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ABSTRACT

Efficiency, safety and cost are three major evaluation indexes of warehouse operation.
However, the uncertainty of efficiency, safety and cost factors will lead to economic
losses and waste of resources. The purpose of this study is to propose a novel
parameterized neutrosophic objective—proportionate genetic algorithm model (PNO-
PGA) to optimize the above three objectives. There are three main contributions of
this study. Firstly, a novel score function of neutrosophic sets (NSs) is proposed to
effectively integrate the fuzziness of efficiency, safety and cost to avoid the evaluation
result being too idealized. Secondly, a novel proportionate genetic algorithm is applied
to adaptively realize the iteration and inheritance processes. Finally, two parameters are
proposed to make the algorithm model flexibly adapt to different types of environments
and problems. Then, an example is used to compare the new method with genetic
algorithm (GA). The result shows that PNO-PGA has better problem-solving ability in
warehouse operation than GA.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation

Keywords Multi-objective optimization, Neutrosophic fuzzy set, Genetic algorithm, Aggregating
operator, Warehouse operation

INTRODUCTION

With the rapid development of warehouse operations, the three objectives of efficiency,
safety and cost constitute the core part of warehouse operation. Therefore, improving
efficiency, reducing risks and increasing costs have received the attention of enterprises
and researchers. Much exploratory research in the field of multi-objective have been
done in the last few years. Tanabe & Ishibuchi (2020) established a set of 16 practical
Multi-Objective optimization (MOO) problems with bounded constraints to make the
performance evaluation more realistic. Castonguay et al. (2023) takes the modified MOO
model to identify potential gains in efficiency in animal production. At present, the MOO
method, which utilizes the robust optimization of the expectation and variance of the
minimum function, is widely used in many fields, such as flood control of reservoirs (Liu ¢
Luo, 2019), integrated energy system of buildings (Wang et al., 2020), corporate governance
(Jung e Choi, 2022), risk-related resources scheduling (Zuo, Zio & Xu, 2023), etc.
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Meanwhile, genetic algorithm (GA) has become an important method to solve MOO
problem. Costa-Carrapico, Raslan & Gonzilez (2019) provided the first substantial evidence
base for evaluating the potential of MOO by using GA. The performance of GA is improved
by combining the advantages of different algorithms. In addition, GA can optimize the
model, by using artificial neural network combing (Yarn et al., 2019), sorting cuckoo
search algorithm (Aparna & Swarnalatha, 2023) and simulation (Perez-Tezoco et al., 2023)
together. The potential for improving MOO is realized by using GA technology. Salata
et al. (2020) proposed a method for optimizing existing buildings structure by using GA
technologies. Recently, Dogan et al. (2022) generalize a sludge biomass ash composting
model based on deep neural network and genetic algorithm for sludge biomass ash
composting optimization in the co-disposal process of dewatered sludge and biomass fly
ash. Moreover, Chen, Jia & He (2023) put forward a novel bi-level multi-objective genetic
algorithm to solve the integrated assembly line balancing and part feeding problem.

Many studies that apply simplified neutrosophic sets (NSs) to MOO show great research
value. As a new fuzzy set, NSs use to improve the MOO model. Thereafter, Rashro,
Minaei-Bidgoli ¢» Guo (2020) proposed a clustering algorithm based on the NSs theory
and a data uncertainty by exploring data density characteristics of the NSs. Alpaslan
(2022) proposed a new NS-based complete local binary pattern hybrid method for texture
classification. Hassan, Darwish ¢ Elkaffas (2022) used Type-2 NSs to solve the medical
database deadlock problem in real time. The existing study showed that, scholars have
made significant progress in NSs, and how to make the objective function realistic has
become a research hotspot. However, there are few researches on heuristic algorithms with
multi-objective model which can adjust the weight flexibly by using NSs and expand the
application ranges of the algorithm.

Simplified NSs have many advantages in handling uncertain information, and many
scholars have conducted extensive research on this topic. Ye (2014) proposed a series of
improved cosine similarity measures on simplified NSs. Peng et al. (2014) established a
particular method for ordering to solve problems demand multi-criteria decision-making
based on the outranking relation of simplified NSs. Kilic ¢» Yalcin (2020) proposed a
multiple stages methodology for sustainability performance evaluation by using NSs.
Huang et al. (2021) aimed at the problem of ranking two single-valued neutrosophic sets
(SvNSs) and proposed a method of ranking SvNSs values based on relative measures.

Moreover, the latest researches regarding to neutrosophic aggregation operators have
also been reviewed. Wu et al. (2018 ) introduced a series of Hamacher aggregation operators
on NSs. Garg & Nancy (2019) referred a new notion of possibility linguistic SYNSs. Liu ¢
Li (2019) put forward generalized Maclaurin symmetric mean operators on NSs. Yarg,
Fu & Han (2023) developed a novel multi-criteria decision-making approach by using
complying with the defined aggregation operators. Kamran et al. (2023) introduced
an Einstein aggregation operator to handle uncertainties in the data. To advance the
understanding of MOO problems, there are still certain issues, including reducing the
computational cost of MOO problem and the effect of operators on target weights.

In a word, the extensive research and the aforementioned research results provide
the theoretical basis for this study; moreover, scholars have made significant progress in
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MOO problems and the solutions adopted. However, the research on warehouse operation
management is not yet complete enough to structure a more complete framework to
address the impacts and challenges of efficiency, safety, and cost on warehouse operation.
Therefore, this study takes warehouse operation effectiveness as the object of research, and
then, the efficiency, safety, and cost factors of production activities affecting enterprises
are quantified. Meanwhile, it seems there is a contradictory and fuzzy relationship between
efficiency, safety, and cost. When safety and efficiency are improved, costs may be
significantly reduced as a result of optimized processes and reduced risk. However,
improvements in safety may also have implications for both efficiency and cost. Moreover,
changes in cost can directly drive alterations in efficiency and safety. Therefore, this study
takes warehouse operation effectiveness as the object of research, and then, the efficiency,
safety, and cost objectives of production activities affecting enterprises are quantified.

Specifically, this study combines the data processing ideas of NSs and heuristic algorithms
together, and proposes a specific neutrosophic objective—proportionate genetic algorithm
model (PNO-PGA). For convenience, the main research contributions are as follows:
Firstly, this study is based on the concept of NSs, which integrates three different objectives
of safety, efficiency, and cost affecting the production activities of enterprises to make the
different objectives achieve compatible effects. Secondly, based on the NS, a generalized
score function is introduced and applied to the proportional genetic algorithm to establish
the PNO-PGA model, which provides a reference for evaluating and optimizing the
production activities of enterprises. Finally, this study goes through a numerical example
and calculates the model. Simulation software is used to compare the modified case with
the unmodified case to get realistic results, and then verify the validity of the model.

The contents of this study are organized as follows: In “Preliminaries”, the basic concepts
of MOO, NSs, GA, and score functions of NSs are introduced. In “Optimization Method”,
the application of the generalized score function on SvNSs are described, and establish
a parameterized neutrosophic goal-proportional genetic by using NSs. In “Tllustrative
Exemplicification”, the effectiveness of the PNO-PGA model is validated using an example.
In “Conclusion”, the full text is summarized.

PRELIMINARIES

Definition 1: Denote a universal set as X, for any given x € X, denote

F@) = (@)L &), fe (), (1)
e(x):(el(x)762(x)’“"em(x))’ (2)

where x = [x1,%2,...,%,] T € X, X, <x < x;“,wheras x; and x:rare all crisp numbers.
Then, a generalized MOO problem is described as following

minf (x) = (ﬂ(x),fz(x),...,fk(x)), (3)
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s.t.e(x) = (e1(x),ex(x),...,em(x)) > 0. (4)

Theoretically, it is difficult to find accurate feasible solutions for NP optimal problems
in limited time. Then, the existing heuristics algorithms seek near-optimal solutions at a
low cost, and GA is one of these heuristic algorithms. The specific definition of classical
GA is as follows (Lei et al., 2005).

Definition 2: A GA isakind of heuristic algorithm to solve optimization problems of both
constrained and unconstrained. By referring the natural selection process in biology, the GA
modifies one member of all individual solutions generation after generations. In each step,
the new individuals for the next generation are generated by randomly selecting individuals
from the current generation and using them as parents. Time and time again, the optimal
solution can be obtained through population evolution. Through summary and induction,
the aforementioned statement can be expressed as GA = (C,E,Py,M,®,I", W,N), where
Crepresents the coding methods of individuals, E represents the evaluation function of the
fitness value of individuals, Py represents the initial state of population, M represents the
size of population, ® represents the operator for selection, I represents the operator for
crossover, Wrepresents the operator for mutation, N represents the end condition of GA.
For convenience, a brief flow chart of GA is shown as Fig. 1.

In the following, the concept of classical single-valued NS is introduced. It is noteworthy
that this kind of fuzzy set has been widely used in medical diagnosis (Peng et al., 2014),
decision making (Sodenkamp, Tavana ¢ Caprio, 2018), and image process (Das et al.,
2017), etc.

Definition 3: Assume that Y is a point space with a generic member represented by y.
A truth membership function T4 (y), an indeterminacy membership function I4 (y), and
a falsity membership function Fy () form a single-valued neutrosophic set (SVNSs) A on
Y, where Ty (y),IA (y), and Fu (y) are all mapping function from Y to [0,1], whereas
0<Ta(y)+Li(y)+Ta(y) =3.

Then, a SYNSs A is denoted as A(y) = {(x,TA ()/),IA (y) ,Fa (y)> ‘y ey }

The single-valued neutrosophic element in A is designated as a = (T4, 14, Fa4). for
convenience.

Definition 4: (Guo, Sengiir & Ye, 2014) Assume that Y contains two single-valued
neutrosophic components, denoted as

ar =(Ta(n).1a(n).Fa(n)). (5)

ay =(Ta(y2).1a(72) . Fa (2))- (6)
Then, a classical similarity score between a; and a, isproposed as
(Ts(r1) - Ts(v2) +1s(y1) -Is(v2) + Fs(71) - Fs (v2))
(VT300) F B (1) +F2 (1) T3 (2) + B (12) + F2 (1)

In the following section, a novel PNO-PGA is proposed to solve MOO problem.

S(ay,a) = (7)
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Figure 1 Classical GA process.
Full-size Gal DOI: 10.7717/peerjcs.2117/fig-1

OPTIMIZATION METHOD

GSF on SvNSs
Inspired by Guo, Sengiir ¢ Ye (2014), a kind of GSF on SvNSs is introduced as follows.
Definition 5: Assume that a is a single-valued neutrosophic components on Y, it is

denoted as

a=(Ta(y).1a(y). Fa(v))- (8)
Then, a kind of GSF on a is denoted as

S@=f(Ta(y).7). (9)
wherefT/A >0, fy’ >0, f(TA (y),y) €1[0,1], whereas

y =cos((Ta(v).1a (). Fa(Y)),(1,0,0)). (10)

It is noteworthy that S(-) is composed of two independent variables, where one is T4 (y)
which indicates the modulus, whereas the other is y which indicates the degree of similarity
between a and (1,0,0).

Definition 6: Suppose a is a single-valued neutrosophic number on Y, it can be denoted
as

a=(Ta(y).1a(y). Fa(y))- (11)
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Then, a specific GSF on a is denoted as
0
VT O)+E0)+ ()

where A is a positive integer which represents the decision-maker’s subjective attitude

Se@)=Ta(y) y=Ta(y)-

(12)

towards extremely large or small values. Obviously, S;?,TA >0, S%,y >0, Sg(-,-) €[0,1].
Especially, when the weight vector for (T,I,F) is given as (wj,w,,ws), Sp(a) can be
expressed as

Sr(a) ==

(13)

Ta(y)- (mTa () |
JOTA0)? + (w2ds (7)) + (w3Ea (1)

PNO-PGA

On the basis of combining GA and NS theories, a novel heuristic algorithm is proposed.
For convenience, the studied problem will be introduced firstly.

(i) Problem introduction

In the production activities of enterprises, there are a variety of objectives to be considered,
where efficiency, safety and cost are the three most important goals. For convenience, the
measurement values of efficiency, safety and cost are denoted as E, S, and C, respectively.
Assume that E, S, and C are all bounded. Assume that there is a production project which
has a collection of infinite alternatives. For convenience, the collection of alternatives is
denoted as X, and the corresponding representative alternative is denoted as x. Denote
x=[x1,%,...,x,]T, where X <X Sx;r
x € X, it gets a vector of E (x), S(x), and C(x). Here, as E (x) and S(x) get larger, the value
C (x) decreases, and the corresponding alternative x is better. Denote the constraints in the

, x;_ and x;" are all crisp numbers. For any given

given optimization problem as

e(x) = (e1(x), e2(x), ..., em(x)) > 0. (14)
Denote

fr) =(E(x),S(x),C(x)). (15)
Then, a generalized MOO problem is described as

minf*(x) = (=E(x), =S(x), C(x)), (16)

ste(x)=(e1(x),e2(x), ..., em(x)) > 0. (17)
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(ii) Problem analysis

To solve the aforementioned problem, the three objectives are explored before calculation.
For any given alternative x € X, it gets a vector (E (x),S(x), C (x)). Obviously, the larger
E(x) or S(x), the better; the smaller C (x), the better. Furthermore, S(x)has an effect
on E(x) and C(x). During production operations, when S(x) is a small number, the
management’s attention is usually distracted by safety issues. To ensure the safety of
production, the management will reduce the efficiency appropriately, which means the
credibility of E (x) will be reduced in real production. Meanwhile, when S(x) is a small
number, potential accident risks increases in the production process of industry, and these
accident risks will be converted into the opportunity cost of production of enterprises,
leading to the increase of C(x). To eliminate the dimensional information from the
data, E(x),S(x), and C (x) should be normalized. For convenience, this study denotes
the normalized results as Ey (x), Sy (x), and Cy (x), respectively. Here, Ex (x) € [0, 1],
Sn (x) €[0,1], Cy (x) € [0,1]. Then, it can be obtained that 1 — Sy (x) is the potential risk
of industry production. In this situation, the vector

Gy, = (En (%),1=Sn (x),Cn (%)) (18)

is suitable to be dealt with as a simple neutrosophic number, and the set X issuitable to be
dealt with as a SVNSs, it gets

Xe={(x,(EN (x),1=Sny(x),CN () [x € X }. (19)

Here, for any given x € X, by using Eq. (13), it gets its corresponding GSF value. By
using the generalized score value, this study could optimize the given MOO problem.

(iii) Parameterized PNO-PGA
Based on the problem analysis and by referring Definition 2, the introduced MOO problem
(Eq. (17)) can be solved, and the detailed steps are shown as follows.

Step 1: For any given feasible solution x for Eq. (17), by using C in SGA, code x and
convert it into a vector x” which is the representation of a feasible solution.

Step 2: Generate the initial population Py by using x’, and denote the population size of
Py as M. Denote Xy = {x01,%02,---,Xom}, where xo,,, (1 <m < M) represents an individual.
Denote Py = {x(’n,x()z, e X0 }, where x;,, (1 <m < M) is a vector which is corresponding
to Xo;,,. The novel PNO-PGA will start the iteration with Py. Set the iteration variable as n,
and set the number of iterations as N.

Step 3: For any given xo, (1 <m < M) in Xy, its corresponding E (Xos,), S(Xom), and
C (xom) according to the actual condition in production practice are calculated. For the
dangerous goods transport scenario mentioned in this article, E (xo.,) , S (%om), and C (Xos)
according to Egs. (39), (40), and (41) are calculated. Then, it gets the vector

onyn = (E (xom) , S (x0m) » C (xom)) - (20)

For the whole initial population Py, it gets a set of Gp,. For convenience, the set is
denoted as

Voo ={Viyrs Vagps s Vi } - (21)
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Denote
Enmax,0o ={E (x01),E (x02), ..., E (xom)},
Smax,0 =1{S(x01),S(x02), ..., S(xom)}, (22)

Cmax,0 =1{C(x01),C(x02),...,C(xom)}.

For any given m (1 <m < M). Denote

EN (xom) = E (Xom) - (EMAX,O)il,
1 SN (xom) = S (Xom) - (SMAX,0)717 (23)
CN (x0m) = C (xom) - (CMAX,O)_1

Then, it gets a NS Gy = (En, 1 — SN, Cn) . For any given xy,,, (1 <m < M), by using Eq.

(23), it gets a neutrosophic number

Gy, = (EN (X0m) , 1 — SN (X0m) » Cn (Xom)) (24)
and a set
Xe={(x,(En(x),1 =Sn(x),CN (X)) |x € X }. (25)

Step 4: For any given Gy, (1 <m < M), by using Eq. (13), its corresponding GSF value
can be obtained as Sp (Gxo,n)- Thereafter, by using Sr (), a monotonic descending sequence
according to Sg (-) is obtained as

ZOF = SF (Gx()ml ) ’ SF (GXQm2> LRARS] SF (GxOmM) ’ (26)

where my,m,, ..., my isa permutation of 1,2,..., M.
Set a positive integer M* (M* < M). By using M*, X, is divided into two parts, where
one is

Xo1 = {xOW,] s X0rmy 5+« - s X0y« }, (27)
and the other is

Xo2 = {XOW,M*Jrl s XOmpgs a2 XOmyg } (28)
Step 5: By using certain crossover operator I', X, is transferred to X{,, where

/o / / / : : : /
Xo1 = {xOml s X0my s -+ X0y } By using mutation operator W, Xy, is transferred to X

/o / / / /I / / : X
where Xy = {xOmM*H,xOmM*H,...,xOmM } Denote X, = {XOI,XOZ} by using Sp(-), a

monotonic descending sequence is obtained as

Iop =Sk <Gxém)’sF (Gx6m2>""’SF (Gx(/)mM)' (29)

For any given m(1 <m < M), denote

Sk (G ) = max{sF <Gx0mk),8p (Gx/ )} (30)

Omy

denote the corresponding set of feasible solution X;, where X; = {x1,x12,...,X1:m}, and
denote the I st optimal solution as x;.
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Step 6: If N # 1, then, turn to Step 3; and denote n =2, denote

Eyax.1 = maX{EMAX,o,EMAx,l },
Shax,1 = mMax{Suax. 0, Smax 1}, (31)
Chyax.1 = max {Crax.0. Crax.1}-

Denote
En (xl,m) :E(xl,m) : (Ejl\/jAX,l)ila
1SN (xl,m)=s(x1,m)‘( ;\/[AX,l)ila (32)

-1

Cn (x1,m) = C (x1.m) - (Chaax.1)

Then, turn to Step 4, Step 5, Step 6 in turn. If n < N, turn to Step 3; and denoten =n+1,

EI/\/IAX,n = maX{EI/\/IAX,n—DEMAX,”} ’
SE\/IAX,n :maX{SE\/IAX,n—pSMAX,n}v (33)

/ _ /
Crax.n= maX{CMAx,n—pEMAX,n} .

Denote
EN (xn,m) =E (xn,m) . (Ezl\/[AX,n)_l,
SN () = S (%m) - (Shaax.) - (34)

CN (%) = C () - (Chiax.n) -

Then, turn to Step 4, Step 5, Step 6 in turn. If t < N, turn to Step 3; if else, select
the final optimal solution as xx;. It is noteworthy that there is a series of virtual NSs
which is structured by Eq. (22), and is denoted as V,, = {{E,;,1 —S,,C)|n=1,2,...,N }.
For any given individual x,, ,,, the neutrosophic number corresponding to it is denoted
as Vym= (EN (xn,m) ,1—Sn (xn,m) ,Cn (xn,m)>. For ease of understanding, please refer to
Fig. 2.

(iv) Supplement explanations
(1) In Step 3, by using Eqs. (22)—(23) and (34), a series of NSs are structured. The
characteristic of the proposed NSs is that they converge to a fuzzy set. Details on this
convergence are introduced in the following theorem.

Theorem 1: For any given n <N, m <M, M = 400, it gets a neutrosophic number

Vim = (EN (xn,m) ;1 =S8N (xn,m) ,CN (xn,m))- (35)
Denote
lim V., =< lim Ey (x,,,m) ,1— lim Sy (xn,m), lim Cy (xn,m)>. (36)
n—-+00 n——+00 n——+00 n——+00

Then, it gets that lim,— 4o Vi m, lim,— 1 o0EN (xn’m), lim,,— 4+ 0o SN (xn,m), and
limy,—, 1 0o CN (xn,m) all exist.

Proof: By using Eq. (31), it gets Eyux 15 Syux.1» Caax, all increase monotonically
as n increases, while E (xl,m), S(xl,m) and Cy (xl,m)are positive crisp values. Then, by
using monotone bounded theorem, it gets lim,,—, o En (x,,,m), lim,,— 1 oSN (xn,m), and
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Figure 2 Novel PNO-PGA process.
Full-size kol DOI: 10.7717/peerjcs.2117/fig-2

lim;,—, 1 0o CN (xn,m) all exist. Moreover, by using Eq. (36), it gets that limy,—, 4 o0 Vi, m exists.
(2) In Step 3, the neutrosophic fitness value is calculated by using Eq. (13). Like other
classical score functions, Eq. (13) has its scope of application and defects. In specific
optimization environment, users need to choose the appropriate score function according
to their own practice. (3) In Step 4, the neutrosophic fitness value for each feasible solution
is calculated by using Eq. (2). In this step, the parameter A can reflect the subjective attitude
of the customer towards the relationship between efficiency, safety and cost. (4) In Step 4,
for any given Gy,,, (1 <m < M), Sg(-) isused to calculate the neutrosophic fitness function
value. Since Sr(-) is obtained by using fuzzy technology, for the same feasible solution,
it can get different neutrosophic fitness function values in different iteration times. The
reason for this phenomenon is that Epjax, Spax and Cyax are all variables in Eq. (22). (5)
In Step 5, by suing Sg(-) and M*, the individuals are divided into two parts, where one
part is to be crossover processed, and the other is to be mutated. Here, it is noteworthy to
point out that crossover and mutation are probabilistic in classical GA, while crossover and
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Table 1 Results comparison.

Algorithms PNO-PGA Basic GA
Maximum convergence iterations 461 280
Mean convergence iterations 389 237.55
Standard deviation of convergence iterations 40.37 41.66
Maximum CPU time(s) 415.17 469.47
Mean CPU time(s) 405.59 416.23
Standard deviation of CPU time (s) 6.39 25.05

mutation are proportional in PNO-PGA. Especially, the crossover rate is M* /M, while
the mutation rate is 1 — M*/M. Moreover, the selected crossover individuals all take part
in the crossover process, while the selected mutation individuals all take part in mutation
process, which makes full use of the computing power of modern computer and reduce
the occurrence opportunity of premature.

The differences between the proposed PNO-PGA and the GA are listed in Table 1.

ILLUSTRATIVE EXEMPLIFICATION

Exempilification introduction

To illustrate a MOO problem in warehouse operation, we cited the data which were
collected as previously described in Zhang et al. (2023 ). Assume that the length, width, and
entrance width of the warehouse are 64 m, 17.5 m, and 4 m respectively. And there are 14
points inbound and points outbound. Not only should a distance of 12 m between two
container vehicles but also a distance from the warehouse to the container truck be 2 m.
For convenience, the inbound point is denoted as A;(1 <i < 14), the outbound point is
denoted as V; (1 <j< 14). In general, the work flow of the forklift is as follows. Firstly, the
hazardous goods are transported from containers by the operating forklifts. Secondly, the
goods are unloaded by forklifts to the inbound point. Thirdly, the outbound goods should
be discharged onto the outbound container by an empty forklift traveling to the outbound
port. Assuming that there are three forklifts responsible for both inbound and outbound
hazardous materials transfer. The forklift turns back to the inbound container and prepares
the next inbound activity. For convenience, the chain of the above operations is named as
a closed-loop storage chain. The forklifts work on successive chains until operations are
over. According to Sun et al. (2021), the original warehouse layout structure diagram is
shown in Fig. 3.

The distance for forklifts to travel to finish a closed-loop storage chain depends on the
location of the point incoming and the point outbound. For any given A; and V;, there
is a corresponding closed-loop storage chain whose distance is denoted as [;;. Denote the
distance of all pairs of (Ai,Vj) (1 <i,j< 14) as L= (11-]-)14><14
is represented by the row in L, while the outgoing point is represented by the column in

where the incoming point

L. To simplify the calculation, the original distances of the closed-loop storage chains are
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normalized by using the function

, Ipi, g, —Mins1 s2enm by,

-dj
— s V0.1, (37)
maxsy, s2eM lPisl i, mingy, s2em lpi51 i,

Pi ko

/

, o , .
L lpiz, g lpi3, - the similarity degree r’ on them can be obtained as

For any given ;.

\(Upi, - aj, —Vpi,ap,) - (Upi - a, —U'pi,g5) - (Upi 4, = U'pi - )|

r'=1-
(max{l/p,-l,qj1 Upi,.qj, - Z/Pia,%}f

. (38)

Denote the fixed cost for operation management per hour as C,, denote the normal
speed index of the forklifts as 7,, denote the time cost of the operation as C; =C, - 7, Ly,
denote the influence factor of variable speed on operation time as 7, denote the influence
factor of variable speed on fuel cost as tg, anddenote the normal fuel cost index for forklift
to travel as Cy. Then, according to field survey, the efficiency optimization model can be

expressed as

14 14 14
_ —IZZH/ 3—12 . . g
" =(%) Xigjy 'lisjt T (Cl4) ’ (xlsdt’1 “Xigje,2 " Xis,je3 r(p. p ) (p‘ 4 ) (p‘ ai )) ’
. . .. 11 ’ 19 ’ 17
is=1j=1 is,jr=1 i 27912 393
14 14 14 14
S.t. E Xigy = 1, E Xigy = 1, E Xig jr 1 = 1, E Xig jr 1 = 1, 39
is=1 jr=1 is=1 jr=1 (39)
14 14 14 14
E Xigjr2 =1, E Xige2 =1, E Xigjr.3 =1, E Xig,3 =1,
i=1 jr=1 i=1 je=1
Xigjo 1 7 Xigj2 F Xigjo 35 Xigg, € 10,1}, %551 €{0,1}, x5, 2 €{0,1}, x5, j, 3 € {0, 1}.
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The safety optimization model can be expressed as

14
—(c3)\7! . . o
VZ—(CM) : § Xig.j 1" Xigyjp 2 " Xigj 3T o R K
= Piy»4jy )\ Piy» iy )\ Pis» 953
i5,jr=1
14 14 14 14
4 s.t. E Xig, = 1, E Xij, = 1, E Xigj 1= 1, E Xigjr 1 = 1, (40)
i=1 ji=1 i=1 =1
14 14 14 14
E Xij2=1, E Xij, 2 =1, E Xij3=1, E Xij, 3 =1,
is=1 je=1 is=1 ji=1

Xipj 1 7 Xigjp.2 7 Xig 30 Xig, €10, 1}, x5 5,1 €{0,1},x;j,.2 €{0,1}, x5 j, 3 € {0, 1}.

The cost optimization model can be expressed as

14

14 14
vs=Cr ) xili, +75-(C) > (xis’jt’l .xis’j”rxis’jt’yrﬁpi aiy): (piy-ai, ). (pi %s))’
1’ ’ 2’ ’ 3’

is=1jr=1 is,jr=1

14 14 14 14
s.t.E Xig =1, E xisjt=192 xis,jt,1=1,§ Xigjen1 =1,
(41)

is=1 jr=1 is=1 jr=1

14 14 14 14
ins»]'tl =1, insjr,z =1 ins,jf,s =1 insjt,s =1,

is=1 je=1 is=1 jr=1
Xigje,1 7 Xigje, 2 7 Xigjr 30 %ige € {0, 1}, x5 j, 1 €{0,1},x; j; 2 €{0,1},x;,j, 3 €{0, 1}.

Optimization process using PNO-PGA

In this subsection, the introduced operation optimization problem would be solved

by using the proposed novel PNO-PGA model. First of all, a series of parameters are
obtained according to production practice. Specifically, in Eq. (21), it values that 7, = 3.5,
Tq =0.6; in Eq. (41), it values that Cy = 2.4, tg = 0.3. Then, by using the proposed PNO—
PGA model, the problem is solved in the following manner.

Step 1: For any given feasible solution xfor Eq. (17), code x and convert it into a vector
x" whose size is 14 and is a permutation from 1 to 14.

Step 2: Generate the initial population Py by using x’, and denote the population size
of Py as M. Denote X, = {XO’I,XO’z, ... ,xo,zoo} , where xg,,, (1 < m < 200) represents an
individual. Denote Py = {x(/)’ l,x()’z, .. ’x(/),zoo} , where x{, (1 <m <200) is a vector which
is corresponding to xo,,. Denote Group number = 200, cross rate = 0.8 and mutation rate
= 0.2. The novel PNO-PGA will start the iteration with Py. Set the iteration variable as
n, and set the number of iterations as N = 500. Here L’ is a distance between 14 inbound
and 14 outbound warehouses.
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[0.13 0.18 0.13 024 0.28 028 0.32 034 054 051 057 054 0.77 0.77]
0.09 0.18 0.13 0.21 0.25 0.25 0.28 0.31 0.51 047 0.54 0.51 0.77 0.73
0.09 0.18 0.13 0.18 0.21 0.21 0.25 0.28 0.47 043 0.51 0.47 0.77 0.73
0.62 0.59 0.60 0.80 0.62 0.19 0.19 0.19 044 041 0.47 0.41 0.44 041
0.09 0.18 0.13 0.18 0.21 0.21 0.25 0.28 047 043 0.51 047 077 0.73
0.58 0.55 0.58 0.77 0.13 0.15 0.13 0.19 041 038 0.44 0.38 0.40 0.38
0.55 0.52 0.55 0.74 0.09 0.12 0.13 0.19 038 034 041 0.34 0.37 0.34
0.55 0.52 0.55 0.74 0.09 0.12 0.13 0.19 038 0.34 0.41 0.34 0.37 0.34
0.44 0.41 0.41 044 0.06 006 0.09 0.03 0.19 0.19 0.19 0.22 0.23 0.20
0.41 0.38 0.38 0.41 0.03 0.03 0.03 0.01 0.13 0.15 0.19 0.19 0.20 0.17
0.31 0.28 0.28 0.31 0.01 0.01 0.03 0.01 0.09 0.12 0.19 0.15 0.17 0.13
0.81 0.78 0.81 1 0.35 0.38 0.35 0.41 055 058 055 0.15 0.13 0.19
0.75 0.72 0.75 093 029 032 029 034 049 052 0.49 0.09 0.06 0.12

10.78 0.75 0.78 096 032 035 032 039 052 055 052 0.12 0.09 0.15 ]

Step 3: For any given three individual x,, (1 <m < 200) in Py, calculate its correspond-
ing E (x0m), S(xom), and C (xo,,) according to Eqs. (39), (40), and (41), respectively. Then,
it gets a vector Vy,, , a set of Gp,, a set Vp,, three parameters Eyax 0, Smax.0, Cmax.o-
Thereafter, for any given m (1 <m <200), by using Eq. (23), it gets a vector Gy,, and a
set Xg.

Step 4: For convenience, denote A = 2. For any given Gy, (1 <m < 200), by using
Eq. (13), its corresponding GSF value can be obtained as Sg (GxOm)- Thereafter, by using
Sr (), a monotonic descending sequence is obtained as lyr, where m;,m,, ..., myg isa
permutation of 1,2, ...,200. Here, set a positive integer M* = 160. By using M*, X is
divided into two parts, where one is Xy, with 160 elements, whereas the other is Xy, with
40 elements.

Step 5: By using certain crossover operator, X, is transferred to Xép where X(’)l =

/ / / . . : /
{xO my > X0my s -+ ,xOmwO} ,- By using mutation operator Xy is transferred to Xop> where

Xy, = {x(/)mM*+1 ,x(/)mM*H, ... ,x(’)m40 } Denote X = {Xél,X{)z} by using Sk (+), a monotonic
descending sequence is obtained as I . For any given m(1 < m < 200), it gets S (Gy,, )
by using Eq. (30). Then, denote its corresponding set of feasible solution X, where
X) = {xl,l,xl,z,...,xl,zoo}, anddenote the 1 st optimal solution as x; ;.

Step 6: If n # 500, turn to Step 3. By calculating, it gets Eypux 1> Syax.1> Chax.1s
En (xlym), SN (xlym), Cn (xl,m). Then, turn to Step 4, Step 5, Step 6 in turn. If n+1 < 500,
turn to Step 3; and denote n = n+ 1. Then, it gets EII\/IAX,n’ S;WAXM, C]/VIAX’n, En (xmm),
SN (xn,m) and Cy (xn,m). Then, turn to Step 4, Step 5, Step 6 in turn. If n < 500, turn to
Step 3; if else, select the final optimal solution as xéOO,l'

The aforementioned program is experimented. At last, it gets the optimal vector as

xgoo’lz[lz 9 14 5 13 4 10 11 1 2 7 6 8 3].
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Then, the optimal feasible solution for the given question is obtained as

1 23 45 67 8 9 10 11 12 13 14
X500 1 =
017092 9 14 5 13 4 10 111 2 7 6 8 3

It is noteworthy that the serial number of inbound locations is represented by the first
row of numbers in x50, 1, while the serial number of outgoing locations is represented by
the second row of numbers in x50, 1.

Description of calculation process

In this subsection, some peculiar characteristics in the calculation process in the previous
subsection are described. (1) In each generation, there is a maximum neutrosophic fitness
value S (Gy, ,,, ) where n=1,2,...,500. It shows that S (G, ,,, ) converges. More details
please see Fig. 4. From Fig. 4, in the process of element and set coevolution, the feasible
solution is optimized which illustrates the strategy of combining crossover and mutation
effectively avoid the problems of premature convergence and local optimal solutions,
thereby it improving the efficiency and accuracy of the optimization process.

(2) In each generation, there is a feasible solution x,, ,,;; which is corresponding to

S (Gxn,ml)- By Egs. (21)-(23), E (Xn,ml), 1— S(xn,ml) and C (Xn,m1) are all obtained. The
curve of E (xn,ml) please see Fig. 5; the curve of 1 — S(xn,ml) please see Fig. 6; the curve of
C (xn,ml) please see Fig. 7. Specifically, Figs. 5, 6 and 7 show that E (xn,ml), S(xn,ml) and
C (x,,,ml) all converge which illustrates the novel proposed PNO-PGA is effective.

(3) In each generation, NS there are three maximum values in each domain, i.e., Epax n,
1 — Smax n, and Cyax - By using functions similar to Eq. (22), they are all obtained. The
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curve of Epax ., please see Fig. 8; the curve of (1 —S)p4x , please see Fig. 9; the curve of
Cmax,n please see Fig. 10. Specifically, Figs. 8, 9 and 10 show that Exax n, (1 —35)pax.n
and Cpax , all converge which illustrates the definition of s is effective. (4) In the
proposed PNO-PGA, there are two key parameters, i.e., A and M*. On the one hand,
when the customer cares more about emergency situation, the parameter A should be
valued as a large number. To the contrary, when the customer cares more about normal
production, the parameter A should be valued as a small number. On the other hand,
when the customer thinks the complexity of the research problem is strong, especially
when the nonlinearity of the model is strong, the parameter M* should be valued as a
small number. To the contrary, when the customer thinks the complexity of the research
problem is weak, especially when the linearity of the model is strong, the parameter M*
should be valued as a large number.

(5) The introduced MOO problem can also be solved by using classical GA. However,
comparing with classical GA, the proposed PNO-PGA has stronger search and anti-
precocity ability. Specifically, the crossover and variation in PNO-PGA are executed by in
proportion rather than probability, so that the population generally evolved over and over
again. The comparison between the quality of the first-generation individuals and that of
the last-generation individuals in the mutation area is shown in Fig. 11. The performance
of the classical GA and the PNO-PGA in Mean convergence iterations and Standard
deviation of CPU time are compared and analyzed by applying the benchmark test case
ten times with 500 iterations per iteration, respectively. The experimental results show
that the Mean convergence iterations of classical GA was 237.55 times, and PNO-PGA
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exceeded GA 152 times, which demonstrates that PNO-PGA is more stable in searching
ability and more accurate in finding the global optimal solution. In the Standard deviation
of CPU time, PNO-PGA’s 6.39 s is shorter than that of classical GA’s 25.05 s by 18.66 s.

it is noteworthy that PNO-PGA is more excellent than classical GA in terms of search
efficiency. The reliability and utility of the algorithm’s performance enable it not to be
affected by input data or other factors. The experimental comparison results of PNO-PGA
and GA are shown in Table 1.

CONCLUSION

In this study, a kind of neutrosophic objective optimization thought is proposed whose
characteristic is to dialectically monitor the whole process of optimization activities by
using neutrosophic thought. According to this thought, a novel parameterized PNO-
PGA is proposed. Finally, through an example, the validity of the proposed PNO-PGA
is verified, and the proposed PNO-PGA has three main characteristics.

Firstly, compared with traditional GA, the proposed PNO-PGA cleverly utilizes NSs
to deal with the three main objectives of industrial production, i.e., efficiency, safety, and
cost. The advantage is that it is more adaptable to more fuzzy and generalized situations.

Secondly, the improved GA can explore the potential solution space better through
proper crossover and variation proportion, maintain population diversity, and avoid the

search process from falling into premature, locally convergent scenarios.
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Thirdly, based on the characteristics of the problem and the progress of the algorithm,
parameterized GA can flexibly modify the weights of the objective function, dynamically.
In addition, To integrate subjective and objective information by using the two parame-
ters effectively.

The proposed PNO-PGA is an important cornerstone. By using this algorithm, NS
theory and optimization theory have been held together tightly for the first time. In
the future, similar to PNO-PGA, it can deduce a series of algorithms for MOO such
as neutrosophic objective-neural networks, neutrosophic objective-particle swarm
optimization, neutrosophic objective-ant colony algorithm, etc.

The model expands the range of objective value options by aggregating vectors of ob-
jectives and changing the weights. The model can integrate objective values, dialectically
monitor the whole process of optimization activities, and have potential applications in
business management, vehicle routing problems, and so on. For the different optimiza-
tion objectives of decision makers in different scenarios, the specific implementation
means in terms of weight selection are different, and the actual optimization situation
is obtained through practical investigations. In the future, further optimization of GA
is planned to expand its applicability in the whole process of optimization. Moreover,
the model can be optimized more by using other aggregation operators and can be more
realistic in other industries and engineering fields.

Zhao et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2117 20/24


https://peerj.com
https://doi.org/10.7717/peerjcs.2117/fig-11
http://dx.doi.org/10.7717/peerj-cs.2117

PeerJ Computer Science

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Shanghai Puiang Program (No. 2019PJC062), the Research
project on Undergraduate Teaching Reform of higher education in Shandong Province (No.
72021046), the Natural Science Foundation of Shandong Province (No. ZR2021MG003),
the National Natural Science Foundation of China (No. 51508319), and the Nature
and Science Fund from Zhejiang Province Ministry of Education (No. Y201327642).
Natural Foundation of Shandong Province (ZR2021MGO003) provided assistance in data
collection and analysis.

Grant Disclosures

The following grant information was disclosed by the authors:

The Shanghai Puiang Program: 2019PJC062.

The Research project on Undergraduate Teaching Reform of higher education in Shandong
Province: Z2021046.

The Natural Science Foundation of Shandong Province: ZR2021MG003.

The National Natural Science Foundation of China: 515083109.

The Nature and Science Fund from Zhejiang Province Ministry of Education: Y201327642.
Natural Foundation of Shandong Province: ZR2021MGO003.

Competing Interests
Jun Ye is an Academic Editor for Peer].

Author Contributions

e Yi Zhao conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, authored or reviewed drafts of the article,
and approved the final draft.

e Fangwei Zhang performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.

e Bing Han analyzed the data, performed the computation work, prepared figures and/or
tables, and approved the final draft.

e Jun Ye performed the computation work, prepared figures and/or tables, and approved
the final draft.

e Jingyuan Li conceived and designed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The raw measurements are available in the Supplementary File.

Zhao et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2117 21/24


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2117#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2117

PeerJ Computer Science

Supplemental Information

Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.2117#supplemental-information.

REFERENCES

Alpaslan N. 2022. Neutrosophic set based local binary pattern for texture classification.
Expert Systems With Applications 209:118350 DOI 10.1016/].ESWA.2022.118350.

Aparna KG, Swarnalatha R. 2023. Dynamic optimization of a wastewater treatment
process for sustainable operation using multi-objective genetic algorithm and non-
dominated sorting cuckoo search algorithm. Journal of Water Process Engineering
53:103775 DOI 10.1016/].JWPE.2023.103775.

Castonguay AC, Polasky S, Holden MH, Herrero M, Chang JF, Mason-D’Croz
D, Godde C, Lee K, Bryan BA, Gerber ], Game ET, McDonald-Madden E.

2023. MOO-GAPS: a multi-objective optimization model for global animal
production and sustainability. Journal of Cleaner Production 396:136440
DOI 10.1016/j.jclepro.2023.136440.

Chen J, Jia X, He Q. 2023. A novel bi-level multi-objective genetic algorithm for
integrated assembly line balancing and part feeding problem. International Journal
of Production Research 61(2):580-603 DOI 10.1080/00207543.2021.2011464.

Costa-Carrapigo I, Raslan R, Gonzélez JN. 2019. A systematic review of genetic
algorithm-based multi-objective optimisation for building retrofitting strategies
towards energy efficiency. Energy and Buildings 210:109690
DOI 10.1016/j.enbuild.2019.109690.

Das S, Kumar S, Kar S, Pal T. 2017. Group decision making using neutrosophic soft
matrix: an algorithmic approach. Journal of King Saud University-Computer and
Information Sciences 31(4):459—468 DOI 10.1016/j.jksuci.2017.05.001.

Dogan H, Temel Fulya A, Yolcu Ozge C, Turan NG. 2022. Modelling and optimization
of sewage sludge composting using biomass ash via deep neural network and genetic
algorithm. Bioresource Technology 370:128541
DOI10.1016/].BIORTECH.2022.128541.

Garg H, Nancy N. 2019. Algorithms for possibility linguistic single-valued neutrosophic
decision-making based on COPRAS and aggregation operators with new informa-
tion measures. Measurement 138:278-290 DOI 10.1016/j.measurement.2019.02.031.

Guo Y, Sengiir A, Ye J. 2014. A novel image thresholding algorithm based on neutro-
sophic similarity score. Measurement 58:175-186
DOI 10.1016/j.measurement.2014.08.039.

Hassan M, Darwish S, Elkaffas S. 2022. Type-2 neutrosophic set and their applications
in medical databases deadlock resolution. Computers, Materials & Continua
74(2):4417-4434 DOI 10.32604/CMC.2023.033175.

Zhao et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2117 22/24


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2117#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2117#supplemental-information
http://dx.doi.org/10.1016/J.ESWA.2022.118350
http://dx.doi.org/10.1016/J.JWPE.2023.103775
http://dx.doi.org/10.1016/j.jclepro.2023.136440
http://dx.doi.org/10.1080/00207543.2021.2011464
http://dx.doi.org/10.1016/j.enbuild.2019.109690
http://dx.doi.org/10.1016/j.jksuci.2017.05.001
http://dx.doi.org/10.1016/J.BIORTECH.2022.128541
http://dx.doi.org/10.1016/j.measurement.2019.02.031
http://dx.doi.org/10.1016/j.measurement.2014.08.039
http://dx.doi.org/10.32604/CMC.2023.033175
http://dx.doi.org/10.7717/peerj-cs.2117

PeerJ Computer Science

Huang B, Yang X, Feng G, Guo C. 2021. Relative measure-based approaches
for ranking single-valued neutrosophic values and their applications. In-
ternational Journal of Machine Learning and Cybernetics 13(6):1535-1552
DOI 10.1007/513042-021-01464-9.

Jung J, Choi IC. 2022. A multi-objective optimization model for dissolving circu-
lar shareholdings in Korean conglomerates. Socio-Economic Planning Sciences
82:101307 DOI 10.1016/j.seps.2022.101307.

Kamran M, Ashraf S, Salamat N, Naeem M, Botmart T. 2023. Cyber security control
selection based decision support algorithm under single valued neutrosophic
hesitant fuzzy Einstein aggregation information. Aims Mathematics 8(3):5551-5573
DOI 10.3934/math.2023280.

Kilic HS, Yalcin AS. 2020. Comparison of municipalities considering environmental
sustainability via neutrosophic DEMATEL based TOPSIS. Socio-Economic Planning
Sciences 75:100827 DOI 10.1016/j.seps.2020.100827.

Lei Y], Zhang SW, Li XW, Zhou CM. 2005. Matlab genetic algorithm toolbox and its
application. Measurement 2005:11-13.

LiuP, Li Y. 2019. Multi-attribute decision making method based on generalized maclau-
rin symmetric mean aggregation operators for probabilistic linguistic information.
Computers ¢ Industrial Engineering 131:282-294 DOI 10.1016/j.cie.2019.04.004.

Liu XL, Luo JG. 2019. A dynamic multi-objective optimization model with interactivity
and uncertainty for real-time reservoir flood control operation. Applied Mathemati-
cal Modelling 74:606—620 DOI 10.1016/j.apm.2019.05.009.

Peng JJ, Wang JQ, Zhang HY, Chen XH. 2014. An outranking approach for multi-
criteria decision-making problems with simplified neutrosophic sets. Applied Soft
Computing 25:336-346 DOI 10.1016/j.as0c.2014.08.070.

Perez-Tezoco JY, Aguilar-Lasserre AA, Moras-Sanchez CG, Vazquez-Rodriguez
CF, Azzaro-Pantel C. 2023. Hospital reconversion in response to the COVID-19
pandemic using simulation and multi-objective genetic algorithms. Computers &
Industrial Engineering 182:109408 DOI 10.1016/].CIE.2023.109408.

Rashno E, Minaei-Bidgoli B, Guo YH. 2020. An effective clustering method based on
data indeterminacy in neutrosophic set domain. Engineering Applications of Artificial
Intelligence 89:103411 DOI 10.1016/j.engappai.2019.103411.

Salata F, Ciancio V, Dell’Olmo J, Golasi I, Palusci O, Coppi M. 2020. Effects of
local conditions on the multi-variable and multi-objective energy optimization
of residential buildings using genetic algorithms. Applied Energy 260:114289
DOI 10.1016/j.apenergy.2020.114289.

Sodenkamp MA, Tavana M, Caprio DD. 2018. An aggregation method for solving group
multi-criteria decision-making problems with single-valued neutrosophic sets.
Applied Soft Computing 71:715-727 DOI 10.1016/j.as0¢.2018.07.020.

Sun J, Zhang FW, Lu PC, Yee J. 2021. Optimized modeling and opportunity cost analysis
for overloaded interconnected dangerous goods in warehouse operations. Applied
Mathematical Modelling 90:151-164 DOI 10.1016/j.apm.2020.09.007.

Zhao et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2117 23/24


https://peerj.com
http://dx.doi.org/10.1007/S13042-021-01464-9
http://dx.doi.org/10.1016/j.seps.2022.101307
http://dx.doi.org/10.3934/math.2023280
http://dx.doi.org/10.1016/j.seps.2020.100827
http://dx.doi.org/10.1016/j.cie.2019.04.004
http://dx.doi.org/10.1016/j.apm.2019.05.009
http://dx.doi.org/10.1016/j.asoc.2014.08.070
http://dx.doi.org/10.1016/J.CIE.2023.109408
http://dx.doi.org/10.1016/j.engappai.2019.103411
http://dx.doi.org/10.1016/j.apenergy.2020.114289
http://dx.doi.org/10.1016/j.asoc.2018.07.020
http://dx.doi.org/10.1016/j.apm.2020.09.007
http://dx.doi.org/10.7717/peerj-cs.2117

PeerJ Computer Science

Tanabe R, Ishibuchi H. 2020. An easy-to-use real-world multi-objective optimization
problem suit. Applied Soft Computing 89:106078 DOI 10.1016/j.as0¢.2020.106078.

Wang M, Yu H, Jing R, Liu H, Chen PD, Li CE. 2020. Combined multi-objective
optimization and robustness analysis framework for building integrated energy
system under uncertainty. Energy Conversion and Management 208:112589
DOI 10.1016/j.enconman.2020.112589.

Wu Q, Wu P, Zhou LG, Chen HY, Guan X]J. 2018. Some new Hamacher aggregation
operators under single-valued neutrosophic 2-tuple linguistic environment and
their applications to multi-attribute group decision making. Computers ¢ Industrial
Engineering 116:144—162 DOI 10.1016/j.cie.2017.12.024.

Yan Z, He A, Hara S, Shikazono N. 2019. Modeling of solid oxide fuel cell (SOFC)
electrodes from fabrication to operation: microstructure optimization via artificial
neural networks and multi-objective GAs. Energy Conversion and Management
198:111916 DOI 10.1016/j.enconman.2019.111916.

Yang Y, Fu YL, Han BA. 2023. Neutrosophic cubic Maclaurin symmetric mean aggre-
gation operators with applications in multi-criteria decision-making. International
Transactions in Operational Research 30(6):4107-4169 DOT 10.1111/itor.13131.

YeJ. 2014. Improved cosine similarity measures of simplified neutrosophic sets for
medical diagnoses. Artificial Intelligence in Medicine 63(3):171-179
DOI 10.1016/j.artmed.2014.12.007.

Zhang F, Xu S, Han B, Zhang LM, Ye J. 2023. Neutrosophic adaptive clustering
optimization in genetic algorithm and its application in cubic assignment
problem. Computer Modeling in Engineering & Sciences 134(3):2211-2224
DOI 10.32604/cmes.2022.022418.

Zuo F, Zio E, Xu Y. 2023. Bi-objective optimization of the scheduling of risk-related
resources for risk response. Reliability Engineering & System Safety 237:109391
DOI10.1016/j.ress.2023.109391.

Zhao et al. (2024), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2117 24/24


https://peerj.com
http://dx.doi.org/10.1016/j.asoc.2020.106078
http://dx.doi.org/10.1016/j.enconman.2020.112589
http://dx.doi.org/10.1016/j.cie.2017.12.024
http://dx.doi.org/10.1016/j.enconman.2019.111916
http://dx.doi.org/10.1111/itor.13131
http://dx.doi.org/10.1016/j.artmed.2014.12.007
http://dx.doi.org/10.32604/cmes.2022.022418
http://dx.doi.org/10.1016/j.ress.2023.109391
http://dx.doi.org/10.7717/peerj-cs.2117

