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Introduction o Concepts are sets: if Ae N, AT € A;
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Roles are binary relations:if r € Ng, T cAxA;
T is the domain: TZ = A:

Conjunction is intersection: (C m D)? = C* n D?;
(Ar.C)Y ={ce A|3Fbe A.(c,b) € rfand be CT}
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Subsumption and equivalence

@ Subsumption:
C = D iff for all interpretations C < D”.

o Equivalence:
C=DiffCEDand DE C
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e eation Idea: concept names in Ny, may be defined differently by
different users or developers of a given ontology.
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Concepts from Ny can be substituted with concept terms,
concepts from N¢ cannot be substituted.
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. g ?
2 is a set of equalities, (; =" Dy, ..
unification EL-concept terms.

., C, =" D, where C;, D; are
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A substitution o is an £L-unifier (solution)

of an £L-unification problem G =’ Dy, ..., C, =’ D,
if 0(C) =0(D1),...,0(Cp) = 0(Dp).
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X A X = X,
EL-

unification xAl= X,

Mill;limal {f;(X A _y) A f;(_y) = f/(X A _y) | 1 < I< n}
unifiers

Decision

Plrogsilie @ i is associative, commutative and idempotent,

Conclusion

@ T is a unit for m
e 3r,.(CmD)m3r.D=3r.(Crn D)

Existential restriction is not a homomorphism:
Ir(AmB)z3rAmir.B
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Conclusion o [ X—3IRZimIRZ,, Y — Z1 12y

o [ X—3IRZimIRZLmIARZy, Y > Zyn 2y Zs)
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Equivalence of reduced concepts

Theorem (Kiisters)

~

C=0D iff azAcD
Wherervv)aDvw»b
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Subsumption order: C; > G iff G, 3 G.
Subsumption order is not well founded.
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Minimal Inverse of subsumption order: C; > G iff G G.
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Reductions

Subsumption inverse

Minimal Unifiers

There is no infinite sequence Cy, C1, Cy, ... of EL-concept
Froesie terms such that Go = GG = G & -+ - .

Conclusion

Decision
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Monotonicity of >

Lemma

C is a reduced concept term and contains D,
D > s D’

Then:
C >is c’

where C' is obtained from C by relpalcing an occurrence of D by D’.

v

Proof
Induction on size of C.

@ C = D, obvious.
@ C =3R.G and D occurs in C; (induction).
®© C=Cnrn---n(C,and D occurs in .



Monotonicity of >

Unification in
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and D occurs in G.

Grn--mnCweGrnGrn---nG,

Introduction
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ity By induction C1 > C}, i.e. G = (.
Minimal A= -

unifiors and by monotonicity of C:

:e:uct\on.s. Clm"'anEC{'_‘Cé’_"'"_‘Cn
ubsumption inverse

Minimal Unifirs Hence

Decisi - C!
pecision Grn -G ¢ GnGn---n(,

means GG - C=CrnGn---nG,
G # (i, thereis i # 1, such that
C1IZC{EC,'.

Conclusion

But this means that (; “eats up” C; in C, and thus C is not
reduced. Contradiction.
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its multiset extension >, is well-founded.
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cr S(o) as a multiset of all o(X), X € Var(T).
unification

Minimal
unifiers

Definition

M;m'r;alU rs o> iff 5(0') >m 5(’7)
Decision 0,0 are ground, reduced unifiers of I

Procedure

Conclusion

The ground, reduced unifier o of I' is minimal iff there is no
unifer 6, such that o > 6.

Obviously, a goal is unifiable iff it has a minimal ground
reduced unifier.
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A concept term is an atom iff it is a constant or of form dr.C.
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or. A flat atom is an atom which is a constant or 3r.C, where C is
unification constant, variable or T.

Minimal

unifiers

E— A goal I is flat iff it only contains the equations of the form:
Procedure

Algorithm

Complexity

@ X =’ C with X a variable and C a non-variable flat atom,

Conclusion

e Xim-mXm="Yim---1Y,,
where Xi,..., Xm, Y1,..., Y, are variables.
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At(o) = U At(o (X))
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EL- XeVar(T)
unification
Decision For every concept term C, define At(C):

Procedure
Al

if C =T, then At(C) = &,

e if C is a constant, then At(C) = {C},

e if C =3r.D, then At(C) = {C} u At(D),

o if C = Dy m Dy, then At(C) = At(Dy) u At(D»).

Conclusion




Locality of a minimal ground reduced unifier
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ad ~ is a minimal reduced ground unifier of [’

Introduction Lemma

er If C is an atom of ~,

unification then there is a non-variable atom D in T,
! such that C = ~(D)

Decision
Procedure

Proof by contradiction.

Algorithm
@ )

Idea: If C is maximal w. r. t. E and violates the lemma, we
construct a smaller unifier 4/ — contradiction.

Conclusion

o C is a constant A.
o C is of the form 3r.C.




Proof of the case where C is of the form 3r.(;
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D1,...,D, are all atoms in I', such that
Cc fy(Dl)a 000 g Cc V(Dn)

Introduction
EL-

:;ifi‘catilon Cc=y(Dy) m---m1y(Dy).
unifiers

Decision Obtain +' by replacing C with reduced form of

Procedure

Algorithm ")/(Dl) M- ’Y(Dn)

Complexity o

Check if o' is also a unifier of

o X ="E,
e Xym---mXn="Yirm--1Y,,

Conclusion




ey (Xm) = (Y1) m iy (Ya)
Y(X1) M-y (Xm) [Ulac e y(Y1) m---my(Ya)

¢

We show that all these reductions are preserved
if C is replaced by reduced (D) r1--- 1 y(Dy).

The most interesting reduction is:

dr.Ey m3r.Ey v 3r. B
if (B

Assume that C is in £y and there is C' in E,, such that C = (.

e C = (', (easy, both are replaced by v(D1) m -+ 1 v(Dp)),
e C=(C

In the second case C' = T or C" is v(D;), and
v(Dy) m---my(Dy) = C.
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i ~ — minimal reduced ground unifier of T
Decision X € Var(r)

Procedure

o Then ~(X) = T or there are non-variable atoms D1, ..., D,
Conclusion (n 2 1) Ofr SUCh that ’Y(X) = ")/(D]_) M--- 1 ’Y(Dn)
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@ For each X in I guess a set Sx of non-variable atoms in .

EL-

iifEEeT @ Define: X depends on Y if Y occurs in Sx.

el Fail if there are circular dependencies in the transitive

Do closure of depends.

Procedure © Define a substitution

compey o If Sx is empty, then o(X) =T,

Conclusion o otherwise, Sx = {D1,...,D,} and
o(X)=0o(Dy)m---mo(Dy).

@ Check if o is a unifier of T.




Complexity
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ader & & L-unification is NP-complete. ,

Introduction Proof.
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unification The problem is NP-hard, because £L-matching is NP-hard.
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- Consider the algorithm:

lecision . . H
Procedure Present the subsitution o as a sequence of equations,
Algorithm

Complesy a TBox T,. (Hence the definition of o is polynomial)

Conclusion

Foreach C=" DeT, o(C) = o(D) iff C =1, D.

In £L subsumption (and thus equivalence) modulo acyclic
TBoxes is polynomial. [

o’

(What is a minimal unifier of the "type-zero" problem? @)
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Introduction We haVe ShOWI‘l
EL- Unification in £L£ is NP-complete.
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Minimal
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Conclusion o Implementation...
@ Unification in ££ but without T...

@ Unification in extensions of ££, e.g. Vr.C.
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