A lattice-theoretic interpretation of independence of frames

Fabio Cuzzolin

INRIA Rhône-Alpes Institut National de Recherche en Informatique et en Automatique

International Workshop on Interval/Probabilistic Uncertainty and Non-Classical Logics (UncLog'08) Japan Advanced Institute of Science and Technology (JAIST) Ishikawa, Japan, March 24*th* − 28*th* 2008

Outline

- [Independence of frames](#page-6-0)
- [Notion of independence](#page-10-0)
- [The lattice of frames](#page-11-0)
- [Independence on lattices and independence of frames](#page-16-0)

KOD KARD KED KED DAR

[Conclusions and perspectives](#page-22-0)

The theory of evidence

- **e** formulated as a theory of **subjective probability**;
- mathematical description of how a body of evidence affects one's belief;
- contains standard probability as special case;
- knowledge state represented by **belief functions** instead of finite probabilities;
- Bayes' rule is replaced by more general **Dempster's rule**;

Belief and probability measures

• probability distribution: $p : \Theta \rightarrow [0, 1]$ s.t.

$$
p(\emptyset) = 0, \sum_{x \in \Theta} p(x) = 1, p(x) \geq 0 \ \forall x \in \Theta
$$

- probability measure $p(A) = \sum_{x \in A} p(x)$
- **Basic belief assignment** $m: 2^{\Theta} \rightarrow [0, 1]$ such that

$$
m(\emptyset) = 0, \sum_{A \subseteq \Theta} m(A) = 1, m(A) \geq 0 \ \forall A \subseteq \Theta
$$

KORKAR KERKER & AQO

belief function $b: 2^\Theta \rightarrow [0,1] \colon b(\pmb{A}) = \sum_{B \subseteq \pmb{A}} m(B)$

Dempster's combination

Definition

The *orthogonal sum* or *Dempster's sum* of two b.f.s b_1 , b_2 on Θ is a new belief function $b_1 \oplus b_2$ on Θ with b.p.a.

$$
m_{b_1\oplus b_2}(A)=\frac{\sum_{B\cap C=A}m_{b_1}(B)m_{b_2}(C)}{\sum_{B\cap C\neq \emptyset}m_{b_1}(B)m_{b_2}(C)}.
$$

when the denominator of the above equation is zero the two b.f.s are said to be *non-combinable*

Example

•
$$
m_1(a_1) = 0.7
$$
, $m_1(a_1, a_2) = 0.3$;

•
$$
m_2(\Theta) = 0.1
$$
, $m_2(a_2, a_3, a_4) = 0.9$;

•
$$
m_1 \oplus m_2(a_1) = 0.19
$$
,
\n $m_1 \oplus m_2(a_2) = 0.73$,
\n $m_1 \oplus m_2(a_1, a_2) = 0.08$.

KO K K Ø K K E K K E K V K K K K K K K K K

Refining between pairs of finite domains or frames

Definition

A map $\rho: 2^\Theta \to 2^{\Theta'}$ is a **refining** when it maps Θ to a disjoint partition of Θ'

- Θ' refinement of Θ
- \bullet Θ **coarsening** of Θ'

Family of compatible frames

Definition

In a **family of compatible frames** each finite collection of frames admits a common refinement (amongst other things)

• minimal refinement λ smallest such common refinement

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q

Independence of frames as Boolean sub-algebras

Definition

 $\Theta_1, ..., \Theta_n$ are **independent** [Shafer'76] (IF) if

$$
\rho_1(A_1) \cap \cdots \cap \rho_n(A_n) \neq \emptyset, \quad \forall \emptyset \neq A_i \subset \Theta_i
$$

o comes from independence as Boolea[n a](#page-7-0)l[g](#page-9-0)[e](#page-7-0)[br](#page-8-0)[a](#page-9-0)[s](#page-5-0)

Independence of frames and Dempster's rule

Proposition

Θ1, ..., Θ*ⁿ are independent iff all the possible collections of b.f.s b*₁, ..., *b*_n *on* Θ_1 , ..., Θ_n *are combinable on their minimal refinement* Θ¹ ⊗ · · · ⊗ Θ*ⁿ*

- **•** independence of sources is then **equivalent** to independence of frames!
- • in this form can be analyzed from an algebraic point of view

Independence in algebra and uncertainty theory

 \bullet similarity between $I\mathcal{F}$ and independence of vector subspaces

$$
\rho_1(A_1) \cap \cdots \cap \rho_n(A_n) \neq \emptyset, \quad \forall A_i \subseteq \Theta_i
$$

\n
$$
\Theta_1 \otimes \cdots \otimes \Theta_n = \Theta_1 \times \cdots \times \Theta_n
$$

\n
$$
\equiv
$$

\n
$$
v_1 + \cdots + v_n \neq 0, \quad \forall v_i \in V_i
$$

\n
$$
span\{V_1, ..., V_n\} = V_1 \times \cdots \times V_n.
$$

• obtained from each other under:

 $v_i \leftrightarrow A_i$, $V_i \leftrightarrow 2^{\Theta_i}$, $+ \leftrightarrow \cap$, $0 \leftrightarrow \emptyset$, $\otimes \leftrightarrow$ *span*.

- they share the algebraic structure of **semi-modular lattice**
- **•** lattice independence / (Boolean) independence of sources?**KORKAR KERKER & AQO**

Lattices

- *partially ordered set*: a set endowed with a relation ≤ s.t.
	- \bullet *x* \lt *x*:
	- 2 if $x < y$ and $y < x$ then $x = y$;
	- **3** if $x < y$ and $y < z$ then $x < z$
- *least upper bound x* ∨ *y* is the smallest element bigger than both *x* and *y*
- *greatest lower bound x* ∧ *y* is the biggest element smaller than both *x* and *y*
- **lattice** *L* is a poset in which each *pair* of elements admits both inf and sup

The lattice of frames

• in a family of frames we can define the following order

$$
\Theta_1 \leq \Theta_2 \Leftrightarrow \exists \rho: \Theta_2 \rightarrow 2^{\Theta_1} \text{ refining }
$$

• i.e. Θ_1 smaller then Θ_2 iff Θ_1 is a refinement of Θ_2

Proposition

Both (F, \leq) *and* (F, \leq^*) *where* F *is a family of compatible frames are lattices.*

The lattice of frames is semimodular

• *x* "covers" $y(x \succ y)$ if $x > y$ and there is no intermediate element in the chain linking them

Definition

A lattice *L* is **upper semi-modular** if for each pair *x*, *y* of elements of *L*, $x \succ x \land y$ implies $x \lor y \succ y$. A lattice *L* is **lower semi-modular** if for each pair *x*, *y* of elements of *L*, $x \lor y \succ y$ implies $x \succ x \land y$.

Theorem

(F, ≤) *is an upper semi-modular lattice;* (F, ≤[∗]) *is a lower semi-modular lattice.*

Finite lattice of frames

- both $y = \{1, 2/3, 4\}$ and $y' = \{1, 3/2, 4\}$ cover *y* ∧* *y'* = {1, 2, 3, 4} but *y* ∨* *y'* = {1/2/3/4} does not cover them
- $(P(\Theta), \leq^*)$ $(P(\Theta), \leq^*)$ $(P(\Theta), \leq^*)$ is not upper semi-modular but [lo](#page-13-0)[we](#page-15-0)[r](#page-13-0) [se](#page-14-0)[m](#page-15-0)[i](#page-10-0)[-](#page-11-0)m[o](#page-16-0)[d](#page-10-0)[u](#page-11-0)l[a](#page-16-0)[r.](#page-0-0)

 $2Q$

A lattice-theoretic interpretation ... of independence of sources?

• reinterpret the analogy between subspaces of a vector space *V* and elements of a family of compatible frames

both are lattices: according to the chosen order relation we get an upper *L*(Θ) or lower *L* ∗ (Θ) semi-modular lattice

Independence on lattices from vectors ..

- abstract independence can be defined on the elements of a semi-modular lattice
- \bullet $v_1, ..., v_n$ are **linearly independent** iff

$$
\sum_i \alpha_i v_i = 0 \vdash \alpha_i = 0 \quad \forall i
$$

- **equivalent conditions** are
	- \mathcal{I}_1 : $v_i \not\subset \text{span}(v_i, i \neq j)$ $\forall i = 1, ..., n;$

$$
\mathcal{I}_2: \qquad v_j \cap \textit{span}(v_1,...,v_{j-1}) = 0 \qquad \forall j=2,...,n;
$$

KOD KARD KED KED DAR

 \mathcal{I}_3 : dim(*span*($v_1, ..., v_n$)) = *n*.

Independence on lattices ... to the general case

 \bullet generalize these relations to collections $\{l_1, ..., l_n\}$ of non-zero elements of any semi-modular lattice with initial element **0**

$$
\mathcal{I}_1: \qquad l_j \nleq \bigvee_{i \neq j} l_i \qquad \qquad \forall j = 1, ..., n;
$$

$$
\mathcal{I}_2: \qquad l_j \wedge \bigvee_{i < j} l_i = \mathbf{0} \qquad \qquad \forall j = 2, ..., n;
$$

KOD KARD KED KED DAR

 \mathcal{I}_3 : $V_i I_i$) = $\sum_i h(I_i)$.

Lattice-theoretic independence on the lattice of frames

• how we write those relations for frames?

$$
\Theta_1, ..., \Theta_n \quad T_1^* \quad \Leftrightarrow \qquad \Theta_j \oplus \bigotimes_{\substack{i \neq j \\ j-1}} \Theta_i \neq \Theta_j \qquad \forall j = 1, ..., n
$$
\n
$$
\Theta_1, ..., \Theta_n \quad T_2^* \quad \Leftrightarrow \qquad \Theta_j \oplus \bigotimes_{i=1}^{j-1} \Theta_i = \mathbf{0}_{\mathcal{F}} \qquad \forall j = 2, ..., n
$$
\n
$$
\Theta_1, ..., \Theta_n \quad T_3^* \quad \Leftrightarrow \quad \Big| \bigotimes_{i=1}^n \Theta_i \Big| -1 = \sum_{i=1}^n (|\Theta_i| - 1)
$$

KORKAR KERKER E VOOR

 \mathcal{I}^*_3 \equiv the dimension of the probability polytope for the minimal refinement is the sum of the dimensions of the polytopes associated with the individual frames

Evidential independence is a stronger condition then the first two forms

Theorem

$$
\Theta_1, ..., \Theta_n \text{IF and } \Theta_j \neq \mathbf{0}_{\mathcal{F}} \forall j \text{ then } \Theta_1, ..., \Theta_n \text{ } \mathcal{I}_1^*.
$$

Theorem

$$
\Theta_1, ..., \Theta_n \mathcal{IF} \vdash \Theta_1, ..., \Theta_n \mathcal{I}_2^*.
$$

unless some frame is unitary, $\mathcal{IF} \vdash \mathcal{I}^*_1 \land \mathcal{I}^*_2$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q

• the opposite implication does not hold

but also evidential independence is opposed to the third form

independence of frames is **incompatible** with \mathcal{I}_3^* ...

Theorem

If $\Theta_1, ..., \Theta_n$ *IF*, $n > 2$ *then* $\Theta_1, ..., \Theta_n$ $\supseteq T_3$. *If* Θ_1, Θ_2 *IF then* Θ_1, Θ_2 \mathcal{I}_3^* iff $\exists \Theta_i = \mathbf{0}_{\mathcal{F}}$ *i* $\in \{1, 2\}.$

Theorem

 $\Theta_1, \Theta_2 \in A^*$ are \mathcal{IF} iff $\Theta_1, \Theta_2 \neg \mathcal{I}_3^*$.

... and they are the **negation** of each other for pairs of frames of size $n - 1$

Evidential and lattice-theoretic independence ... in a nutshell

KO K K Ø K K E K K E K V K K K K K K K K K

What we learned ...

• the fact that families of frames and projective geometries are the same kind of lattices apparently explains very well the analogy between independence in uncertainty theory and algebra

- however, independence of sources is **not a form of lattice-theoretic independence**
- but it is **strictly related**, as:
	- it is stronger than some of its incarnations,
	- opposed to the remaining one

... and what is still to learn

- can independence of sources explained algebraically?
- natural to conjecture: is related to classical **matroidal** independence?
- probably the answer is no
- \bullet need for a **more general definition** of independence which encompasses both

KOD KARD KED KED DAR

• general analysis relation between Boolean and matroidal/lattice independence