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What do we expect from a network?

 Common expectation

— Seamless connectivity from the source to the destination

* Application specific expectations
— End-to-end reliability
— Sufficient throughput
— Low latency, jitter, etc.

 However, the network does not always behave the
way we want



Routing Pathologies

Distributed nature of Internet routing results in
unpredictable behavior

Not all the routers have a consistent view of the
network all the time

— Results in delayed routing convergence

This causes

— Black holes

— Routing loops (eventually creating black holes)
— Sub-optimal routing




Routing loop Examples

2 (3) prefers the path through 3 (2) 2 and 3 each prefer the other over 6
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Policy change causing BGP loops
at 2 and 3 when 4 withdraws a
prefix from 2 and 3 but not 6

Link failure causing
BGP loops at 2 and 3
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Black hole Example

To reach P, AP is preferred over CD

Recovered
IBGP link recovery causing black hole
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tage Packet Loss

Effect of Delayed Routing Convergence

(Labovitz et al.)
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e Tshort: represents both a route repair and failover

* Tlong: represents both a route failure and failover

Ref: Labovitz et al., “Delayed Internet Routing Convergence”, SIGCOMM 2000
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Existing proposals for improving
network reliability



i

Achieving Convergence-Free Routing
(Lakshminarayanan et al.)

e Avreactive approach

e Packets carry failure

information A

_-13‘

* Routers compute /

fault-free path on-

the-fly Sour ‘/%
 No routing update is
exchanged among F = {N3-Nd, N5.N7} «e"‘
the routers

Ref: Lakshminarayanan et al., “Achieving Convergence-Free Routing using
Failure-Carrying Packets”, SIGCOMM 2007
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SafeGuard: Safe Forwarding during Route
Changes (Li et al.)

e Packets carry

remaining path cost - -

 Change in path cost
indicates change of
route

* Approximates the
effect of a full source
route

Ref: Li et al., “SafeGuard: Safe Forwarding during Route Changes”, CONEXT 2009
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RBGP: Staying Connected In a Connected
World (Kushman et al.)

* A proactive approach
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Ref: Kushman et al., “RBGP: Staying Connected In a Connected World”, NSDI
2007



Consensus Routing



Motivation

Internet routing protocols (both intra and inter
domain) usually favors responsiveness over
consistency

— A new route is incorporated in the forwarding table before
propagating the same to neighbors

Results in routing loops and blackholes

Usually there is no extra effort to ensure consensus

— Solutions have been proposed for intra-domain routing




Consensus Routing

* A consistency first approach that cleanly separates
safety and liveness of routing

— Safety: All the routers use a consistent route towards a
destination (i.e., no loops)

— Liveness: Quick reaction to failures and policy changes

* Ensure both consistent behavior and quick reaction

1. Runs a distributed coordination algorithm to ensure
globally consistent view of routing state

2. Forwards packets using one of two logically distinct
modes



Stable Mode

Consensus routing does not immediately incorporate a newly
learned route into the forwarding table

Periodically, all routers engage in a distributed coordination
algorithm

The coordination is based on
e Chandy-Lamport snapshot algorithm
* Paxos

Output of the coordination is used to compute a set of stable
forwarding tables (SFTs) that are guaranteed to be consistent

* SFTs replace traditional FIBs (Forwarding Information Base)




Stable Mode — Update Log

Route
advertisement/withdrawal

>

Users Users Users Users

Store updates into the update log without modifying the SFT

9/30/2010 Department of Computer Science, UIUC 16



T
Stable Mode — Distributed Snapshot
/,_\

Marker message

Users Users Users Users

Updates in the snapshot may be
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Stable Mode — Aggregation

Consolidators

/ \ \ \ Snapshots

* Better
reachability

 Longevity

* Full mesh
topology among
the ASes

Users Users Users Users Why?

Vv

Tier-1 ASes are good candidates for being consolidators
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Stable Mode — Consensus

Paxos message

Users Users Users Users

Consolidators run Paxos to agree upon a global view by extracting

updates from the reported snapshots
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Stable Mode — Flood

Final result

Users Users Users Users

Message contains the set of
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Stable Mode

* SFT Computation

— SFT is computed using the global set of incomplete
updates (I) and local logs

— Routes involving ASes not present in S are not placed in
the SFT

What happens to those ASes?

How does this strategy achieve consensus in
an asynchronous distributed system?
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Use of two SFTs

Hasn’t finished

Use k" SFT
>

/

computing (k+1)% SFT yet

Use (k+1) SFV‘

Send packet to YT

Source (X) Destination (Y)

___IE__

kth SFT B->C->D C->D
(k+1) SFT ~ B->C->E C->E E Y Y
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Transient Mode

e Consensus routing switches to this mode when
— The next-hop router along a stable route is unreachable
— A stable route is not available

e Uses several known schemes
— Routing deflection
— Detour Routing
— Backup route



Route Deflection

1-5-D, 2-5-D, 3-5-D

e After encountering a failed
link, deflect the packet to a
neighboring AS after
consulting RIB

* If no neighbor can be
chosen, then deflect the
packet back to the sending
AS (backtracking)

— However, backtracking alone
is not sufficient to guarantee
reachability

Limitations of backtracking
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Other Transient Schemes

* Detour Routing

— After encountering a failed link, select a neighboring AS
(arbitrarily) and tunnel transient packets to it

— Tier-1 ASes are good choices in this selection

* Backup Routes

— Use pre-computed backup routes to forward packets
during failure (e.g., R-BGP)



Evaluation

Simulation Methodology

— CAIDA AS-level graphs gathered from RouteViews BGP
tables

* Includes 23,390 ASes and 46,095 links annotated with inferred
business relationships of the linked ASes

Using XORP prototype to measure implementation
overhead

Using PlanetLab nodes to measure the cost of
CoNnsensus




Link Failure

* One of the links of a multi-homed stub AS is failed during each
experiment

BGP Consensus Routing
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Consensus routing provides significantly higher levels of

connectivity than BGP
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Effect of Traffic Engineering

 Withdraw a subprefix from all but one of the providers (3 or
more) of a multi-homed AS
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Consensus routing does not affect routing in case of policy

changes
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Thanks

Questions and Comments?



