
ASIACCS’16
Xi’an, Shaanxi, China

RamCrypt: Kernel-based Address Space
Encryption for User-mode Processes

Johannes Götzfried∗, Tilo Müller∗, Gabor Drescher∗,
Stefan Nürnberger†, and Michael Backes†

∗Department of Computer Science
FAU Erlangen-Nuremberg, Germany

† Center for IT-Security, Privacy, and Accountability (CISPA)
Saarland University, Germany

June 3, 2016

Memory Disclosure

RAM contains lots of sensitive data:
I User passwords or login credentials
I Cryptographic keys
I Personal data and credit card information

→ Information is only protected by logical means, e.g., by the OS

Sources of inadvertent memory disclosures:
I Swap files and crash reports (core dumps)
I Vulnerable kernel drivers / kernel drivers with backdoor

Example: Samsung’s firmware for the Exynos chipset offered
an unprotected /dev/mem device

2

Physical Memory Disclosure

Physical Attacks on RAM:
I By using DMA

Example: Firewire
I Cold Boot Attacks

3

Data Lifetime
Goal: Reducing data lifetime of sensitive information within RAM:

I Requires data lifetime knowledge
I Traditional wiping approaches fail (no transparency)

→ Transparent data encryption effectively hides information

4

RamCrypt: Idea
Transparently encrypt data within process address spaces:

I On a per-page basis
I Only encrypt data (anonymous private mappings)
I Only a small set of pages remains unencrypted

Sliding window instead of only single page:

clear
present

0x1000

encrypted

0x2000

clear
present

0x3000

encrypted

0x4000

encrypted

0x5000

encrypted

0x6000

0x1000
0x3000

Sliding Window
Size 2

movl 0x3000, %eax
movl 0x4000, %ebx

X
E PF

→ Sliding window size is a configurable security parameter
5

RamCrypt: Background

Prototype implementation as a Linux kernel patch:
I Builds upon the Linux kernel patch TRESOR
I CPU-bound implementation of AES
I Stores the key and all intermediate values in CPU registers

→ No cryptographic keys or key material ever enter RAM

Linux virtual memory management:
I Page faults are used to handle everything
I Highly relies on demand paging
I Copy-on-Write (COW) during forking

→ Implement RamCrypt in the page fault handler of Linux

6

RamCrypt: Workflow

MemOp Present? Type? Continue

RamCrypt Demand Paging Swapping Access Error

Crypted? OK? Kill Return

Decrypt Page SW Insert >MAX

Copy Page MAP>1 Encrypt Page

Access n

y

y

n n

y

n

y

ny

MMU

RamCrypt Handler

RC
Co

re
Lo

gi
c

7

RamCrypt: Managing Memory Pages

Catching accesses to encrypted memory pages:
I Clear the present flag (bit 0) to cause page faults
I Set a new flag (bit 10) indicating that the page is encrypted
I Second software defined flag (SW2) is available for PTEs

63 11 10 9 8 7 6 5 4 3 2 1 0

NX · · · Page Table Address · · ·
SW3
HID

SW2
SPL

SW1
SPC G S 0 A C W U R P

63 11 10 9 8 7 6 5 4 3 2 1 0

NX · · · Physical Page Address · · · SW3
HID

SW2
RC

SW1
SPC G 0 D A C W U R P

Available to the OS

In addition: One flag within physical page’s management structure
I Needed to handle COW semantics

8

RamCrypt: Multithreading and Address Space Creation
Multithreading support:

I RamCrypt is fully compatible with multithreaded applications
I Sliding Window size is per process not per thread
I Possible to give fixed guarantees

→ Performance suffers from too many threads

Support for forking:
I Forking is the way of creating a new process in Linux
I PTEs and the sliding window are copied during fork()
I Only PTE of current process is modified during page fault
I Flag within physical structure is used to check whether

decryption is really necessary
I Multiply mapped pages are copied before being encrypted by

core logic

9

RamCrypt: Loading of a Binary
RamCrypt is enabled on a per-process basis:

I Binaries need to be flagged
I RamCrypt reuses the PT_GNU_STACK program header of an

ELF executable
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

· · · RC R W X

I User-mode utility for flagging binaries is provided

Loading of a flagged binary:
I RC bit is checked for during execve() system call
I The address spaces of the process and all child processes are

encrypted (RC bit is inherited during fork())
I Executing a binary with RC bit unset disables encryption

10

RamCrypt: Cipher

TRESOR (CPU-bound implementation of AES):
I Configured to behave like AES-128 in XEX mode of operation
I IV to build tweak: vaddr || PID
I Supports page relocation (but no shared pages)
I Using PIDs prevents attackers from guessing page contents
I After fork(): PID of the parent is used until call to

execve()

11

RamCrypt: Sliding Window Performance Impact
Overhead of RamCrypt-enabled benchmark (sysbench):

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

S
lo

w
d
o
w

n
 F

a
ct

o
r

Threads

SW 16
SW 8
SW 4
SW 2

I For a SW size of sixteen, our implementation scales
(12% slowdown with eight threads)

I Singlethreaded run with SW size two: 170% slowdown
I Singlethreaded run with SW size four: 25% slowdown

12

RamCrypt: Practical Security Analysis

RamCrypt-enabled ngnix webserver delivering SSL-encrypted
HTML pages under maximum load:

Temporal Exposure per Page (%)
n=4 n=8 n=16

Secret Key Pages 3.07 14.37 21.68

All Pages

Min 0.0000 0.0005 0.0017
Avg 7.63 12.66 17.95
Max 99.83 99.76 99.99

StdDev 19.77 21.82 25.43

→ Default SW size four: 3% exposure time for secret key pages

13

Conclusion

Limitations:
I Kernel or driver buffers are not protected by RamCrypt
I RamCrypt cannot protect against attacks such as Heartbleed
I Noticeable performance drawback for multi-threaded programs

RamCrypt protects data of whole process address spaces:
I Effectively protects against physical memory disclosure attacks
I Can be enabled on a per-process basis without recompilation
I Only 25% slowdown for single-threaded processes with a

sliding window size of four

14

Thank you for your attention!

Further Information:
https://www1.cs.fau.de/ramcrypt

https://www1.cs.fau.de/ramcrypt

	Motivation
	RamCrypt: Design
	RamCrypt: Implementation
	RamCrypt: Evaluation
	Conclusion

