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Abstract: Sleep is an essential component of physical and emotional well-being, and lack, or dis-
ruption, of sleep due to insomnia is a highly prevalent problem. The interest in complementary
and alternative medicines for treating or preventing insomnia has increased recently. Centuries-old
herbal treatments, popular for their safety and effectiveness, include valerian, passionflower, lemon
balm, lavender, and Californian poppy. These herbal medicines have been shown to reduce sleep
latency and increase subjective and objective measures of sleep quality. Research into their molecular
components revealed that their sedative and sleep-promoting properties rely on interactions with
various neurotransmitter systems in the brain. Gamma-aminobutyric acid (GABA) is an inhibitory
neurotransmitter that plays a major role in controlling different vigilance states. GABA receptors
are the targets of many pharmacological treatments for insomnia, such as benzodiazepines. Here,
we perform a systematic analysis of studies assessing the mechanisms of action of various herbal
medicines on different subtypes of GABA receptors in the context of sleep control. Currently avail-
able evidence suggests that herbal extracts may exert some of their hypnotic and anxiolytic activity
through interacting with GABA receptors and modulating GABAergic signaling in the brain, but
their mechanism of action in the treatment of insomnia is not completely understood.

Keywords: gamma-aminobutyric acid; GABA receptors; sleep; insomnia; herbal medicine

1. Introduction

Sleep is a fundamental physiological process required to maintain physical and emo-
tional well-being. Healthy sleep is a crucial process for optimal cognitive performance,
including attention, emotional reactivity, and learning and memory [1]. Sleep also con-
tributes to a wide range of other physiological processes, e.g., metabolic and endocrine
health and the strengthening of the immune system [2,3]. Chronic insomnia affects people
across all geographies, socioeconomic levels, and cultures; because of this, sleeping pills
are among the most frequently prescribed medicines worldwide [1,2].

It should be noted that multiple approved therapies for insomnia come with a safety
warning, and some hypnotics (including, for example, barbiturates) have been abandoned
because of unfavorable adverse event profiles or substance abuse [4]. In contrast, most
herbal medicines for insomnia and anxiety offer an exceptional safety profile, sometimes
with tenfold fewer adverse events than with pharmacotherapy [5–7]. Recent surveys
suggest that almost two-thirds of individuals with sleep problems do not consult their
doctor but search for treatment advice online, and herbal medicine remains a popular
choice [8–11]. A number of recent studies demonstrate a steady increase in the uptake of
complementary and alternative medicines for insomnia; the reasons for this increase may
include dissatisfaction or concern for side effects with pharmacological treatment, previous
positive experiences, and self-perceived effectiveness of alternative medicine [9,11,12].
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Although their effectiveness is heavily debated, several herbal therapies for insomnia
have been used for centuries, and many products, including valerian (Valeriana officinalis
L.) and chamomile (Matricaria sp.), are still widely used today because of their good safety
profile and their proposed anxiolytic and sedative proprieties [10,13–17].

Pharmacologically, herbal and traditional medicines represent complex mixtures of
hundreds of constituents, making it difficult to isolate the active components and determine
their exact mechanism of action [18]. Studies of several herbal remedies used for insomnia
highlighted that changes in the central GABAergic neurotransmission could be responsible
for the anxiolytic and the sedative properties of these remedies [13]. This is not surprising,
as gamma-aminobutyric acid (GABA) is recognized as one of the main neurotransmitters
responsible for sleep regulation. GABAA receptor modulation is one of the four key
mechanisms of action of the approved pharmacological therapies for insomnia (the other
three mechanisms are melatonin receptor agonism, histamine 1 receptor antagonism, and
hypocretin/orexin antagonism) [1].

The aim of this review is to summarize the current knowledge of the GABA recep-
tors in sleep regulation and to perform a systematic analysis of literature addressing the
GABAergic mechanisms of action of herbal remedies for insomnia.

2. Stages of Sleep

Three distinct vigilance states can be identified on the basis of the level of arousal and
electroencephalogram (EEG) activity: wakefulness, non-rapid eye movement (NREM), and
rapid eye movement (REM) [2]. Healthy, young individuals usually experience several
NREM and REM cycles during the night; the typical length of one NREM–REM cycle in
humans is approximately 90 min [2,19].

The three vigilance states are regulated by wakefulness-promoting, NREM-promoting,
and REM-promoting distinct neuronal groups (nuclei) located in the basal forebrain, thala-
mus, and brainstem [2,20]. Brain nuclei promoting different vigilance states exert recip-
rocally inhibitory activity and are involved in modulating the activity of numerous other
structures of the central nervous system [2,20,21].

Wakefulness is regulated by a number of different neurotransmitter systems, including
acetylcholine, serotonin, norepinephrine, histamine, orexins, neuropeptide S, dopamine,
glutamate, and even GABA [2]. In the brainstem, the pontine locus coeruleus promotes
wakefulness via excitatory connections to the cerebral cortex and inhibitory connections to
sleep-promoting nuclei [22]. The alternation of NREM and REM sleep phases during the
night is likely controlled by several mechanisms, including a reciprocal interaction of “REM-
on” glutamatergic neurons in the pontine/mesencephalic reticular formation and “REM-
off” norepinephrine/serotonin neurons in the dorsal raphe and the locus coeruleus [2,20].
Transition between vigilance states is orchestrated by the central pacemaker: the suprachi-
asmatic nucleus [20,23]. As the most widespread inhibitory neurotransmitter in the brain,
GABA plays a role in inhibiting both “REM-on” and “REM-off” neurons in the brainstem
and in regulating transitions between REM sleep and wakefulness or NREM sleep [2,23].
In addition, various groups of GABA neurons outside the brainstem are involved in the
control of circadian timing and homeostatic regulation of sleep [2].

3. The Role of GABAergic Signaling in Sleep Physiology

As a major inhibitory neurotransmitter, GABA helps maintain the overall balance
of neuronal excitation and inhibition in the central nervous system and plays one of the
central roles in brain development and function [24]. Over 20% of all neurons in the brain
are estimated to be GABAergic [25]. Three different GABA receptors, GABAA, GABAB, and
GABAC, are involved in the regulation of sleep and arousal (albeit to different extents) [2,25].
The most commonly used hypnotics exert their effect on GABA systems, most notably
through allosteric modulation of the benzodiazepine site [26–28]. Similarly, many herbal
medicines have been proposed to enhance GABAergic signaling, many through interactions
with the GABAA receptor [13].
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3.1. GABAA Receptor

The fast-acting ionotropic GABAA receptors were the first to be discovered and have
been the target of three generations of anxiolytics and hypnotics [1,2,29]. GABAA receptors
are pentameric, ligand-gated Cl– ion channels; the classical synaptic subtypes are formed of
two α, two β, and one γ or δ subunit, the α1β2γ2 receptor being the most abundant [29,30]
(Figure 1).
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Figure 1. The structure of the GABAA receptor and the location of common agonist and antagonist
binding sites [26,29–31]. Cl−, chlorine ions; GABA, gamma-aminobutyric acid; EtOH, ethanol.

Barbiturates were the first generation of sedative/hypnotic drugs introduced in the
early 20th century. Their binding site on the GABAA receptor is different from that of
GABA, and they act via direct activation of the receptor. Barbiturates do not show selec-
tive affinity to different receptor compositions of GABAA. Second-generation sleep aids
(benzodiazepines) are GABAA allosteric modulators that bind to the interface between the
α and the γ subunits across a range of receptor compositions [27,29,31]. Recently devel-
oped third-generation non-benzodiazepine hypnotics include, among others, zopiclone
(a cyclopyrrolone), zolpidem (an imidazopyridine), and zaleplon (a pyrazolopyrimidine),
which are sometimes collectively called the “Z drugs” [32]. All GABAA agonists help with
entering and maintaining sleep by suppressing REM sleep and lower frequency waves
while promoting high frequency waves [19]. The effects of GABAA agonists on sleep stages
may vary; for example, eszopiclone does not have any effect on the length of NREM or
REM sleep [33]. Reductions in theta and alpha frequencies have been observed in older,
but not in young, adults with zolpidem; moreover, zolpidem decreased Stage 1 NREM in
older adults, with no other age-related changes in sleep parameters [34].

3.2. GABAB Receptor

GABAB receptors are slow-acting metabotropic G-protein-linked dimers containing
one GABAB1 (GABAB1a or GABAB1B) and one GABAB2 subunit [25,28,29] (Figure 2). Fewer
drugs have been developed to target the GABAB receptor, baclofen being the most popular
agonist, and there are less clinical data available than for the GABAA receptor [27,35].
Although GABAB agonists may promote sleep by increasing the duration of NREM and
REM sleep, the effect is believed to be largely off-target [28,36]. Binding to the GABAB
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receptor may be responsible for the sleep-promoting effects of the drug gamma hydrox-
ybutyrate. Activation of GABAB receptors on hypocretin/orexin neurons increases the
power and duration of slow wave sleep and decreases the frequency of transitions between
wakefulness and REM sleep [37,38].

Nutrients 2021, 13, x FOR PEER REVIEW 4 of 16 
 

 

decreased Stage 1 NREM in older adults, with no other age-related changes in sleep 
parameters [34]. 

3.2. GABAB Receptor 
GABAB receptors are slow-acting metabotropic G-protein-linked dimers containing 

one GABAB1 (GABAB1a or GABAB1B) and one GABAB2 subunit [25,28,29] (Figure 2). Fewer 
drugs have been developed to target the GABAB receptor, baclofen being the most popular 
agonist, and there are less clinical data available than for the GABAA receptor [27,35]. 
Although GABAB agonists may promote sleep by increasing the duration of NREM and 
REM sleep, the effect is believed to be largely off-target [28,36]. Binding to the GABAB 
receptor may be responsible for the sleep-promoting effects of the drug gamma 
hydroxybutyrate. Activation of GABAB receptors on hypocretin/orexin neurons increases 
the power and duration of slow wave sleep and decreases the frequency of transitions 
between wakefulness and REM sleep [37,38]. 

 

Figure 2. The structure of the GABAB receptor, its ligand binding site, and the downstream 
signaling elements [39,40]. GABA, gamma-aminobutyric acid; LB, ligand binding. 

3.3. GABAC Receptor 
The subclass of GABAA receptors containing ρ subunits is often called GABAC or 

GABA-ρ; they belong to the same family of fast-acting pentameric, ligand-gated Cl– ion 
channels as GABAA [25,27,41] (Figure 3). Although both GABAA and GABAC receptors 
bind GABA, they have separate sets of agonists and antagonists. GABAC receptors are 
more sensitive to GABA than the other two receptor subclasses [25]. 

Figure 2. The structure of the GABAB receptor, its ligand binding site, and the downstream signaling
elements [39,40]. GABA, gamma-aminobutyric acid; LB, ligand binding.

3.3. GABAC Receptor

The subclass of GABAA receptors containing ρ subunits is often called GABAC or
GABA-ρ; they belong to the same family of fast-acting pentameric, ligand-gated Cl– ion
channels as GABAA [25,27,41] (Figure 3). Although both GABAA and GABAC receptors
bind GABA, they have separate sets of agonists and antagonists. GABAC receptors are
more sensitive to GABA than the other two receptor subclasses [25].
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A selective GABAC antagonist (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid
(TPMPA) has been shown to decrease the relative duration of NREM and REM sleep in
rats [42]. In contrast, the selective partial GABAC agonist cis-4-aminocrotonic acid (CACA)
does not have any effect on the relative duration of REM sleep [43].
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A number of studies suggest that different classes of GABA receptors may play
varying roles in sleep control, e.g., promoting different phases of sleep [25]. The expression
pattern of each class and the cellular localization (synaptic or extrasynaptic) may play
a role in the extent of the receptor involvement in sleep control [19]. This involvement
may be influenced by other physiological and pathological conditions; for example, sleep
deficits in slow wave sleep recorded in patients with schizophrenia may be specifically
linked to the GABAB receptor [44]. Although most of the currently available hypnotics
target GABAA, ongoing research on the physiology and pharmacology of the other two
types of GABA receptors may lead to development of therapies for insomnia targeting
GABAB or GABAC.

4. Herbal Remedies Acting on GABA Metabolism and Function

Herbal medicine, i.e., applications of plants or plant-derived materials for therapeutic
purposes, has been used for centuries to treat a range of sleep disorders; notable examples
include valerian (Valeriana officinalis L.), passionflower (Passiflora incarnata L.), lemon balm
(Melissa officinalis L.), and Californian poppy (Eschscholzia californica Cham.) [13,16]. More
recently, therapies being tested for efficacy in insomnia have included combinations of
herbal extracts with melatonin and vitamin B6 [45]. A growing body of recent research has
been dedicated to dissecting the content of naturally derived sleep aids and to determining
the specific compounds responsible for their sedative properties. Multiple mechanisms of
actions have been proposed, including those that promote GABAergic signaling, most com-
monly through an interaction of the active component with the GABAA receptor [6,13,46].

4.1. Systematic Literature Review

We have searched PubMed and Google Scholar for publications describing GABAergic
effects of herbal medicines and their active components that could explain their mechanism
of action in sleep regulation. The search terms included (“herbal medicine” OR “herb”)
AND (“GABA” OR “gammaaminobutyric acid” OR “gamma aminobutyric acid”) AND
(“sleep” OR “hypnotic” OR “sedative”).

The PubMed search returned 63 results; after removing reviews, articles not in English,
and studies that did not assess GABAergic effects or sleep, 31 results were included.
A number of additional publications were identified through Google Scholar searches; after
removing duplicates, 11 additional articles were added to the reference library (Figure 4).
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4.2. Natural Compounds Acting on GABAA, GABAB, and GABAC

We analyzed the articles identified in the literature search for the description of specific
mechanisms of action targeting GABAergic signaling in sleep. The results of the literature
analysis are shown in Table 1.

Table 1. Common medicinal plants with known sleep-inducing properties that target GABAergic signaling.

Latin and Common
Name

Known Chemical
Components

Known Effect on
Sleep Target Model References

Individual Plants

Valeriana officinalis L.
(Valerian)

Alkaloids, terpenes,
organic acids and
their derivatives,

valepotriates, and
flavones

Reduces sleep latency,
improves subjective

measures
GABAA receptor In vitro studies; clinical

studies [47–51]

Magnolia sp. Magnolol and
honokiol Promotes REM sleep GABAA receptor In vitro studies; i.p.

administration in mice [52–54]

Schisandra chinensis
(Turcz.) Baill.

(Chinese
magnolia-vine,

Magnolia berry)

Schizandrin B Promotes sleep GABAA receptor i.p. administration in
mice and male rats [55–57]

Artemisia sp. Benzodiazepines Reduces sleep latency GABAA receptor
In vitro studies; i.p.

administration in male
mice

[58,59]

Nelumbo nucifera
Gaertn.
(Lotus)

Nuciferine, alkaloids Promotes sleep GABAA receptor In vitro studies [60]

Moringa oleifera
Lam.

(Drumstick tree)

Oleic acid,
β-Sitosterol, and

Stigmasterol
Increases sleep quality GABAA receptor p.o. administration in

male mice [61]

Piper methysticum L.
(Kava-kava) Kavapyrones

Decreases sleep latency;
no effect on NREM

sleep

GABAA receptor (not
benzodiazepine site)

p.o. administration in
mice [62]

Zizyphus jujube
(Jujube, or red date)

Sanjoinine A,
suanzaorentang

Improves sleep quality,
prolonging sleep time
and increasing NREM

sleep

GABAA receptor;
activation of GABA
synthesis through

enhanced expression of
GAD; serotonin receptors

i.p. and p.o.
administration in male

rats
[63,64]

Passiflora incarnata
(Passionflower)

Apigenin, alkaloids,
flavones

Reduces sleep latency,
increases sleep

duration

GABAA and GABAB
receptors, (and possibly

GABAC receptor)

In vitro studies; p.o.
administration in mice [65,66]

Withania somnifera L.
(Indian ginseng)

Withanolide A,
withaferin A

Reduces sleep latency,
improves sleep quality

GABAA and GABAC
receptors

In vitro studies; clinical
studies [67,68]

Eschscholzia californica
Cham.

(Californian poppy)
Alkaloids Improves sleep latency

and duration
GABAA receptor;
serotonin receptor In vitro studies [69]

Polygala tenuifolia
Willd.

(Yuan Zhi)
Tenufolin Increases sleep

duration

Increases the levels of
GABA and GABA

transporter 1
Zebrafish and rats [70,71]

Melissa officinalis L.
(Lemon balm) Rosmarinic acid Improves sleep quality Decreases the level of

GABA transaminase
In vitro studies; i.p.

administration in mice [72]

Ginkgo biloba L.
(Ginkgo)

Ginkgotoxin,
flavonoids,
terpenoids

Improves subjective
sleep quality measures

Inhibition of GAD
activity Clinical studies [73]

Hypericum perforatum L.
(St John’s Wort)

Hypericin,
pseudohypericin,

hyperoside, among
others

Increases REM latency
and deep sleep

Inhibition of GAD and
GABA transporter

activity
Clinical studies [74]
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Table 1. Cont.

Latin and Common
Name

Known Chemical
Components

Known Effect on
Sleep Target Model References

Individual Plants

Citrus aurantium L.
(bitter orange) Limonene,

β-myrcene
Increases sleep

duration

Serotonergic system;
proposed interaction with
GABA receptor binders,

such as diazepam

p.o administration in
male mice [75]

Plant mixes

Yokukansan
(Atractylodes lancea

rhizoma, Poria
sclerotium, Cnidium

rhizoma, Japanese
Angelica radix,

Bupleurum radix,
Glycyrrhiza radix, and

Uncaria thorn)

Various

Decreases sleep latency,
improves dream

content in the REM
behavior disorder

GABAA receptor
p.o. administration in

male mice; clinical
studies

[76,77]

Suanzaorentang, a
traditional Chinese

medicine
Various Increases NREM, no

effect on REM sleep
GABAA receptor;

serotonergic system Clinical studies [64,78]

Herbal medicines were selected if their proposed mechanism of action involved GABA synthesis, transport, or receptors. GAD, glutamic
acid decarboxylase; GABA, gamma-aminobutyric acid; i.p., intraperitoneal; NREM, non-rapid eye movement; p.o., oral; REM, rapid eye
movement.

The vast majority of herbal medicines acted through the GABAA receptor (mostly via
binding to the GABA or benzodiazepine sites) (Figure 1). The specific chemicals that serve
as natural modulators of the GABAA receptor (alkanes and alkaloids, flavones, flavonoids
and isoflavonoids, phenols, terpenes, coumarins, etc.) have been described in detail in a
recent review that addressed the specific pharmacological features of their interactions
with the receptor [46]. Here, we present a broader summary of herbal extracts that may be
used to regulate sleep, possibly acting via GABAergic signaling.

The largest body of evidence for GABAA modulation is associated with valerian
root (Valeriana officinalis L.), which is widely used to reduce the latency of sleep onset
and increase sleep quality [13,79]. Valerian root extract contains over 150 chemical con-
stituents including alkaloids, terpenes, organic acids and their derivatives, valepotriates
and flavones [13,48]. GABA itself may be present in the valerian extracts, although its
bioavailability is questionable [5]. Notably, small differences have been reported between
extracts from plants grown in different conditions or processed in a different manner, and
large-scale producers have standardized protocols of plant growth and extract preparation
aimed at reducing variability [48]. Studies in tissue culture and animal models suggest that
components of valerian extract (Valeriana officinalis L.) possess prominent dose-dependent
GABAA agonistic activity [49,51]. 6-methylapigenin is a potent positive modulator of
GABAA, possibly binding to the benzodiazepine site at the interface of α and γ subunits,
whereas valerenic acid and valerenol have been shown to interact with the β subunit of the
receptor [47,48].

Magnolia sp., Artemisia sp., Chinese magnolia vine (Schisandra chinensis), lotus (Nelumbo
nucifera), and drumstick tree (Moringa oleifera) have all been shown to contain GABAA
agonists that promote sleep in various animal models. A potent GABAergic effect via the
GABAA receptor (benzodiazepine site) has been demonstrated for herbal mixes used in
traditional medicine in Japan (yokukansan) and China (suanzaorentang); however, the
specific herbs and compounds responsible for the effect remain to be identified [76,78].
A number of different approaches can be used to identify these compounds; for example, in
one study, an in silico screen of a traditional Chinese medicine library was performed and
found that 2-O-caffeoyl tartaric acid, 2-O-feruloyl tartaric acid, and mumefural are potent
GABAA receptor agonists at both GABA and benzodiazepine binding sites [80]. Tartaric
acid derivatives are present in various fruit syrups and juices, and mumeferal is derived
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from the processed fruit of Japanese apricot (Prunus mume Sieb. et Zucc.) (a traditional
health food) [81].

Extract of dried flowers of chamomile (Matricaria sp.) has been used as a mild
tranquilizer and sleep inducer for thousands of years and contains 28 terpenoids and
36 flavonoids [82,83]. Among them, apigenin has been shown to exhibit a hypnotic activity
by activating the GABAA receptor at the benzodiazepine binding site [26,46,82]. Apigenin
is an active component of several herbal sleep remedies such as passionflower (Passiflora
incarnata L.), which is used to reduce sleep latency and increase sleep duration [13,46].
Other GABAA allosteric modulators acting at the benzodiazepine site include alkaloids
isolated from the California poppy (Eschscholzia californica Cham.), which is used to induce
relaxation and sleep [69].

There is much less evidence of herbal medicines interacting with the GABAB or the
GABAC receptors. The extract of Passiflora incarnata has been shown to inhibit the binding
of ligands to both GABAA and GABAB receptors in a concentration-dependent manner,
suggesting that it contains antagonists of both receptor subtypes [65]. Notably, Passiflora
incarnata L. extract contains a high amount of GABA and therefore has a potential to
exert its hypnotic activity through all three types of GABA receptors, although its exact
mechanism of action remains to be demonstrated [66]. The aqueous root extract of Indian
ginseng (Withania somnifera L.) has been shown to act as a potent agonist of the GABAC
receptor in addition to weakly activating GABAA [67]. Various natural compounds have
been implicated in the plant’s mechanism of action, including withanone, withaferin A,
and triethylene glycol [67,84].

4.3. Other Mechanisms of Action Related to GABA Signaling

Several indirect effects on GABA signaling have been reported for various medicinal
plant extracts. Valerian root extract (Valeriana officinalis L.) may mediate inhibition of enzy-
matic destruction of GABA, increasing GABA availability [5]. Extract of Melissa officinalis
L. decreases the level of GABA transaminase in hippocampal neurons [72]. Unidentified
components of a Mexican tree Ternstroemia lineata DC. have been shown to promote GABA
release in mouse brain slices [85]. Tenufolin, the active component of Polygala tenuifolia,
increases the expression of GABA transporter 1 and GABA availability in animal mod-
els [70,71]. Activation of GABA synthesis through enhanced expression of glutamic acid
decarboxylase (GAD) has been demonstrated for sanjoinine A, an alkaloid isolated from
jujube (Zizyphus jujuba) [63]. Finally, although the Citrus aurantium essential oil exerts its
anxiolytic effect via the serotonin receptor, an indirect effect on GABAergic system has
been described as well [75,86]. These results suggest that herbal sleep medicines may have
a plethora of direct and indirect effects on GABAergic signaling beyond direct interaction
with GABA receptors.

5. Discussion and Conclusions

Insomnia is a widespread, often chronic, disorder that affects 5–15% of the general
population and is associated with a great reduction in quality of life [1,2,87]. Among
prescription medicines for insomnia, many therapies act via modulation of GABAergic
signaling, including potent hypnotics such as benzodiazepines and “Z drugs” that bind to
various sites on the GABAA receptor [1,27,30]. Although GABAB and GABAC receptors
have distinct roles in controlling various stages of sleep, none of the currently approved
prescription medicines target these receptor subtypes; however, ongoing research may lead
to the development of such medicines in the future.

The ability of herbal extracts to reduce sleep latency, increase sleep duration, and
improve sleep quality has been explored in numerous studies; however, robust clinical
evidence supporting their use for the treatment of insomnia is currently lacking, empha-
sizing the need for research in this area [87,88]. Mechanistic studies have shown that
herbal medicines used for the treatment of depression, anxiety, and insomnia may exert
their effect through various mechanisms of action. Components of ginseng (Withania
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somnifera L.), Ginkgo biloba L., and St John’s Wort (Hypericum perforatum L.) have been
shown to influence the reuptake of neurotransmitters, such as norepinephrine, dopamine,
and serotonin [70,89,90]. Extracts of jujube seeds and valerian (Valeriana officinalis L.) di-
rectly interact with serotonin receptors [64,89], and Griffonia simplicifolia Baill. contains
5-hydroxytryptophan, a natural precursor of serotonin [91]. L-theanine, which is found
in green tea, has been discovered to potentiate GABA, dopamine, and serotonin recep-
tors and to inhibit glutamate reuptake [92]. Active components of lavender (Lavandula
angustifolia Miller) can bind the glutamate N-methyl-D-aspartate receptors and serotonin
transporters [93]. Finally, several herbal substances may interact with glutamic acid decar-
boxylase or modulate GABA and serotonin receptors [6,88,94]. Sleep-promoting GABAer-
gic neurons represent the main cellular target of pharmacological therapies for insomnia,
and GABA signaling appears to be the target of a large number of over-the-counter herbal
sleep aids [1,2,13]. The exceptional safety profile of herbal medicines, especially when com-
pared with pharmacotherapy for insomnia, and their wide acceptance by patients, serve as
a strong argument in favor of further investigations that aim to define their mechanism
of action more precisely and that aim to confirm their clinical efficacy in terms of specific
sleep parameters.

In conclusion, despite the availability of multiple hypnotic drugs, side effects remain
an issue, and there is ongoing demand for safer treatment options for insomnia. The
evidence reviewed here suggests that multiple plant-derived substances may serve as sleep
aids by modulating GABAergic signaling in the brain. The exceptional safety profile of
herbal medicines and their wide acceptance by patients serve as a strong argument in
favor of further investigations of their mechanism of action and identification of specific
compounds that exert the hypnotic effect.
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