CCSW 10

Remote Data Checking for
Network Coding-based
Distributed Storage Systems

Bo Chen, Reza Curtmola, Giuseppe Ateniese, Randal Burns

New Jersey Institute of Technology Johns Hopkins University

Remote Data Checking for Network Coding-

Bo Ch tal. -
oLnenetd based Distributed Storage Systems

Motivation

* Cloud storage can release people from the burden of
hardware management

Reduce the cost (storage as a service, pay as you use)
* Increased reliability

Remote Data Checking for Network Coding-
Bo Chen et al. . 2
based Distributed Storage Systems

Reliability in Distributed Storage Systems

* Traditional approaches to store data redundantly at
multiple servers:

— Replication

— Erasure Coding

2MB

Bo Chen et al.

* Reduced storage overhead

e Large bandwidth overhead for repair (entire file is retrieved)

Replication

repair

G G %
new replica

K , created

b ?\At 1MB

Any 2 blocks are enough to recover original

file

Remote Data Checking for Network Coding-
based Distributed Storage Systems

repair

)/L,

new coded block

9\ i created

(3,2) Erasure coding
3

Reliability based on Network Coding

 Network Coding (Regenerating Code): a new coding
method that sacrifices some storage overhead for
repair bandwidth

— Compute coded blocks as linear combinations of original blocks

— Repair bandwidth is optimal (retrieve x bits to repair x bits)

coding coefficient

0.66MB

0.66MB

new coded blocks
created

0.66MB

Network coding (n=3, k=2)

Remote Data Checking for Network Coding-

Bo Ch tal. -
oLnenetd based Distributed Storage Systems

Applications that benefit from network coding

* Applications with read-rarely workloads
benefit most from the low bandwidth repair
overhead of network coding:

- Regulatory storage

- Data escrow

- Deep archival stores

- Preservation systems for old datasets

The Need for Remote Data Integrity Checking

What if storage servers are not trusted?

Client must ensure storage servers don’t misbehave

Client periodically checks integrity of outsourced
data (challenge phase)

Client takes action (repair) upon detecting corruption
at one of the storage servers (repair phase)

Performance Comparison

Replication | (n, k) Erasure Coding | (n, k) Network Coding

(MR-PDP) | (HAIL) ()
[CKBA 08] | [BJO 09]

Total server storage @

Communication | F| | F| 2|F|/(k+1)
(repair phase)

Network overhead @ @ @

factor (repair phase)

Server computation O(1) O(1) O(1)
(repair phase)

RDC-NC is built on top of network coding-based distributed storage systems

e |F| = size of the file F, which is outsourced at n servers

e Any k out of n servers have enough information to recover F
(for erasure coding and network coding)

e Network overhead factor: the ratio between the amount of data that needs to be
retrieved to the amount of data that is created to be stored on a new server

Remote Data Checking for Network Coding-

Bo Chenetal. based Distributed Storage Systems

Adversarial Model

* Mobile adversary that can behave arbitrarily (Byzantine
behavior).

 The adversary can corrupt at most n-k out of the n
servers within any given time interval (an epoch).

* An epoch consists of two phases
— Challenge phase
* Corruption sub-phase (adversary can corrupt up to b1 servers)
* Challenge sub-phase
— Repair phase
* Corruption sub-phase (adversary can corrupt up to b2 servers)
* Repair sub-phase

e bl+b2<=n-k

Contributions

* Desigh a secure Remote Data Integrity Checking
scheme for Network Coding-based distributed
storage systems (Our focus in this presentation)

— Optimize combined costs of challenge and repair phases

— Preserve in an adversarial setting the repair bandwidth
advantage of network coding over erasure coding

* Guidelines on how to apply network coding in a
distributed-storage system based on untrusted
server

 Experimental evaluation for our scheme

Challenges

* Localize faulty servers

e Lack of fixed file layout (makes it difficult to maintain
constant storage on client)
— Erasure coding has fixed file layout (a new, repaired block
is identical to the original block)
* Additional attacks. Replay attack, pollution attack, ...

— The newly generated blocks in repair are not necessarily
equal to the original blocks (replay attack)

— The untrusted servers are responsible for generating the
blocks in repair phase (pollution attack)

Maintaining Constant Client Storage

e Can single server solutions (PDP [ABCHKPS 07], PoR
[JK 07, SW 08]) be adapted? No!

— collusion of servers (server can reuse each other’s data
and meta-data to answer the challenge)

* Use metadata for integrity checks (allows to easily
localize faulty servers)

 Meta-data is customized per server per block: assign
a logical ID to coded blocks (server index| |block_index) and
embed IDs and coding coefficients into meta-data
— Tackle the problem of collusion of servers
— Provide integrity for every block in every server

Replay Attack

* By replaying intentionally, the adversary can corrupt the
whole system

— Replay attack is specific for random network coding-based distributed
storage systems (reduce the linear independency of blocks, eventually
corrupt the whole system)

— Difficult to detect and maintain constant client storage
(3, 2) network coding, original file contains 3 blocks (b1, b2, b3)

(D
©
o
@)
0
=

Bo Chen et al.

-

epoch?2

\

/P—\

S m—— g
_//

epoch3

\ Replay without being detected

Remote Data Checking for Network Coding-

based Distributed Storage Systems

The original data is
unrecoverable

H}HI

epoch4

Replay Attack (cont.)

* Our solution for replay attack

— We encrypt the coding coefficients (under the
assumption that the original file should not be
public)

— We prove that by encrypting the coefficients, a
malicious server’s ability to execute a harmful
replay attack becomes negligible

* The server cannot do better than randomly select blocks for replay attack
* Please refer to the paper for the detailed proof.

Inconsistency between Challenge Phase
and Repair Phase

* Malicious servers can pretend to be good in
challenge phase, but behave maliciously in
repair phase.

— Corrupt data (pollution attack)

— Do not use the random coefficients to generate
the new block (entropy attack)

Inconsistency between Challenge Phase

and Repair Phase (cont.)
e Our solution

— Repair tag which supports aggregation

— Client picks the random coefficients and enforces servers to use
— Client checks if servers use correctly coded blocks

— Client checks if servers use coding coefficients provided by client

Repair
server side client side

repair tag

0.66MB
0.66MB ;
1 new coded block
0.66MB = } i created
T=(t)(t)*
proof that coded block is correctly computed
Bo Chen et al. Remote Data Checking for Network Coding-

based Distributed Storage Systems

RDC-NC Overview

e Setup phase

— Encode the original m-block file into na blocks by
random network coding (coefficients are generated
randomly).

— Generate challenge tags and repair tag for every block

* Every block is a collection of segments, every segment has
one challenge tag (PDP or PoR tag), used in challenge phase

* One repair tag per block (to prevent attacks in repair phase)
— Encrypt the coefficients (replay attack)

— Outsource the encoded blocks (together with
encrypted coding coefficients) and metadata
(challenge and verification tags)

* o blocks at each of the n servers

Scheme Overview (cont.)
* Challenge phase

— Check every block in every server based on challenge tags

e Optimize the communication cost by aggregating the responses of a
blocks (PDP or PoR tags supports aggregation)

* Repair phase
— Repair phase is activated after having found corrupted servers in
challenge phase
— Client will communicate with some healthy servers
e Client send random coefficients to servers

e Servers use the random coefficients to compute new coded blocks

» Servers also use the random coefficients to compute a proof that the new
coded blocks are correctly computed

* Severs send back the coded blocks and the proofs

— Client checks the proofs, and uses the correctly generated blocks to
repair the corrupted servers

Conclusion

 Network coding (regenerating code) is a
promising coding method for distributed
storage systems (reduced repair bandwidth)

 Our RDC-NC scheme is designed for a strong
adversarial model (mobile and Byzantine)

* RDC-NC is secure by tackling various attacks
(data corruption, collusion of servers, replay
attack, pollution attack, ...)

Bo Chen et al.

Thank you!

Questions?

Remote Data Checking for Network Coding-
based Distributed Storage Systems

19

