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1. Introduction

The fractal transform was discovered in 1988 by Michael F.
Barnsley. It is the basis for an image compression scheme which
was initially developed by Alan D. Sloan and M. F. Barnsley at
Iterated Systems, Inc. They used the similarities on different scales
throughout images to assist in compression. Since then, the research
literature on attractor image coding, fractal-based image coding,
fractal image coding, fractal-based image compression, fractal image
compression, fractal-based image encoding, fractal image encoding
and fractal image approximation has experienced a rapid growth.
First of all, let’s understand the interconnections between these
topics by clarifying the terms coding and encoding.

1.1 Etymology and Meaning

The origin of the word code is traced to the Latin word codex,
a manuscript (hand-written) volume, which in turn comes from
the Latin caudex, trunk of a tree or block of wood. It can be used
as either a noun or a verb. When used as a noun, it means a col-
lection of laws or a system of principles and rules (canons). In our
context, it means a system of symbols and rules used as instruc-
tions (statements) to a computer or the symbolic arrangement of
them – a computer program; for instance, instructions written by
a programmer in a programming language are often called source
code.

When code is used as a verb, it is commonly confused with
encode. There is a strong difference between the two words:
� to code means to express information through a proper standard

representation. In the context of computer science it refers to
write or revise a computer program.

� to encode means to perform an operation that transforms some
information from one representation form to another. Something
that is performing the act of encoding is, for example, an encrypter
or a compressor.

Saying ‘image-coding schemes’ or ‘image-coding methods’ lit-
erally means that the scheme or the method expresses information
relative to an image. Saying instead ‘image-encoding schemes’ or
‘image-encoding methods’ literally means that the scheme or the
method is an entity performing encoding on the images, that is,
transforming an image from one representation form to another,
which is the correct for our purpose. It looks like many computer
scientists use this wrong wording as standard nomenclature.

1.2 Key Terms

Compression is commonly confused with the notion of encod-
ing. Compression is done solely to lessen the number of symbols
to represent given piece of information. It is achieved with the
help of specific encoding of information. The process of reducing
the size of a data file is popularly referred to as data compression,

In computer science and information theory, data compression, source coding, or bit-rate reduction is the process of encoding digital
information using fewer bits than the original representation. Specifically, digital-image compression is important due to the high storage and
transmission requirements. Various compression methods have been proposed using different techniques to achieve high compression ratios.
Fractal image encoding is a technique based on the representation of an image by contractive transformations. Fractal-based image compression
methods belong to different categories according to the different theories they are based on. In this article, first we try to clarify the terminology
used and then to comprehensively unveil the mathematical principle behind fractal image compression as well as to briefly overview a variety
of schemes that have been investigated.
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although its formal name is source coding (coding done at the
source of the data before it is stored or transmitted). Image com-
pression is the application of data compression on digital images.
The objective of image compression is to reduce irrelevance and
redundancy of the image data in order to be able to store or trans-
mit data in an efficient form. Compression can be either lossless
or lossy. 

The term fractal is coined by Benoît B. Mandelbrot in 1975,
about a decade after the publication of his paper on statistical self-
similarity in the coastline of Britain. One often cited description
that he published to describe geometric fractals is ‘a rough or frag-
mented geometric shape that can be split into parts, each of which
is (at least approximately) a reduced-size copy of the whole’; this
is generally helpful but limited. A fractal is by definition a set for
which the Hausdorff-Besicovitch dimension strictly exceeds its topo-
logical dimension. However, since Hausdorff-Besicovitch dimension
is often difficult to calculate, the fractal dimension is used instead.

An iterated function system is a method for constructing frac-
tals and makes the basis of most fractal-based image compression
methods. A fractal interpolation function can be considered as a con-
tinuous function whose graph is the attractor of an appropriately
chosen iterated function system. If this graph, usually of noninte-
gral dimension, belongs to the three dimensional space and has
Hausdorff–Besicovitch dimension between 2 and 3, then the result-
ing attractor is called fractal interpolation surface.

Fractal compression refers to a number of lossy compression
methods, based on fractals. When applied to digital images, it is
called fractal image compression. It differs from pixel-based com-
pression schemes such as Joint Photographic Experts Group
(JPEG), Graphics Interchange Format (GIF) or Moving Picture
Experts Group (MPEG) since no pixels are saved; for compari-
son’s sake see [1]. It is best suited for textures and natural images,
relying on the fact that parts of an image often resemble other parts
of the same image. Special algorithms convert these parts into
mathematical data called fractal codes which are used to recreate
the encoded and compressed image. These codes can be decoded
to fill any screen size without the loss of sharpness that occurs in
conventional compression schemes.

The purpose of this article is to overview some basic approaches
to fractal-based image encoding and compression in very simple
terms, with as little mathematics as possible. Before delving into the
main study, we first present the development of an iterated function
system. Next, we examine the theoretical formulation of affine fractal
interpolation functions as attractors of an appropriately defined
iterated function system in two and three dimensions. Moreover,
we examine an extension of the affine fractal interpolation func-
tions, namely the piecewise affine fractal interpolation functions.
Furthermore, some fundamental fractal compression schemes
which use iterated function systems will be presented. Main dif-
ferences with other fractal-based image compression schemes
will be briefly explained. Finally, some conclusions will be drawn.
A fairly full picture of the relevant literature is presented in [2] and
[3] until the day of their publication. The concepts of fractals, iter-

ated function systems and local iterated function systems are dis-
cussed and different implementations of compression of both still
images and image sequences are reviewed in [4], [5], [6], [7], [8]
and [9]. The bibliography presented here contains the recent bare
essentials which are not included in the aforementioned articles.

2. Fractal Image Generation

In mathematics, an iterated function is a function which is
composed with itself, possibly ad infinitum, in a process called
iteration. Iteration means the act of repeating a process with the
aim of approaching a desired goal, target or result. The formal def-
inition of an iterated function on a set X follows. Let X be a set
and f a function from Χ to itself i.e. a transformation. Define f k as
the k-th iterate of f, where k is a non-negative integer, by f 0 � idX

and f k�1 � f � f k, where idX is the identity function on X and f � g
denotes function composition.

Α contraction mapping, or contraction, on a metric space (X, ρ)
is a transformation f, with the property that there is a nonnegative
real number s � 1 such that for all x and y in X, ρ(f(x), f(y)) � s ⋅
ρ(x, y), where ρ is a distance function between elements of X. The
smallest such value of s is called the Lipschitz constant or contrac-
tivity factor of f. If the above condition is satisfied for s � 1, then
the mapping is said to be non-expansive. A contraction mapping
has at most one fixed point, i.e. a point x* in X such that f(x*) �
x*. Moreover, the Banach fixed point theorem, also known as the
contraction mapping theorem or contraction mapping principle, states
that every contraction mapping on a nonempty, complete metric
space has a unique fixed point, and that for any x in X the iter-
ated function sequence x, f(x), f(f(x)), f(f(f(x))), … converges to
the fixed point. Furthermore, this fixed point can be found as
follows: Start with an arbitrary element x0 in X and define an iter-
ative sequence by xn � f(xn�1) for n � 1, 2, 3, … . This sequence
converges and its limit is x*.

An iterated function system, or IFS for short, is defined as
a collection of a complete metric space (X, ρ), e.g. (�

D n, ��⋅��) or
a subset, together with a finite set of continuous transformations
{wi : X → X, i � 1, 2, …, M}. It is often convenient to write an IFS
formally as {X; w1, w2 , …, wM} or, somewhat more briefly, as {X;
w1�M}. If wi are contractions with respective contractivity factors si ,
i � 1, 2, …, M, the IFS is termed hyperbolic.

John E. Hutchinson showed in [10] that, for the metric space
�
D n, such a (hyperbolic) system of functions has a unique compact
(closed and bounded) fixed set S. One way for constructing a fixed
set is to start with an initial point or set S0 and iterate the actions
of the wi , taking Sn�1 to be the union of the image of Sn under the
wi ; then taking S to be the closure of the union of the Sn . Sym-
bolically, the unique fixed (nonempty compact) set S � � has the
property

.

The set S is thus the fixed set of the Hutchinson operator
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,

where A is any subset of �n. The operator H itself is a contraction
with contractivity factor s � max{s1, s2 , …, sM} ([11], Theorem
7.1, p. 81 or [12]). The existence and uniqueness of S, which is
called the attractor of the IFS, is a consequence of the contraction
mapping principle as is the fact that lim

k → 

Hk(A) � S � A
 for all

A in H(�n), where H (X) is the metric space of all nonempty,
compact subsets of X with respect to some metric, e.g. the Haus-
dorff metric. The operator H is also called the collage map to alert
us to the fact that H(A) is formed as a union or ‘collage’ of sets. 

Fractals derived by IFSs can be of any number of dimensions,
but are commonly computed and drawn in 2D. A fractal is made up
of the union of several copies of itself, each copy being transformed
by a function (hence ‘function system’). The canonical example is
the Sierpinski gasket; see Fig. 1. The functions are normally con-
tractions which means they bring points closer together and make
shapes smaller. Hence, such a shape is made up of several possi-
bly-overlapping smaller copies of itself, each of which is also made
up of copies of itself, ad infinitum. This is the source of its self-
similar nature.

Note that this infinite process is not dependent upon the start-
ing shape being a triangle – it is just clearer that way. The first few
steps starting, for example, from a square also tend towards a Sier-
pinski gasket; see Fig. 2.

Sometimes each function wi is required to be a linear, or more
generally an affine transformation, and hence represented by
a matrix. A transformation w is affine, if it may be represented by
a matrix A and translation t as w(x) � Ax � t, or, if X � �2, 
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The code of w is the 6-tuple (a, b, c, s, d, e) and the code of an

IFS is a table whose rows are the codes of w1, w2, …, wM . For the
three-dimensional case (grey-scale images) this becomes 

, (2)

where I(x, y) denotes the grey-scale value at location (x, y). So, the
similarity that exists in different parts of an image could be described
in a finite set of instructions and data. Using some image-areas of
the image, by rotating, resizing and stretching them, it is possible
to generate other parts of the image. However, IFSs may also be
built from non-linear functions, including projective and Möbius
transformations.

The most common algorithm to compute fractals derived by
IFSs is called the chaos game or random iteration algorithm. It con-
sists of picking a random point in the plane, then iteratively applying
one of the functions chosen at random from the function system
and drawing the point. An alternative algorithm, the deterministic
iteration algorithm, or DIA for short, is to generate each possible
sequence of functions up to a given maximum length and then to
plot the results of applying each of these sequences of functions
to an initial point or shape.

3. Fractal Interpolation 

Based on a theorem of J. E. Hutchinson ([10], p. 731) and
using IFS theory [12], M. F. Barnsley introduced a class of func-
tions (see [11]) which he called fractal interpolation functions. He
worked basically with affine fractal interpolation functions, in the
sense that they are obtained using affine transformations. Their
main difference from elementary functions is their fractal character.
Since their graphs usually have non-integral dimension, they can
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Fig. 1 The evolution of the Sierpinski gasket

Fig. 2 Iterating from a square
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be used to approximate image components such as the profiles of
mountain ranges, the tops of clouds and horizons over forests, to
name but a few. Applications of this theory include modelling of
discrete sequences as in [13], modelling of speech signals as in [14]
and compression of static images as in Ref. [AlCl94] of [2]. 

3.1 Interpolation Functions in �

Let the continuous function f be defined on a real closed inter-
val I � [x0 , xM] and with range the metric space (�, |⋅|), where
x0 � x1 � ··· � xM . It is not assumed that these points are equidis-
tant. The function f is called an interpolation function correspond-
ing to the generalized set of data {(xm , ym) � K � I � � : m � 0,
1, …, M}, if f (xm) � ym for all m � 0, 1, …, M and K � I � �.
The points (xm, ym) � � are called the interpolation points. We say
that the function f interpolates the data and that (the graph of) f
passes through the interpolation points.

Let us represent our, real valued, set of data points as {(un , vn) :
n � 0, 1, …, N; un � un�1} and the interpolation points as {(xm,
ym) : m � 0, 1, …, M; M � N}, where un is the sampled index and
vn the value of the given point in un . Let {�2; w1�M} be an IFS with
affine transformations of the special form (see (1))

constrained to satisfy

and (3)

for every i � 1, 2, …, M. Solving the above equations results in
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i.e. the coefficients ai , ci , di , ei are completely determined by the
interpolation points, while the si are free parameters satisfying
|si| � 1 in order to guarantee that the IFS is hyperbolic with
respect to an appropriate metric for every i � 1, 2, …, M. The trans-
formations wi are shear transformations: line segments parallel to
the y-axis are mapped to line segments parallel to the y-axis con-
tracted by the factor |si|. For this reason, the si are called vertical
scaling (or contractivity) factors. 

The IFS {�2; w1�M} has a unique attractor that is the graph of
some continuous function which interpolates the data points. This
function is called a fractal interpolation function, or FIF for short,
because its graph usually has non-integral dimension. A section is
defined as the function values between interpolation points. It is
a self-affine function since each affine transformation wi maps the
entire (graph of the) function to its section. The above function is
known as affine FIF, or AFIF for short. For example, let {(0, 0),
(0.4, 0.5), (0.7, 0.2), (1, 0)} be a given set of data points. Fig. 3
shows the graph of an AFIF with s1 � 0.5, s2 � �0.2 and s3 �
0.4. The closeness of fit of a FIF is mainly influenced by the deter-
mination of its vertical scaling factors. No direct way to find the
optimum values of these factors exists and various approaches
have been proposed in the literature.

3.2 Piecewise Affine Fractal Interpolation

The piecewise self-affine fractal model is a generalization of the
affine fractal interpolation model and has its mathematical roots
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embedded in recurrent IFS, or RIFS for short, theory. A pair of
data points {(x~i,j , y~i,j ): i � 1, 2, …, M; j � 1, 2}, which are called
addresses or address points, is now associated with each interpola-
tion interval. Each pair of addresses defines the domain or address
interval. The constraints (3) become

and 

subjected to x~i,1 � x~i,2 � xi � xi�1 for every i � 1, 2, …, M. Solving
the above equations results in

, ,

,

for every i � 1, 2, …, M. The function constructed as the attractor
of the above-mentioned IFS is called recurrent fractal interpolation
function, or RFIF for short, corresponding to the interpolation
points. A RFIF is a piecewise self-affine function since each affine
transformation wi maps the part of the (graph of the) function
defined by the corresponding address interval to each section.

3.3 Interpolation Functions in �2

Suppose we refer to an image as a function z � z(x, y) that
gives the grey level at each point (x, y). Let the discrete data 
{(xi , yj , zi,j � z(xi , yj )) � �3 : i � 0, 1, …, N; j � 0, 1, …, M} be
known. Each affine mapping that comprises the hyperbolic IFS
{�3; w1�Ν, 1�Μ} is given by the following special form of (2)

, 

with |sn,m| � 1 for every n � 1, 2, …, N and m � 1, 2, …, M. The
condition

ensures that

is a similitude and the transformed surface does not vanish or flip
over.

FIFs are suitable for data sets with points linearly ordered with
respect to their abscissa. This is often sufficient, e.g. when interpo-
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lating time series data. In practice, however, there are many cases
where the data are suitable for fractal interpolation but define
a curve rather than a function, e.g. when modelling coastlines or
plants. There exist methods for constructing fractal interpolation
curves based on the theory of FIFs. These methods use various
approaches, such as generalizations to higher dimensions, use of
index coordinates or application of reversible transformations.

4. Fractal Image Encoding and Compression

Fractal encoding relies on the fact that all natural, and most
artificial, objects contain redundant information in the form of
similar, repeating patterns or fractals. The encoding process is
computationally intensive. Depending upon the resolution and
contents of the input bitmap data, and output quality, compression
time, and file size parameters selected, compressing a single image
could take anywhere from a few seconds to a few hours on even
a fast computer; see also [15]. Decoding a fractal image is a much
simpler process. All the decoding process needs to do is to inter-
pret the fractal codes and translate them into a bitmap image.

The fundamental principle of fractal-based image compres-
sion consists of the representation of an image by an IFS of which
the fixed point is ‘close’ to that image. In other words, the encoding
process is first to find an IFS and then a suitable operator H whose
fixed point is ‘close’ to the given image. 

4.1 Based Directly on the Collage Theorem

The collage theorem characterizes an IFS whose attractor is
close, relative to some metric, to a given set. The IFS described is
composed of contractions whose images, as a collage or union when
mapping the given set, are arbitrarily close to the given set.

If B � (H(�n), h), where h is a metric, obeys h(B, H(B)) � ε,
then

,

where s � max{si : i � 1, 2, …, N}. Therefore, the closer the union
is to the given set, the closer the attractor of the IFS will be to the
given set. The theorem, however, is not constructive, it does not
indicate how to find a set of proper mappings, but rather, it pro-
vides a way to test an IFS without need for computation of the
attractor.

To find an IFS for an image, based on the collage theorem
and the property of IFS attractors, we split the whole image into
non-overlapping segments whose union covers the entire image. If
each segment is a transformed copy of the entire image or is very
close to it, the combination of these transformations is the IFS of
the original image. In other words, to encode an image into IFS is
to find a set of contractive affine transformations, w1 , w2, …, wN,
so that the original image B is the union of the N subimages: B �
� w1(B) � w2(B) � … � wN(B).

A,h B
s1

#
f

-
3_ i



53C O M M U N I C A T I O N S    3 / 2 0 1 3   �

4.2 Based on the Fractal Transform

The fractal transform [16] was considered to solve effectively
the problem of finding a fractal which approximates a digital ‘real
world image.’ This first practical fractal compression system for
digital images resembles a vector quantization system using the
image itself as the codebook. 

Fractal Transform compression
Start with a digital image A1. Downsample (subsample) it by

a factor of 2 to produce image A2. Now, for each block B1 of 4�4
pixels in A1, find the corresponding block B2 in A2 most similar to
B1 and then find the grey-scale or RGB offset and gain from A2 to
B2 . For each destination block, output the positions of the source
blocks and the color offsets and gains.

An image compressed in this way contains a minimal area plus
a transformation matrix that contains all required information to
reconstruct something similar to the original image by rotating,
resizing and stretching this area. Therefore the task of fractal
encoding algorithms is to find redundant areas of an image and to
reduce these areas to the necessary information about attractor
and transformation matrix. To perform this task, the image is
divided into domains in coarse or fine resolution depending on the
redundancy of the image. Then the routine searches the image for
ranges that have a similarity to the domain that can be described
by an affine transformation matrix. The names of these blocks are
reversed in Ref. [7, p. 181] of [3].

Fractal Transform decompression
Starting with an empty destination image A1, repeat the fol-

lowing algorithm several times: Downsample A1 down by a factor
of 2 to produce image A2. Then copy blocks from A2 to A1 as
directed by the compressed data, multiplying by the respective gains
and adding the respective color offsets.

This algorithm is guaranteed to converge to an image, and it
should appear similar to the original image. In fact, a slight mod-

ification of the decompressor to run at block sizes larger than 4�4
pixels produces a method of stretching images without causing the
blockiness or blurriness of traditional linear resampling algorithms.

4.3 Based on Local (Partitioned) IFS

IFS approximates each part of the image by a transformed
version of the whole image, but our intuition suggests that real-world
images, generally, do not contain parts that are affine transforms
of the whole image (Fig. 4). Nevertheless, different parts of the
image may become similar under certain affine transformation.
Therefore, an extension of the IFS, the Local or Partitioned IFS,
has been developed to approximate each part of the image by a trans-
formed version of another part of the image. Τhe first automated
compression scheme for real world images using PIFS was devel-
oped by Arnaud E. Jacquin (Ref. [26] of [3]) in 1992. 

Suppose we are given an image f we wish to encode. We divide
the image into range blocks R1, R2, …, Ri , …, RN , such that f �
� R1 � R2 � ⋅⋅⋅ � RN and Ri � Rj � � when i � j. Therefore, the
range blocks cover the whole image and do not overlap. The
image is also divided into overlapping domain blocks D1, D2, …,
Dj , …, DM . For each range block Ri , we find a contractive trans-
formation wi and a domain block Dj , so that Ri � wi (Dj). The
combination of w1, w2, …, wi, …, wN is called PIFS H. If H is
simpler than the original image, we can encode f into H and achieve
certain compression. When decoding, according to the contractive
mapping fixed point theorem, as long as H is contractive, repeated
application of H to an arbitrary image will result in a fixed image.
When H(f ) is close to f, the fixed image will be close to the origi-
nal image f.

The three main issues involved in the design and implemen-
tation of a fractal block-coding system based on the above idea are
(i) how the image is partitioned, (ii) the choice of a distortion
measure between two images and (iii) types of contractive affine
transformations to be used. We do not intend to discuss these

Fig. 4 The original 256 � 256 � 8 bpp image of Lenna (left) and self-similar portions of Lenna’s image (right)
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issues; see [17] for highlighting the solution to the key and open
issues in the fractal coding. It is noteworthy to mention, though,
how important is to find a similar block so that the IFS accurately
represents the input image, so a sufficient number of candidate
blocks for Di need to be considered. On the other hand, a large
search considering many blocks is computationally costly. This
bottleneck of searching for similar blocks is why fractal encoding
is slower than for example DCT, the underlying compression tech-
nique in JPEG, and wavelet based image representations.

4.4 Based on RIFS or on FIF

A RIFS is an improvement of LIFS using elements of the
theory of Marcovian stochastic processes which can produce more
natural looking images; see [18]. An image compression scheme
using fractal interpolation surfaces which are attractors of some
RIFSs is introduced in [19]. Alternative image compression
methods which use the method presented in Subsection 3.3 can be
found in [20]. Many enhancements and variations exist, as for
example [21], but they fall beyond the scope of this discussion.

The resolution independence of a fractal-encoded image can
be used to increase the display resolution of an image. During this
process, also known as fractal interpolation, an image is encoded
into fractal codes via fractal compression and subsequently decom-
pressed at a higher resolution. The result is an up-sampled image
in which an appropriately chosen iterated function system has been
used as the interpolant. Because fractal interpolation operates on
geometric information in the image, rather than pixel information,
it maintains geometric detail very well compared to other inter-
polation methods.

5. Conclusions

Our clarification of terminology used in the existing literature
led to the conclusion that fractal image compression is also called
as fractal image encoding because a compressed image is repre-
sented by contractive transformations and mathematical functions
required for reconstructing the original image.

Lossless compression methods are sometimes preferred for
artificial images such as technical drawings, icons or comics. This
is because lossy compression, especially when used at low bit rates,
introduce compression artifacts. Lossless compression may also be
preferred for high value content, such as medical imagery or image
scans made for archival purposes. Lossy methods are especially
suitable for natural images such as photos in applications where
minor loss of fidelity is acceptable to achieve a substantial reduc-
tion in bit rate. For further details see [22] and [23].

Fractal image compression enables an incredible amount of
data to be stored in highly compressed data files. An inherent
feature of fractal compression is that images become resolution
independent after being converted to fractal code. This is because
the iterated function systems in the compressed file scale indefi-
nitely. This indefinite property, known as fractal scaling or fractal
zooming, leaves no trace of the original pixel structure.
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