[Unification in](#page-24-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

Unification in the Description Logic \mathcal{EL}

Franz Baader and Barbara Morawska

TU Dresden, Germany

UNIF 2009

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{EL} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

UNIF 2008 Unification in \mathcal{EL} is of type zero.

UNIF 2009 Unification in \mathcal{EL} is decidable and is in NP. Unification problem in \mathcal{EL} is NP-complete.

Outline

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

[Introduction](#page-3-0)

2 \mathcal{EL} [-unification](#page-5-0)

- **3** [Towards a decision procedure](#page-10-0)
	- [Reductions and reduced form](#page-10-0)
	- **[Subsumption order and its inverse](#page-12-0)**
	- **[Minimal Unifiers](#page-15-0)**

4 [Decision Procedure](#page-16-0)

- **[Computing minimal unifiers](#page-22-0)**
- **[Complexity](#page-23-0)**

5 [Conclusion](#page-24-0)

Description Logic \mathcal{EL}

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

- Concept names: City, Cathedral,
- \bullet Top concept: T,
- Conjunction: \Box ,
- **•** Existential restriction: H has-location. T

Example (concept term)

City \Box \Box location. East-South of Germany \Box 3 *university*. T

Description Logic \mathcal{EL}

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

Semantics

- (Δ, \mathcal{I}) is an interpretation, where:
	- Concepts are sets: if $A \in N_C$, $A^{\mathcal{I}} \subseteq \Delta$;
	- Roles are binary relations:if $r \in N_R$, $r^{\mathcal{I}} \subseteq \Delta \times \Delta$;
	- \bullet T is the domain: $T^{\mathcal{I}} = \Delta$;
	- Conjunction is intersection: $(C \cap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$;
	- $(\exists r.C)^{\mathcal{I}} = \{c \in \Delta \mid \exists b \in \Delta.(c, b) \in r^{\mathcal{I}} \text{and } b \in C^{\mathcal{I}}\}\$

Subsumption and equivalence

• Subsumption:

 $C \subseteq D$ iff for all interpretations $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

- **•** Equivalence:
	- $C \equiv D$ iff $C \sqsubseteq D$ and $D \sqsubseteq C$

Variables in \mathcal{EL}

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

[unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

We define a set of variables N_V as a subset of N_C .

Idea: concept names in N_V may be defined differently by different users or developers of a given ontology.

Concepts from N_V can be substituted with concept terms, concepts from N_C cannot be substituted.

\mathcal{EL} -Unification

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

[unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

• *City* □ *∃ location. East-South of Germany* \Box 3 *size.* (more-than-500000 \Box *less-than-1000000)*

 \bullet *Settlement* \Box \exists *has. Cathedral* \Box **cation.** Saxony \Box **c** *size.* middle

\mathcal{EL} -Unification

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

[unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

\mathcal{EL} -Unification Problem

is a set of equalities, $\mathcal{C}_1 \equiv^? D_1, \ldots, \mathcal{C}_n \equiv^? D_n$, where \mathcal{C}_i, D_i are \mathcal{EL} -concept terms.

A substitution σ is an \mathcal{EL} -unifier (solution)

of an \mathcal{EL} -unification problem $C_1 \equiv \{^7 D_1, \ldots, C_n \equiv \{^7 D_n\}$ if $\sigma(C_1) \equiv \sigma(D_1), \ldots, \sigma(C_n) \equiv \sigma(D_n)$.

SLmO – semilattices with monotone operators

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

[unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

$$
SLmO = \{ x \land (y \land z) = (x \land y) \land z,
$$

\n
$$
x \land y = y \land z,
$$

\n
$$
x \land x = x,
$$

\n
$$
x \land 1 = x,
$$

\n
$$
\{f_i(x \land y) \land f_i(y) = f_i(x \land y) | 1 \leq i \leq n\}
$$

 \bullet \sqcap is associative, commutative and idempotent,

- \bullet T is a unit for \Box
- $\exists r_i. (C \cap D) \cap \exists r_i. D \equiv \exists r_i. (C \cap D)$

Existential restriction is not a homomorphism: $\exists r.(A \sqcap B) \varsubsetneq \exists r.A \sqcap \exists r.B$

\mathcal{EL} -problem of Type Zero

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

[unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

What are the unifiers of the following goal: $\exists R.Y \sqsubset^? X$

For example:

- \bullet $[X \mapsto \exists R.Z_1, \quad Y \mapsto Z_1]$
- \bullet $[X \mapsto \exists R.Z_1 \sqcap \exists R.Z_2, \quad Y \mapsto Z_1 \sqcap Z_2]$
- $[X \mapsto \exists R.Z_1 \cap \exists R.Z_2 \cap \exists R.Z_3, \quad Y \mapsto Z_1 \cap Z_2 \cap Z_3]$
- *. . .*

Reductions and reduced forms in \mathcal{EL}

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

[Reductions](#page-10-0)

[Subsumption inverse](#page-12-0) [Minimal Unifiers](#page-15-0)

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

Reduction rules are applied to concept terms modulo AC

- \circ C \sqcap T \rightsquigarrow C
- $A \sqcap A$ we A

```
\bullet if D \sqsubseteq C, then \exists r.D \sqcap \exists r.C \leadsto \exists r.D
```


Equivalence of reduced concepts

[Procedure](#page-16-0)

[Conclusion](#page-24-0)

Inverse of subsumption

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

[Reductions](#page-10-0) [Minimal Unifiers](#page-15-0)

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

```
Subsumption order: C_1 > C_2 iff C_1 \square C_2.
Subsumption order is not well founded.
```

```
Inverse of subsumption order: C_1 >_{i} C_2 iff C_1 \subset C_2.
```
Lemma

There is no infinite sequence C_0, C_1, C_2, \ldots of \mathcal{EL} -concept terms such that $C_0 \n\sqsubset C_1 \sqsubset C_2 \sqsubset \cdots$.

Monotonicity of $>_{i_s}$

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

[Reductions](#page-10-0) [Minimal Unifiers](#page-15-0)

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

Lemma

C is a reduced concept term and contains D, $D >_{is} D'$

Then:

 $C >_{is} C'$

where C' is obtained from C by relpalcing an occurrence of D by D' .

Proof

Induction on size of C.

 $C = D$, obvious.

- 2 $C = \exists R.C_1$ and D occurs in C_1 (induction).
- **3** $C = C_1 \sqcap \cdots \sqcap C_n$ and D occurs in C_i .

Monotonicity of $>_{i_s}$

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers [Reductions](#page-10-0)

[Subsumption inverse](#page-12-0) [Minimal Unifiers](#page-15-0)

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

Proof of the case where $C = C_1 \sqcap \cdots \sqcap C_n$ and D occurs in C_1 .

 $C_1 \sqcap \cdots \sqcap C_n \leadsto C'_1 \sqcap C_2 \sqcap \cdots \sqcap C_n$

By induction $C_1 >_{is} C'_1$, i.e. $C_1 \subset C'_1$. and by monotonicity of \sqsubseteq : $C_1 \sqcap \cdots \sqcap C_n \sqsubseteq C'_1 \sqcap C_2 \sqcap \cdots \sqcap C_n$ Hence

 $C_1 \sqcap \cdots \sqcap C_n \not>_{is} C'_1 \sqcap C_2 \sqcap \cdots \sqcap C_n$ means $C_1 \sqcap \cdots \sqcap C_n \equiv C'_1 \sqcap C_2 \sqcap \cdots \sqcap C_n$ $C_1 \not\equiv C_1'$, there is $i \neq 1$, such that $C_1 \subset C'_1 \equiv C_i$.

But this means that C_1 "eats up" C_i in C , and thus C is not reduced. Contradiction.

Minimal unifiers

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers [Reductions](#page-10-0) [Subsumption inverse](#page-12-0)

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

 \sum_{i} is well-founded its multiset extension \geq_m is well-founded.

 $S(\sigma)$ as a multiset of all $\sigma(X)$, $X \in \text{Var}(\Gamma)$.

Definition

 $\sigma > \gamma$ iff $S(\sigma) >_m S(\gamma)$. *σ, θ* are ground, reduced unifiers of Γ.

The ground, reduced unifier σ of Γ is minimal iff there is no unifer θ , such that $\sigma > \theta$.

Obviously, a goal is unifiable iff it has a minimal ground reduced unifier.

Atoms and flat goals

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0) [Algorithm](#page-22-0) **[Complexity](#page-23-0)**

[Conclusion](#page-24-0)

A concept term is an atom iff it is a constant or of form $\exists r.C$.

A flat atom is an atom which is a *constant* or $\exists r.C$, where C is constant, variable or \top .

A goal Γ is flat iff it only contains the equations of the form:

 $\bullet X \equiv^? C$ with X a variable and C a non-variable flat atom,

 $\bullet X_1 \sqcap \cdots \sqcap X_m \equiv^? Y_1 \sqcap \cdots \sqcap Y_n$ where $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ are variables.

Atoms of a unifier *σ*

[Unification in](#page-0-0) Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0) [Algorithm](#page-22-0) **[Complexity](#page-23-0)**

[Conclusion](#page-24-0)

$$
At(\sigma) = \bigcup_{X \in Var(\Gamma)} At(\sigma(X))
$$

Definition

For every concept term C, define $At(C)$:

• if
$$
C = T
$$
, then $At(C) = \emptyset$,

- if C is a constant, then $At(C) = \{C\},\$
- if $C = \exists r.D$, then $At(C) = \{C\} \cup At(D)$,
- if $C = D_1 \cap D_2$, then $At(C) = At(D_1) \cup At(D_2)$.

Locality of a minimal ground reduced unifier

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0) [Algorithm](#page-22-0) **[Complexity](#page-23-0)**

[Conclusion](#page-24-0)

γ is a minimal reduced ground unifier of Γ

Lemma

```
If C is an atom of \gamma,
```

```
then there is a non-variable atom D in Γ,
such that C \equiv \gamma(D)
```
Proof by contradiction.

Idea: If C is maximal w. r. t. \sqsubseteq and violates the lemma, we construct a smaller unifier γ' – contradiction.

- \bullet C is a constant A.
- \bullet C is of the form $\exists r.C_1$.

Proof of the case where C is of the form $\exists r.C_1$

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0) [Algorithm](#page-22-0) **[Complexity](#page-23-0)**

[Conclusion](#page-24-0)

D1*, . . . ,* Dⁿ are all atoms in Γ, such that $C \sqsubset \gamma(D_1), \ldots, C \sqsubset \gamma(D_n).$

 $C \sqsubset \gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$.

Obtain γ' by replacing C with reduced form of $\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$.

Check if γ' is also a unifier of Γ $\bullet X \equiv^? E$. \bullet $X_1 \sqcap \cdots \sqcap X_m \equiv^? Y_1 \sqcap \cdots \sqcap Y_n$

$$
\gamma(X_1) \sqcap \cdots \sqcap \gamma(X_m) \equiv \gamma(Y_1) \sqcap \cdots \sqcap \gamma(Y_n)
$$

$$
\gamma(X_1) \sqcap \cdots \sqcap \gamma(X_m) \rightsquigarrow [U]_{\mathcal{AC}} \rightsquigarrow \gamma(Y_1) \sqcap \cdots \sqcap \gamma(Y_n)
$$

We show that all these reductions are preserved if C is replaced by reduced $\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$.

The most interesting reduction is:

 $\exists r.E_1 \cap \exists r.E_2 \leadsto \exists r.E_1$

if $E_1 \subseteq E_2$

Assume that C is in E_1 and there is C' in E_2 , such that $C \sqsubseteq C'.$

 $C = C'$, (easy, both are replaced by $\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$), $C \subset C'$

In the second case $C' = \top$ or C' is $\gamma(D_i)$, and $\gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n) \sqsubset C'.$

Corollary

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0) [Algorithm](#page-22-0) **[Complexity](#page-23-0)**

[Conclusion](#page-24-0)

Corollary

Γ – a flat goal

γ – minimal reduced ground unifier of Γ

 $X \in Var(\Gamma)$

Then $\gamma(X) = \top$ or there are non-variable atoms D_1, \ldots, D_n $(n \geq 1)$ of Γ such that $\gamma(X) \equiv \gamma(D_1) \sqcap \cdots \sqcap \gamma(D_n)$.

Algorithm

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Algorithm](#page-22-0)

[Complexity](#page-23-0)

[Conclusion](#page-24-0)

Algorithm

- **1** For each X in Γ guess a set S_X of non-variable atoms in Γ.
- **2** Define: X depends on Y if Y occurs in S_X .
	- Fail if there are circular dependencies in the transitive closure of depends.
- **3** Define a substitution
	- **If** S_X is empty, then $\sigma(X) = \top$,
	- o otherwise, $S_X = \{D_1, \ldots, D_n\}$ and $\sigma(X) = \sigma(D_1) \sqcap \cdots \sqcap \sigma(D_n).$
- **4** Check if σ is a unifier of Γ .

Complexity

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{EL} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0) [Algorithm](#page-22-0)

[Conclusion](#page-24-0)

Theorem

 \mathcal{EL} -unification is NP-complete.

Proof.

The problem is NP-hard, because \mathcal{EL} -matching is NP-hard.

Consider the algorithm:

Present the subsitution σ as a sequence of equations, a TBox T_{σ} . (Hence the definition of σ is polynomial)

For each
$$
C \equiv^? D \in \Gamma
$$
, $\sigma(C) \equiv \sigma(D)$ iff $C \equiv_{T_{\sigma}} D$.

In \mathcal{EL} subsumption (and thus equivalence) modulo acyclic TBoxes is polynomial.

(What is a minimal unifier of the "type-zero" problem? \bigcirc [\)](#page-9-0)

Conclusion

[Unification in](#page-0-0)

Baader &

[Introduction](#page-3-0)

 \mathcal{E} [unification](#page-5-0)

[Minimal](#page-10-0) unifiers

Decision [Procedure](#page-16-0)

[Conclusion](#page-24-0)

We have shown

Unification in \mathcal{EL} is NP-complete.

What next?

- **o** Implementation...
- \bullet Unification in \mathcal{EL} but without $\top ...$
- \bullet Unification in extensions of \mathcal{EL} , e.g. $\forall r.C$.