
Column vs. Row Stores for Data
Manipulation in Hardware Oblivious

CPU/GPU Database Systems
Iya Arefyeva, David Broneske, Marcus Pinnecke,

Mudit Bhatnagar, Gunter Saake

Arbeitsgruppe Datenbanken
und Software Engineering
Otto-von-Guericke Universität
Magdeburg

GvDB2017, Blankenburg/Harz, 02.06.2017

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Motivation

Online analytical processing (OLAP):

- few transactions performed on big
chunks of data

- easy to exploit data parallelism

 Online transaction processing (OLTP):

- thousands of transactions within a
short period of time

- many small transactions with various
operations

- data should be processed as soon as
possible due to user interaction

2

fits perfectly to the GPU
style of processing

???
GPU

delete

insert

select

update select delete

insert

update

select

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Motivation

Is the GPU style of processing suitable for OLTP?

What is the best storage model when GPU is used?

3

GPU accelerated systems for OLAP: GDB [1], HyPE [2], CoGaDB [3],
Ocelot [4], H2TAP [5]
GPU accelerated systems for OLTP: GPUTx [6]

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

CPU vs. GPU

- ALU (Arithmetic Logical Unit) is responsible
for computing tasks.

- Control unit handles synchronization.
- Cache keeps frequently accessed data.

4

- CPU is composed of few cores
- few threads at a time

- GPU is composed of thousands of cores
- multiple threads at a time

Well-suited for execution on GPU algorithms:
data parallel and data intensive.

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

GPU computing

- Different memory types: global, shared, local, constant and texture.
- Coalesced memory access: to optimize execution behavior, each thread

within a work group should access sequential blocks of memory.

- Communication bottleneck: data needs to be transferred to GPU and
back over a PCIe bus.

- Bandwidth bottleneck: the bandwidth of a PCIe bus is lower than the
bandwidth of a GPU.

5

global visible to all threads within the application, and lasts for the duration of the host allocation

shared visible to all threads within a block and lasts for the duration of the block

local visible only to the thread that wrote it and lasts only for the lifetime of that thread

constant read only, used for data that does not change over the course of a kernel execution

texture read only, improves performance when reads are physically adjacent

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

GPU memory types

6

Block 1

Shared memory

Thread Thread

Constant memory

Global memory

Texture memory

Block 2

Shared memory

Thread Thread

CPU

- Each work item or thread has
private memory named
registers.

- Work items are grouped into
a work group or thread
blocks. Each work group has
its own shared memory.

- Global memory is shared
across all work groups.Local

memory
Local

memory
Local

memory
Local

memory

Registers Registers Registers Registers

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Row store vs. Column store

7

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a5 b5 c5 d5

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

a5 b5 c5 d5

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Row store vs. Column store

8

- Row-wise storage is well suited for operators,
that work on all attributes of a tuple.

- Column-wise storage could be beneficial, when
only a small subset of the attributes is needed.

Column store for GPU in OLAP [1, 3, 6, 7]:

- allows for coalesced memory access
- has a better compression rate more data

can be stored in the device memory
- less data is transferred when only a subset of

the columns is needed

What storage model is the best for a typical
access pattern in OLTP?

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Our contribution

9

- Implementation of an in-memory database for the TPC-C benchmark
- Implementation of three operators (insert, update and materialize)

for row and column store using OpenCL.
- Comparative study of performance of the storage models for CPU

and GPU.

[8].

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Operators: insert

- Copies fields from the input table to the corresponding fields of the output table.

10

Input

1 0.1 “aaa”

2 0.2 “bbb”

3 0.3 “ccc”

4 0.4 “ddd”

5 0.5 “eee”

Output

undef undef undef

undef undef undef

undef undef undef

undef undef undef

undef undef undef

Output

1 0.1 “aaa”

2 0.2 “bbb”

3 0.3 “ccc”

4 0.4 “ddd”

5 0.5 “eee”

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Operators: update

11

Input

1 0.1 “aaa”

2 0.2 “bbb”

3 0.3 “ccc”

4 0.4 “ddd”

5 0.5 “eee”

Output

11 10.1 “aaa”

12 10.2 “bbb”

13 10.3 “ccc”

14 10.4 “ddd”

15 10.5 “eee”

- Attributes of numerical types increased by 10, text fields get replaced by the same text.

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Operators: materialize

12

Input

1 0.1 “aaa”

2 0.2 “bbb”

3 0.3 “ccc”

4 0.4 “ddd”

5 0.5 “eee”

Output

undef undef undef

undef undef undef

undef undef undef

Output

1 0.1 “aaa”

3 0.3 “ccc”

5 0.5 “eee”

Input
0 2 4

- Retrieves the attributes of the selected tuples according to their position and writes
them to the output table.

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Implementation using OpenCL

A kernel is a program executed on an
OpenCL device.

CPU (host) communicates with GPU for
executing kernels:

- data to be processed is sent to
GPU over a PCIe bus

- CPU invokes the kernel to be
executed over the data

- processed data is transferred
back to CPU over a PCIe bus

CPU GPU
Data

Result

copy to the device

call the kernel

copy back to
the host

13

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Row store

14

 char array int offsets[] = {

int C_ID; 4 bytes 0,

int C_D_ID; 4 bytes 4,

int C_W_ID; 4 bytes 8,

char C_FIRST[20]; 20 bytes 12,

char C_LAST[20]; 20 bytes 32,

float C_DISCOUNT; 4 bytes 52,

float C_BALANCE; 4 bytes 56,

60 };

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Row store: reading values

global char *read_value (
global char *data,
int tuple_position,
int field,
global int offsets[],
int num_of_attributes) {

int tuple_size = offsets[num_of_attributes];
global char *offset = data + tuple_position * tuple_size;
offset += offsets[field];
return offset;

}

15

data tuple_size *
tuple_position

offsets
[field]

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Row store: writing to fields

global void write_value (
global char *data,
int tuple_position,
char *value,
int field,
global int offsets[],
int num_of_attributes) {

int tuple_size = offsets[num_of_attributes];
global char *offset = data + tuple_position * tuple_size;
offset += offsets[field];
memcpy(offset, value, (offsets[field + 1] - offsets[field]));

}

16

data tuple_size *
tuple_position

offsets
[field]

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Column store

struct CUSTOMER {

std::vector<int> C_ID;
std::vector<int> C_D_ID;
std::vector<int> C_W_ID;
std::vector<charArray20> C_FIRST;
std::vector<charArray20> C_LAST;
std::vector<float> C_DISCOUNT;
std::vector<float> C_BALANCE;

};

17

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Row store kernels vs. column store kernels
A column store kernel performs operations on one element:

kernel void insert_int(global int* input, global int* output) {
const int g_id = get_global_id(0);
output[g_id] = input[g_id];

}

18

A row store kernel performs operations on the whole tuple:

kernel void insert_tuple(global char* input, global char* output, global int offsets[],
 global int num_of_attributes) {

const int g_id = get_global_id(0);
for (int i = 0; i < num_of_attributes; i++) {

write_value(output, g_id,
 read_value(input, g_id, i, offsets, num_of_attributes),
 i, offsets, num_of_attributes);

}
}

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Evaluation

Four combinations:

1. CPU and row store

2. CPU and column store

19

❏ CPU: Intel(R) Core(TM) i5-2500 @3.30 GHz

3. GPU and row store

4. GPU and column store

For varying numbers of tuples:
- Execution time including transfer time

(transferring data from CPU memory to GPU memory in case of GPU;
copying data inside RAM for CPU)

- Execution time excluding transfer time
- Execution time on different fractions of a table’s columns

❏ GPU: NVIDIA GeForce GT 640 ❏ OpenCL 1.2

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Evaluation
The table CUSTOMER from TPC-C benchmark:

20

field type field type

C_ID integer C_PHONE char, size 20

C_D_ID integer C_SINCE char, size 10

C_W_ID integer C_CREDIT char, size 2

C_FIRST char, size 20 C_CREDIT_LIM float

C_MIDDLE char, size 2 C_DISCOUNT float

C_LAST char, size 20 C_BALANCE float

C_STREET_1 char, size 20 C_YTD_PAYMENT float

C_STREET_2 char, size 20 C_PAYMENT_CNT integer

C_CITY char, size 20 C_DELIVERY_CNT integer

C_STATE char, size 2 C_DATA char, size 30

C_ZIP char, size 9

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Execution time including the transfer time

- For insert and materialization CPU and
row store outperforms other
combinations.

- Row store is beneficial for GPU only on
small number of tuples.

- For update the poor performance of
row store is caused by the data
structure.

- CPU and row store in average performs
better than CPU and column store.

- GPU and column store performs better
than GPU and row store.

21

Insert

UpdateMaterialize

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Execution time excluding the transfer time

- For the materialize operator, CPU and
row store is outperformed by CPU and
column store.

- For the update operator, GPU and
column store outperforms CPU and
column store on big number of tuples.

- The overall picture stays the same.

- Transfer time does not play a vital role
when all the attributes are affected.

22

Insert

UpdateMaterialize

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Execution time for different fractions of the table’s columns

- For column store only the required
attributes are transferred.

- For row store the whole table still
needs to be transferred.

- Column store outperforms row
store on small number of columns.

- Transfer time matters when
operators work on only some of the
attributes.

23

Update (50k tuples)

Project & Materialize (5k tuples)

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Takeaways

1. Small batch sizes are better than big batches for the row
store operator on the GPU.

2. For bigger batch sizes, column store outperforms row store
on GPU due to better coalescing and performing less
instructions.

3. Transfer times, when batches are small, only plays a vital
role for operators that work on a subset of attributes.

4. Column store outperforms row store when only some
attributes are updated/retrieved, because only the required data
is transferred.

24

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Takeaways

5. CPU performs best with row store and GPU with column
store for inserts and materializations.

6. For the update operator, column store is the best storage
model for both devices.

7. Kernels for the column store perform less instructions, than
kernels for row store. GPU with row store is not utilized
efficiently.

25

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Future work

- Improvement of the implementation of
row store.

- Improvement of the implementation of
column store (e.g. compression).

- Implementation of further operators.

- Batch processing vs. instance processing
on CPU and GPU for intermixed workload.

- Usage of GPU as the primary storage for
OLAP, usage of CPU only for the recent
data.

26

operator 1

operator 2

operator 3

operator 1

operator 2

operator 2

operator 1

operator 3

CPU

GPU

batch

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

Thank you!

Questions?

27

Iya Arefyeva, “Column vs. Row Stores for Data Manipulation in Hardware Oblivious CPU/GPU Database Systems”

References
1. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q. and Sander, P.V., 2009. Relational

query coprocessing on graphics processors. ACM Transactions on Database Systems (TODS),
34(4), p.21.

2. Breß, S. and Saake, G., 2013. Why it is time for a HyPE: A hybrid query processing engine for
efficient GPU coprocessing in DBMS. Proceedings of the VLDB Endowment, 6(12), pp.1398-1403.

3. Breß, S., 2014. The design and implementation of CoGaDB: A column-oriented
GPU-accelerated DBMS. Datenbank-Spektrum, 14(3), pp.199-209.

4. Heimel, M., Saecker, M., Pirk, H., Manegold, S. and Markl, V., 2013. Hardware-oblivious
parallelism for in-memory column-stores. Proceedings of the VLDB Endowment, 6(9),
pp.709-720.

5. Appuswamy, R., Karpathiotakis, M., Porobic, D. and Ailamaki, A., 2017. The Case For
Heterogeneous HTAP. In 8th Biennial Conference on Innovative Data Systems Research (No.
EPFL-CONF-224447).

6. He, B. and Yu, J.X., 2011. High-throughput transaction executions on graphics processors.
Proceedings of the VLDB Endowment, 4(5), pp.314-325.

7. Bakkum, P. and Skadron, K., 2010, March. Accelerating SQL database operations on a GPU
with CUDA. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units (pp. 94-103). ACM.

8. Transaction Processing Performance Council. TPC-C benchmark revision 5.11. online at
http://www.tpc.org/tpcc/

28

