An Approach for Solving the Unfairness Problem in WLANs

Martin Heusse*, Yan Grunenberger*, Elena López-Aguilera**, Andrzej Duda*

* LIG Grenoble Computer Laboratory
** Catalan Institute of Technology

Outline

- WLAN unfairness problem
- Idea of Asymmetric Access Point
- Implementing AAP
- Performance of Asymmetric Access Point
- Conclusions

Unfairness problem

- TCP connections to mobile stations
 - downloads, uploads
- Sporadic UDP traffic with real-time requirements (VoIP)
- We assume that wireless LAN is the bottleneck

DCF characteristics

- Half-duplex operation
 - One frame at a time
- Equal channel access opportunities for all contending entities
 - AP and any of N stations
 - \circ statistical share of I/(N+I)
 - Independent of frame length/transmission speed
- Exponential backoff
 - Short term unfairness for larger N
 - Increased unfairness if bad channel conditions

TCP Delayed Acknowledgements

- An ACK is delayed until (timeout or)
 - k segments are received (k=2 typical)
 - k: number of data segments per ACK

N uploads

- kN data segments at stations, NACKs at AP
- AP share needs to be N/(N + kN), 1/3 for k=2
- If share of I/(I+N)
 - Short buffer at AP: losses, but ACKs are cumulative
 - Large buffer at AP: longer RTT, limited by flow control

N downloads

- kN data segments at AP, N ACKs at stations
- AP share needs to be kN/(N + kN), 2/3 for k=2
- If share of I/(I+N)
 - Short buffer at AP: loss, limited by congestion control
 - Large buffer at AP: longer RTT, limited by flow control

Asymmetric AP Approach

- Give more channel access opportunity to AP
 - Asymmetric Access Point benefits from k more share than all stations in cell (or kN than any station)
 - Corresponds to the worst case (N downloads)
 - Increases performance in mixed upload/ download scenario
 - keeps the AP buffer empty so that TCP connections become self-clocked by the destination (short RTT over the wireless part)

Asymmetric AP Approach

Implementing AAP

- Stations
 - Operate according to Idle Sense
 - Adapt CW to load conditions in the cell by observing the mean number of idle slots
- Asymmetric Access Point
 - Constant CW value, independent of N!
 - Derived for given k and 802.11 variant

Optimal CW

 $\overline{n_i}$: average number of idle slots between transmission attempts

AAP

- CW proportional to N
- AP Access probability proportional to N
 - → AP CW divided by N compared to STA CWs
- → AP CW is a constant

Measurements

- Implementation of Idle Sense
 - Intel PRO/Wireless 2200BG 802.11 a/b/g cards
 - Modified firmware, operational cards
- AP FreeBSD box
 - constant CW
- Stations close to AP, good channel conditions, 802. I la at 54 Mb/s

Conclusions

- Simple solution at MAC layer to the unfairness problem
 - Right shares of transmission opportunity
 - Correct operation of TCP over 802.11 selfclocked flow control
 - Keeps empty buffer at AP gives short delays
 - Always preference to download connections
- Optimal solution in mixed upload/download scenarios requires upper layer modification
 - Proper scheduling at IP/TCP layer