Θ

 $\begin{array}{c} \text{Unification in} \\ \mathcal{EL} \end{array}$

Baader & Morawska

Introduction

 $\begin{array}{c} \mathcal{EL}\text{-}\\ \text{unification} \end{array}$

Minimal unifiers

Decision Procedure

Conclusion

Unification in the Description Logic \mathcal{EL}

Franz Baader and Barbara Morawska

TU Dresden, Germany

UNIF 2009

Unification in \mathcal{EL}

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure

Conclusion

UNIF 2008 Unification in \mathcal{EL} is of type zero.

UNIF 2009 Unification in \mathcal{EL} is decidable and is in NP. Unification problem in \mathcal{EL} is NP-complete.

Outline

Unification in \mathcal{EL}

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure

Conclusion

1 Introduction

2 \mathcal{EL} -unification

- 3 Towards a decision procedure
 - Reductions and reduced form
 - Subsumption order and its inverse
 - Minimal Unifiers

4 Decision Procedure

- Computing minimal unifiers
- Complexity

5 Conclusion

Description Logic \mathcal{EL}

$\begin{array}{c} \text{Unification in} \\ \mathcal{EL} \end{array}$

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure

Conclusion

- Concept names: City, Cathedral,
- Top concept: ⊤,
- Conjunction: ¬,
- Existential restriction: ∃*has-location*.⊤

Example (concept term)

City $\sqcap \exists$ location. East-South of Germany \sqcap \exists university. \top

Description Logic \mathcal{EL}

Unification in

Baader & Morawska

Introduction

 $\begin{array}{c} \mathcal{EL}\text{-}\\ \text{unification} \end{array}$

Minimal unifiers

Decision Procedure

Conclusion

Semantics

 (Δ, \mathcal{I}) is an interpretation, where:

- Concepts are sets: if $A \in N_C$, $A^{\mathcal{I}} \subseteq \Delta$;
- Roles are binary relations: if $r \in N_R$, $r^{\mathcal{I}} \subseteq \Delta \times \Delta$;
- \top is the domain: $\top^{\mathcal{I}} = \Delta$;
- Conjunction is intersection: $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}};$
- $(\exists r. C)^{\mathcal{I}} = \{ c \in \Delta \, | \, \exists b \in \Delta. (c, b) \in r^{\mathcal{I}} \text{and } b \in C^{\mathcal{I}} \}$

Subsumption and equivalence

• Subsumption:

 $C \sqsubseteq D$ iff for all interpretations $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

- Equivalence:
 - $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$

Variables in \mathcal{EL}

$\begin{array}{c} \text{Unification in} \\ \mathcal{EL} \end{array}$

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure

Conclusion

We define a set of variables N_V as a subset of N_C .

Idea: concept names in N_V may be defined differently by different users or developers of a given ontology.

Concepts from N_V can be substituted with concept terms, concepts from N_C cannot be substituted.

$\mathcal{EL}\text{-}\mathsf{Unification}$

Unification in \mathcal{EL}

Baader & Morawska

Introduction

 \mathcal{EL} unification

Minimal unifiers

Decision Procedure

Conclusion

Example:

City □ ∃ location. East-South of Germany
 □ ∃ size. (more-than-500000 □
 less-than-1000000)

● Settlement □ ∃ has. Cathedral □ ∃ location.Saxony □ ∃ size. middle

$\mathcal{EL}\text{-}\mathsf{Unification}$

Unification in \mathcal{EL}

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure

Conclusion

EL-Unification Problem

is a set of equalities, $C_1 \equiv D_1, \ldots, C_n \equiv D_n$, where C_i, D_i are \mathcal{EL} -concept terms.

A substitution σ is an \mathcal{EL} -unifier (solution)

of an \mathcal{EL} -unification problem $C_1 \equiv D_1, \ldots, C_n \equiv D_n$ if $\sigma(C_1) \equiv \sigma(D_1), \ldots, \sigma(C_n) \equiv \sigma(D_n)$.

Θ

SLmO – semilattices with monotone operators

Unification in

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure

Conclusion

$$SLmO = \{ x \land (y \land z) = (x \land y) \land z, x \land y = y \land z, x \land x = x, x \land 1 = x, \{f_i(x \land y) \land f_i(y) = f_i(x \land y) \mid 1 \le i \le n \}$$

 \bullet \sqcap is associative, commutative and idempotent,

•
$$\exists r_i.(C \sqcap D) \sqcap \exists r_i.D \equiv \exists r_i.(C \sqcap D)$$

Existential restriction is not a homomorphism: $\exists r.(A \sqcap B) \subsetneq \exists r.A \sqcap \exists r.B$

$\mathcal{EL}\text{-problem}$ of Type Zero

$\begin{array}{c} \text{Unification in} \\ \mathcal{EL} \end{array}$

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure

Conclusion

What are the unifiers of the following goal: $\exists R.Y \sqsubseteq^{?} X$

For example:

- $[X \mapsto \exists R.Z_1, Y \mapsto Z_1]$
- $[X \mapsto \exists R.Z_1 \sqcap \exists R.Z_2, Y \mapsto Z_1 \sqcap Z_2]$
- $[X \mapsto \exists R.Z_1 \sqcap \exists R.Z_2 \sqcap \exists R.Z_3, Y \mapsto Z_1 \sqcap Z_2 \sqcap Z_3]$
- . . .

Reductions and reduced forms in $\mathcal{E}\mathcal{L}$

Unification in *EL*

Baader & Morawska

Introduction

 \mathcal{EL} unification

Minimal unifiers

Reductions

Subsumption inverse Minimal Unifiers

Decision Procedure

Conclusion

Reduction rules are applied to concept terms modulo \mathcal{AC}

- C □ T ∽ C
- $A \sqcap A \leadsto A$
- if $D \sqsubseteq C$, then $\exists r.D \sqcap \exists r.C \rightsquigarrow \exists r.D$

Equivalence of reduced concepts

Procedure

Conclusion

Inverse of subsumption

Unification in \mathcal{EL}

Baader & Morawska

Introduction

 ${\mathcal E}{\mathcal L}\text{-}$ unification

Minimal unifiers Reductions Subsumption inve Minimal Unifiers

Decision Procedure

Conclusion

Subsumption order: $C_1 > C_2$ iff $C_1 \Box C_2$. Subsumption order is not well founded.

Inverse of subsumption order: $C_1 >_{is} C_2$ iff $C_1 \sqsubset C_2$.

Lemma

There is no infinite sequence $C_0, C_1, C_2, ...$ of \mathcal{EL} -concept terms such that $C_0 \sqsubset C_1 \sqsubset C_2 \sqsubset \cdots$.

Monotonicity of $>_{is}$

Unification in

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers Reductions Subsumption inver Minimal Unifiers

Decision Procedure

Conclusion

Lemma

C is a reduced concept term and contains D, $D>_{is} D'$

Then:

 $C >_{is} C'$

where C' is obtained from C by relpalcing an occurrence of D by D'.

Proof

Induction on size of C.

- C = D, obvious.
- $\bigcirc C = \exists R. C_1 \text{ and } D \text{ occurs in } C_1 \text{ (induction).}$
- $C = C_1 \sqcap \cdots \sqcap C_n \text{ and } D \text{ occurs in } C_i.$

Monotonicity of $>_{is}$

Unification in

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers Reductions Subsumption inverse Minimal Unifiers

Decision Procedure

Conclusion

Proof of the case where $C = C_1 \sqcap \cdots \sqcap C_n$ and D occurs in C_1 .

 $C_1 \sqcap \cdots \sqcap C_n \leadsto C'_1 \sqcap C_2 \sqcap \cdots \sqcap C_n$

By induction $C_1 >_{is} C'_1$, i.e. $C_1 \sqsubset C'_1$. and by monotonicity of \sqsubseteq : $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq C'_1 \sqcap C_2 \sqcap \cdots \sqcap C_n$ Hence

 $C_1 \sqcap \cdots \sqcap C_n \neq_{is} C'_1 \sqcap C_2 \sqcap \cdots \sqcap C_n$ means $C_1 \sqcap \cdots \sqcap C_n \equiv C'_1 \sqcap C_2 \sqcap \cdots \sqcap C_n$ $C_1 \neq C'_1$, there is $i \neq 1$, such that $C_1 \sqsubset C'_1 \equiv C_i$.

But this means that C_1 "eats up" C_i in C, and thus C is not reduced. Contradiction.

Minimal unifiers

Unification in \mathcal{EL}

Baader & Morawska

Introduction

 ${\mathcal E}{\mathcal L}\text{-}$ unification

Minimal unifiers Reductions Subsumption inverse Minimal Unifiers

Decision Procedure

Conclusion

 $>_{is}$ is well-founded its multiset extension $>_m$ is well-founded.

 $S(\sigma)$ as a multiset of all $\sigma(X)$, $X \in Var(\Gamma)$.

Definition

 $\sigma \succ \gamma$ iff $S(\sigma) \ge_m S(\gamma)$. σ, θ are ground, reduced unifiers of Γ .

The ground, reduced unifier σ of Γ is minimal iff there is no unifer θ , such that $\sigma > \theta$.

Obviously, a goal is unifiable iff it has a minimal ground reduced unifier.

Atoms and flat goals

Unification in

Baader & Morawska

Introduction

 ${\mathcal E}{\mathcal L}\text{-}$ unification

Minimal unifiers

Decision Procedure Algorithm Complexity

Conclusion

A concept term is an atom iff it is a constant or of form $\exists r. C$.

A flat atom is an atom which is a *constant* or $\exists r.C$, where C is *constant*, variable or \top .

A goal Γ is flat iff it only contains the equations of the form:

- $X \equiv C$ with X a variable and C a non-variable flat atom,
- $X_1 \sqcap \cdots \sqcap X_m \equiv^? Y_1 \sqcap \cdots \sqcap Y_n$, where $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ are variables.

Atoms of a unifier σ

Unification in *EL*

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure Algorithm Complexity

Conclusion

$$At(\sigma) = \bigcup_{X \in Var(\Gamma)} At(\sigma(X))$$

Definition

For every concept term *C*, define At(C):

• if
$$C = \top$$
, then $At(C) = \emptyset$,

- if C is a constant, then $At(C) = \{C\}$,
- if $C = \exists r.D$, then $At(C) = \{C\} \cup At(D)$,
- if $C = D_1 \sqcap D_2$, then $At(C) = At(D_1) \cup At(D_2)$.

Locality of a minimal ground reduced unifier

Unification in

Baader & Morawska

Introduction

 $\mathcal{EL}\-$ unification

Minimal unifiers

Decision Procedure Algorithm Complexity

Conclusion

 γ is a minimal reduced ground unifier of ${\sf \Gamma}$

Lemma

```
If C is an atom of \gamma,
```

```
then there is a non-variable atom D in \Gamma, such that C \equiv \gamma(D)
```

Proof by contradiction.

Idea: If C is maximal w. r. t. \sqsubseteq and violates the lemma, we construct a smaller unifier γ' – contradiction.

- C is a constant A.
- *C* is of the form $\exists r. C_1$.

Proof of the case where *C* is of the form $\exists r.C_1$

 $\begin{array}{c} \text{Unification in} \\ \mathcal{EL} \end{array}$

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure Algorithm Complexity

Conclusion

 D_1, \ldots, D_n are all atoms in Γ , such that $C \sqsubset \gamma(D_1), \ldots, C \sqsubset \gamma(D_n).$

 $C \sqsubset \gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n).$

Obtain γ' by replacing *C* with reduced form of $\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$.

Check if γ' is also a unifier of Γ • $X \equiv^? E$, • $X_1 \sqcap \cdots \sqcap X_m \equiv^? Y_1 \sqcap \cdots \sqcap Y_n$,

$$\gamma(X_1) \sqcap \cdots \sqcap \gamma(X_m) \equiv \gamma(Y_1) \sqcap \cdots \sqcap \gamma(Y_n)$$

$$\gamma(X_1) \sqcap \cdots \sqcap \gamma(X_m) \leadsto [U]_{\mathcal{AC}} \twoheadleftarrow \gamma(Y_1) \sqcap \cdots \sqcap \gamma(Y_n)$$

We show that all these reductions are preserved if *C* is replaced by reduced $\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$.

The most interesting reduction is:

 $\exists r. E_1 \sqcap \exists r. E_2 \leadsto \exists r. E_1$

if $E_1 \sqsubseteq E_2$

Assume that C is in E_1 and there is C' in E_2 , such that $C \subseteq C'$.

C = C', (easy, both are replaced by γ(D₁) ¬···¬ γ(D_n)),
C □ C'

In the second case $C' = \top$ or C' is $\gamma(D_i)$, and $\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n) \sqsubset C'$.

Corollary

Unification in \mathcal{EL}

Baader & Morawska

Introduction

 ${\mathcal E}{\mathcal L}\text{-}$ unification

Minimal unifiers

Decision Procedure Algorithm Complexity

Conclusion

Corollary

Γ – a flat goal

 γ – minimal reduced ground unifier of Γ

 $X \in Var(\Gamma)$

Then $\gamma(X) = \top$ or there are non-variable atoms D_1, \ldots, D_n $(n \ge 1)$ of Γ such that $\gamma(X) \equiv \gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$.

Algorithm

Unification in \mathcal{EL}

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure

Algorithm Complexity

Conclusion

Algorithm

- **1** For each X in Γ guess a set S_X of non-variable atoms in Γ .
- Define: X depends on Y if Y occurs in S_X.
 Fail if there are circular dependencies in the transitive closure of *depends*.
- Offine a substitution
 - If S_X is empty, then $\sigma(X) = \top$,
 - otherwise, $S_X = \{D_1, \ldots, D_n\}$ and $\sigma(X) = \sigma(D_1) \sqcap \cdots \sqcap \sigma(D_n)$.
- **4** Check if σ is a unifier of Γ .

Complexity

Unification in

Introduction

unification

Minimal unifiers

Decision Procedure Algorithm

Conclusion

Theorem

EL-unification is NP-complete.

Proof.

The problem is NP-hard, because \mathcal{EL} -matching is NP-hard.

Consider the algorithm:

Present the substitution σ as a sequence of equations, a TBox T_{σ} . (Hence the definition of σ is polynomial)

For each
$$C \equiv D \in \Gamma$$
, $\sigma(C) \equiv \sigma(D)$ iff $C \equiv_{T_{\sigma}} D$.

In \mathcal{EL} subsumption (and thus equivalence) modulo acyclic TBoxes is polynomial.

(What is a minimal unifier of the "type-zero" problem? (1)

Conclusion

Unification in

Baader & Morawska

Introduction

 \mathcal{EL} -unification

Minimal unifiers

Decision Procedure

Conclusion

We have shown

Unification in \mathcal{EL} is *NP*-complete.

What next?

- Implementation...
- Unification in \mathcal{EL} but without \top ...
- Unification in extensions of \mathcal{EL} , e.g. $\forall r.C$.