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Motivations and Goals

Goals:

Analysis of advantages and limits of MOMDP techniques

Explore Policy Gradient in MOMDPS

Motivations:

Policy Gradient techniques are widespread in RL

Real–world applications are often multi–objectives

Literature provides few MORL algorithms
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Contributes

Algorithmic: we propose two MORL policy gradient algorithms

Radial Algorithm (RA)

Pareto Following Algorithm (PFA)

Empirical: several test have been performed on different domains in
order to evaluate proposed algorithms

Linear–Quadratic–Gaussian regulator

Deep Sea Treasure

Water Reservoir

Analytic:

As far as we now, it is the first deep analysis of MORL Policy
Gradient algorithms after Shelton (2001)

and the first analysis on the use of stochastic policies in MORL
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Markov Decision Process (MDP)

MDP:

〈S,A,P,R, γ,D〉

J(π) = E

[
T∑
t=1

γt−1rt|π, s0 ∼ D

]

=

∫
s∈S

dπ(s)

∫
a∈A

π(a|s)R(s, a)dads

MDP algorithms

Dynamic Programming

Linear Programming

Reinforcement Learning

Algorithms for continuous MDPs

Policy Gradient

Genetic Algorithms

Classification–based algorithms
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MDP: Trajectory–based Policy Gradient

Parametric policy model: π(a|s,θ), e.g., Gauss or Gibbs policy models

Gradient Estimate:
∇θJ(θ) = Eτ∼p(·|θ) [∇θ log p(τ |θ)R(τ)]

R(τ) =
∑T
t=1 γ

t−1rt

Gradient Ascent: θt+1 = θt + αt · ∇θJ(θ)

Advantages

Continuous state and action
space

On–policy and “off-policy”
learning

Direct learning in the policy
space

Drawbacks

Local Optimum

High–variance gradient estimate

Tuning of the learning step αt
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Multi–Objective MDPs

Vectorial return

J(π) = [J1(π), J2(π), . . . , Jq(π)]
T

= E

[
T∑
t=1

γt−1rt|π, s0 ∼ D

]
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Solution Concept: Pareto Dominance

J(π) � J(π̄)⇔ (∃k | Jk(π) > Jk(π̄)) ∧ (@h | Jh(π) < Jh(π̄)) .

Pareto Frontier in policy space

Π∗ = {π∗ ∈ Π : @π ∈ Π | J(π) � J(π∗)}
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Multi–Objective MDPs – 2

Solve MOMDPs:

Reinforcement Learning

Single–policy vs Multiple–policies

Linear scalarization vs Non-linear

scalarization

Mathematical Optimization

Evolutionary Algorithms

Gradient Ascent
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Multi–Objective Policy Gradient
Concepts

Half Spaces

Ascent Cone
C(θ) =

{
l : l · ∇θJi(θ) ≥ 0

}
Ascent Simplex

S(λ, θ) =
∑q
i=1

λi∇θJi(θ)

Pareto–Ascent Cone
S(λ, θ) ∩ C(θ)
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Radial Algorithm

Idea: p gradient ascent searches are
performed, each one following a
different, uniformly spaced direction
in the ascent simplex

Problem: weak optimal solutions
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Pareto Following Algorithm

Phase 1: A solution on the Pareto frontier
is reached by considering a single objective

Phase 2: Exploration

Improvement step: move the solution
toward one objective at a time

Correction step: improvement may lead
the point outside the frontier. Correction
moves the point again on the frontier

Problems:

Can reach deterministic policies

Need to reintroduce stochasticity
(e.g., based on the entropy)

Tuning of learning rate
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Experiments

Multi–Objective learning difficulties

More than two objectives

Continuous state and action space

Stochastic environments

Concave Pareto frontiers

Domains

Linear–Quadratic–Gaussian regulator

Deep Sea Treasure

Water Reservoir
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Evaluation Criteria

Loss – Castelletti et al. (2013)

l(ĴM ,J ∗,W, p) =

∫
w∈W

J∗w − ĴM,∗
w

∆J∗w
p(dw)

∆J∗w =

q∑
i=1

wi

(
max
w̄∈W

J∗w̄,i − min
w̄∈W

J∗w̄,i

)

Hyper volume – Zitzler

et al. (2003)

Comparison Algorithms

Multi–Objective Fitted Q–iteration (MOFQI) (Castelletti et al.,

2012)

S–Metric Selection Evolutionary Multi–Objective Algorithm
(SMS-EMOA) (Beume et al., 2007)
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Deep Sea Treasure (Vamplew et al., 2008)

Goals: Vamplew et al. (2008)

Maximise treasure value

Minimise time steps

Features:

Deterministic Pareto frontier is concave

Optimal Frontier is obtained by mixture–policy that can be

approximate by stochastic policies
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Deep Sea Treasure – 2
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Deep Sea Treasure – 3

Algorithm Hyper–Volume # Policies
PFA 0.4589 2, 012
RA 0.3999 2, 256
SMS–EMOA 0.4895 6, 200
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Water Reservoir (Castelletti et al., 2013)

Model: Castelletti et al. (2013)

st+1 = st + εt+1 −max(at,min(āt, ut))

Reservoir inflow
et+1 = N (40, 100)

Reward Functions

R1(st, at, st+1) = −max(ht+1 − h̄, 0) flooding

R2(st, at, st+1) = −max(ρ̄− ρt, 0) irrigation supply

R3(st, at, st+1) = −max(ēt − et+1, 0) hydropower supply
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Water Reservoir – 2
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PFA approximation

RA approximation

SDP approximation

MOFQI approximation

Algorithm Loss (2-obj.) Loss (3-obj.)
Radial 0.0945 0.0123
Pareto following 0.0811 0.0162
MOFQI (Pianosi et al., 2013) 0.1870 0.0540
FQI (Ernst et al., 2005) 0.1910 0.0292
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Conclusions

Advantages

Policy Gradient

Continuous state and action
space

Arbitrary number of objectives

Stochastic policies

Works with concave Pareto
frontiers

PFA and RA features

Scalable

Parallel

Drawbacks

RA:

Lost of performances when there
are weakly dominated solutions

PFA:

Require randomization

Highly sensible to learning
parameters
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Future Works

Algorithm related works

Radial Algorithm

Different sample methods in order to avoid weakly dominated solutions

Pareto Path Following Algorithm

Investigate policy randomization

Other branches

Pareto Frontier Functional approximation (Pirotta et al., 2014)

Off–Policy algorithms
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Thank you for your attention

Slides and source code at:

http://home.dei.polimi.it/pirotta
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LQG

Single Objective

st+1 = A st +B at, at ∼ N (K · st,Σ)

rt = −sTtQst − aTtRat
Multi Objective

Ri(s, a) = −s2
i −

∑
i6=j

a2
j

Why it is interesting?

The Pareto frontier is known

Closed–form for performance measure J

It is possible to evaluate algorithm behaviours in exact and
approximate scenarios
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LQG – 2
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LQG – 3

Algorithm αs αc εs εc Directions Iterations Time Solutions Loss

PFA 0.005 0.1 0.01 0.01 - 2, 317 21s 943 3.34e− 04
RA 0.5 - 0.01 - 989 3, 840 17s 989 9.45e− 05
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