#### EP for Efficient Stochastic Control with Obstacles

Thomas Mensink<sup>1</sup> Jakob Verbeek<sup>1</sup> Bert Kappen<sup>2</sup>

#### LEAR - INRIA Rhône-Alpes, Grenoble, France SNN - Radboud University, Nijmegen, The Netherlands

European Conference on Artificial Intelligence - Lisbon Portugal August 19th, 2010





# Introduction

- Optimal control is how to act now to optimize future rewards
- Real life systems have constraints on the allowed state
  - angle of joint of a robot arm
  - part of the road used by an autonomous car
- The presence of (Wiener) noise, makes stochastic control quantitatively different from deterministic control



#### Overview

#### Introduction

2 Path Integral Optimal Control

#### 3 EP for Optimal Control

#### 4 Experiments



# Path Integral (1)

- Class of continuous non-linear control problems, written as Path Integral over a forward diffusion process
- Stochastic dynamical system

$$dx = (f(t, x) + Bu) dt + d\xi$$

$$C(t, x, u(t \to t_f)) = \left\langle \underbrace{\phi(x_{t_f})}_{\text{end cost}} + \int_t^{t_f} dt \underbrace{\frac{1}{2}u_t^\top Ru_t}_{\text{control cost}} + \underbrace{V(x_t, t)}_{\text{state cost}} \right\rangle$$
(2)

• The forward path integral for  $t < t_f$ , is

$$\psi(x_t, t) = \int dy \rho(y, t_f | x_t, t) \psi(y, t_f), \quad \psi(y, t_f) = \exp(-\phi(y)/\lambda).$$
(3)

• Diffusion process  $\rho$  is a Fokker-Planck equation with drift  $f(x_t, t) dt$ and diffusion  $d\xi$ , and an term due to  $V(x_t, t)$ .

# Path Integral (1)

- Class of continuous non-linear control problems, written as Path Integral over a forward diffusion process
- Stochastic dynamical system

$$dx = (f(t, x) + Bu) dt + d\xi$$

$$C(t, x, u(t \to t_f)) = \left\langle \underbrace{\phi(x_{t_f})}_{\text{end cost}} + \int_t^{t_f} dt \underbrace{\frac{1}{2}u_t^\top Ru_t}_{\text{control cost}} + \underbrace{V(x_t, t)}_{\text{state cost}} \right\rangle$$
(2)

• The forward path integral for  $t < t_f$ , is

$$\psi(x_t, t) = \int dy \rho(y, t_f | x_t, t) \psi(y, t_f), \quad \psi(y, t_f) = \exp(-\phi(y)/\lambda).$$
(3)

• Diffusion process  $\rho$  is a Fokker-Planck equation with drift  $f(x_t, t) dt$ and diffusion  $d\xi$ , and an term due to  $V(x_t, t)$ .

# Path Integral (1)

- Class of continuous non-linear control problems, written as Path Integral over a forward diffusion process
- Stochastic dynamical system

$$dx = (f(t, x) + Bu) dt + d\xi$$

$$C(t, x, u(t \to t_f)) = \left\langle \underbrace{\phi(x_{t_f})}_{\text{end cost}} + \int_t^{t_f} dt \underbrace{\frac{1}{2}u_t^\top Ru_t}_{\text{control cost}} + \underbrace{V(x_t, t)}_{\text{state cost}} \right\rangle$$
(2)

• The forward path integral for  $t < t_f$ , is

$$\psi(x_t, t) = \int dy \rho(y, t_f | x_t, t) \psi(y, t_f), \quad \psi(y, t_f) = \exp(-\phi(y)/\lambda).$$
(3)

• Diffusion process  $\rho$  is a Fokker-Planck equation with drift  $f(x_t, t) dt$ and diffusion  $d\xi$ , and an term due to  $V(x_t, t)$ .

# Path Integral (2)

- Path integral can be interpreted as a free energy, therefore approximated with
  - MC sampling,
  - Variational Methods, and
  - Expectation Propagation (EP).
- Promising for multi-agent control and coordination problems and several robot tasks.

• In this presentation: hard walls (interval constraints) as obstacles.

# Approximations for Optimal Control

• Forward Diffusion Process



- Approximated with:
  - Variational Method (minimise KL(q||p))
  - Expectation Propagation (minimise KL(p||q))

### Variational Methods vs EP



- Variational Methods
  - minimise KL(q||p)
  - q can not have any probability mass where p = 0.
- Expectation Propagation
  - minimise  $\operatorname{KL}(p\|q)$
  - q matches the moments of p.

# Variational Methods vs EP





- Variational Methods
  - minimise  $\operatorname{KL}(q \| p)$
  - q can not have any probability mass where p = 0.
- Expectation Propagation
  - minimise  $\operatorname{KL}(p\|q)$
  - q matches the moments of p.

# Variational Methods vs EP



- Variational Methods
  - minimise KL(q||p)
  - q can not have any probability mass where p = 0.
- Expectation Propagation
  - ▶ minimise  $\operatorname{KL}(p \| q)$
  - q matches the moments of p.

### Approximation with EP



- Iteratively minimise a factor, taking into account the context.
- Moment matching:

$$q'_i \propto \operatorname{Proj}\left[q^{\setminus i} p_i\right] = \min \operatorname{KL}(P \| q^{\setminus i} p_i)$$

### Approximation with EP



- Iteratively minimise a factor, taking into account the context.
- Moment matching:

$$q_i' \propto \operatorname{Proj} \left[ q^{\backslash i} \; p_i \right] = \min \operatorname{KL}(P \| q^{\backslash i} \; p_i)$$

#### EP for Graphs - Updating $\alpha$ and $\beta$

$$q'_{\alpha_t}(x_t) = \operatorname{Proj}\left[q^{\setminus \alpha_t}(x_t) \int \mathcal{F}(x_{t-1}, x_t) \alpha(x_{t-1}) \prod_{d=1}^D \tilde{\mathcal{V}}^d_{t-1}(x_{t-1}) \ dx_{t-1}\right]$$

- Inference in Gaussian Markov Chain!
- Special attention for  $\beta(x_T)$ , it includes the end-cost function:

$$q'_{\beta_T}(x_T) = \operatorname{Proj}\left[q^{\setminus \beta_T}(x_T) \phi(x_T)\right].$$

#### EP for Graphs - Updating $\alpha$ and $\beta$

$$q'_{\alpha_t}(x_t) = \operatorname{Proj}\left[q^{\setminus \alpha_t}(x_t) \int \mathcal{F}(x_{t-1}, x_t) \alpha(x_{t-1}) \prod_{d=1}^D \tilde{\mathcal{V}}^d_{t-1}(x_{t-1}) \ dx_{t-1}\right]$$

- Inference in Gaussian Markov Chain!
- Special attention for  $\beta(x_T)$ , it includes the end-cost function:

$$q'_{\beta_T}(x_T) = \operatorname{Proj}\left[q^{\setminus \beta_T}(x_T) \phi(x_T)\right].$$

#### EP for Graphs - Updating $\alpha$ and $\beta$



$$q'_{\alpha_t}(x_t) = \operatorname{Proj}\left[q^{\setminus \alpha_t}(x_t) \int \mathcal{F}(x_{t-1}, x_t) \alpha(x_{t-1}) \prod_{d=1}^D \tilde{\mathcal{V}}^d_{t-1}(x_{t-1}) \ dx_{t-1}\right]$$

- Inference in Gaussian Markov Chain!
- Special attention for  $\beta(x_T)$ , it includes the end-cost function:

$$q'_{\beta_T}(x_T) = \operatorname{Proj}\left[q^{\setminus \beta_T}(x_T) \phi(x_T)\right].$$

## EP for Graphs - Updating Interval Constraints



$$q'_{\tilde{\mathcal{V}}^d_t}(x_t) = \operatorname{Proj}\left[q^{\setminus \tilde{\mathcal{V}}^d_t}(x_t) \ \mathcal{V}^d_t(x_t)
ight]$$

- 1D case: moments of truncated Gaussian (Erf function)
- Multi-dimensional case
  - ▶ Rewrite to 1D prior and a conditional on other dimensions,
  - ▶ Use a 1D approximation for the prior.

## EP for Graphs - Updating Interval Constraints



$$q'_{\tilde{\mathcal{V}}^d_t}(x_t) = \operatorname{Proj}\left[q^{\setminus \tilde{\mathcal{V}}^d_t}(x_t) \ \mathcal{V}^d_t(x_t)
ight]$$

- 1D case: moments of truncated Gaussian (Erf function)
- Multi-dimensional case
  - ▶ Rewrite to 1D prior and a conditional on other dimensions,
  - Use a 1D approximation for the prior.

# EP for Graphs - Updating Interval Constraints



$$q'_{ ilde{\mathcal{V}}^d_t}(x_t) = \operatorname{Proj}\left[q^{\setminus ilde{\mathcal{V}}^d_t}(x_t) \; \mathcal{V}^d_t(x_t)
ight]$$

- 1D case: moments of truncated Gaussian (Erf function)
- Multi-dimensional case
  - Rewrite to 1D prior and a conditional on other dimensions,
  - Use a 1D approximation for the prior.

### Experiments

• Particle in a Box problem



• Ball Throwing problem

#### Experiments

• Particle in a Box problem



• Ball Throwing problem





- Ignore noise and Variational Approximation
- MC Sampling
- Expectation Propagation



- Ignore noise and Variational Approximation
- MC Sampling
- Expectation Propagation



- Ignore noise and Variational Approximation
- MC Sampling
- Expectation Propagation



- Ignore noise and Variational Approximation
- MC Sampling
- Expectation Propagation

#### Particle in a box: Different Walls



Table: Quantitative results of 'Particle in a box'.

|        | EP   |      | MC   |      |  |
|--------|------|------|------|------|--|
|        | Suc. | Cost | Suc. | Cost |  |
| Wall 1 | 24   | 1.04 | 23   | 0.70 |  |
| Wall 2 | 24   | 1.83 | 23   | 1.47 |  |
| Wall 3 | 22   | 5.02 | 13   | 4.35 |  |
| Wall 4 | 15   | 2.50 | 7    | 1.98 |  |

Mensink et al. (LEAR-SNN)

EP for Efficient Stochastic Control

# Ball Throwing - Dynamics



- Control speed of arm, not the direct position,
- Noise only between the force and the speed of the arm.
- End-cost function:  $y(t_f + \tau)^2$ .

# Ball Throwing - Goal Function - Sampling and EP



#### Ball Throwing - Goal Function - Sampling and EP



# Ball Throwing - Goal Function - Sampling and EP



# Ball Throwing - Quantitative Results

|          | Suc. | Acc. | Control | End | Total | Time |
|----------|------|------|---------|-----|-------|------|
| EP       | 50   | 50   | 1037    | 14  | 1050  | 1.0  |
| MC 100k  | 33   | 13   | 540     | 219 | 759   | 0.9  |
| MC 500k  | 39   | 27   | 614     | 188 | 803   | 3.4  |
| MC 1000k | 43   | 35   | 690     | 160 | 850   | 6.9  |

• Acceptable simulations (Acc.)  $|y| \le 75$ .

# Ball Throwing - Visual Results



# Conclusions

- Stochastic Optimal Control with Hard Obstacles
- Using EP/MC approximations for the path integral
- EP outperforms MC sampler,
- Amount of necessary control w.r.t noise, important for success of MC.

- EP can be overly safe,
- But in complex domains obtains competitive overall cost.

# Conclusions

- Stochastic Optimal Control with Hard Obstacles
- Using EP/MC approximations for the path integral
- EP outperforms MC sampler,
- Amount of necessary control w.r.t noise, important for success of MC.

- EP can be overly safe,
- But in complex domains obtains competitive overall cost.

# Conclusions

- Stochastic Optimal Control with Hard Obstacles
- Using EP/MC approximations for the path integral
- EP outperforms MC sampler,
- Amount of necessary control w.r.t noise, important for success of MC.

- EP can be overly safe,
- But in complex domains obtains competitive overall cost.

#### Questions?

