
Search Lookaside Buffer:
Efficient Caching for Index Data Structures

Xingbo Wu, Fan Ni, Song Jiang

Background

● Large-scale in-memory applications.
○ In-memory databases
○ In-memory NoSQL stores and caches
○ Software routing tables

2

● They rely on index data structures to access their data.

B+-tree Hash Table

Background

● Large-scale in-memory applications.
○ In-memory databases
○ In-memory NoSQL stores and caches
○ Software routing tables

3

● They rely on index data structures to access their data.

● “hash index (i.e., hash table) accesses are the most
significant single source of runtime overhead, constituting
14–94% of total query execution time.” [Kocberber et al., MICRO-46]

CPU Cache is Not Effectively Used

● Indices are too large to fit in CPU cache.
In-memory Database: “55% of the total memory”. [Zhang et al., SIGMOD’16]

In-memory KV caches: 20–40% of the memory. [Atikoglu et al., Sigmetrics’12]

● Access locality has potential to address the problem.
Facebook’s Memcached workload study:

“All workloads exhibit the expected long-tail distributions, with a small percentage

of keys appearing in most of the requests. . .”

● However, data locality is compromised during index search.

4

Case Study: Search in a B+-tree-indexed Store

5
10 GB

10 M ops/secStore size: 10 GB

8B Keys, 64B Values

Zipfian workload

40 MB CPU cache

Accessed data set:

Case Study: Search in a B+-tree-indexed Store

6

Store size: 10 GB

8B Keys, 64B Values

Zipfian workload

40 MB CPU cache

12.5 M ops/sec

10 MBAccessed data set:

10 M ops/sec

Case Study: Search in a B+-tree-indexed Store

7

382 M ops/sec
If we remove the index and put
the same data set in an array

Store size: 10 GB

8B Keys, 64B Values

Zipfian workload

40 MB CPU cache

10 GBAccessed data set:

10 M ops/sec

12.5 M ops/sec

A Look at Index Traversal

● Index search in B+-tree: binary search at each node

8

A Look at Index Traversal

● Index search in B+-tree: binary search at each node

9

A Look at Index Traversal

● Index search in B+-tree: binary search at each node

10

A Look at Index Traversal

● The intermediate entries on the path become hot.

11

False Temporal Locality

● The intermediate entries on the path become hot.
● The purpose of index search is to find the target entry.

Target Entry
12

False
temporal
Locality

False Spatial Locality

● Each hot intermediate entry occupies a whole cache line.
● Touched cache lines ≫ entries required in the search.

64-byte
cache lines

13

False
spatial

Locality

● Chains or open addressing lead to false temporal locality.
● False spatial locality is significant even with short chains.

False Localities on a Hash Table

The target entry

14

A Closer Look at Your CPU Cache

● Cache space is occupied by index entries of false localities.

Intermediate
entries

Target entries

15

Existing Efforts on Improving Index Search

● Redesigning the data structure: Cuckoo hash, Masstree..
○ Must be an expert of the data structure
○ Optimizations are specific to certain data structures
○ May add overhead to other operations (e.g., expensive insertions)

● Hardware accelerators: Widx, MegaKV, etc.
○ High design cost
○ Hard to adapt to new index data structures
○ High latency for out-of-core accelerators (e.g., GPUs, FPGAs)

16

The Issue of Virtual Address Translation

Use of page tables shares the same challenges of index
search.

● Large index: every process has a page table.
● Frequently accessed: consulted in every memory access.
● False temporal locality: tree-structured tables.
● False spatial locality: intermediate page-table directories.

17

Fast Address translation with TLB

TLB directly caches Page Table Entries for translation.

➔ Bypasses page table walking
➔ Covers large memory area with a small cache

PTE

TLB
PTEPTEPTEPTEPTE

18

Our Solution: Search Lookaside Buffer

● Pure software library

● Easy integration with any index data structure

● Negligible overhead even in the worst case

19

Index Search with SLB

Every lookup first consults SLB.

SLB_GET

Not found

X = SLB_GET(key)
if X:
 return X

X = INDEX_GET(key)
if X:
 SLB_EMIT(key, X)
 return X

return NULL

20

Emits a target entry after successful search.

Index Search with SLB

21

X = SLB_GET(key)
if X:
 return X

X = INDEX_GET(key)
if X:
 SLB_EMIT(key, X)
 return X

return NULL

A hit in SLB cache completes the search.

Index Search with SLB

SLB_GET

KV

22

X = SLB_GET(key)
if X:
 return X

X = INDEX_GET(key)
if X:
 SLB_EMIT(key, X)
 return X

return NULL

Design challenges

❖ Tracking KV temperatures can pollute CPU cache

➢ Cache-line-local access counters for cached items.

➢ Approximate access logging for uncached items.

23

Design challenges

❖ Tracking temperatures of items can pollute CPU cache

➢ Cache-line-local access counters for cached items.

➢ Approximate access logging for uncached items.

❖ Frequent replacement hurts index performance

➢ Adaptive logging throttling for uncached items.

❖ More details in the paper...

24

Experimental Setup

● B+-tree, Skip list, and hash tables

● Filled with 108 KVs (8B K, 64B V)

● Store size: ~10GB

● Zipfian workload

● Accessed data set: 10MB->10GB

● SLB size: 16/32/64 MB

● Uses one NUMA node (16 cores)

25

B+-tree and Skip List

● Significant improvements for ordered data structures
○ Substantial False localities caused by index traversal

B+-tree Skip list

26

15x
2.5x

Hash Tables

● Chaining hash table: average chain length <= 1
○ The index has no false temporal locality.
○ improves by up to 28% by removing false spatial locality

Cuckoo Chaining

27

+50%

+28%

High-performance KV Server

● An RDMA-port of MICA [Lim et al., NSDI’14]
○ In-memory KV store
○ Bulk-chaining partitioned hash tables
○ Batch-processing
○ Lock-free accesses

28

MICA over 100Gbps Infiniband

● GET: Limited improvements due to network bandwidth.
10.7GB/s
~90% Bandwidth

GET PROBE

● PROBE: only returns True/False

29

+20%~66%

Conclusion

● We identify the issue of false temporal/spatial locality in index

search.

● We propose SLB, a general software solution to improve search

for any index data structure by removing the false localities.

● SLB improves index search for workloads with strong locality,

and imposes negligible overhead with weak locality.

30

Thank You !
☺ Questions?

31

Backup slides

32

Replaying Facebook KV Workloads

Five key-value traces
collected on production
memcached servers

[Atikoglu et al., Sigmetrics’12]

33

Replaying Facebook KV Workloads

USR:
GET-dominant
Less skewed
Working set >>> cache
No improvement

34

Replaying Facebook KV Workloads

APP & ETC:
More skewed
Working set fits the cache
10%-30% DELETE
frequent invalidations in SLB
Improvement < 20%

35

Replaying Facebook KV Workloads

SYS & VAR:
GET & UPDATE
Working set fits the cache
Improvement > 43%

36

