
DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Using Process-Level Redundancy to Exploit
Multiple Cores for Transient Fault Tolerance

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Outline
• Introduction and Motivation

• Software-centric Fault Detection

• Process-Level Redundancy

• Experimental Results

• Conclusion

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Alpha particles
Neutrons
Device coupling
Power supply noise
etc.

Transient Faults (Soft Errors)

0 101 0

Transient faults are already an issue!!
- Sun Microsystems [Baumann Rel. Notes 2002]

- LANL ASC Q Supercomputer [Michalak IEEE TDMR 2005]

- …

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Predicted Soft Error Rates

“The neutron SER for a latch is likely to stay constant
in the future process generations…”

[Karnik VLSI 2001]

[Hareland VLSI 2001]

SER = Soft Error Rate

Small SER decrease
per generation

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Moore’s Law Continues

[Source: www.intel.com/technology/mooreslaw]

Transient faults will be a significant issue in the
design and execution of future microprocessors

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Background
• One categorization: [Mukherjee HPCA 2005]

I. Benign Fault
II. Detected Unrecoverable Error (DUE)

• False DUE- Detected fault would not have altered correctness
• True DUE- Detected fault would have altered correctness

III. Silent Data Corruption (SDC)

• Hardware Approaches
– Specialized redundant hardware, redundant multi-threading

• Software Approaches
– Compiler solutions: instruction duplication, control flow

checking
– Low-cost, flexible alternative but higher overhead

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Architectural Vulnerability Factor
• ACE—Required for Architecturally Correct Execution
• AVF—Architectural Vulnerability Factor

– Likelihood that a transient error in a structure will lead to a computational error

• B is the set of all bits in
some structure

• tb is the total time that bit b is
ACE

• t is the total time of the
execution

tB

t
AVF

Bb
b

!"
=
$

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

 Benefits of Selective Protection
• Software control provides selective protection

– Hybrid and Software systems enable software control

• Compiler/user/runtime system can make different
decisions for different code regions
– Programs, functions, or individual instructions

• Regions have different levels of natural fault resistance
• Output corrupting faults have different severity

original jpegenc output f a u l t y j p e g e n c o u t p u t faulty? jpegenc output*

• Selective protection can improve reliability

*Skadron (University of Virginia)Visual Vulnerability Spectrum

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Results of Injecting Errors

• Correct range: 25% to 60% (not impacted by error injection)
• Average correct execution 33%
• Application specific trends and behaviors

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Application Specific Fault Injection
Results

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Function Analysis Experimental Results
(164.gzip)

• Per-function (top 10 function executed per application)
• Top executing function (by dynamic instruction count)
• Equal fault injections (1000) spread over each function’s

set of invocations

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Function Analysis Experimental Results

• Per-function (top 10 function executed per application)
• Compiler optimization can change 5-10% of CORRECT category
• Currently looking into correlation between compilation/optimization and

transient fault tolerant nature of code

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Fault Timeline Experimental Results

• Error Injection until equal time segments of applications• Error injections into equal time segments
• Percentage of injections resulting in

CORRECT execution

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Fault Timeline Experimental Results

• Analysis of fault susceptibility over time
• Injection of errors in equal time segments of applications

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Process-level Redundancy

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Goal

Use software to leverage available hardware parallelism
for low-overhead transient fault tolerance.

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Sphere of Replication (SoR)

1. Input Replication

2. Redundant Execution

3. Output Comparison

SoR

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Software-centric Fault Detection

• Most previous approaches are hardware-centric
– Even compiler approaches (e.g. EDDI, SWIFT)

• Software-centric able to leverage strengths of a software approach
– Correctness is defined by software output
– Ability to see larger scope effect of a fault
– Ignore benign faults

Processor

Cache

Memory Devices

Processor SoR

Application

Operating System

PLR SoR

Libraries

Hardware-centric Software-centric

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Slave Processes
• identical address space,
 file descriptors, etc.
• not allowed to perform
 system I/O

Process-Level Redundancy (PLR)

App

Libs

App

Libs

App

Libs

Operating System

Sys. Call Emulation Unit

Master Process
• only process
 allowed to perform
 system I/O

Watchdog
Alarm

Watchdog Alarm
• occasionally a process
 will hang

System Call Emulation Unit (SCEU)
• Enforces SoR with input replication and output comparison
• System call emulation for determinism
• Detects and recovers from transient faults

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Enforcing SoR
• Input Replication

– All read events: read(), gettimeofday(),
getrusage(), etc.

– Return value from all system calls

• Output Comparison
– All write events: write(), msync(), etc.
– System call parameters

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Maintaining Determinism
• Master process executes system

call
• Redundant processes emulate it

– Ignore some: rename(), unlink()
– Execute similar/altered system call

• Identical address space: mmap()
• Process-specific data: open(),
lseek()

• Challenges
– Shared memory
– Asynchronous signals
– Multi-threading

Compare syscall
type and cmd
line parameters

read()

Write resulting
file offset and
read buffer to
shmem

Copy the read
buffer from

shmem
lseek() to

correct file offset

Write cmd line
parameters and

syscall type to
shmem

Barrier

Master Process
Redundant
Processes

Example of handling a
read() system call

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Maintaining Determinism
• Master process executes system call
• Slave processes emulate it

– Ignore some: rename(), unlink()
– Execute similar/altered system call

• Identical address space: mmap()
• Process-specific data: open(), lseek()

• Challenges we do not handle yet
– Shared memory
– Asynchronous signals
– Multi-threading

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Fault Detection/Recovery

• PLR supports detection/recovery from multiple faults by increasing number
of redundant processes and scaling the majority vote logic

Determine the missing process
and fork() to create a new one

Watchdog alarm times outTimeout

Re-create the dead process by
forking one of existing processes

System call emulation unit
registers signal handlers for
SIGSEGV, SIGIOT, etc.

Program Failure

Use majority vote ensure correct
data exists, kill incorrect process,
and fork() to create a new one

Detected as a mismatch of
compare buffers on an output
comparison

Output
Mismatch

Type of Error Detection Mechanism Recovery Mechanism

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Windows of Vulnerability
• Fault during PLR execution

• Fault during execution of operating system

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Experimental Methodology
• Set of SPEC2000 benchmarks
• Prototype developed with Intel Pin dynamic binary instrumentation

tool
– Use Pin Probes API to intercept system calls

• Register Fault Injection (SPEC2000 test inputs)
– 1000 random test cases per benchmark generated from an instruction

profile
• Test case: a specific bit in a source/dest register in a particular instruction

invocation
– Insert fault with Pin IARG_RETURN_REGS instruction instrumentation
– specdiff in SPEC2000 harness determines output correctness

• PLR Performance (SPEC2000 ref inputs)
– 4-way SMP, 3.00Ghz Intel Xeon MP 4096KB L3 cache, 6GB memory
– Red Hat Enterprise Linux AS release 4

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Fault Injection Results

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Fault Injection Results w/ PLR

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

PLR Performance

• As a comparison: SWIFT is .4x slowdown for detection and 2x
slowdown for detection+recovery

• Contention Overhead: Overhead of running multiple processes
using shared resources (caches, bus, etc)

• Emulation Overhead: Overhead of PLR synchronization, shared
memory transfers, etc.

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Conclusion
• Present a software-implemented transient fault tolerance technique

to utilize general-purpose hardware with multiple cores

• Differentiate between hardware-centric and software-centric fault
detection models
– Show how software-centric can be effective in ignoring benign faults

• Prototype PLR system runs on a 4-way SMP machine with 16.9%
overhead for detection and 41.1% overhead with recovery

Questions?

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Extra Slides

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Predicted Soft Error Rates

[Shivakumar DSN 2002]

“The neutron SER for a latch is likely to stay constant
in the future process generations…”

[Karnik VLSI 2001]

[Hareland VLSI 2001]

SER = Soft Error Rate

Logic Gates

Latches

SRAM
Small SER decrease

per generation

DRACO Architecture Research Group. DSN, Edinburgh UK, 06.25.2007

Overhead Breakdown

