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Abstract

In this paper we report the first results of evolving bio-hybrid
societies. Our goal is to have robots that are integrated in
an animal society, and here we evolve robot controllers us-
ing animals as fitness providers, directly judging the success
of integration. In particular, we are using juvenile honeybees
and robots that are able to produce vibration patterns. Pre-
vious studies have shown that honeybees react to different
vibration patterns, such as exhibiting freezing or stopping be-
haviours. In this paper we investigate whether we are able to
evolve a vibration pattern that acts as a locally acting ‘stop
signal’ for bees. Honeybees were placed in two containers
with no communication between them: one with an active,
vibrating robot, and a second with a passive robot. Post-hoc
evaluations of key evolved digital genotypes generally con-
firm fitness values obtained during evolution. We also tested
the transferability of key genotypes to a single container, in
which bees are free to visit one vibrating and two dummy
robots. Encouragingly, most genotypes are able to selectively
stop bees, i.e., only in the vicinity of the vibrating robot, de-
spite having been evolved under the more constrained setup.
These results speak to the value of an evolutionary approach
for discovering how to interact with animals.

Introduction
Information exchange among animals is crucial to social be-
haviour. The proximate mechanisms that organisms have
developed to exchange information show a high diversity.
Besides their varied physical implementations, they differ
concerning specific aspects: be it via direct or indirect com-
munication, the latter mainly in the form of ‘stigmergic’ in-
teraction, prominently studied in social insects (Deneubourg
et al., 1990). There are many more direct forms of communi-
cation in animals. Within honeybees, which are focal in our
research, multiple direct communication signals have been
identified: various dances (Anderson and Ratnieks, 1999)
include the waggle dance, which recruits other bees to food
sources (Seeley, 1994); as well as trophallactic food ex-
change among bees (Camazine et al., 1998; Schmickl and
Karsai, 2016). Bees exhibit a characteristic stopping be-
haviour to the queen piping signal (Simpson and Cherry,
1969), which is transmitted throughout the wax in the bee-
hive (Michelsen et al., 1986). Recently, short-pulsed vibra-

tions have been associated with bee-to-bee encounters (colli-
sion) in the beehive (Ramsey et al., 2017). These short-term
vibration signals also seem to have an effect on the motion
pattern exhibited by bees (Mariano et al., 2017) but is not
yet fully understood, as also the role of the honeybee comb
itself as a vibrational information centre is not yet fully de-
ciphered (Bencsik et al., 2015).

Our EU project “ASSISIbf” (Schmickl et al., 2013) is in
the area of bio-hybrid societies, in which we use robotic de-
vices to interact with animal societies in a closed-loop. We
aim for a method to discover some aspects of “the language
of the animals”, i.e., those stimuli patterns that animals will
respond to, using two animal species, zebrafish and honey-
bees. It is our aim to facilitate such interaction automati-
cally, identifying robotic behaviour parameters through ex-
perimentation that is guided by evolutionary search. In this
context, gathering data is very expensive in comparison to
typical applications in evolutionary computation (EC). Work-
ing with animals requires an adequate time frame, and no
technical advance will change the speed of the animal be-
haviour. Although there of course exist other EC applica-
tions with expensive fitness evaluation, typical approaches
of modelling via surrogates is not feasible when we are ex-
ploring a behaviour that is itself not well understood, and
thus we are not able to employ modelling to leverage the
search.

While we knew bees stop or at least slow down signif-
icantly with specific vibration patterns produced by other
bees in the hive we wanted to investigate if we can use evo-
lutionary computation to let robots learn effective variants
of such vibration patterns in an autonomous way. In order
to build an “animal language” we evolved robot controllers
to produce vibration pulses that cause juvenile honeybees to
stop. We expect that this behaviour can be further used as a
building block of more complex behaviours.

This work is situated in the area of evolutionary robotics
(ER) (Harvey et al., 1997; Nolfi and Floreano, 2000; Silva
et al., 2016), which is an evolution-inspired technique, used
to generate robot behaviours that are difficult to derive an-
alytically from the robot’s mechanics and task environment
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(Bongard, 2008). Conventional ER has diverse applications
including controllers of robots that resemble or mimic ani-
mals (e.g., Cully et al., 2015). We use online ER to discover
how to control robots that interact with groups of real ani-
mals, in an original approach where the animals are the fit-
ness providers, guiding the evolutionary process. In online
ER the robots’ control evolves while robots perform their be-
haviour in the real context in which they operate, counter to
offline ER where robot controllers are evolved in simulation.

Our recent study (Mariano et al., 2017) identified the main
new issues raised by ER with evolution guided by the ani-
mals. However, that work did not include specific results of
the evolutionary process. This paper presents, for the first
time, results of online ER interacting with animals with the
latter providing the fitness that guides the evolutionary pro-
cess. In addition, we test the evolved digital genotypes that
define the robot programs in a less-constrained environment,
in order to study their generalisation capability.

In the next section we present related work and then we
have a section detailing the problem of evolving vibration
patterns to stop juvenile bees. In the following section the
evolution results are presented as well as a detailed analysis
of their variability, based on re-assessment of selected pat-
terns. The next section shows how well evolved vibration
patterns transfer to a different but related task. The paper
closes with a section of discussion and conclusions.

Related Work
As technology becomes increasingly pervasive in the hu-
man world, so it does in the animal kingdom. Besides
improved instrumentation and telemetry devices (e.g. Begg
et al., 2005), scientific studies use artifacts to stimulate ani-
mals (Reaney et al., 2008; Bonnet et al., 2018), with an in-
creasing sophistication. Beyond using robots to emit stimuli
repeatably, bio-hybrid systems comprise animals and robots
that each influence one another, i.e., the interactions are
closed-loop and flow both from robot to animal and from an-
imal to robot. A major milestone is the robotic cockroaches
of Halloy et al. (2007), in which a group of robots were able
to successfully integrate with a group of cockroaches, and,
when programmed with unusual environmental preferences
were able to steer the natural cockroaches into a different
decision than they would take alone. Closed-loop coupling
of animals and robots have been explored with various or-
ganisms such as ducks (Vaughan et al., 2000), fish (Swain
et al., 2012; Bonnet et al., 2018), and honeybees (Landgraf
et al., 2012; Griparic et al., 2017; Stefanec et al., 2017).

Unlike all of these works that use an a priori model of the
animal behaviour to guide the robot design, our present work
attempts to develop the means of robot-animal interaction at
runtime: Specifically, we use the animals as fitness providers
in an evolutionary algorithm, an innovation not seen before
in bio-hybrid systems. Arguably the closest works, concep-
tually, involve humans interacting with agents of some kind,

IR camera

robot arena

workstation

beaglebone

Figure 1: Schematic of the closed-loop bio-hybrid system
that we use to evolve a stopping vibration pattern. The vi-
brations stimulate the animals, and observations of their be-
haviour influences characteristics of the future vibrations.

(e.g., Funes et al., 1998; Dawkins, 1986). However, to our
knowledge animals other than humans have not previously
been used as part of an evolutionary algorithm.

In terms of fitness measures obtained from a collective
in guided EC we can trace back to Zhang and Cho (1999),
where a fitness value is obtained by the sum of individual
properties of the agents forming the group. A study worthy
of note here is that of Li et al. (2013), which uses an ad-
versary co-evolutionary algorithm to automatically parame-
terise behavioural models of (simulated) animals. A popula-
tion of models evolves under a pressure of detection from a
population of classifiers, whose aim is to tell apart model-
derived data samples and true animal behaviour samples.
This study uses ER in the pursuit of understanding animal
behaviour through interaction of real animals with robots.
In our work we observe animals without identifying them,
therefore we have an aggregating measure of the group be-
haviour, based on approximate counts of the number of bees
around each robot.

Evolution of Localised Vibration Pattern
Experiment 1 setting
We are evolving robot controllers that interact with honey-
bees, here, with the specific aim of inducing aggregation be-
haviours. We perform experiments in a dark environment so
to remove the influence of visual cues on behaviour, instead
focusing on the stimuli emitted by the robots. Moreover, we
use juvenile bees, with a maximum age of 48h, which do
not fly and accordingly can be stimulated through the arena
floor. We have developed immobile robots that produce a
set of stimuli that honeybees respond to, namely vibration
and temperature (Griparic et al., 2017). The robots are also
equipped with an airflow stimulus, to spread honeybees; and
an LED for debugging. For feedback purposes we use an
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infra-red camera (Basler acA2040-25gmNIR) mounted ap-
prox. 1.2m above the arena in order to view the whole area
where robots and honeybees are. The robots are arranged
in lattice with a separation of 9cm, and are controlled by
“beaglebone” single-board computers. In addition, there is
a workstation that receives data from the infra-red camera
and runs the evolutionary algorithm. Figure 1 shows the ex-
perimental setup that we are using.

To measure honeybee behaviour (movement) we analyse
the videos immediately after they are recorded. Before plac-
ing a new set of honeybees in the arena, we record an image
of the arena that we will call background. The analysis is re-
stricted to a set of regions of interest (ROIs), R, that depends
on the experiment. For each video frame number t, Ft, and
ROI r we computed the following four values:

number of bees, NBt
r: number of pixels whose intensity is

different between frame Ft and the background image B.
Two pixels are considered similar if the difference, in per-
centage, of their intensities is lower than threshold SCT .

total bee movement, TBM t
r: number of pixels whose in-

tensity is different between frames Ft and Ft−∆f
. This

is a proxy for bee speed as we are not tracking individ-
ual bees, and we are not computing displacement. If we
used frames further apart, we would get similar values.
The threshold SCT is also used to compute whether two
pixels are different or similar.

bee acceleration, BAt
r: difference between bee movement

recorded in frames Ft and Ft−∆v
.

average bee movement, ABM t
r: total bee movement in

frame Ft divided by the difference between number of
bees in frames Ft and Ft−∆f

. There are experiments
where there is no physical separation in the arena zones
that correspond to the ROIs, meaning that honeybees can
move out or into a region of interest. ABM compensates
for this characteristic (cf. sensitivity of TBM ).

Preliminary evaluation of robots
Before attempting to evolve robot controllers, we performed
two pilot studies to test our robots’ ability to influence bee
behaviour. This section reports very briefly on the study, to
better contextualise the ER work later in the paper.

To this end, we placed groups of honeybees in a circular
arena with a single robot. The robot played a sequence of vi-
bration patterns separated by intervals with no stimuli. Each
action sequence S = (a1, a2, . . . , a7) was composed of ac-
tions1 a2n−1 = N and a2n = V for 30 s each. Vibration ac-
tions used maximum amplitude and were pulsed on/off with
a frequency of f Hz for a vibration period tv = 0.9 s and a
pause period of tp = 0.1 s; prior studies using pure-tones had

1 In the rest of the paper we will denote a no stimuli, airflow or
vibration action/segment by the letters N, A and V, respectively.

Figure 2: Mean bee motion during pulsed-vibration experi-
ments (grey bands: vibration emitted; white bands: no stim-
ulus), for groups of 15 bees, f = 400 Hz (n=9), f = 440 Hz
(n=8). The bee motion is reduced during the vibrating peri-
ods, with an effect size that depends strongly on frequency.

insignificant effects. We performed experiments with groups
of 1, 5, and 15 honeybees, and with f of 300, 400, 440, and
500 Hz, at least n = 8 replicates per condition.

We recorded the behaviour of honeybees as mentioned in
the previous section. We then analysed the videos and we
measured bee motion in a single circular ROI. Figure 2 shows
an estimate of bee motion for two frequencies, relative to the
pre-vibration motion rate, averaged over all replicates. As
can be seen bee speed drops drastically at the onset of each
vibration period, corresponding to bees stopping.

We can summarise the findings as follows: (1) The vibrat-
ing robots can indeed significantly affect bee behaviour; but
pulsing vibrations appeared to be crucial: tp = 0 (pure-tone)
is ineffective but tp = 0.1 can be very effective. (2) The be-
haviour shows sensitivity to frequency (even a 10% change
in f , Fig. 2). (3) The effect was greater with more bees,
indicating a socially-mediated response (not depicted).

We performed another pilot study to evaluate the range
at which vibrations are felt, in which we placed bees in an
arena whose centre is 9, 18, 27 cm away from the vibrat-
ing source (f = 440Hz, tp = 0.1). We observed that bee be-
haviour is modulated up to 18 cm away.

Armed with this knowledge, we set out to explore how
the behavioural modulation could be improved, across a
broader range of the parameters shown to have an influence;
and moreover, to exploit the modulation for a novel task:
whether the robots could induce localised stopping. Given
these goals, we were interested in pursuing our exploration
through an automated process.

Evolutionary problem
The problem that we are trying to solve via evolutionary
computation is to optimise a localised stopping vibration
pattern for juvenile honeybees. We use the above-mentioned
pattern with a vibration period tv followed by a pause pe-
riod tp. These periods are repeated as long as needed. The
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passive ROI

active ROI

Figure 3: Example of a video frame from an experiment with
two circular arenas, and 12 bees in each arena.

vibration period is characterised by a frequency f and an
amplitude v. In the evolutionary experiment we have set
tv + tp = 1 s. We thus have three vibration parameters un-
der evolutionary control: f , v, and tp (we arbitrarily chose
tp as the independent variable in the previous equation). The
domain of gene f is {300, 310, 320, . . . , 1500} in Hz. This
gene was mutated by adding Gaussian noise with mean zero
and standard deviation 120,

f ′ =

(⌈
f +N (0, 120)

10

⌉
10− 300

)
mod 1200 + 300.

If the value exceeds either the minimum or maximum
value, we wrap around. The domain of gene tp is
{100, 110, 120, . . . , 900} in millisecond. The minimum
value of 100 ms was chosen due to hardware limitations in
generating patterns with a shorter period. This gene was mu-
tated by applying the equation

t′p =

(⌈
tp +N (0, 300)

10

⌉
10− 100

)
mod 900 + 100.

The domain of gene v is {5, 10, 15, . . . , 50}, normalised
so that maximum amplitude corresponds to 50. This gene
was mutated by applying the equation

v′ =

(⌈
v +N (0, 10)

10

⌉
10− 5

)
mod 45 + 5.

The setup used consisted of two circular arenas, each with
a robot in the centre. One robot was active, meaning it
played a vibration pattern, while the other robot, named pas-
sive, did nothing. We recorded a video of the bee behaviour,
as depicted in Figure 3, together with the ROIs used.

We used a (µ+λ) evolutionary strategy (ES) with popula-
tion size 5. In each generation, every genotype had one ran-
domly chosen gene mutated. The offspring were evaluated
and the next generation was composed of the best 5 individ-
uals from the set of parents and offspring. We performed 10
generations in each ES run.

Each genotype was subjected to 3 evaluations and its fit-
ness value was the average. Each evaluation consisted of
an action sequence with 30 s of vibration followed by 30 s
of airflow. This airflow action was used to disperse hon-
eybees aggregated due to the previous vibration pattern. In
each generation, the evaluation order of all offspring was

randomised, for instance we could perform first evaluation
of genotype 1, then first evaluation of genotype 3, then sec-
ond evaluation of genotype 1, and so on. For any genotype
evaluation we only considered the frames Ft of the vibration
segment. The computed value was:

∑
t

{
1 if TBMA

t < T

0 otherwise
+

{
−1 if TBMP

t < T

0 otherwise
(1)

where the superscriptsA and P represent the active and pas-
sive ROIs respectively, and T is a constant threshold. To com-
pute TBM we set SCT = 5% and ∆f = 2. A total of 58
frames were used (the frame rate was 2Hz).2 The domain of
the fitness value is [−58, 58].

Each arena had twelve honeybees. Each bee set was
used in exactly 12 genotype evaluations (see Mariano et al.,
2017). When we changed the set of honeybees, we also re-
placed the wax floor to avoid any pheromones from the pre-
vious honeybee set affecting the behaviour of the new ones.
We also waited 30 s before evaluating any genotypes with
the new honeybee set, to reduce honeybee stress levels from
being moved from the bee keeping box to the arena. To have
independent experiments, replaced bees are not used in fur-
ther evaluations (they are returned to the hive).

Experiment 1 results
Figure 4 shows the fitness values over time in each run. In
all runs, the mean fitness value of the initial population was
around zero. From seven runs, four produced high qual-
ity genotypes (runs 3, 4, 6 and 7), in the sense of obtaining
genotypes in the top twenty with fitness above the 80th per-
centile. Moreover, the best genotype appeared in generation
1 of run 6.

There were also runs where there was a small initial im-
provement, but then the fitness value stabilised (runs 1, 2
and 5). Figure 5 shows the histogram of genotype evalua-
tions. There are over 300 genotypes that have an evaluation
of zero. For this reason we truncated the vertical axis in or-
der to focus on other counts of fitness value. The figure also
shows how many genotypes are in the top 5% and bottom
40% of the fitness domain.

To give an impression of the fitness landscape, Fig. 6
shows genotypes that obtained a fitness value in the top 5%
or bottom 40% of the fitness domain. As can be seen, there
is not a clear separation between these extreme sets. From
these plots we can observe that the genotypes in the top
are concentrated around (f = 878.8 Hz, v = 35.8 %, tp =
340 ms), although only amplitude is sharply defined. Fur-
ther analysis of the evolutionary paths in genotype space
shows that the runs with small improvement started away
from this point and evolution failed to find this area.

2The total bee movement value depends on frames were there
was no vibration and thus were excluded.
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Figure 4: Mean fitness over time in the seven runs per-
formed. Maximum fitness value is 58. Typically the ES is
able to improve the efficacy of the vibration patterns, but in
some runs the performance is meagre, suggesting that the
fitness landscape does not always provide a clear gradient.
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Figure 5: Histogram of genotype evaluations. We focused
on fitness values different from zero. There are 341 geno-
types that had a fitness value of zero.

Post-hoc Analysis of Evolved Genotypes
In order to quantify the improvement in fitness provided
by the evolutionary process, we analysed a sample of nine
genotypes in further detail. These were the top three fitness
values overall,CT , and two genotypes from each of the three
runs with highest ranking genotypes, in the following way:
lowest fitness value in the last generation, CL; and highest
fitness value in the first generation, CH (see Table 1).

Experiment 2 setting
We used the same setting as described for Experiment 1: two
circular arenas, each one with a robot in the centre (fig. 3).
While the active robot played the vibration patterns in the ac-
tion sequence, the passive robot did nothing during the cor-
responding 30 s. The action sequence that the robots played
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Figure 6: Scatter plot matrix showing the genotypes that
obtained a fitness in the top 5%, e(c) > 34.8, or in the bot-
tom 45%, e(c) < −5.8, of the fitness domain. While there is
some clustering in allele values in the best genotypes, there
is not a clear separation between the regions occupied by
these two extreme sets.

included one genotype from each of the three sets as follows:

S = (A,N,V(CTi
),N,A,N,V(CLj

),N,A,N,V(CHk
)),

with each action lasting for 30 s. This produced three se-
quences, and we did 10 repeats of each. Each of the 30
experiments used a different set of bees. In this way each
group of bees evaluated a genotype from each of the three
sets. Such arrangement allowed better comparisons among
sets, while minimising the effort of each bee group.

Experiment 2 results
We applied statistical tests to find out genotypes producing
similar behaviour to each other. The Welch t-test was ap-
plied to the total bee movement and average bee movement
values, since these data show different means and different
variances. The F-test was used to compare the bee accelera-
tion since the means are zero and variances are different. In
both cases we used a significance level of p = 0.05. When
we examine the result of these statistical tests we see that
there are top genotypes that are similar to genotypes with
lowest fitness in the last generation and with highest fitness
in the first generation. This may be related to the shape of
the fitness landscape.

We applied the genotype evaluation function (eq. 1) to the
video segment parts (VSPs) that correspond to a vibration pat-
tern. We used 58 frames in order to compare the resulting
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rank fitness
fre-

quency pause amp-
litude remark

1 54.7 1130 260 40 CT

2 51.3 1130 440 40 CT

3 48.7 790 440 50 CT

5 45.0 570 240 25 ?
8 43.0 770 420 40 ?
9 42.0 500 240 40 ?

11 40.7 1030 440 40 CL

12 40.3 730 240 40 CH

13 39.3 650 330 30 CL

41 27.7 680 650 25 CH

42 26.7 730 390 40 ?
58 22.7 1110 170 30 CL

91 16.3 580 750 30 CH

112 10.7 730 870 40 ?
128 8.7 1300 700 50 ?

Table 1: Genotypes used in the post-hoc analysis (CT , CL,
CH ) and in transferability experiments (?).

values with the fitness values. Figure 7 shows the compari-
son between values obtained during evolution and the post-
hoc experiments. Note that we are plotting the fitness values
obtained in each of the three evaluations of a genotype. In
the case where a vibration pattern occurred more than once,
for comparison we used only the three values that caused
such a genotype to be included in one of the Ck sets. We
observe that seven out of nine vibration patterns have a sim-
ilar behaviour in the two experiments. These results confirm
that the evolutionary process produces stable and informa-
tive results even in a dynamic fitness space mainly due to
the variations caused by different bee groups used to pro-
duce the fitness values. To further analyse this aspect we
compared bee behaviour across segments with no activity.

Table 2 shows the percentage of statistical test results be-
tween no stimuli segments. In most cases the behaviour is
similar but there are a few VSPs where the bees are behaving
differently, which is unexpected as they are not being sub-
ject to any stimuli. It turns out that in most of those cases (in
all of them for total and average bee movement) the last no
stimuli segment of the sequence is involved. This result may
be due to bee fatigue (see Mariano et al., 2017).

Transferability of Evolved Genotypes
We were interested in using evolved localised stopping vi-
bration patterns in a different but related task. The goal of
this experiment is to analyse if a vibration pattern can be
used to aggregate bees in a particular area. We decided to
use genotypes with varying fitness values to see if they cor-
relate with aggregation capacity. We selected run number 3,
as the genotypes in the first generation had a low fitness, in
the middle generations they had a middle fitness value, and

0 20 40 60

fitness

●

0 20 40 60

c91  highest fitness in first
generation in run 7

c41  highest fitness in first
generation in run 6

c12  highest fitness in
first generation in run 3

c58  lowest fitness in last
generation in run 7

c13  lowest fitness in last
generation in run 3

c11  lowest fitness in last
generation in run 6

c3  3rd best ever

c2  2nd best ever

c1  1st best ever

evolution post−hoc

Figure 7: Comparison between fitness evaluations of geno-
types obtained in evolution and used in the post-hoc analy-
sis experiments. Chromosomes are sorted by fitness value as
used in the ES. Star indicates that the two sets are different
as dictated by the Welch t-test (p < 0.05). Post-hoc eval-
uations show a broader distribution but generally confirm
fitness values from the evolutionary study.

processed video data % same % different with
last no stimuli VSP

total bee movement 84.7% 100%
average bee movement 84.5% 100%

bee acceleration 70.7% 61%

Table 2: Results of comparisons between no stimuli VSP.
Column ”% same” indicates the percentage of comparisons
with similar results. Last column shows the percentage of
comparisons with different results where at least one of the
VSPs was the last no stimuli in the sequence.

the last generation had genotypes with a high fitness value.
The genotypes that were selected are the ones marked with
a star in column remark of Table 1.

Experiment 3 setup
Twelve bees were placed in a long stadium arena that en-
compasses three robots. Figure 8 shows a picture of the
arena superimposed with a mask of the ROIs. The action se-
quence that the robots played was S = (N,V) with a dura-
tion of 180 s for each action. We performed at least n= 12
repeats for each genotype, each one using a unique bee set.

Experiment 3 results
In order to see if bees are stopping in the active ROI and if
they are aggregating around this region, we analysed plots of
NB for each ROI, for each vibration pattern. We performed
a least-squares linear fit of the data of each ROI and vibra-
tion pattern (the data fitted only includes frames where there
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active ROI passive middle ROI passive right ROI

Figure 8: Setup used in the transferability experiments.
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Figure 9: Least-squares fit of number of bees per ROI and
per vibration pattern tested, indicating a flow of bees from
passive to active regions.

was vibration). Figure 9 shows the result for each ROI. The
number of bees generally increases in active ROI at expense
of the most distant passive ROI (rightmost) with no substan-
tial change in the closest passive ROI (middle). The evolved
vibration pattern successfully attracts bees to the ROI of the
vibrating robot.

Discussion and Conclusion
Generally, on-board and on-line evolution of robots that
have interactions with living animals is a rather novel field of
science. It is posing very high challenges to the established
algorithms in the field. As the fitness feedback is derived
from living animals, which show very complex and rich
nervous and hormonal processing of information, that orig-
inates from animal-animal and animal-robot interactions,
these systems are essentially black-boxes. The properties
of the resulting fitness landscapes are unknown, which situ-
ates the problem well for an EC approach although it might
be very challenging. One major contribution of our work
here is to assess those fitness landscapes in our focal hon-
eybee case and to make first steps to tackle the challenges
posed. The fact that living animals are involved stretches
the time it takes to evaluate generations in an EC algorithm.
Besides the labour-intensity, there are also ethical consider-
ations, that suggest minimizing the number of evaluations
to an absolute necessary minimum, which in fact motivates

optimising the efficiency of the experimental procedure and
the algorithm used, while simultaneously imposing variabil-
ity due to needing more than one animal group to obtain the
fitness of a single digital genotype.

To the best of our knowledge, this is the first work
where evolutionary algorithms were able to evolve robot
controllers by using non-human animals as fitness providers.
We showed that honeybees guided the evolutionary process
of optimising the vibration pattern emitted by robots to stop
the bees. We observed that in ten generations the fitness
levels out. We observed experimental runs with only little
initial improvement of the fitness variables, but then the fit-
ness value stabilised. One reason for these results could be
the absence of a gradient in some regions of the fitness land-
scape, a case in which EC has problems finding the optimum.

An analysis of the evolutionary trajectories in gene space
showed that experiments with small improvement in fit-
ness started away from the high fitness region and evolu-
tion failed to find this area. This points to a single high fit-
ness region with a plateau around it. One possible solution
to escape from a neutral plateau or a local optima is using
multi-gene mutation, an approach we should test soon. Both
types of difficulty could also be due to the small number of
generations with a small population. The dynamic fitness
function, resulting from animal fatigue and different group
composition, may also play a significant role here. Another
effect whose impact requires further investigation is the bee
movement evaluation. The current procedure does not dis-
tinguish bee linear motion from rotation in place. Therefore,
we may be measuring higher movement values than those
that really happen. These features are consistent with the
differences in fitness observed between the evolution result
and the post-hoc evaluation.

In the work presented here, we essentially evolved au-
tonomous robots controllers to produce a stopping signal for
living juvenile honeybees. This may be considered a form
of unidirectional communication act using a one-word ‘lan-
guage’, in the sense that the vibration exerts control over
juvenile bees, by stopping them. As the evolutionary pro-
cess unveiled that several parameters of the evolved signal
affect the effectiveness of the stop signal – actually lead-
ing to a graduated bee motion speed – we probably did not
only evolve a single (binary) signal, but also intermediate
forms of this signal, bringing a ‘grammar’ aspect into the
communication. The transferability experiments indicated
that the localised stopping signal can work as an attractor
to bees: wandering the bees get ‘caught’ in the ROI of the
vibrating robot, which effectively results in the vibration at-
tracting the bees. In the future we plan to go beyond this
and include other signals in the evolutionary process, like
airflow pulses and temperature pulses that also affect hon-
eybees (Szopek et al., 2013), which can heat up their local
environment and which can cool it down with wing beats.
This way, we aim for evolving, over time, a set of distinct
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signals, ultimately aiming to establish an as-rich-as-possible
communication channel between robots and living honey-
bees.
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