A Type System for
Checking Applet Isolation
in Java Card

Peter Muller
ETH Zlrich

Joint work with Werner Dietl and Arnd Poetzsch-Heffter

!uﬁurr' Gatische Technische Hochschule Thrich

A Type System for Checking Applet Isolation in Java Card 2

Applet Isolation

—— o

— i ——————— e —— — ~ -

' Applet Context 1

\

/ Applet Context 2 k

1
| |
I I
| |
I I
| |
| I
| |
| |
I I
| |
I I
| I
I I
I I

T Uy Vi —
[J
[J

e e e e e

-

N - —— - —— —— o - -

————————
—— - —

———

Peter MU”er - CASSIS 2004 Eidgendssische Technische Hochschule Zhrich

Swiis Federal Institute of Technology Zurich

A Type System for Checking Applet Isolation in Java Card

Example

class Status { Interface Service extends Shareable {
Status doService();
boolean isSuccess(){ ... } }

}

class Client extends Applet {

void process(APDU apdu) {
AID server = ...;
Shareable s =
JCSystem.getAppletShareableinterfaceObject(server, (byte) 0);
Service service = (Service) s;
Status status = service.doService();
If (status.isSuccess()){...} // SecurityException raised

'}

Peter MU”er - CASSIS 2004 Ei ische Technische Hochschule Ziric
titute of Technology Zurich

A Type System for Checking Applet Isolation in Java Card

Motivation

= Formal program verification

- Prove absence of SecurityExceptions for
many kinds of expressions

- Firewall property causes significant overhead
for specifications and proofs

= Objective
- Check applet isolation statically

- Develop a solution for source programs

- Build on experience with ownership and the
Universe Type System

Peter Muller — CASSIS 2004

Eidgendssische Technische Hochschule Zhrich
wiss Federa f

A Type System for Checking Applet Isolation in Java Card

Approach

= Use type system ,-=72770777000- \
{o C|aSSify Applet Context 1
references to

- Objects in the
same context

- Objects in any
contexts

- Entry points

= Perform static
checks to
enforce applet
ISolation

JCRE Context

—————————————————————————————————————

\————————

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card

Tagged Types
* Tags

Intern: References within a context
any: References to any context
pep: References to permanent entry points

tep: References to temporary entry points and global
arrays

» Tagged types specify the context a reference
may point into

Tagged types are tuples: Tag x Type, e.g., intern T

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card

Type Rules

* Intern and pep types are any T tep T

subtypes of the /\

corresponding any types ntern T| (e T

= Type rules for tagged types follow Java’s type rules

void process(tep APDU apdu) {
intern AID server = ...;

any Shareable s =
JCSystem.getAppletShareableinterfaceObject(server, (byte) 0);

any Service service = (any Service) s;
?7? Status status = service.doService();
If (status.isSuccess()){...} }

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card

Method Invocations

= Tag intern specifies
context relatively to
the current context

* For method
Invocations,
parameter and
result types have to
be interpreted
relatively to the tag
of the target

Interface Service extends Shareable {
Intern Status doService();

}

any Service service = ...;
any Status status = service.doService();

~

o M o —
o —— —— e —— -

e o - - o — -

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card

Type Combinations

» Type combinator *

(any,S) Iif H#intern and G = intern

(H,1)*G.S) = (G,S) otherwise

= Type rule for method invocations

Fel:(HT), Fe2:(G,)S), HT)*G,S) < (FpTp)
Felm(e2): (HT)*(Fg Tgr)

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card 10

Dynamic Type Checks

= Casts

- Downcasts from any types to corresponding intern and
pep types require dynamic checks

- In practice only necessary for static fields (no intern tag)
- Casts may throw SecurityException

= Covariant arrays
- Intern T[] and pep T[] are not subtypes of any T][]
- Avolid dynamic check for assignments to array slots

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card

11

Static Firewall Checks

= Method invocation e.m(...)
- (H,T) is the static tagged type of e

- If His any, T has to be an interface that extends
Shareable

* Field access el.f=e2
- Static type of el must have tag intern
- Static type of e2 must not have tag tep

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card

12

Example Revisited

class Status {

boolean isSuccess(){ ... }

}

Interface Service extends Shareable {
Intern Status doService();

}

class Client extends Applet {

Intern AID server = ...;
any Shareable s =

If (status.isSuccess()){...}

'}

void process(tep APDU apdu) {

JCSystem.getAppletShareableinterfaceObject(server, (byte) 0);
any Service service = (any Service) s;
any Status status = service.doService();

/] Static type error

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card 13

Results

» Type Safety
- All references are correctly tagged
- Proof by rule induction based on operational semantics

= Applet Isolation

- Lemma: Each Java Card program with tagged types that
passes the static checks behaves like the corresponding
program with dynamic checks

- Every Java Card program that can be correctly tagged
does not throw SecurityExceptions (except for casts)

- Proof by rule induction with two operational semantics
(with and without dynamic checks)

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card 14

Conclusions

= Presented approach supports program verification

- Absence of SecurityException does not have to be
shown during verification (except for some casts)

- Static checking is modular

= Security requires
- Type system on bytecode level
- Adapted VM / Bytecode verifier
- Forbidding downcasts from any to intern or pep

Peter Muller — CASSIS 2004

A Type System for Checking Applet Isolation in Java Card 15

Future Work

= Extension of presented work
- Support for missing language features (exceptions)
- Annotation of Java Card API

= Formal verification
- Integration of type system with Universe Type System

- Implementation in JIVE (Java Interactive Verification
Environment)

Peter Muller — CASSIS 2004

