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Motivation

Online analytical processing (OLAP): 

- few transactions performed on big 
chunks of data 

- easy to exploit data parallelism

 Online transaction processing (OLTP): 

- thousands of transactions within a 
short period of time

- many small transactions with various 
operations

- data should be processed as soon as 
possible due to user interaction
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fits perfectly to the GPU
style of processing
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Motivation

Is the GPU style of processing suitable for OLTP?

What is the best storage model when GPU is used?
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GPU accelerated systems for OLAP: GDB [1], HyPE [2], CoGaDB [3], 
Ocelot [4], H2TAP [5]
GPU accelerated systems for OLTP: GPUTx [6]
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CPU vs. GPU

- ALU (Arithmetic Logical Unit) is responsible 
for computing tasks.

- Control unit handles synchronization.
- Cache keeps frequently accessed data.
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- CPU is composed of few cores 
- few threads at a time

- GPU is composed of thousands of cores
- multiple threads at a time

Well-suited for execution on GPU algorithms: 
data parallel and data intensive.
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GPU computing

- Different memory types: global, shared, local, constant and texture.
- Coalesced memory access: to optimize execution behavior, each thread 

within a work group should access sequential blocks of memory. 

- Communication bottleneck: data needs to be transferred to GPU and 
back over a PCIe bus.

- Bandwidth bottleneck: the bandwidth of a PCIe bus is lower than the 
bandwidth of a GPU.
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global visible to all threads within the application, and lasts for the duration of the host allocation

shared visible to all threads within a block and lasts for the duration of the block

local visible only to the thread that wrote it and lasts only for the lifetime of that thread

constant read only, used for data that does not change over the course of a kernel execution

texture read only, improves performance when reads are physically adjacent
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GPU memory types
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Block 1

Shared memory

Thread Thread

Constant memory

Global memory

Texture memory

Block 2

Shared memory

Thread Thread

CPU

- Each work item or thread has 
private memory named 
registers.

- Work items are grouped into 
a work group or thread 
blocks. Each work group has 
its own shared memory. 

- Global memory is shared 
across all work groups.Local 

memory
Local 

memory
Local 

memory
Local 

memory

Registers Registers Registers Registers
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Row store vs. Column store
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A B C D

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a5 b5 c5 d5

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a5 b5 c5 d5
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Row store vs. Column store
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- Row-wise storage is well suited for operators, 
that work on all attributes of a tuple.

- Column-wise storage could be beneficial, when 
only a small subset of the attributes is needed.

Column store for GPU in OLAP  [1, 3, 6, 7]:

- allows for coalesced memory access
- has a better compression rate      more data 

can be stored in the device memory 
- less data is transferred when only a subset of 

the columns is needed

What storage model is the best for a typical 
access pattern in OLTP?
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Our contribution
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- Implementation of an in-memory database for the TPC-C benchmark 
- Implementation of three operators (insert, update and materialize) 

for row and column store using OpenCL.
- Comparative study of performance of the storage models for CPU 

and GPU.

[8].
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Operators: insert

- Copies fields from the input table to the corresponding fields of the output table.
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Input

1 0.1 “aaa”

2 0.2 “bbb”

3 0.3 “ccc”

4 0.4 “ddd”

5 0.5 “eee”

Output

undef undef undef

undef undef undef

undef undef undef

undef undef undef

undef undef undef

Output

1 0.1 “aaa”

2 0.2 “bbb”

3 0.3 “ccc”

4 0.4 “ddd”

5 0.5 “eee”
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Operators: update

11

Input

1 0.1 “aaa”

2 0.2 “bbb”

3 0.3 “ccc”

4 0.4 “ddd”

5 0.5 “eee”

Output

11 10.1 “aaa”

12 10.2 “bbb”

13 10.3 “ccc”

14 10.4 “ddd”

15 10.5 “eee”

- Attributes of numerical types increased by 10, text fields get replaced by the same text.
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Operators: materialize
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Input

1 0.1 “aaa”

2 0.2 “bbb”

3 0.3 “ccc”

4 0.4 “ddd”

5 0.5 “eee”

Output

undef undef undef

undef undef undef

undef undef undef

Output

1 0.1 “aaa”

3 0.3 “ccc”

5 0.5 “eee”

Input
0 2 4

- Retrieves the attributes of the selected tuples according to their position and writes 
them to the output table.
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Implementation using OpenCL

A kernel is a program executed on an 
OpenCL device.

CPU (host) communicates with GPU for 
executing kernels:

- data to be processed is sent to 
GPU over a PCIe bus

- CPU invokes the kernel to be 
executed over the data

- processed data is transferred 
back to CPU over a PCIe bus

CPU GPU
Data

Result

copy to the device

call the kernel

copy back to 
the host
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Row store
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                                                      char array              int offsets[] = {

int C_ID; 4 bytes 0,

int C_D_ID; 4 bytes 4,

int C_W_ID; 4 bytes 8,

char C_FIRST[20]; 20 bytes 12,

char C_LAST[20]; 20 bytes 32,

float C_DISCOUNT; 4 bytes 52,

float C_BALANCE; 4 bytes 56,

60 };
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Row store: reading values

global char *read_value (
global char *data, 
int tuple_position, 
int field, 
global int offsets[], 
int num_of_attributes) {

int tuple_size = offsets[num_of_attributes];
global char *offset = data + tuple_position * tuple_size;
offset += offsets[field];
return offset;

}
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data tuple_size * 
tuple_position

offsets 
[field]
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Row store: writing to fields

global void write_value (
global char *data, 
int tuple_position, 
char *value, 
int field, 
global int offsets[], 
int num_of_attributes) {

int tuple_size = offsets[num_of_attributes];
global char *offset = data + tuple_position * tuple_size;
offset += offsets[field];
memcpy(offset, value, (offsets[field + 1] - offsets[field]));

}
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data tuple_size * 
tuple_position

offsets 
[field]
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Column store

struct CUSTOMER {

std::vector<int> C_ID;
std::vector<int> C_D_ID;
std::vector<int> C_W_ID;
std::vector<charArray20> C_FIRST;
std::vector<charArray20> C_LAST;
std::vector<float> C_DISCOUNT;
std::vector<float> C_BALANCE;

};
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Row store kernels vs. column store kernels
A column store kernel performs operations on one element:

kernel void insert_int(global int* input, global int* output) {  
const int g_id = get_global_id(0);
output[g_id] = input[g_id];

}
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A row store kernel performs operations on the whole tuple:

kernel void insert_tuple(global char* input, global char* output, global int offsets[], 
      global int num_of_attributes) {

const int g_id = get_global_id(0);
for (int i = 0; i < num_of_attributes; i++) {

write_value(output, g_id, 
   read_value(input, g_id, i, offsets, num_of_attributes), 
   i, offsets, num_of_attributes);

}
}
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Evaluation

Four combinations:

1. CPU and row store

2. CPU and column store
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❏ CPU: Intel(R) Core(TM) i5-2500 @3.30 GHz

3. GPU and row store

4. GPU and column store

For varying numbers of tuples:
- Execution time including transfer time 

(transferring data from CPU memory to GPU memory in case of GPU; 
copying data inside RAM for CPU)

- Execution time excluding transfer time
- Execution time on different fractions of a table’s columns

❏ GPU: NVIDIA GeForce GT 640 ❏ OpenCL 1.2
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Evaluation
The table CUSTOMER from TPC-C benchmark:
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field type field type

C_ID integer C_PHONE char, size 20

C_D_ID integer C_SINCE char, size 10

C_W_ID integer C_CREDIT char, size 2

C_FIRST char, size 20 C_CREDIT_LIM float

C_MIDDLE char, size 2 C_DISCOUNT float

C_LAST char, size 20 C_BALANCE float

C_STREET_1 char, size 20 C_YTD_PAYMENT float

C_STREET_2 char, size 20 C_PAYMENT_CNT integer

C_CITY char, size 20 C_DELIVERY_CNT integer

C_STATE char, size 2 C_DATA char, size 30

C_ZIP char, size 9
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Execution time including the transfer time

- For insert and materialization CPU and 
row store outperforms other 
combinations.

- Row store is beneficial for GPU only on 
small number of tuples.

- For update the poor performance of 
row store is caused by the data 
structure.

- CPU and row store in average performs 
better than CPU and column store.

- GPU and column store performs better 
than GPU and row store.

21

Insert

UpdateMaterialize
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Execution time excluding the transfer time

- For the materialize operator, CPU and 
row store is outperformed by CPU and 
column store.

- For the update operator, GPU and 
column store outperforms CPU and 
column store on big number of tuples.

- The overall picture stays the same.

- Transfer time does not play a vital role 
when all the attributes are affected.

22

Insert

UpdateMaterialize
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Execution time for different fractions of the table’s columns

- For column store only the required 
attributes are transferred.

- For row store the whole table still 
needs to be transferred.

- Column store outperforms row 
store on small number of columns.

- Transfer time matters when 
operators work on only some of the 
attributes.
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Update (50k tuples)

Project & Materialize (5k tuples)
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Takeaways

1. Small batch sizes are better than big batches for the row 
store operator on the GPU. 

2. For bigger batch sizes, column store outperforms row store 
on GPU due to better coalescing and performing less 
instructions.

3. Transfer times, when batches are small, only plays a vital 
role for operators that work on a subset of attributes.

4. Column store outperforms row store when only some 
attributes are updated/retrieved, because only the required data 
is transferred.

24
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Takeaways

5. CPU performs best with row store and GPU with column 
store for inserts and materializations.

6. For the update operator, column store is the best storage 
model for both devices.

7. Kernels for the column store perform less instructions, than 
kernels for row store.             GPU with row store is not utilized 
efficiently.

25
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Future work

- Improvement of the implementation of 
row store.

- Improvement of the implementation of 
column store (e.g. compression).

- Implementation of further operators.

- Batch processing vs. instance processing 
on CPU and GPU for intermixed workload.

- Usage of GPU as the primary storage for 
OLAP, usage of CPU only for the recent 
data.

26

operator 1

operator 2

operator 3

operator 1

operator 2

operator 2

operator 1

operator 3

CPU

GPU

batch
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Thank you!

Questions?

27
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