one can reveal the 

etiology of ASD. With the continuous advancement in 

basic scientific research especially in the fields of 

genetics and neuroscience, researchers have 

determined that ASD is a kind of diffuse 

developmental disorder of the central nervous system 

caused by a variety of environmental factors under the 

influence of certain genetic factors. In 2009, the NIMH 

conducted a research project called Research Domain 

Criteria (RDoC) [10], which aims to transcend the 

limits of traditional classification method, combining 

genetics, neuroscience, behavioral science and other 

methods to clarify the neural basis and biomarkers of 

mental illness. This project implies that we can find 

more clinically relevant ASD subtypes and biomarkers 

by integrating multiple data sources such as genetic, 

neuroimaging, behavioral assessment, and patient 

clinical history to achieve personalized healthcare and 

improved prognosis for patients with ASD. 

In the past few decades, scientists have been 

actively exploring the genetic basis of ASD using 

methods such as cytogenetic research, linkage analysis, 

and association analysis of candidate genes [11]. The 

findings show that ASD is a complex disease with high 

level of genetic heterogeneity. In recent years, great 

progress has been made in the identification of ASD 

genetic pathogenicity loci. At present, there are 

hundreds of pathogenic genes associated with ASD, 

most of which are rare and have various types of 

mutations [12]. In addition to the mutations inherited 

from parents, many ASD de novo mutations have been 

discovered by using the whole-exome sequencing 

technique, and the number of identified mutations is up 

to more than 1000 [13]. Iossifov et al. used whole-

exome sequencing find that in a family with only one 

ASD patient, new gene mutations such as copy number 

variant (CNV) accounted for approximately 30% of 

ASD cases [14]. Common genetic variants such as 

single nucleotide polymorphism (SNP) also influence 

the onset of ASD. Although many ASD-related 

pathogenic genes have been found, the high level of 

inheritance heterogeneity is far from explaining the 

pathogenesis of ASD. Transcriptomics studies use 

cDNA microarrays and high-throughput RNA 

sequencing technology to obtain gene expression data, 

combining with gene co-expression network analysis 

to discover the molecular mechanisms related to ASD 

[15, 16]. Proteomics studies have found that the 

clinical manifestations of ASD may be related to 

changes in proteins, such as mutations leading to 

changes in protein and amino acid sequences, and 

mutations in gene regulatory regions leading to 

changes in protein expression or abnormal 

modification of proteins [17, 18]. In recent years, the 

acquisition of specific biomarkers through 

metabolomics research is effective for early ASD 

screening and diagnosis. Currently, some analytical 

techniques such as gas chromatography-mass 

spectrometry (Gc-Ms), capillary electrophoresis-time-

of-flight mass spectrometry (CE-TOF), liquid 

chromatography-mass spectrometry (Lc-Ms), nuclear 

magnetic resonance (NMR) have been widely used in 

ASD urine or blood metabolite analysis. By 

comparison with the healthy controls, the significant 

differences in metabolites are mainly related to 

intestinal microbial metabolism, energy metabolism, 

oxidative stress [19-21]. At present, it has been found 

that ruminococcus, clostridium and desulfovibrio in the 

gastrointestinal tract of ASD are significantly different 

from healthy controls [22, 23]. The damage to normal 

nerve development caused by gastrointestinal 

microflora and its metabolites is one of the ASD 

etiology research directions. Through bacterial tag-

encoded FLX amplicon pyrosequencing (bTEFAP) 

technique, DNA is directly extracted from feces of 

ASD patients for sequencing to determine specific 

bacterial composition, and then all microorganisms in 

the intestine can be identified [24]. 

In summary, most of the above studies are based on 

single omics data source and did not systematically 

analyze and explore ASD subtypes. The 

characterization of each omics technique on ASD 

subtype level has not yet been studied as well as the 

interaction between different omics data and their 

distinct regulatory role on signaling pathways. To 

solve this problem, we proposed an ASD subtyping 

framework by fusing multi-omics and clinical 

assessment data using the unsupervised clustering 

method. Then for subtype prediction of a new 

unknown patient, we proposed a classification 

framework based on the multi-omics data and 

clustering results. Due to the complexity and high 

dimensionality of omics data, deep learning method 

was used to automatically extract discriminative 

features from all omics data. Then we used the 

multiple kernel learning (MKL) method to explore 

complementary information among these features and 

discover different contribution of relevant omics 

features.  

 

2. ASD subtyping based on multi-omics 

data  
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Studies have shown that ASD is highly heritable, 

and that each ASD-related gene mutation or CNV will 

result in a different clinical phenotype. However, due 

to the etiology complexity of ASD, it is generally 

possible to find pathogenic genes distributed on 

different chromosomes in patients. At the same time, 

due to the difference in gene expression and the 

interaction of multiple genes in a common path, ASD 

appears in clinical phenotype with high level of 

heterogeneity. Therefore, we propose an ASD 

subtyping framework by integrating clinical and multi-

omics data to discriminate among distinct ASD 

subtypes. 

Cluster analysis is a major analytical method for 

disease subtypes based on high-dimensional omics data. 

It can classify functionally related genes (or other 

omics data) according to the consistent trend or 

proximity of expression levels. It has already been 

widely used in cancer subtyping [25]. Cluster analysis 

generally needs to establish an accurate measure of the 

"distance" between samples. The measurement 

methods include Euclidean distance, Chebyshev 

distance, Manhattan distance, Minkowski distance, 

angle cosine, Pearson correlation coefficient and so on. 

Since the clustering results are susceptible to a large 

amount of noise in the omics data, and the omics data 

is usually very high in dimension, it is necessary to use 

data dimensionality reduction methods before cluster 

analysis such as Principal Component Analysis (PCA) , 

Partial Least Square (PLS), etc. removing data 

containing useless information. In the field of 

bioinformatics analysis, common clustering algorithms 

include Hierarchical Clustering, K-means, Fuzzy C-

means, and Self- Organizing Maps and so on. 

The above cluster analysis methods are mainly 

based on the statistical theory that the knowledge in the 

biological field is rarely used, so that the clustering 

result does not produce the reasonable biological 

interpretation that people need to understand the 

disease. In addition, it is more important to combine 

and fuse different kind of omics data effectively for 

clustering. The easiest way is to concatenate feature 

matrix of each omics data source directly, but this 

approach will result in a further lower signal-to-noise 

ratio. Another way is to cluster individually for each 

omics data source and then merge the clustering results. 

However, the potential inconsistencies between each 

clustering results may cause merge errors. Currently, 

there are two methods for the fusion clustering of 

different genomics data in the field of tumor research, 

including the iCluster [26] method based on the joint 

latent variable model and the SNF [27] method based 

on the sample similarity network. Studies have shown 

that SNF has better performance in tumor subtyping 

than iCluster [27]. 

In ASD subtyping, we can also use the above two 

methods to perform fusion cluster analysis on various 

omics data (such as gene expression, protein 

expression, etc.) and compare the different 

performance between the two methods. Since cluster 

analysis is an unsupervised learning method, its 

clustering results can not be tested by ground truth. 

The biostatistical method can be used to perform 

statistical tests on clustering results, including survival 

analysis, contour coefficients and clustering statistical 

significance test. The multi-omics based ASD 

subtyping framework is shown in Figure 1. 

 

 
 

Figure 1. Framework of multi-omics based 
ASD subtyping 

 

3. Subtype prediction of new ASD patients  

 
After ASD subtyping, it is also necessary to 

construct a classification model that can distinguish 

between different ASD subtypes. A wide range of 

supervised learning methods are available to build a 

classifier that is used to predict the subtype of a new 

ASD patient. Since the multi-omics and clinical 

evaluation data are integrated when producing ASD 

subtype clusters, it is also beneficial to improve the 

model performance that integrating different data 

modalities to obtain complementary information when 

building an ASD subtype prediction model. Deep 

learning method is suitable for extracting more 

discriminative features from high-dimensional and 

complex data. The extracted features from each data 

modality then can be integrated to further improve the 

model performance. The ASD subtype prediction 

framework is shown in Figure 2. 
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Convolutional Neural Network (CNN) is a 

feedforward neural network derived from biological 

nerves. It is a multi-layer perceptron model designed to 

recognize two-dimensional images and has certain 

invariance to image transformation. CNN is composed 

of three components including the convolutional layer, 

the pooling layer, and the fully connected layer, and it 

has some advantages such as network weight sharing 

and direct input of the original image. Although CNN 

is mainly used in the field of computer vision, its 

powerful feature analysis capabilities can also be used 

for the processing of biological omics data [28]. There 

are many CNN models such as LeNet-5, Inception v3 

etc. that can be used to extract features from multi-

omics and clinical data.  

Integrating multiple heterogeneous omics data 

sources such as genomic, proteomic, metabolomic, etc. 

can lead to better classification than simply using one 

data source alone. Support Vector Machine (SVM) is a 

supervised learning method and commonly used in 

classification problems. The optimal performance of 

SVMs is highly dependent on the kernel function used. 

Cross validation is the standard approach to select the 

best kernel function among a set of candidates such as 

linear kernel, polynomial kernel and gaussian kernel. 

However, SVM is not suitable for analyzing multiple 

data sources using a single kernel function. We can use 

Multiple Kernel Learning (MKL) method to combine 

kernels calculated on different input data modality to 

obtain better predictive performance [29,30]. 

 

 
 

Figure 2. ASD subtype prediction framework 

 

4. Discussion  

 
The molecular subtyping has been successfully 

applied to cancer research and there are many 

publicly available repositories such as the Cancer 

Genome Atlas (TCGA), Multi-Omics Profiling 

Expression Database (MOPED), Oncomine, 

ArrayExpress, COSMIC etc. In the field of ASD 

research, the National Database for Autism Research 

(NDAR) allows a researcher to associate a single 

research participant’s anonymized genetic, imaging, 

clinical assessment and other information to analyze 

the ASD and its subtypes [31]. This paper proposed 

an ASD subtyping framework based on molecular 

multi-omics data which can be obtained from the 

public databases or from the private medical 

institutions. Unsupervised clustering methods were 

used to fuse the clinical and multi-omics data to 

group them into different clusters. Once the ASD 

subtypes are generated, they can be characterized by 

combining the clusters with existing pathway or 

interaction network knowledge to increase the 

interpretability of the generated ASD subtypes. 

Another framework this paper proposed is the 

classification model to accurately predict the 

subtypes of new ASD patients. In this framework, 
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CNN network was used to extract discriminative 

features from various data modalities. In order to 

differentiate the contributions or weights to the 

classification of each modality, we intended to 

leverage the MKL technique to learn the optimal 

combination coefficients of different kernel functions, 

which is expected to improve the subtype prediction 

accuracy. Of note, there are challenges and 

impediments for ASD subtyping due to data 

heterogeneity, diversity of standards and analysis 

tools, variability of experimental procedures. 

However, compared to ever-changing psychiatric 

nosological definitions such as DSM-5, ASD 

subtyping from molecular perspective holds the 

promise of better personalized healthcare and 

precision medicine for ASD patients with specific 

manifestations.  
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