
Transformation of Structure-Shy Programs
Applied to XPath Queries and Strategic Functions

Alcino Cunha and Joost Visser

Universidade do Minho, Portugal

PEPM’07, January 15th

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Structure-Shy Programming

A structure-shy program specifies type-specific behavior for a
selected set of data constructors only. For the remaining
structure, generic behavior is provided.

It comes in many flavors: adaptive programming, strategic
programming (Stratego, Strafunsky, SYB), polytypic
programming (PolyP, GH), XML processing (XSLT, XPath).

Advantages: programs are more concise, easy to understand,
reusable, no boilerplate.

Disadvantages: structure-shy programs have potentially worse
space and time behavior then equivalent structure-sensitive
programs (dynamic checks, unnecessary traversals).

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Examples

imdb

movie
*

review
*

box office

country value

actor
*

name played

year title role award

*

*
directoryear title

*

XPath

//movie/director //movie[//actor]

Scrap Your Boilerplate

trunc = everywhere (mkTReview take100)
count = everything (mkQReview size)

take100 (Review r) = Review (take 100 r)
size (Review r) = length r

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Examples

imdb

movie
*

review
*

box office

country value

actor
*

name played

year title role award

*

*
directoryear title

*

XPath

//movie/director //movie[//actor]

Scrap Your Boilerplate

trunc = everywhere (mkTReview take100)
count = everything (mkQReview size)

take100 (Review r) = Review (take 100 r)
size (Review r) = length r

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Motivation

Using knowledge of the schema we would like to transform

//movie/director

into the less structure-shy but more efficient

imdb/movie/director

or into the more structure-shy

//director

Concerning SYB we would like to eliminate strategic
combinators and produce the type-specific functions

trunc ′ = imdb (map (movie id id id (map take100) id)) id
count ′ = sum ◦map (sum ◦map size ◦ reviews) ◦movies

using congruence and selector functions such as:

imdb f g (Imdb m a) = Imdb (f m) (g a)
movies (Imdb m a) = m

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Motivation

Using knowledge of the schema we would like to transform

//movie/director

into the less structure-shy but more efficient

imdb/movie/director

or into the more structure-shy

//director

Concerning SYB we would like to eliminate strategic
combinators and produce the type-specific functions

trunc ′ = imdb (map (movie id id id (map take100) id)) id
count ′ = sum ◦map (sum ◦map size ◦ reviews) ◦movies

using congruence and selector functions such as:

imdb f g (Imdb m a) = Imdb (f m) (g a)
movies (Imdb m a) = m

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Motivation

Using knowledge of the schema we would like to transform

//movie/director

into the less structure-shy but more efficient

imdb/movie/director

or into the more structure-shy

//director

Concerning SYB we would like to eliminate strategic
combinators and produce the type-specific functions

trunc ′ = imdb (map (movie id id id (map take100) id)) id
count ′ = sum ◦map (sum ◦map size ◦ reviews) ◦movies

using congruence and selector functions such as:

imdb f g (Imdb m a) = Imdb (f m) (g a)
movies (Imdb m a) = m

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Motivation

In this SYB example, type-specialization implies an
improvement in space and time by factors of 2.6 and 4.8.

database size

a
ll

o
ca

te
d

 h
ea

p

count · trunc

count · trunc'

count' · trunc'

database size

to
ta

l
ti

m
e

For a fair comparison, we have not used a type-class based
implementation of strategic combinators, but our own,
GADT-based implementation (14 times faster).

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Methodology

Type-specialization will be achieved by transforming
structure-shy programs into structure-sensitive ones, defined
using a fixed set of point-free combinators.

Point-free programming is particular suited to algebraic
manipulation, and will potentiate further simplification after
specialization.

Program transformation laws for structure-shy programs and
for the generalization of structure-sensitive ones will also be
defined.

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Methodology

Type-specialization will be achieved by transforming
structure-shy programs into structure-sensitive ones, defined
using a fixed set of point-free combinators.

Point-free programming is particular suited to algebraic
manipulation, and will potentiate further simplification after
specialization.

Program transformation laws for structure-shy programs and
for the generalization of structure-sensitive ones will also be
defined.

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Point-free Combinators

id :: A→A
(◦) :: (B→C)→ (A→B)→ (A→C)
fst :: A×B → A
snd :: A×B → B
(4) :: (A→ B)→ (A→C)→ (A→ B×C)
(×) :: (A→B)→ (C→D)→ (A×C → B×D)
map :: (A→B)→ ([A]→[B])
wrap :: A→[A]
filter :: (A→Bool)→ ([A]→[A])
zero :: B→A
plus :: A×A→ A
fold :: [A]→A
cond :: (A→Bool)→ (A→B)→ (A→B)→ (A→B)
true :: A→Bool

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Point-free Calculation Laws

f ◦ id = f ◦-IdR
id ◦ f = f ◦-IdL

f ◦ (g ◦ h) = (f ◦ g) ◦ h ◦-Assoc

f×g = (f ◦ fst)4(g ◦ snd) ×-Def
fst ◦ (f4g) = f ×-CancelL
snd ◦ (f4g) = g ×-CancelR

(f4g) ◦ h = (f ◦ h)4(g ◦ h) ×-Fusion
fst4snd = id ×-Reflex

map id = id map-Id
map f ◦ zero = zero map-Zero

map f ◦map g = map (f ◦ g) map-Fusion
map f ◦ wrap = wrap ◦ f map-Wrap

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Point-free Calculation Laws

true ◦ f = true true-Fusion
cond true f g = f cond-True
cond zero f g = g cond-False

(cond f l r) ◦ g = cond (f ◦ g) (l ◦ g) (r ◦ g) cond-Fusion

filter true = id filter -True
filter zero = zero filter -False

filter f ◦ zero = zero filter -Zero
filter f ◦ plus = plus ◦ (filter f×filter f) filter -Plus
filter f ◦map g = map g ◦ filter (f ◦ g) filter -Map

filter f ◦ fold = fold ◦map (filter f) filter -Fold
filter f ◦ wrap = cond f wrap zero filter -Wrap

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Point-free Calculation Laws

plus ◦ (zero4f) = f plus-ZeroL
plus ◦ (f4zero) = f plus-ZeroR

zero ◦ f = zero zero-Fusion
fold ◦ (map zero) = zero fold-MapZero

fold ◦ wrap = id fold-Wrap

fold ◦map wrap = id fold-MapWrap
fold ◦ plus = plus ◦ (fold×fold) fold-Plus

map f ◦ plus = plus ◦ (map f×map f) map-Plus
map f ◦ zero = zero map-Zero
fold ◦ zero = zero fold-Zero

map f ◦ fold = fold ◦map (map f) map-Fold
fold ◦ fold ◦map f = fold ◦map (fold ◦ f) fold-FoldMap

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Strategic Programming

Combinators for type-preserving generic functions:

nop :: T -- identity
(.) :: T→ T→ T -- sequence
mapT :: T→ T -- map over children
mkTA :: (A→ A)→ T -- creation
apTA :: T→ (A→ A) -- application
everywhere :: T→ T -- top-down traversal

Combinators for type-unifying generic functions:

∅ :: Q R -- empty result
(∪) :: Q R → Q R → Q R -- union of results
mapQ :: Q R → Q R -- fold over children
mkQA :: (A→ R)→ Q R -- creation
apQA :: Q R → (A→ R) -- application
everything :: Q R → Q R -- top-down crush

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Strategic Programming Laws

f . nop = f .-IdR
nop . f = f .-IdL

f . (g . h) = (f . g) . h .-Assoc

mapT nop = nop mapT -nop
mapT f . mapT g = mapT (f . g) mapT -Fusion

f ∪ ∅ = f ∪-EmptyR
∅ ∪ f = f ∪-EmptyL

f ∪ (g ∪ h) = (f ∪ g) ∪ h ∪-Assoc

mapQ ∅ = ∅ mapQ-Empty
mapQ f ∪mapQ g = mapQ (f ∪ g) mapQ-Fusion

everywhere f = f . mapT (everywhere f) everyw -Def
everything f = f ∪mapQ (everything f) everyt-Def

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

From Strategic to Point-free Programs

apTA nop = id nop-Apply
apTA (f . g) = apTA f ◦ apTA g .-Apply
apTA (mkTA f) = f
apTA (mkTB f) = id , if A 6≡ B

}
mkT -Apply

apT (A×B) (mapT f) = apTA f×apTB f

apT [A] (mapT f) = map (apTA f)

apTA (mapT f) = id , if A simple type

 mapT -Apply

apQA ∅ = zero ∅-Apply
apQA (f ∪ g) = plus ◦ (apQA f4apQA g) ∪-Apply

apQA (mkQA f) = f
apQA (mkQB f) = zero, if A 6≡ B

}
mkQ-Apply

apQ(A×B) (mapQ f)

= plus ◦ ((apQA f)×(apQB f))
apQ [A] (mapQ f) = fold ◦map (apQA f)

apQA (mapQ f) = zero, if A simple type

 mapQ-Apply

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

From Point-free to Strategic Programs

mkTA id = nop id-PullT
mkTA (f ◦ g) = mkTA g . mkTA f ◦-PullT
mkT [A] (map g) = mapT (mkTA f) map-PullT

mkT (A×A) (f×f) = mapT (mkTA f)
mkT (A×B) (f×g)

= mapT (mkTA f . mkTB g), if A 6≡ B

 ×-PullT

mkQA zero = ∅ ∅-PullQ
mkQA (plus ◦ (f4g)) = mkQA f ∪mkQA g plus-PullQ

mkQ [A] (fold ◦map f) = mapQ (mkQA f)
mkQ [A] (map f) = mapQ (mkQA (wrap ◦ f))

}
map-PullQ

mkQ(A×B) (f ◦ fst)
= mapQ (mkQA f), if A 6≡ B

mkQ(A×B) (f ◦ snd)
= mapQ (mkQB f), if A 6≡ B

 ×-PullQ

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

XPath Queries

Many XPath constructs can be expressed directly as strategic
combinators of type Q [?], where ? represents a universal
node type.

Function mkAnyA :: A→ ? is used to inject any type A into
the universal type.

self :: Q [?] -- self::node()
child :: Q [?] -- child::node()
desc :: Q [?] -- descendant::node()
descself :: Q [?] -- descendant-or-self::node()
name :: String → Q [?] -- self::name
(/) :: Q [?]→ Q R → Q R -- q/r
(?) :: Q [?]→ Q Bool → Q [?] -- q[p]
nonempty :: Q Bool

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Some XPath Laws

(f ∪ g) / h = (f / h) ∪ (g / h) ∪-Dist
∅ / f = ∅ /-EmptyL
f / ∅ = ∅ /-EmptyR

self / f = f /-SelfL
f / self = f /-SelfR

name n / name n = name n /-Name
(f / g) / h = f / (g / h) /-Assoc

∅ ? p = ∅ ?-Empty
f ? nonempty = f ?-Nonempty

(f ? p) ? q = (f ? q) ? p ?-Comut
f ? (name n / nonempty) = f / name n ?-Name

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

From XPath to Point-free Programs and Back

child = mapQ self child-Def
desc = everything child desc-Def
descself = self ∪ desc descself -Def
mapQ f = child / f mapQ-Def

apQA (f / g) = fold ◦map (apQ? g) ◦ apQA f /-Apply
apQA (f ? p) = filter (apQ? p) ◦ apQA f ?-Apply

apQA nonempty = true nempt-Apply
apQA self = wrap ◦mkAnyA self -Apply

apQA (name n) = apQA self , if A has name n
apQA (name n) = zero, otherwise

}
name-Apply

apQ? f ◦mkAnyA = apQA f ?-Apply

mkQA (wrap ◦mkAnyA) = name n,
if A has name n

mkQA (wrap ◦mkAnyA) = self , otherwise

 ?-PullQ

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Type-safe Representation of Types

data Type a where
Int :: Type Int
Bool :: Type Bool
String :: Type String
Any :: Type ?
List :: Type a→ Type [a]
Prod :: Type a→ Type b → Type (a, b)
Either :: Type a→ Type b → Type (Either a b)
Func :: Type a→ Type b → Type (a→ b)
Data :: String → EP a b → Type b → Type a

data EP a b = EP{to :: a→ b, from :: b → a}

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Type-safe Representation of Types

class Typeable a where typeof :: Type a

instance Typeable Int where typeof = Int
instance (Typeable a,Typeable b)⇒ Typeable (a→ b)

where typeof = Func typeof typeof
data Imdb = Imdb [Movie] [Actor]

instance Typeable Imdb where
typeof = Data "Imdb" (EP to from) rep

where rep = Prod (List typeof) (List typeof)
to (Imdb ms as) = (ms, as)
from (ms, as) = Imdb ms as

data Equal a b where Eq :: Equal a a

teq :: Type a→ Type b → Maybe (Equal a b)

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Type-safe Representation of Types

class Typeable a where typeof :: Type a

instance Typeable Int where typeof = Int
instance (Typeable a,Typeable b)⇒ Typeable (a→ b)

where typeof = Func typeof typeof
data Imdb = Imdb [Movie] [Actor]

instance Typeable Imdb where
typeof = Data "Imdb" (EP to from) rep

where rep = Prod (List typeof) (List typeof)
to (Imdb ms as) = (ms, as)
from (ms, as) = Imdb ms as

data Equal a b where Eq :: Equal a a

teq :: Type a→ Type b → Maybe (Equal a b)

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Type-safe Representation of Functions

data F f where
Id :: F (a→a)
Comp :: Type b → F (b→c)→ F (a→b)→ F (a→c)
Fst :: F ((a, b)→a)
Snd :: F ((a, b)→b)
(4) :: F (a→b)→ F (a→c)→ F (a→(b, c))
Plus :: Monoid a→ F ((a, a)→a)
Datamap :: Type b → F (b→b)→ F (a→a)
unData :: F (a→b)
MkAny :: F (a→?)
Fun :: String → (a→b)→ F (a→b)
...

data ? where Any :: Type a→ a→ ?
data Monoid r = Monoid{zero :: r , plus :: r → r → r }

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Type-safe Representation of Functions

data F f where
...
Nop :: F T
Seq :: F T→ F T→ F T
ApT :: Type a→ F T→ F (a→a)
MkT :: Type a→ F (a→a)→ F T
MkQ :: Monoid r → Type a→ F (a→r)→ F (Q r)
Empty :: Monoid r → F (Q r)
...
Self :: F (Q [?])
Name :: String → F (Q [?])
(:/:) :: F (Q [?])→ F (Q r)→ F (Q r)
(:?:) :: F (Q [?])→ F (Q Bool)→ F (Q [?])
Nonempty :: F (Q Bool)

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Rewrite Rules

type Rule = ∀f . Type f → F f → RewriteM (F f)

nat id :: Rule
nat id (Comp Id f) = return f
nat id (Comp f Id) = return f
nat id = mzero

prod def :: Rule
prod def (Func (Prod a b)) (f × g)

= return ((Comp a f Fst)4(Comp b g Snd))
prod def mzero

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Rewrite Rules

type Rule = ∀f . Type f → F f → RewriteM (F f)

nat id :: Rule
nat id (Comp Id f) = return f
nat id (Comp f Id) = return f
nat id = mzero

prod def :: Rule
prod def (Func (Prod a b)) (f × g)

= return ((Comp a f Fst)4(Comp b g Snd))
prod def mzero

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Rewrite Rules

mkT apply :: Rule
mkT apply (ApT a (MkT b f))

= case teq a b of Just Eq → return f
Nothing → return Id

mkT apply = mzero

mapT apply (ApT t (MapT f)) = return (aux t)
where aux :: Type a→ F (a→ a)

aux (Prod a b) = (ApT a f)× (ApT b f)
aux (List a) = Listmap (ApT a f)
aux Int = Id
...

mapT apply = mzero

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Strategic Rule Combinators

nop :: Rule -- identity rule
(=) :: Rule→Rule→Rule -- sequential composition
(�) :: Rule→Rule→Rule -- choice
all :: Rule → Rule -- map on all children
one :: Rule → Rule -- map on one child
rewrite :: Rule → F f → F f -- top-level application

many r = (r = (many r))� nop
once r = r � one (once r)
innermost r = all (innermost r) = ((r = innermost r)� nop)

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Some Transformation Strategies

Optimization of point-free programs

optimize pf = innermost opt = innermost inv
where opt = nat id � prod def � prod cancel �

map zero �map fusion � ...
inv = prod dev inv � prod fusion inv � ...

Specialization of structure-shy programs

optimize t = t2pf = optimize pf
t2pf = innermost (mapT apply �mkT apply � ...)

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Some Transformation Strategies

Optimization of point-free programs

optimize pf = innermost opt = innermost inv
where opt = nat id � prod def � prod cancel �

map zero �map fusion � ...
inv = prod dev inv � prod fusion inv � ...

Specialization of structure-shy programs

optimize t = t2pf = optimize pf
t2pf = innermost (mapT apply �mkT apply � ...)

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Increasing Structure-shyness

mapT (everywhere f)
?
= everywhere f mapT -Elim

mkTA f
?
= everywhere (mkTA f) everyw -Intro

mapQ (everything f)
?
= everything f mapQ-Elim

mkQA f
?
= everything (mkQA f) everyw -Intro

self
?
= descself self -Elim

child / descself
?
= descself child-Elim

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Increasing Structure-shyness

guardT :: Rule → Rule
guardT r t f = do

g ← r t f
f ′ ← optimize t t f ; g ′ ← optimize t t g
if (f ′ ≡ g ′) then return g else mzero

generalize t =
optimize t = mkT apply inv
innermost (id pullT � comp pullT � ...) =
many (once (seq id �mapT fusion � ...)

� guardT (once (mapT elim � everyw intro)))

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Increasing Structure-shyness

guardT :: Rule → Rule
guardT r t f = do

g ← r t f
f ′ ← optimize t t f ; g ′ ← optimize t t g
if (f ′ ≡ g ′) then return g else mzero

generalize t =
optimize t = mkT apply inv
innermost (id pullT � comp pullT � ...) =
many (once (seq id �mapT fusion � ...)

� guardT (once (mapT elim � everyw intro)))

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Strategic Transformations

> let trunc = everywhere (mkTReview take100)
> rewrite optimize t (apT Imdb trunc)
imdb (map (movie (id×id×id×map take100×id))×id)
> rewrite optimize t (apTActor trunc)
id
> rewrite optimize t (apTReview trunc)
take100

> let up = apTActor (everywhere (mkTAward upper))
where upper (Award t) = Award (map toUpper t)

> let bigawards = everywhere (mkTActor up)
> rewrite generalize t (apT Imdb bigawards)
apT Imdb (everywhere (mkTAward upper))

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Strategic Transformations

> let trunc = everywhere (mkTReview take100)
> rewrite optimize t (apT Imdb trunc)
imdb (map (movie (id×id×id×map take100×id))×id)
> rewrite optimize t (apTActor trunc)
id
> rewrite optimize t (apTReview trunc)
take100

> let up = apTActor (everywhere (mkTAward upper))
where upper (Award t) = Award (map toUpper t)

> let bigawards = everywhere (mkTActor up)
> rewrite generalize t (apT Imdb bigawards)
apT Imdb (everywhere (mkTAward upper))

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Strategic Queries

> let count = everything (mkQReview size)
> rewrite optimize q (apQ Imdb count)
sum ◦map (sum ◦map size ◦ reviews) ◦movies

where movies = fst ◦ unImdb
reviews = fst ◦ snd ◦ snd ◦ snd ◦ unMovie

> rewrite optimize q (apQActor count)
zero

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

XPath Queries

> let directors = descself / child / 〈director〉
> rewrite optimize xp (apQ [Imdb] directors)

concat ◦map (map (mkAny · ◦ director) ◦movies)
where movies = fst ◦ unImdb

director = fst ◦ snd ◦ snd ◦ unMovie
> let movactors = descself / 〈movie〉 ?

descself / 〈actor〉 / nonempty
> rewrite optimize xp (apQ [Imdb] movactors)

nil
> let dirparents = descself ? child / 〈director〉 / nonempty
> rewrite optimize xp (apQ [Imdb] dirparents)

concat ◦map (map mkDyn ◦ fst ◦ unImdb)

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Demo

Do you want a demo?

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Contributions

Laws for strategic programs and for converting between these
and point-free programs.

GADT encoding of the XPath language in terms of strategic
program combinators, augmented with a universal node type.

Laws for XPath queries and for converting between these and
point-free programs.

Implementation of the algebraic laws in a type-safe rewriting
system, encoded in Haskell, that can be used for
specialization, generalization, and optimization.

A unified framework for point-free, strategic, and XPath
transformations, where structure-sensitive point-free programs
are used as the solution space for transformation of
structure-shy programs.

Introduction Algebraic Laws Haskell Encoding Application Scenarios Conclusion

Future Work

Prove all the laws used. Characterize formally the normal
forms and termination behavior of the rewrite strategies.

Handle (mutually) recursive data types.

Expand XPath coverage.

Tackle other languages such as XQuery or SQL.

Front-end for parsing and pretty-printing of XPath.

	Introduction
	Introduction

	Algebraic Laws
	Algebraic Laws

	Haskell Encoding
	Haskell Encoding

	Application Scenarios
	Application Scenarios

	Conclusion
	Conclusion

