

Consensus Routing: The Internet as a Distributed System

John P. John 1 , Ethan Katz-Bassett 1 , Arvind Krishnamurthy 1 , Thomas Anderson 1 , Arun Venkataramani 2

> ¹Dept. of Computer Science, Univ. of Washington, Seattle 2University of Massachusetts Amherst

NSDI 2008

Presented by: Ahmed Khurshid

CS 598 PBG Fall 2010 Advanced Computer Networks

Outline

- Routing pathologies affecting reliability
- Effect of delayed routing convergence
- \bullet Existing proposals for improving network reliability
- \bullet Consensus Routing – The Internet as a Distributed System

What do we expect from a network?

- \bullet Common expectation
	- – $-$ Seamless connectivity from the source to the destination
- Application specific expectations
	- – $-$ End-to-end reliability
	- – $-$ Sufficient throughput
	- – $-$ Low latency, jitter, etc.
- \bullet However, the network does not always behave the way we want

Routing Pathologies

- Distributed nature of Internet routing results in unpredictable behavior
- Not all the routers have a consistent view of the network all the time
	- – $-$ Results in delayed routing convergence
- This causes
	- – $-$ Black holes
	- – $-$ Routing loops (eventually creating black holes)
	- – $-$ Sub-optimal routing

Routing loop Examples

2 (3) prefers the path through 3 (2)

2 and 3 each prefer the other over 6

Black hole Example

To reach P, AP is preferred over CD

Effect of Delayed Routing Convergence (Labovitz et al.)

- •Tshort: represents both a route repair and failover
- •Tlong: represents both a route failure and failover

Ref: Labovitz et al., "Delayed Internet Routing Convergence", SIGCOMM 2000

Existing proposals for improving network reliability

Achieving Convergence-Free Routing(Lakshminarayanan et al.)

- •A reactive approach
- \bullet Packets carry failure information
- \bullet Routers compute fault-free path onthe-fly
- \bullet No routing update is exchanged among the routers

Ref: Lakshminarayanan et al., "Achieving Convergence-Free Routing usingFailure-Carrying Packets", SIGCOMM 2007

SafeGuard: Safe Forwarding during Route Changes (Li et al.)

- \bullet Packets carry remaining path cost
- \bullet Change in path cost indicates change of route
- \bullet Approximates the effect of a full source route

Ref: Li et al., "SafeGuard: Safe Forwarding during Route Changes", CoNEXT 2009

RBGP: Staying Connected In a Connected World (Kushman et al.)

- •A proactive approach
- • ASes advertise precomputer backup paths for failover
- • Increases processing and control overhead

\sim 11 **Ref:** Kushman et al., "RBGP: Staying Connected In a Connected World", NSDI 2007

Consensus Routing

Motivation

- Internet routing protocols (both intra and inter domain) usually favors responsiveness over consistency
	- – A new route is incorporated in the forwarding table before propagating the same to neighbors
- Results in routing loops and blackholes
- Usually there is no extra effort to ensure consensus
	- – $-$ Solutions have been proposed for intra-domain routing

Consensus Routing

- A consistency first approach that cleanly separatessafety and liveness of routing
	- – $-$ Safety: All the routers use a consistent route towards a destination (i.e., no loops)
	- – $-$ Liveness: Quick reaction to failures and policy changes
- Ensure both consistent behavior and quick reaction
	- 1. Runs a distributed coordination algorithm to ensure globally consistent view of routing state
	- 2. Forwards packets using one of two logically distinct modes

Stable Mode

- \bullet Consensus routing does not immediately incorporate a newly learned route into the forwarding table
- \bullet Periodically, all routers engage in a distributed coordination algorithm
- The coordination is based on
	- Chandy-Lamport snapshot algorithm
	- •Paxos
- \bullet Output of the coordination is used to compute a set of stable forwarding tables (SFTs) that are guaranteed to be consistent
	- •SFTs replace traditional FIBs (Forwarding Information Base)

Stable Mode – Update Log

Store updates into the update log without modifying the SFT

Updates in the snapshot may be **complete** or **incomplete**

Stable Mode – Aggregation

Tier-1 ASes are good candidates for being consolidators

Stable Mode – Consensus

Consolidators run Paxos to agree upon a global view by extracting incomplete updates from the reported snapshots

Message contains the set of incomplete updates (I) and the set of ASes (S) that successfully responded to the snapshot

Stable Mode

- \bullet SFT Computation
	- – SFT is computed using the global set of incomplete updates (I) and local logs
	- – Routes involving ASes not present in S are not placed in the SFT

What happens to those ASes?

How does this strategy achieve consensus in an asynchronous distributed system?

Use of two SFTsAB \overline{B} \overline{C} DD E Source (X) Destination (Y) Use $(k+1)$ th SFT Hasn't finished computing (k+1)th SFT yet Use k^{th} SFT Send packet to Y

Transient Mode

- Consensus routing switches to this mode when
	- – $-$ The next-hop router along a stable route is unreachable
	- – $-$ A stable route is not available
- Uses several known schemes
	- – $-$ Routing deflection
	- – $-$ Detour Routing
	- – $-$ Backup route

Route Deflection

- After encountering a failed link, deflect the packet to a neighboring AS after consulting RIB
- \bullet If no neighbor can be chosen, then deflect the packet back to the sending AS (backtracking)
	- However, backtracking alone is not sufficient to guarantee reachability

Limitations of backtracking

Other Transient Schemes

- Detour Routing
	- – After encountering a failed link, select a neighboring AS (arbitrarily) and tunnel transient packets to it
	- – $-$ Tier-1 ASes are good choices in this selection
- • Backup Routes
	- – Use pre-computed backup routes to forward packets during failure (e.g., R-BGP)

Evaluation

- Simulation Methodology
	- – CAIDA AS-level graphs gathered from RouteViews BGP tables
		- Includes 23,390 ASes and 46,095 links annotated with inferred business relationships of the linked ASes
- Using XORP prototype to measure implementation overhead
- \bullet Using PlanetLab nodes to measure the cost of consensus

Link Failure

• One of the links of a multi-homed stub AS is failed during each experiment

Consensus routing provides significantly higher levels of connectivity than BGP

Effect of Traffic Engineering

• Withdraw a subprefix from all but one of the providers (3 or more) of a multi-homed AS

Consensus routing does not affect routing in case of policy changes

9/30/2010 Department of Computer Science, UIUC

Overhead

In terms of bandwidth and time, consensus routing incurs little overhead

Thanks

Questions and Comments?