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Abstract: The quality of a bug report is a very crucial aspect that influences the entire software life cycle. Generally, 
in many software projects relevant lack of information can be observed when submitting a bug report. 
Consequently, the time resolution of a software problem is strongly influenced by the quality of the 
reporting. In this paper, we investigate the quality of bug reports from the perspective of developers. We 
examined several metrics impacting the quality of bug reports, such as the length of descriptions, presence 
of stack traces, presence of attachments, completeness, and readability. In addition different definition of 
submitter reputation are compared and used. Then, a quality model is built for the evaluation of the quality 
of the bug reports, and a software tool has been implemented for supporting the application of the proposed 
model. The validation has been conducted on real cases of bug reports from open source software. 

1 INTRODUCTION 

A bug in a software system is a failure that produces 
an incorrect or unexpected behaviour, therefore it 
causes numerous effects. In some cases a bug has a 
low impact on the functionalities of the software 
system and consequently may remain unknown for a 
long time. On the other hand, if a bug is severe 
enough, it could cause the crash of the software 
system leading to a denial of service. In others cases 
the bug could impact the quality aspects, such  as 
security, for example it could allow an user to 
bypass access controls, in order to gain unauthorized 
privileges. 

Bug reports are essential for the maintenance and 
evolution of most software systems, these allow 
final users of a software to inform maintainers about 
the problems encountered during the system usage. 
Typically bug reports contain a detailed description 
of a failure, sometimes indicate its position within 
the code (in the form of patches or stack traces). 
However, the quality of the bug reports can be 
different according to their content. Very often they 
provide incorrect or inadequate information. Thus, 
maintainers sometimes have to deal with bugs with 
descriptions such as: "ADD ZIndex ATTRIBUTE 
TO CONFIRM DIALOG" (PrimeFaces bug # 865) 
or "This sentences does not make sense to me: When 

used together with, behaviours are even blackberries 
powerful." (YII bug # 1460). As a consequence the 
maintainers efficiency is affected by poorly written 
bug reports. Indeed, the understanding of a problem 
requires an effort higher than the effort required to 
solve the problem. To address this difficulty many 
guidelines on how to write a good bug report have 
been defined (Goldmerg, 2010) (Breu et al., 2010). 

The quality of a bug report could impact the 
entire software system life cycle. In fact, it is a 
common practice in many software project, to 
discard bug reports unclear or having a severe lack 
of information.  

In this paper, we investigate the quality of bug 
reports from the perspective of maintainers. Several 
attributes impacting the quality of bug reports have 
been considered, such as the length of descriptions, 
formatting, and presence of stack traces and 
attachments (such as screenshots). However, in 
particular, the authors investigate the use of the 
reputation attribute to construct a quality model of a 
bug report. 

The paper is structured as follows: Section 2 
describes the state of the art and provides 
information about some relevant research work 
related to the quality of a bug report; Section 3 
describes the quality model built for the evaluation 
of the quality of the bug reports; Section 4 describes 
the software tool implemented for supporting the 
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application of the proposed model. Finally Section 5 
section outlines the conclusions and future work. 

2 RELATED WORK 

The literature reports different studies addressing 
topics related to the quality of a bug report, but in 
few cases propose approaches methods for the 
evaluation of the bug report quality. 

Breu et al., have identified the information that 
developers consider necessary within a bug report 
(Breu et al., 2010) and suggest, on the basis of the 
investigations carried out, improvements to the bug 
tracking systems. 

Another work describes an adaptive model for 
the life cycle of a bug report identifying in the time 
to resolution a good measure of its quality 
(Hooimeijer and Weimer, 2007). The authors 
highlight how writing a good bug report is 
complicated, and have to deal with poorly written 
report increases the resolution time. Knowing how 
the quality of an Issue impacts the overall lifecycle 
encourages users to submit better reports 
(Hooimeijer and Weimer, 2007). 

Aranda and Venoila (Aranda and Venolia, 2009) 
examined the communication between the 
developers of bug reports in Microsoft and observed 
that many bugs are discussed before they are 
reported and this information is not stored within the 
Issue Tracker. However, in open source projects, 
many bugs are discussed in the bug tracking systems 
(or mailing list) to ensure transparency and to 
encourage developers who are geographically 
distant. 

Different works in the literature use bug reports 
to automatically assign a bug to the developers 
(Anvik et al., 2006), identify duplicate bugs (Jalbert 
and Weimer,  2008) while others define guidelines 
for assessing the severity of a bug (Menzies and 
Marcus,  2008). Schroter et al. (Schroter et al.,  
2010) showed the importance of the Stack Trace for 
developers when they have to fix a bug. 

Antoniol et al. (Antoniol et al.,  2004) (Antoniol 
et al.,  2008) indicate the lack of integration between 
the system of versioning and bug tracking system 
which makes it difficult the location of the fault 
within the system software, also in (Antoniol et al.,  
2008) it is discussed that not all the bugs are 
software problems but many indicate requests for 
improvements. 

Ko et al. (Ko et al.,  2006) in order to design new 
systems for reporting bugs have conducted a 
linguistic analysis on the securities of the bug report. 

They observed numerous references to software 
entities, physical devices or user actions, suggesting 
that the future system of systems Bug Tracking will 
be to collect data in a very structured way. 

Not all bug reports are generated by humans, 
many systems of auto-detection of the bugs can 
report safety violations and annotate them with 
counter examples. Weimer (Weimer, 2006) presents 
an algorithm to build patches automatically as it 
shows that the report accompanied by patches have 
three times more likely to be localized within the 
code with respect to a standard report. Users can 
also help developers fix bugs without depositing the 
bug report, for example, many products 
automatically report information on the crash such 
as Apple CrashReporter, Windows Error Reporting, 
Gnome BugBuddy. 

Hooimejer and Weimer (Hooimeijer and 
Weimer, 2007) proposed a descriptive model of 
quality bug reports based on statistical analysis of 
over 27,000 reports related to the open source 
project Mozilla Firefox. The model is designed to 
predict if a bug is fixed within a time limits in order 
to reduce the cost of bug triage. It leads the 
implications on the bug tracking system highlighting 
the features to be added when creating a bug report. 
The model proposed by Hooimejer and Weimer 
(Hooimeijer and Weimer, 2007) classifies bug 
reports based on the characteristics that can be 
extracted by the same bug report excluding features 
that require to compare the report with earlier 
reports, such as the similarity of the text. The 
features of the model includes the Severity, the 
Readability Measures, and Submitter Reputation.  

Finally, the authors consider the number of 
comments made in response to the bug and the 
number of attachment. The results presented show 
that the bug with high number of comments are 
resolved in less time. Furthermore, the measure of 
readability indicated that the bugs fixed in a short 
time are easy to understand and highly readable. 
Finally the results of Hooimejer Weimer and 
(Hooimeijer and Weimer, 2007) show that some 
characteristics, contrary to what is believed, have no 
significant effect on the model, such as the severity 
of the bug.  

A significant contribution to the quality of bug 
reports was provided by the work of Zimmermann et 
al. (Zimmermann et al.,  2010), where is defined a 
quality model of a bug report. 

Zimmermann et al. (Zimmermann et al.,  2010) 
propose a quality model for bug reports in order and 
implemented a prototype that helps users to insert 
the appropriate information while reporting a bug. 
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The work is based on a survey involving developers 
and users. The survey carried out by the authors 
shows clearly a mismatch between what the 
developers believe important to fix a bug and what 
they consider important reporters. On the other hand 
the developers point out that the real problem for the 
resolution of a bug is not wrong information but 
rather the lack thereof. Moreover, the difference in 
perspective between developers and reporters leads 
to knowledge of different quality. 

The model proposed in this paper is even 
composed of a number of attributes each associated 
to a score that can be binary (for example the 
attachment are present or not) or a scalar (such as 
readability): itemization; Completeness. The main 
difference with the other approaches already 
proposed in the literature is the use of Reputation. 
This feature is specifically investigated comparing 
four different metrics for its evaluation. The 
readability has been calculated with the help of 
several indices such as: Kincaid, SMOG, Flesh, Fog. 
The features described above have been merged to 
create a model from a bug report returns its quality. 
Several models have been evaluated. The following 
of the paper describes the construction of the model 
the precision obtained by models built in the testing 
phase. 

3 A CLASSIFICATION MODEL 
FOR BUG REPORT QUALITY 

This section describes the classification model for 
the evaluation of the bug report quality. As 
previously mentioned, the model, is made up 
considering different attributes relevant for 
establishing the quality level of a bug report. Some 
of these attributes are derived from information 
extracted directly from the text of the report (for 
example, the completeness), while others are related 
to the Issue (for example, the number of 
attachment). Overall, the proposed bug report 
quality model is constructed considering the 
following attributes: Completeness; Readability, 
Reputation, Structure. 

The following of this section, explains the 
considered attributes in order to allow the reader a 
proper understanding of the model defined; 
describes the validation data set; and presents the 
classification model. 

3.1 Attributes Considered for the 
Model 

The considered attributes for the definition of the 
classification model are the following: 

Completeness. It refers to the information 
contained in the description in the bug report. This 
attribute entails the evaluation of the following 
second level attributes: 

1. Steps. Indicating the presence of step to 
reproduce the problem in the description of 
the bug report; 

2. Build. Considering the presence of build 
information, such as the operating system on 
which the problem occurred, in the 
description of the bug report; 

3. Elements. Referring to the presence of user 
interface elements, such as the menu that 
originated the problem; 

4. Behavior. Specifying the inclusion of a 
description of the expected behaviour, i.e. 
what is the behaviour that it expected 
following the conclusion of a sequences of 
user actions  

5. Actions. Indicating the presence of a 
description of the action taken for user 
interaction such as pressing a button; 

Readability. It refers to the quality of the text 
written in the description that makes it easy to read 
and understand.  

Reputation. It refers to the reputation of the 
reporter who submits the bug report.  

Attachments. It indicates the presence of file 
attached to complete the bug report. 

Lists. It considers the presence of bullet or 
numbered list in the description of the problem. 

Length. It refers to the length of the of the 
description. 

In particular, the completeness is a factors 
already considered by Zimmerman et al. 
(Zimmermann et al.,  2010) that entailed the body of 
a Bug Report as composed of set of useful 
information to maintainers for problem resolution. 
The bug report quality model proposed in this paper, 
even considers the completeness. However, a 
specific analysis has been performed to compare 
models using an aggregate value of completeness, 
based on the second level attributes, against models 
obtained with the individual second level attributes. 
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The evaluation of the second level attributes of 
completeness is performed through a textual analysis 
of the Bug Report description. To this aim it has 
been necessary to preliminarily construct datasets of 
key terms used for assessing the second level 
attributes of completeness. 

In the conducted study the dataset of 
completeness has been constructed considering the 
description of about 8578 bug, from two open source 
projects such as PrimeFaces and YII.  

To perform the textual analysis, preliminarily it 
has been decided the removal of stop words using as 
a reference the data set provided by WordNets [16]. 
Then, the words that were present in at least 1% of 
the reports have been analyzed and used to construct 
5 disjoint sets. These sets have been used for 
evaluating the second level attribute of 
completeness. 

For example, all the terms related to the steps to 
reproduce the problem, such as, try, reproduce, step 
etc…, have been used to prepare the Steps Dataset. 
Similarly the other four Datasets have been 
obtained. 

Using these sets the Completeness second level 
attributes have been evaluated for the Bug Reports 
in the case study.  This evaluation is relevant in the 
proposed model as the analysis is carried out 
considering each attribute as a separate sub-factor in 
the quality model. 

Readability is the second key factor for the 
quality of a bug report in proposed model. One can 
easily understand how a text highly confusing in the 
description of a bug it makes difficult to understand 
the problem itself and therefore are stretched time to 
resolution of the problem itself. 

Currently, there are numerous indexes for the 
assessment of the readability that use static 
characteristics of the text as the number of words in 
a sentence or the number of syllables in a word such 
as the SMOG, FOG, FLESCH etc. Moreover, the 
Java library "Java Fathom" has been used for the 
indexes calculation. This library allows to calculate 
these indices according to the original formulas for 
an analyzed text. 

Then, since the model has been defined with the 
objective of analyzing open source projects it has 
been decided to consider in addition to the other 
attributes of the quality the reputation of the person 
who reported the problem. This factor is not related 
to the individual Bug Report, but strictly about the 
user who reported the problem, so it is calculated 
from the set of the Issue of the same project. 

In the proposed model different definitions have 
been evaluated to assess the reputation. Following 
there are the different formulas used: 

RepA The reputation is computed as the 
ratio between the numbers of bugs fixed between 
those reported by a user and the total number of 
reports submitted by the same. ܴ݁= ݎ݁ݐݎ݁ݎ	ℎ݁ݐ	ݕܾ	݀݁ݐݐܾ݅݉ݑݏ	݃ݑܾ	݂	ݎܾ݁݉ݑܰݎ݁ݐݎ݁ݎ	ℎ݁ݐ	ݕܾ	݀݁ݐݐܾ݅݉ݑݏ	݁ݏℎݐ	݃݊݉ܽ	݀݁ݔ݂݅	݃ݑܾ	݂	ݎܾ݁݉ݑܰ  

RepB The reputation is computed as the 
ratio between the numbers of bug fixes including 
those reported by a user and the total number of 
bugs present in the entire project: ܴ݁	= ݐ݆ܿ݁ݎ	ℎ݁ݐ	݂	݃ݑܾ	݂	ݎܾ݁݉ݑܰݎ݁ݐݎ݁ݎ	ℎ݁ݐ	ݕܾ	݀݁ݐݐܾ݅݉ݑݏ	݁ݏℎݐ	݃݊݉ܽ	݀݁ݔ݂݅	݃ݑܾ	݂	ݎܾ݁݉ݑܰ  

RepC The reputation is computed as the 
ratio between the numbers of bug fixes including 
those reported by a user and the total number of 
bugs fixed in the whole project: ܴ݁ = ݐ݆ܿ݁ݎܲ	ℎ݁ݐ	݂	݀݁ݔ݂݅	݃ݑܾ	݂	ݎܾ݁݉ݑܰݎ݁ݐݎ݁ݎ	ݕܾ		ݐݑ	݀݁ݐ݊݅	݁ݏℎݐ	݃݊݉ܽ	݀݁ݔ݂݅	݃ݑܾ	݂	ݎܾ݁݉ݑܰ  

RepD  The fourth and final way is to 
calculate the reputation, as the ratio between the 
number of bug fixes including those reported by a 
user and the total number of reports submitted by the 
same increased by one: ܴ݁ = ݎ݁ݐݎ݁ݎ	ℎ݁ݐ	ݕܾ	ݐݑ	݀݁ݐ݊݅	݃ݑܾ	݂	ݎܾ݁݉ݑܰݎ݁ݐݎ݁ݎ	ݕܾ	ݐݑ	݀݁ݐ݊݅	݁ݏℎݐ	݃݊݉ܽ	݀݁ݔ݂݅	݃ݑܾ	݂	ݎܾ݁݉ݑܰ + 1  

In addition to the Completeness, Readability and 
Reputation previously described the model has been 
completed considering additional factors related to 
the structure. These are binary factors and are listed 
in the following: presence of attachments (binary); 
presence of bulleted or numbered lists (binary); 
length of the description (scalar). 

3.2 Validating Data Set 

The data set used for validating the classification 
models has been constructed with the support of 
three different users. They were asked to analyze the 
bug report extracted from three different project: 
They performed a manual inspection of set of bug 
report and following a checklist assigned a quality 
value to the bug reports. Specifically, 150 Bug 
Report extracted for the open source project 
PrimeFaces have been analyzed three actors: a 
master student, an app developer for IOS, and a 
researcher. The actors have been provided with a 
checklist that entails the verification of the quality 
factors previously described in the analyzed bug 
reports. On the basis of the checklist they provided 
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their own evolution assigning a value between 0 and 
10. 

Then it is computed an average value among the 
single quality value reported by the users, and a 
quality class is assigned using the ranges reported in 
Table1. 

In particular, the value of Q(R) obtained has 
been classified in the following classes: Very Poor, 
Poor, Medium, Good e Very Good on the basis of 
the range reported in Table 1. 

Table 1: Range used for the determination of the bug 
report quality class. 

Range  Quality Class of the 
Bug Report  

0 ≤ value ≤ 1.9  Very Poor  
2 ≤ value ≤ 3.9 Poor  
4 ≤ value ≤ 5.9 Medium  
6 ≤ value ≤ 7.9 Good  
8 ≤ value ≤ 10 Very Good  

The validating data set developed has been used 
to construct a classifier model useful for predicting 
the quality of a bug report. To this aim Weka tool 
has been used (http://www.cs.waikato.ac.nz/ml/weka).  

To this aim different classification models have 
been considered and compared. The validation of the 
models has been performed using the 10 fold cross 
validation. The comparison has been performed 
organizing the attributes in two separate groups. 

The first group compared models considering the 
following attributes: 
- Completeness: specifically considering each 

sub-attribute as a separate elements of the 
model; 

- Readability: considering the Flesch, Fog and

Kincaid indexes as distinct elements of the 
model; 

- Attachments availability 
- Presence of lists 
- Reputation: considering the different definition 

of reputations  
The above attributes have been used to construct 

models using different classification algorithms, and 
results have been compared. The classification 
algorithms considered are the following: 
- RandomTree (TREE) 
- RandomForrest (TREE) 
- J48 (TREE) 
- BayesNet (BAYES) 
- Jrip (RULES) 
- DTNB (RULES) 
- Decorate (META) 
- END (META) 
- LogitBoost(META) 
- Part (RULES) 
- FT (TREE) 

Successively the some algorithms have been 
used to construct a Second Group of models where 
the Completeness has been considered as a single 
attribute computed with the following formula: 

Completeness is computed as:  (ܴܤ)ܥ = ߱ଵ ∗ ݏ݊݅ݐܿܣݎ݁ݏܷ + ߱ଶݏݐ݈݊݁݉݁ܧ݂݁ܿܽݎ݁ݐ݊ܫ	+ ߱ଷܵ݁ݐ + ߱ସ݊݅ݐܽ݉ݎ݂݊ܫ݈݀݅ݑܤ+ ߱ହ݁ܤ݀݁ݐܿ݁ݔܧℎܽݎ݅ݒ) 
where: ߱ = 0,2. 

Table 2 reports the composition of the attributes 
used to construct the different models compared. 12 
models entails the separate values of completeness 
attributes, while, 12 additional models considers a 
single value of the Completeness second level 
attributes. 

Table 2: Attributes considered in the different models. 
Model Completeness Flesch Fog Kincaid Lists RepA RepB RepC RepD Length Attachments 
M1 √ √ √ √ √      √ 
M2 √ √ √ √ √ √ √ √ √ √ √ 
M3 √ √ √ √ √ √    √ √ 
M4 √ √ √ √ √  √   √ √ 
M5 √ √ √ √ √   √  √ √ 
M6 √ √ √ √ √    √ √ √ 
M7 √ √ √ √ √ √ √ √ √  √ 
M8 √ √ √ √ √ √     √ 
M9 √ √ √ √ √  √    √ 
M10 √ √ √ √ √   √   √ 
M11 √ √ √ √ √    √  √ 
M12 √ √ √ √ √     √ √ 
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Table 3: Results of classification algorithms - First Group.  

Model Random 
Tree 

Random 
Forrest J48 Bayes 

net 
Jrip 
rules DTNB Decrote END LgitBoos Part FT 

M1 61.33% 72.00% 72.00% 69.33% 58.66% 63.33% 71.33% 71.33% 73.33% 71.33% 76.33% 

M2 57.33% 70.66% 71.33% 66.66% 53.33% 65.33% 72.66% 76.66% 67.00% 68.00% 75.33% 

M3 62.66% 72.66% 72.00% 68.00% 51.33% 64.00% 76.66% 76.00% 62.00% 66.66% 72.66% 

M4 65.33% 74.66% 71.33% 68.00% 52.00% 64.66% 72.66% 72.66% 66.00% 72.00% 75.33% 

M5 66.66% 73.33% 70.66% 68.00% 56.00% 64.66% 72.66% 72.00% 68.00% 72.00% 76.00% 

M6 66.66% 73.33% 70.66% 68.00% 56.00% 64.66% 72.66% 74.00% 70.00% 70.66% 73.33% 

M7 64.00% 72.00% 71.33% 66.67% 59.33% 64.00% 72.00% 71.33% 72.00% 69.33% 76.00% 

M8 64.66% 71.33% 72.00% 69.33% 60.66% 66.33% 74.00% 74.66% 68.00% 69.33% 77.33% 

M9 58.00% 69.33% 71.33% 68.66% 57.33% 64.00% 72.66% 70.66% 70.66% 69.33% 76.00% 

M10 60.00% 68.00% 70.00% 68.66% 55.33% 64.00% 71.33% 71.33% 73.33% 69.33% 77.33% 

M11 64.66% 73.33% 72.66% 68.66% 64.00% 64.00% 72.00% 73.33% 72.66% 70.00% 76.66% 

M12 63.00% 71.33% 72.00% 68.00% 54.00% 64.00% 68.00% 71.33% 62.66% 72.00% 74.66% 

Table 4: Results of classification algorithms - Second Group. 

Model Random 
Tree 

Random 
Forrest J48 Bayes 

net 
Jrip 
rules DTNB Decrote END LgitBoos Part FT 

M1 61.33% 67,00% 68,00% 66.66% 65.33% 70,00% 67.33% 66,00% 67.33% 69.33% 69.33% 

M2 60.66% 68,00% 70.66% 68,00% 56.66% 65.33% 70.66% 68.66% 68,00% 66,00% 70.66% 

M3 61.33% 68.66% 69,00% 68,00% 59.33% 69,00% 69.33% 69,00% 65,00% 68,00% 72.66% 

M4 62.66% 68.66% 66.67% 67,00% 57,00% 66,00% 65.33% 65.33% 69,00% 63,00% 71.33% 

M5 61.33% 68,00% 66,00% 67,00% 53,00% 66,00% 64.66% 65,00% 69,00% 66,00% 71.33% 

M6 56.66% 69.33% 66.67% 68,00% 59,00% 68.66% 66.66% 65,00% 67,00% 64.66% 69.33% 

M7 61.33% 70,00% 71.33% 67.33% 64.66% 67,00% 70,00% 68,00% 70,00% 68,00% 72,00% 

M8 66,00% 70.66% 71,00% 66.66% 68,00% 70,00% 67,00% 68,00% 69,00% 70,00% 73,00% 

M9 64.66% 66.66% 68,00% 68,00% 63.33% 68,00% 66.66% 67.33% 69.33% 66,00% 66,00% 

M10 60.66% 67,00% 67,00% 68,00% 60.66% 68,00% 64.66% 66,00% 70,00% 66.66% 67.33% 

M11 60.66% 67.33% 69.33% 66.66% 62,00% 70,00% 66,00% 68.66% 68.66% 67,00% 71.33% 

M12 60,00% 67.33% 64,00% 68,00% 59,00% 69,00% 62,00% 65.33% 65.33% 62,00% 71.33% 
 

3.3 Results 

The performance of the different models has been 
compared using the Precision metric. The results 
obtained are reported in Table 3 and 4. The value of 
the precision for each model is in the last column. A 
relevant aspect, emerging from this table, is that the 
models constructed considering individually the 
attributes of the completeness are, in most cases 
more precise than those considering the 
completeness as a single quality attribute. 

Furthermore the table highlight that the better 
performing attribute for reputation is RepA. The 
Table also shows that the best model is the one 
defined by the classifier FT obtained from, 

corresponding to the models M8 and M10, both with 
a value of precision of 77.33%. These models entails 
the use of separate attributes for the completeness 
and the reputation attribute RepA. 

4 BUG REPORT QUALITY TOOL 

The evaluation of the quality of the bug reports of a 
software project is automatically achieved thought a 
software tool, namely, BRQTOOL Bug Report 
Quality Tool.  

The BRQTOOL allows the download of all the 
Issue related to the selected software project. This 
stage is essential for subsequent computation of the 
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different factors used by the classification model for 
the evaluation of the bug reports quality. 

This feature stores the all the bug reports of the 
selected project within the database. This entails the 
parsing from the URL of the project and the 
gathering of all the information. Moreover, for each 
Issue, through the construction of a new url, even the 
description is recovered and stored in the database. 

 
Figure 1: Download performed thought BRQTOOL. 

 
Figure 2: Screenshot of BRQTOOL reporting the results 
of the quality attributes. 

 
Figure 3: Screenshot of BRQTOOL reporting the 
Completeness quality attributes. 

 

Figure 4: Screenshot of BRQTOOL reporting the results 
of the bug reports quality. 

Then, the application of the model and the 
analysis of the bug reports quality is the main 
functionality of BRQTOOL. In particular, it enables 
the computation all the considered quality attributes, 
and then uses them as input for the evaluation. To 
this aim, the model, built in Weka was imported 
within the BRQTOOL to allow the tool its use. 

 
Figure 5: Screenshot of BRQTOOL reporting an overview 
of the obtained results. 

Finally, the BRQTOOL returns in output three 
separate reports represented as tables: 
- the first table contains the quality factors 

calculated 
- the second table contains predictions on the 

quality calculated by the formula and model 
- the third table lists the attributes related to 

completeness. 
The Figures 2, 3 and 4 show the Screenshots of 

the results returned by BRQTOOL. In particular, 
Figure 5 depicts a screenshot of BRQTOOL reporting 
an overview of the obtained results for PrimeFaces. 
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5 CONCLUSIONS 

The Bug Reporting activity is a topic of interest in 
software engineering. This is confirmed by the 
considerable interest in the literature. However, at 
present there are few studies that focus on the 
quality of the report exposing a problem. 

In this paper it has been described the creation of 
a model for the quality Bug Report, specifically 
focusing on the identification of the quality 
attributes and how to calculate them. 

The obtained model for the evaluation of quality 
has been incorporated within a software tool, the 
BRQTOOL, that allows users to have an overall 
assessment of the reports of an Open Source 
software systems, available on the platform Bug 
Tracking: Google Code. 

The results provided by BRQTOOL highlights the 
importance of managing quality in the Bug Report. 
In fact, the future works aim to analyze the effect of  
quality of reporting on the time resolution of the 
issue,  and on the other side the interest of the open 
source project communities to the reported Bug. 
Actually the reports obtained by BRQTOOL could 
help to solicit Bug Reporter to create reports having, 
as far as possible, an high quality. 
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