
On the Impact of Sampling Frequency on Software
Energy Measurements

Rubén Saborido1, Venera Arnaoudova4, Giovanni Beltrame2, Foutse Khomh3, Giuliano Antoniol1
SOCCER1–MIST2–SWAT3 1 Labs., DGIGL, Polytechnique Montréal, Canada

4 Dep. of Computer Science, The University of Texas at Dallas

Abstract—Energy consumption is a major concern when devel-
oping and evolving mobile applications. The user wishes to access
fast and powerful mobile applications, which is usually in contrast
to optimized battery life and heat generation. The software
engineering community have acknowledged the relevance of the
problem and researchers are investigating ways to reduce energy
consumption, for example by examining which library, device
configuration, and applications parameters should be used to
promote long battery life. We conjecture that these studies are
at the border between hardware and software and we must be
careful on how the energy consumption is measured and how the
energy consumption is attributed to methods and libraries.

To the best of our knowledge, no previous work investigates
how much energy and power consumption is due to high
frequency events missed when sampling at low frequencies such
as 10 kHz and verified the error at the precision of method
level. Low frequency sampling is a rough approximation that
hinders the understanding of fine grain details: the real picture
of energy consumption as well as the root causes are missed.
This has profound implications on the choice of methods to
evolve or components to replace. In this paper, we propose an
approach for accurate measurements of the energy consumption
of mobile applications. We apply the proposed approach to assess
the energy consumption of 21 mobile, closed source, applications
and four open source Android applications.

We show that by sampling at 10 kHz one may expect a median
error of 8%, however, such error may be as high as 50% for short
fast executing methods. Finally, we revisit a previous approach
that estimates the energy consumption of methods based on
execution time and found that it can miss as much as 84% of
the energy, with a median of 30%.

Index Terms—Software Energy Consumption, Performance,
Android, Monitoring.

I. INTRODUCTION

With the current trend of pervasive mobile devices, which
will eventually lead to the Internet-of-Things, there is an
increasing interest in reducing the energy consumption of
mobile applications, and therefore prolonging the time be-
tween battery recharges. Pinto et al. [17] analysed more than
300 questions and 550 answers on the popular StackOverflow
question-and-answer site for developers and found that the
number of questions on energy consumption increased by
183% from the first trimester of 2012 to 2013. The majority of
those questions were related to software design, showing that
developers need guidance for designing, maintaining, evolving
green applications. Another clear sign of the relevance of this
problem is the Google Volta Project1, which aims to improve

1http://goo.gl/7QDTgk

the battery life of Android devices by creating a new more
energy aware Android version.

Battery usage has complex dependencies on the hardware
platform, and multiple software layers. The hardware, its
firmware, the operating system, and the various software com-
ponents used by an application, all contribute to determining
its energy footprint. Evolving, updating software components
or changing component configuration may have a profound
impact on battery life. The classical approach to fine-grained
software power modelling is to collect measures for single
instructions [21]. These values are then back-annotated to
higher level languages. However, such an approach produces
only approximated results, plus it is cumbersome as modern
processors implement pipelines and superscalar and multi-
processor architectures that often execute more than one
instruction per cycle.

Researchers have recently relied on platforms like Atom-
LEAP [20] or Monsoon power monitor [22] to acquire power
measurements. However, for both devices the sampling fre-
quency is at maximum 10 kHz. These are important steps
forward in understanding the impact of software on energy
consumption.

We claim that recent investigations in software engineering
related to mobile energy consumption are inaccurate as they
are biased by an excessively low sampling frequency, plus
the adopted methodology prevents the collection of accurate
and precise measures at method level. To support our claim,
we design an approach that enables accurate measuring of
energy consumption at higher sampling frequencies (i.e., above
10 kHz) up to the method level. Using this approach, we
compare energy consumption measurements of 21 (closed
source) Android applications at sampling rates of 60 Hz,
5 kHz, 10 kHz, 125 kHz and 500 kHz. Our findings show
that an important fraction of the power is consumed at high
frequencies and thus missed by current approaches, and the
error can be as high as 50%. We also observed that only
1% of energy is consumed above 125 kHz, hence we claim
that 125 kHz is sufficient to measure the power consumption
of mobile applications. We further show how accurate mea-
surements can be obtained at method level and we assess the
error made by current work that attributed energy to methods
proportionally to their execution times. We found that these
works may have underestimated as much as 84% of the energy,
with a median of 30%.

The contributions of this paper are:
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1) Empirical evidence that a higher sampling rate is needed;
2) A methodology for more accurate measurements of en-

ergy consumption at application and method levels;
3) Evidences that energy should not be attribute to methods

simply by considering their execution times.

Paper organization. The remainder of this paper is orga-
nized as follows. Section II discusses related literature on
energy consumption monitoring. Section III describes our
proposed methodology for more accurate measurements of
energy consumption, while Section IV presents our case study,
and Section V the results obtained showing the limitation of
current approaches. Finally, Section VI comments threats to
validity, and Section VII draws our conclusions and lays out
directions for future work.

II. RELATED WORK

There is a rich literature on energy consumption monitoring,
especially in the area of embedded devices, as such devices
only have limited battery power. The earliest work on energy
consumption focused on modeling, monitoring, and improving
energy consumption at the hardware level (e.g., [2], a detailed
survey of these works is presented in Hindle [9], [10]). Later
on, focus shifted to techniques to model, monitor, and improve
energy consumption at the level of the operating system and
applications. For example, Bohrer et al. monitor the power
consumption in web servers [1] using a sense resistor in series
with the systems to be measured. The signals from the sense
resistors are filtered with a 10 kHz low pass filter and passed
to a PCI-6071E A-to-D board from National Instruments.
Hindle [8], [10] measures the power using an external power
monitor called the Watts Up? Pro, operating at a frequency of
60 Hz, and developed a test-bed that can be used to assess
the energy consumption of different revisions of a mobile
application. Vásquez et al. [22] mine energy-greedy API usage
patterns in Android applications using a Monsoon [15] power
monitor capable of sampling power at 5 kHz frequency. Li
et al. [11] also use a Monsoon monitor to investigate best
energy-saving programming practices at 5 kHz sampling rate.
Hao et al. [7] estimate the power consumption of Android
applications at a fine-grained level (per-instruction). They
use a Low Power Energy Aware Processing (LEAP) power
measurement device (Atom-LEAP) [20] operating at 10 kHz.
Using the same measurement device, Li et al. measured the
energy consumption of source code lines [13] and studied
the API level energy consumption patterns of 405 mobile
applications [12]. They found that networking components
consume more energy than other components and also that
half of the energy consumption is spent on idle state. Li et al.
also proposed a test minimization technique that prioritizes
the test suites with higher energy consumption [14], using
Atom-LEAP. Similarly using Atom-LEAP, Manotas et al. [6]
provide recommendation systems to support developers in
coding more energy aware applications All of these previous
works suffer from one main limitation, i.e., the frequency of
energy measurement reaches 10 kHz at best.

III. METHODOLOGY

This section is organized following the logic of a primer on
energy measurement, signal acquisition and accurate energy
measurement. Due to the limited space, the description is
necessarily very succinct and missing background on signal
theory, Fourier and spectral analysis, time domain analysis,
as well as other non-essential details. We refer the interested
reader to the classic signal processing books [3], [16].

A. A Primer on Energy Measurement

Given a device with input voltage V and current I , the
input power can be computed at the device power supply via
Ohm’s law i.e., P = V ·I . In general, both voltage and current
are functions of time. Thus, at a given instant t, the absorbed
power is the product of the voltage, V (t), and the current I(t):
P (t) = V (t)·I(t). The energy consumed in the interval [0, T ],
is then computed as the integral over time of the power P (t):

ET =

∫ T

0

P (t)dt (1)

In other words, the energy is the area under the power curve.
If we assume that measures are taken at discrete intervals

∆τ , i.e., they are sampled with a sampling frequency Fc =
1/∆τ , two samples are ∆τ seconds apart [16], the energy
is approximated assuming a constant power between two
measurements and the integration is replaced by a summation:

ET '
∑
k

P (k∆τ)∆τ (2)

B. Signal Acquisition

The choice of the sampling frequency Fc = 1/∆τ (mea-
sured in hertz Hz, events per second), is critical and impacts
the accuracy of energy consumption estimate. A too low
frequency can be misleading: all events (power peaks) between
two samples are lost and averaged away. Even worse, a method
execution lasting less than ∆τ seconds will be completely lost.
Indeed, the maximum frequency that is observable in a signal
sampled with frequency Fc is Fc/2, known as the Nyquist
frequency FN [16]. We surmise that all recent investigations
in software engineering related to mobile energy consumption
are biased by an insufficient sampling frequency.

The time domain analysis has its counterpart in the fre-
quency domain. Time varying signals can be represented via
Fourier transform in the frequency domain by the signal
spectra. For discrete signals, the passage between time and
frequency domains is performed via discrete Fourier trans-
form.

The Fourier transform is an elegant way to obtain the signal
representation as sum of sine waves of various amplitudes
(Fourier series). Actually, the k-th line of the discrete Fourier
transform, i.e., line of the signal spectrum, corresponds to
the amplitude of the k-th sine wave and the zero line is the
continuous component. Thus, to obtain the power present in
the signal between two given frequencies, say between 1 Hz
and 5 kHz, it is sufficient to sum the square of the spectral
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Fig. 1. Measurement setup.

lines in that frequency range. Notice that in any case we are
not interested in the continuous power (spectral line at zero);
this non-dynamic part is due to hardware and is present even if
nothing is executing. In fact, the non-dynamic contribution are
bound to be less and less important as hardware architectures
become more efficient: active power management systems can
greatly reduce the baseline power of a device, that is the power
when the system is not or only partially active.

The signal (power in our context) sampling frequency
fixes the maximum frequency that one will observe (with no
distortion) in the signal spectra. More precisely, if a signal with
a maximum frequency FM is sampled with a frequency lower
than 2 ∗ FM , his spectral representation will be distorted by
the aliasing effect [16]. Indeed, for a maximum frequency of
FM the Nyquist frequency will be FM and thus the sampling
frequency needed for an exact signal reconstruction (and no
spectral distortion) is Fc = 2 ∗ FM .

The number of bits used in the signal acquisition has an
impact on the quality of the obtained signal. The signal input
amplitude is quantized into a set of discrete values; assuming
an uniform quantization, the smallest observable change in
signal amplitude is the quantization delta, i.e., roughly the
number of possible bits configuration. Modern analog to digital
converters typically use 12, 16 or 24 bits (with 16 bits deemed
sufficient for hi-fi quality).

Incidentally, we adopted an approach inspired by the hi-fi
signal acquisition sampling at high frequency and the down-
sampling at the final sampling rate. This process ensures
a reduction of noise, while keeping the signal as close as
possible to the original signal once reconstructed. Our mea-
surement apparatus uses a proprietary adaptive quantization
which ensures a sensitivity of 5 mV.

C. Accurate Energy Measurement

There are three approachable ways to measure and compute
P (t) and thus ET . The first and most intuitive way, would be
to measure the voltage and the current at the same time on
different channels of some device. For example, an oscillo-
scope or a dedicated analog to digital board plus a PC to
acquire and store the sampled signal, then calculate the power
V (k∆)I(k∆) for each measurement, summing up to obtain
ET . However, accurately synchronizing the voltage and the
current measures is far from obvious, and the smallest glitch or
difference in measuring cables properties (e.g., length) would

result in a temporal shift and thus in imprecise power calcu-
lation. Furthermore, multi-channel fast and precise acquisition
boards are rather expensive. A more accurate way, with less
risk of miscalculation, is to use a power analyzer or a clamp
meter that allows to measure both the voltage and the current at
the same time. For accurate measures with low current/voltage
and high frequency, such device can cost a few thousands of
dollars at the time of writing.

In this paper, we propose a third way, which is to use a
medium/high end digital oscilloscope (triggered by the mobile
device/application) and measure only the current via a resistor
as shown in Fig. 1 . We need three components: (i) a stabilized
power supply that provides a higher voltage than what the
device requires, (ii) a precise power regulator that will bring
the voltage down to the device voltage, say 5 V, i.e., the mobile
device input voltage, and (iii) a high precision (1% metal film)
resistor placed before the input of the power regulator.

Fig. 1 shows the setup we used for the measurement. The
regulator is used to stabilize the voltage, and the known
resistor Rp is used to measure the current flow. With such
setup the power consumed by a device, at a given instant t,
is computed by the product of the voltage, Vreg(t), and the
current I(t), which is easily obtained: I =

Vdiff

Rp
, where Vdiff

is the drop of voltage on the extremities of the resistor Rp.
It is worth commenting on the position of the resistor Rp. At
a first look it may seem wrong as it is on the input circuit.
However, this ensures that Vreg(t) is exactly clamped at the
nominal value. Once the regulator is warmed up, its energy
consumption can be considered constant thus Vdiff (t) is an
accurate estimate (minus a constant factor) of P (t) i.e., of
sampled value P (k∆T ). If the resistor was placed between
the source Vreg(t) and the device, it would be much more
complicated to ensure that the actual voltage input of the
device remains fixed. Due to the time varying drop RpI(t)
the input voltage would then be Vreg(t) − RpI(t). In such
configuration, either a more complex setup is needed or both
voltage and current must be measured, forcing the use of two
measurement channels.

A key element of our measurement approach is the presence
of a trigger signal, a signal raised by the mobile applica-
tion/device activating the signal acquisition. This is crucial
to ensure 1) the synchronization between code execution and
sampled input values and 2) that only what is really needed
is measured. This setting greatly simplifies the separation
between, startup, environment setup and configuration, real
measurement phase and final tear down step.

The macro phases of signal acquisitions are illustrated in the
pseudo-code of Algorithm 1.First and foremost one must make
sure that the cabling is correct, the right sampling frequency
is selected, and the proper probe impedance is set up. Then
the mobile device is activated, the execution environment set
up and configured, and the application under study loaded.

The application under study must be instrumented properly
to ensure data collection. Typically, there will be some code
section devoted to initialization, followed by method tracing
starts. At this point the application has to call a specific method
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Algorithm 1 Accurate Energy Measurement Setup and Tear
Down Pseudo Code.
Require: Setup Oscilloscope frequency, sampling probe and trigger probe connection.
Ensure: Mobile Device is Running
Ensure: Mobile Application is Loaded

Environment Setup and Configuration
Start Monitored Application
if Collecting Method Trace then

Start Debugger
end if
SignalAcquisition(True)
Execute Code under Study
SignalAcquisition(False)
if Collecting Method Trace then

Stop Debugger
end if
Stop Monitored Application
Environment Tear Down

to raise the trigger signal (and therefore one needs access to the
source code). This method is device dependent and is used to
raise a tension value on a device pin, led, or output port. Once
the code section under measure has been executed, the trigger
signal is lowered to stop signal acquisition. Then the tracing is
stopped, the collected data saved and the environment cleaned
up. Notice that, the two method calls to start and stop the signal
acquisition are of course included in the trace but, since the
method names are known, they are easily removed. Finally,
notice that our approach can be used to collect information
at various granularities. However, the limitation is in the data
acquisition sampling frequency: the finer the granularity, the
higher the sampling frequency should be.

IV. CASE STUDY

The overarching goal of this paper is to provide a guidance
to developers helping them to better gauge and understand the
energy consumption role of various components. In our case
study we focus on Android applications. Android applications
live in an ecosystem of Android provided components and
third party applications. Even if a given application does
not change, when Android evolves, or the user installs new
components, the unchanged application can be positively or
negatively impacted by these changes in the ecosystem.

Our experiments and associated analysis have three specific
objectives: (1) show that our measurement setup has suffi-
ciently low noise for measuring fine-grained changes in power
consumption at the method level; (2) show that previous works
do not take into account a portion, sometime quite large, of the
power consumption spectrum (namely the high frequencies)

The quality focus of our work is to improve the accuracy
of the energy consumption diagnostic of Android applications.
We surmise that precise energy measures are key to identify
which parts of an application have to be evolved or which
application’s component is responsible for unexpected energy
consumption. The perspective is that of researchers interested
in developing accurate energy consumption measurements
techniques and developers interested in estimating the energy
consumption of their components and-or methods. It is impor-
tant to understand that a certain level of imprecision may be
considered physiological and tolerable. As in any engineering

discipline there is always a tension between cost and accuracy,
in this work, we aim to provide a guidance and some error
bounds letting developers decide if the accuracy they may
expect is “just good enough” or if a better setup is needed.

The context of our study consists of 21 closed source
Android applications belonging to nine different domains (see
Table I), four open source applications and a hardware setup
presented in Fig. 1. The 21 closed source applications are
a subset of applications previously used works aiming at
quantifying energy consumption, see for example [22]. The
four open source applications have been selected to belong
to different domain but being somehow related to the closed
source applications, thus for example, we selected Tomdroid,
an open source note-taking application conceptually similar in
functionality to Droid notepad.

TABLE I
DISTRIBUTION OF 21 CLOSED SOURCE APPLICATIONS ACROSS

CATEGORIES.

Category Applications (%)
Books and reference 1 (4.76)
Business 1 (4.76)
Entertainment 3 (14.29)
Health and fitness 2 (9.52)
Lifestyle 1 (4.76)
Music and audio 3 (14.29)
News and magazines 2 (9.52)
Productivity 2 (9.52)
Tools 6 (28.58)

A detailed description of the 21 Android applications is
shown in Table II. We choose these applications because they
can be downloaded freely from the Android market, making
our results fully reproducible.

In addition, we analyse four open source Android applica-
tions. A description of these open source applications is shown
in Table III.

TABLE III
LIST OF ANDROID OPEN SOURCE APPLICATIONS ANALYSED.

Application name Version Description
Cool Switch 1.0.0 A custom view for Android with an awesome

reveal animation.
F-Droid 0.83 An installable catalogue of FOSS (Free and

Open Source Software) applications for the
Android platform.

Ringdroid 2.4 An Android application for editing and creat-
ing your own ringtones, alarms, and notifica-
tion sounds.

Tomdroid note 0.7.5 A desktop note-taking app using a wiki ap-
proach and a simple user interface.

The remainder of this section introduce our research ques-
tions, describe our measurement setup, and data analysis
approaches.
(RQ1) Can the proposed approach measure fine-grained

changes in power consumption without noise or with
a very low noise level?
Electronic devices used to measure power consumption
produce noise. For example, thermal noises generated
by the random thermal motion of charge carriers inside
an electrical conductor are unavoidable at a non zero
temperature. Other noises can come from the environment
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TABLE II
LIST OF ANDROID CLOSED SOURCE APPLICATIONS ANALYSED.

Application name Version Description from Google Play
25000 Best Quotes 1.0.7 Best quotes from various authors and categories.
8500+ Drink Recipes 1.0.6 Over 8500 Drink & Cocktail recipes at the tap of your fingertips.
Android Antivirus 2.0.1 Protects your Android mobile phone or tablet against viruses, malware and spyware.
AnEq Equalizer Free 1.0.9 Improve the sound of your device with a 5-band equalizer.
Anti dog mosquito whistle 1.3 This app let you to scary some annoying barking dogs or neighbour cat.
Anti Mosquito Sonic Repellent 1.0.0 Repellent against mosquitoes.
Antivirus Security Free 4.1.4.204288 Protects you from harmful viruses, malware, spyware and text messages.
aTimer 1.3 A super readable timer. Big bold numbers for visibility.
AudioPlayer 1.2.0 A compact audio player for Android Smartphone/tablet.
Battery Info 1.6 Show battery information, include capacity, temperature and voltage.
Battery Info Always 1.2.0 Always display battery level on screen.
Better Notepad 0.0.5 An another simple, elegant, easy to use notes app.
Botanica 1.0.0 It helps you research the best plants for your climate and location, keeps track of plant growth.
Classical Music Radio Lite 1.0.3 Listen to classical music shows streaming live on internet radio.
Droid Notepad 1.11 Is a note taking app for Android. It allows you to take notes quickly any time.
Inspiring Quotes 1.2.0 A collection of inspirational quotes, drawn from experiences of people.
news|swipe 1.0.0 A modern, simple to use, simple to configure and fast offline RSS reader.
Simple Weather 1.1.3 A very basic weather app that allows you to get the most important details you need.
Sleep Sound Aid 20121007 Soothing sounds such as spring creeks, raging waterfalls, soft rainfalls, tropical birds.
Write Now Notepad 1.1.5 An easy and fast way to take notes without leaving your current app.
YouTube 1.0.5.4 See what the world is watching, from music videos to what’s trending in gaming, news, and more.

in which measurements are performed; e.g., vibrations,
variations of temperatures, or variations of humidity can
introduce noises in the measurements. It is therefore
important to control for environmental factors when per-
forming power measurements, and apply effective noise
reduction techniques to reduce and possibly remove all
the noise. This research question investigates the effec-
tiveness of our noise reduction techniques.

(RQ2) Do applications consume power at frequencies
higher than 10 kHz?
Previous work have investigated the energy consumption
of applications, using sampling frequencies lower or
equal to 10 kHz. For example, Li et al. [13] examined the
energy consumption of 405 mobile applications, using a
sampling frequency of 10 kHz and reported that half of
the energy consumption of most applications is spent on
idle state. We claim that these measurements are biased
by their low sampling frequencies, and such error in
measurement may lead to inaccurate conclusions. More
in details we claim that there are two components of the
measure: the overall trend (i.e., the average power value)
and the dynamic part. Sampling at low frequency may
not affect the continuous power consumption but will
affect the dynamic part. In other words, fast methods or
events may be lost or averaged out. In Section III we
describe an approach that can measure energy consump-
tion at frequencies higher than 10 kHz. In this research
question, we examine the amount of power consumed by
Android components and methods, at frequencies higher
than 10 kHz and estimate the errors incurred by current
approaches.

(RQ3) Which error do we make when measuring the
energy consumption of methods at a low sampling
frequency?
Li et al. [13] measured the energy consumption of
methods in Android applications using a sampling fre-
quency of 10 kHz and reported that they can achieve an

accuracy within 10% of the ground true. We revisit this
claim in this research question by investigating the error
bounds induced by sampling frequencies lower or equal
to 10 kHz.

A. Measurement Setup

Device. The experiment was run on a BeagleBone Black2 on
which we installed Android 4.2.2 Jelly Bean3.
Circuit. We use a DC power supply (Extech Instruments
382270) as input to the circuit of Fig. 1 and set the voltage
to 10V. We connect the device (i.e., BeagleBone Black) to
the output of the regulator (7805C, Vreg = 5V). We measure
the drop of voltage on the extremities of the resistance
(Rp = 1.8Ω, rated for 12W ) on the oscilloscope (Tektronix
MSO3012). We connect the oscilloscope via USB to a laptop
(3G RAM, Windows 7), to measure and process the data.
The BeagleBone platform is an attractive platform for several
reasons. The ARM processor is a processor also used in
mobile device applications; it is reasonably cheap and it runs
a fully flagged Android configuration including almost any
application available on the Android market. As a plus, it has
ports that can be easily driven to trigger data acquisition. On
the negative side, it does not have a WI-FI or bluetooth chipset.
This may be regarded as a major limitation; however, such
limitation may be easily circumvent by using an usb dongle.
Moreover, our goal is to provide a general framework easy to
replicate and reproduce by other researchers at a reasonable
cost much more than measuring power consumption tied to
any specific chipset.
Measurements. We recorded the output of the oscilloscope on
a laptop using LabView Signal Express4 2012. We measured
the signal of the oscilloscope (Vdiff of Fig. 1) in two different
configurations. First, we measured the energy consumption for
a fix duration (up to 60 seconds) after which we played back

2http://beagleboard.org/BLACK
3http://elinux.org/Beagleboard:Android
4http://goo.gl/nokSgE
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the recording and exported the measurements in an ASCII file.
This was done to collect data in a way similar or identical
(but for the equipment and the sampling frequency) to some
previous works such as [8], [22]. The goal was primarily to
obtain data consistent in the acquisition methodology with
previous works, sampled at high frequency and thus being
able provide bounds on energy estimation error as a function
of the sampling.

Following this first set of measurements, we selected four
open source applications, and performed method level energy
measurements for a set of methods sampled from these appli-
cations. We could not perform method level measurements on
applications used in previous works because they are closed
source and a reliable measurement of the energy at method
level is impossible on a close source application.

In both sets of measurements (i.e., at application and method
levels), we set the oscilloscope in high-resolution mode: this
makes the MSO3012 oversample the signal at the maximum
frequency and average the values of each sampling interval
to generate one data point at the set sampling rate. This
measurement mode acts as a smoothing filter, and removes
all high-frequency noise.

We set the data collection frequency sampling first at 500
kHz and then at 125 kHz, which is in any case one order
of magnitude higher than what is commonly used in the
literature [11], [22], i.e., we take a measure every eight
microseconds. We use the 500 kHz frequency to ascertain if
indeed the frequency of 125 kHz was accurate enough to keep
the energy error estimation below 1%. The 1% threshold is
an arbitrary threshold deemed sufficient for the purposes of
getting precise measures at a reasonable cost. In theory one
could have used a frequency higher than 500 kHz, however,
the MSO3012 model available to us has an internal buffer of
limited size (about 20 seconds at 500 kHz), thus for practical
reasons 500 kHz was our upper bound.

It is important to underline that when sampling signals with
possibly small variation at frequencies as high as 500 kHz, one
risks to acquire noise. Cabling, impedance and radio frequency
noise sources must be carefully controlled. As this work is
the first to use such high frequencies, we were forced to first
quantify the amount of noise induced by our setup before
proceeding with measurements.

We measured the noise in open loop (detaching the probes),
with no load (board attached, but unplugged), and with load
(board plugged in, but not powered up). Results show that the
noise is in the range of 10mV (see Fig. 2), a value that is very
close to the sensitivity of our instrument. We also measured
the power consumption of the BeagleBone while Android is
idling, i.e., without any application running. Once we verified
that noise was one order of magnitude smaller than signal,
we moved to the real measurement phase and measure the
power consumption associated to all applications described
in Table II. We also measured the energy consumption of
the methods sampled from our four studied open source
applications.

B. Analysis Method
To answer our research questions RQ1 and RQ2, and prove

that recent contributions inaccurately computed the dynamic
part of the power, we applied frequency domain analysis
(via MATLAB5) and time domain analysis via custom scripts
developed to perform re-sampling and energy computation.
Let PFc be the fastest sampling frequency used in previous
studies from the literature. To the best of our knowledge, the
highest value of PFc is 10 kHz and thus PFc/2 (i.e., the
Nyqvist frequency) is 5 kHz.
We sampled the energy consumption as follows: First, as stated
in the Section IV-A, we sampled the voltage Vdiff at 500 kHz
and inspect the frequency spectra to ascertain the presence of
high frequency components.

Next, we set the sampling frequency Fc at one order of
magnitude higher than the fastest sampling frequency used in
previous studies PFc, i.e., Fc = 10PFc, we selected 125 kHz.
We chose 125 kHz because it is a sub-multiple of 500 kHz,
which allowed us to compare the signal acquired at 125 kHz
with the down-sample (one sample every four) version of the
signal acquired at 500 kHz. This was needed in order to verify
the quality of the signal measurement chain, which is essential
for the following steps. After this step, we sampled the signal
at 500 kHz and computed the spectra. Using MATLAB we
removed the spectral line at zero frequency, compared the
energy of the signal sampled at 500 kHz with the energy in the
bands (0, 30], (0, 2500], (0, 5000], (0, 62500], and compute the
percentage error. These energy bands corresponds respectively
to the sampling frequencies of 60 Hz, 5 kHz, 10 kHz and
125 kHz. We expect that the noise spectra is flat and very
low in value; we also expect that the signal spectra has non
zero frequencies above PFc/2. The measure just considering
only frequencies below PFc/2 should have a low power with
respect to the signal sampled at Fc. All the computations are
performed using the Scientific Python and Numeric Python
toolkits.

To answer RQ3, we used the Android debugging mecha-
nism to collect method execution traces. These binary traces
are very detailed and report various timing events such as the
real, inclusive, or exclusive execution time of methods as well
as the number of calls, and recursion calls to the methods in
the execution thread, and the overall execution time (all time
values are in microseconds).

To compute the error that one makes when measuring the
energy of methods at 5 kHz or 10 kHz, we collected the
energy used by each of the sampled methods listed in Table
V, instrumenting properly the source code as we explained
in Section III-C. Let Efc(mi) be the energy for method mi,
measured when sampling at frequency fc, this measure is taken
with the measure setup of Fig. 1 and, given the features of the
measurement apparatus, it is accurate to the nanosecond time
precision and 5mV voltage accuracy. We measured the error
incurred by sampling at fc versus 125 kHz using the following
operation : 100

Efc (mi)−E125(mi)
E125(mi)

.

5http://www.mathworks.com/products/matlab/
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Fig. 2. Consumption amplitude.

Whenever pertinent we apply the Wilcoxon rank sum
test [19] for example to compare error rates for different
sampling frequencies, using a 95% confidence level (i.e., p-
value<0.05). For any comparison exhibiting a statistically
significant difference, we further compute the Cliff’s δ effect
size [18] to quantify the importance of the difference because
Cliff’s δ is reported to be more robust and reliable than
Cohen’s d [5].

The Wilcoxon rank sum test is a non-parametric statistical
test to assess whether two independent distributions have
equally large values. Non-parametric statistical tests make
no assumptions about the distributions of assessed variables.
Cliff’s δ is a non-parametric effect sizes measure (i.e., it makes
no assumptions of a particular distribution) which represents
the degree of overlap between two sample distributions [18].
It ranges from -1 (if all selected values in the first group are
larger than the second group) to +1 (if all selected values in
the first group are smaller than the second group). It is zero
when two sample distributions are identical [4].

V. RESULTS

This section presents and discusses the results of our three
research questions.

RQ1: Can the proposed approach measure fine-grained
changes in power consumption without noise or with a very
low noise level?

Fig. 2 shows the consumption amplitude for 60 seconds of
the noise, Android idling and Android playing YouTube time
behaviour. The noise is negligible; the idle and YouTube
measurements show a higher dynamics. In particular, YouTube
has an evident high frequency component. This is confirmed
by the spectra shown in Fig. 3. A big amount of power
is present above PFc/2. The power in the grey area (i.e.,
frequencies below PFc/2) clearly does not account for all the
power and thus all the consumed energy. We can also observe
power peaks in the regions between 5 kHz and 20 kHz as well
as a surge of power around 48 kHz.�

�

�




The analysis in the time domain of the reconstructed
signals (with all spectrum and the frequency below
PFc/2, but the zero line) shows that the noise just
accounts for about 0.2% of the entire estimated
energy.

Frequency (Hz)

Fig. 3. Spectrum analysis.

Fig. 4. Power measurement error rate at various sampling rates for a sample
of 21 Android applications.

RQ2: Do applications consume power at frequencies higher
than 10 kHz?

Fig. 4 reports the boxplot of the energy estimation errors
for various sampling frequencies. As described above, we
sampled at 500 kHz one execution of each application listed
in Table II and then computed the percentage error of the
dynamic component (i.e., we removed the spectral line at zero
frequency) of the signal. The reference value of Fig. 4 is
the total energy between (0, 250000]. It is clear that when
sampling at very low frequencies one can miss up to 50%
(sampling at 60 Hz) of the signal dynamic. Table IV reports
summary statistics of Vdiff for the same energy traces used
in the boxplot of Fig. 4. The table reports the min, max and
median percentage errors plus the results of the Wilcoxon
paired test between the error at 125 kHz (median -0.71%)
and the error at a given sampling frequency. The table figures
confirm the intuition that a sampling frequency of 125 kHz is
sufficient with a worst case error below 1.5% and a median
of 0.7%. We can also observe that sampling at 10 kHz is
likely sufficient for many application as the median error is
of about 8%, but with the risk of a maximum error close to
16%. This means that the dynamic part of the energy may
be underestimated by any value between zero and 16% with a
median of 8%. It is also clear that sampling frequencies below
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10 kHz may severely underestimate energy components in the
high frequency bands.

TABLE IV
PERCENTUAL ERROR SUMMARY STATISTICS FOR VARIOUS SAMPLING

FREQUENCIES.

Fc (Hz) Min Max Median p-value Cliff Delta
60 -0.07 -99.64 -49.69 <0.00001 -0.91 (Large)
5000 -0.001 -33.47 13.27 <0.00001 -0.91 (Large)
10000 -0.001 -16.08 -7.85 <0.00001 -0.91 (Large)
48000 -0.0002 -6.94 -3.64 <0.00001 -0.91 (Large)
125000 -0.00008 -1.32 -0.71

It is important to understand the difference between total
power and dynamic power. The errors of Fig. 4 and the bounds
of Table IV pertain to the dynamic part of the signal when
the continuous component is removed. If one consider the
overall power (continuous plus dynamic) and it measures over
a sizeable time interval the power peaks and valley average
out and the error is negligible or non existent. For the same
applications, we observed an error (for the entire energy trace
and overall power) below 1%. Thus the developer has to
clearly define what is his/her goal; the two goals: how much
energy used my application and how much energy uses this
method are not the same. For the first goal a low sampling
frequency may be fine but for the second it may not. In fact,
a low sampling frequency can make it very hard to assess
the energy consumption of any given method. Consider, for
a moment, the 8500+ Drink Recipes application. The method
onCreate, has an execution time (inclusive of called methods)
of about 190 milliseconds, thus sampling at 125 kHz or 10 kHz
does not make a big difference as enough data points will be
collected. However, if we consider, for the same application,
the method DataBaseWrapper.setup, this method execution
lasts only 792 microseconds. At 10 kHz this method will be
captured by at most seven samples. In essence, if a method
execution requires a lot of CPU time such as in onCreate,
the errors will generally averaged out; making the energy
estimation error negligible or quite low. However, for a very
short method, in the order of few milliseconds, the error may
be much higher.�




�

	

The analysis of the energy in different bands shows
that a 10 kHz sampling may underestimate high
frequency energy components of about 8% while
sampling as 125 kHz just accounts for about 0.7%
underestimation error.

RQ3: Which error do we make when measuring the energy
consumption of methods at a low sampling frequency?

When measuring the energy consumption of methods at 5
kHz or 10 kHz (versus 125 kHz), one should expect a min-
imum error of about -5%, a maximum error of 53.13% with
a median of 0.54%. Indeed, the distribution is concentrated
around zero and a Wilcoxon paired test does not reject the null
hypothesis that the data are drawn from the same population.
Unfortunately, one has no way to know a-priori if the error
will be positive, negative, or close to zero.

TABLE V
INSTRUMENTED METHODS FOR THE ANDROID OPEN SOURCE

APPLICATIONS ANALYSED.

Application Class Method

Cool Switch
CoolSwitch onDraw
CoolSwitch setAnimationProgress
CoolSwitchRevealAnimation startRevealAnimation

F-Droid
AppListAdapter newView
AppProvider query
AvailableAppsFragment onCreateView

Ringdroid
CheapMP3 ReadFile
RingdroidEditActivity loadGui
RingdroidSelectActivity createCursor

Tomdroid Note
EditNote onCreate
EditNote saveNote
Tomdroid newNote

If the energy is calculated proportionally to the inclusive ex-
ecution time of the method over the total application’s execu-
tion time, i.e., Êp,fc(mi) = ET,fc ∗T (mi)/(calls(mi)∗Tapp)
where ET,fc is the application total dynamic energy measured
at fc; calls(mi) is the number of calls of mi; and T (mi),
Tapp are the method and application total CPU execution times
respectively. The error estimation will be much higher. One
should expect between a minimum of -84% and a maximum
overestimate of 64% of error with a median value of -30%.
Such a high variability show that indeed one must be extremely
careful to assume a proportional relation between method
execution time and energy used by the method.

There are many other factors to account for that a simple
ratio is not able to capture. Previous approaches that make
similar assumption (e.g., [13], [22]) are likely to suffered from
the sampling frequency error detailed above (i.e., an error
between -5% and +53%) plus the error due to the delay to
align the method (debugger) execution trace with the energy
signal (since they applied this heuristic on different sampling
time partitions), plus an error related to the proportionality
assumed between the method execution time and its energy.

Overall, we summarize our findings as:�

�

�

�

The analysis of the method energy shows that if one
samples at a frequency lower or equal to 10 kHz,
the error can be as high as 53.13% (and not 10%
as claimed by Li et al. [13]). The traditional way
to compute method energy by summing power mea-
surements taken during the time that the method was
executed, (proportionally to the execution time of the
method over total execution time), may underestimate
as much as 84% of the the energy with a median of
30%.

VI. THREATS TO VALIDITY

There are several threats to validity possibly impacting this
work. We are exploring an uncharted territory, a land between
software and hardware. On one hand we have all the risk of
any software maintenance or evolution study. On the other
hand we also need to collect accurate voltage measures, which
is not a typical software engineering task. In a way, this paper
is closer to embedded system software change and evolution,
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although it stands out for the goals, environment, languages
and the kind of application under study.

Threats to construct validity concern relationship between
theory and observation, and are related to inaccuracies in our
measurements when collecting the trace and measuring the
voltage Vdiff . We do not have issues concerning the trace
collection, as the traces have been collected with standard
Android tools. We cannot however exclude a bias in the way
Android traces, stores and represents data, or the Android
time difference computation (i.e., method start and end times).
We did our best to limit this threat by using 1) standard
tooling 2) by reusing as much as possible application used
in previous studies; 3) by repeating the same measure several
times (three or more) and 4) by making measures available to
other researchers6. As far as the Vdiff measure is concerned,
we used state of the art tools (including the MATLAB and
LabView Signal Express), and using a trigger mechanism
driven by the board. We believe that overall, the construct
validity threads are negligible but for a final detail. We, as
previous works, cannot claim a direct causal relation between
a method execution, the energy used by the method execution,
and the overall energy consumed due to the given method
execution. Consider a method switching on the WI-FI: it may
take a certain amount of energy to switch the bits responsible
to activate the WI-FI peripherals, but the cost of having the
WI-FI activated is not assigned to the method. We believe this
has to be modelled as different scenarios, and it is one of our
future works.

Threats to internal validity concern factors, internal to our
study, that could have influenced the results. When we study
the energy distribution in different bands of frequency we used
the highest possible sampling frequency (i.e., 500 kHz) given
our apparatus. We assumed no sizable portion of energy was
in the bands higher than 250 kHz. Given what we observed
this seems a reasonable assumption, but we cannot exclude that
some components will be missing. When sampling at 125 kHz,
we know we have (with respect to 500 kHz) an error of about
1% and we know that the input voltage of our setup is stable
(about 1% error) and in the worst case we will have some
frequency aliasing effect, but clearly any method having an
execution time shorter than eight microseconds will be missed.
There may be also a small time delay between the trigger
activation, the data collection and method trace collection.
We preferred to keep the setup as simple as possible, and
we did not use, for example, a trigger hold. Overall, we
believe that it is not an issue since we are not interested in
estimating the energy consumption of the method responsible
for activating/deactivating the trigger. Therefore, even if one
or two samples are lost, they will be attributed to the trigger
activation method. When comparing error rates for different
sampling frequencies, we used non-parametric tests that do not
require making assumptions about the data set distribution.

Threats to conclusion validity concern the relationship be-
tween experimentation and outcome. While part of the analy-

6http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/energy.tar.gz

ses of RQ1 and RQ2 are supported by appropriate statistical
procedures, other findings of RQ2 and RQ3 may require
much more trace and method collection to apply appropriate
statistical tests.

Threats to external validity concern the generalization of our
findings. Admittedly, the study is limited to 21 closed source
applications and only four open source applications. Although
we are aware that further studies are needed to support
our findings, our investigation was intentionally, relatively
limited in size to allow us to present a complete methodology
correlated with all the steps, data and findings. We share our
data and scripts on the Web6. Further studies with different
applications and hardware devices are required to verify our
results and make our findings more generic.

VII. CONCLUSIONS

Estimating the energy consumption on a mobile device due
to software components is not an easy task and to obtain
accurate measures there is the need of an adequate setup
including medium/high end measuring devices. The most
critical element is the power sampling frequency: a too low
sampling frequency may be misleading.

We have measured on an Android platform the energy
consumption of several applications (21 close source and four
open source) and 12 methods (out of the four open source
applications) using different sampling frequencies between 60
Hz and 500 kHz. Our setup allows us to reliably measure
energy consumption at frequencies up to 100 MHz. However
very high sampling frequencies are problematic too; typically,
measures will be affected by noise due to WI-FI, non shielded
cables and so on. In this proof of concept setup we verified
spectrum up to 100 MHz and to remove the electromagnetic
noise we performed a downsampling at 125 kHz. In our setup
we found that (1) above 100 kHz there is only noise (we
measured only 0.2% of the power in that band); (2) noise
reduction is a major issue and (3) there is non negligible
energy in the frequency band between 5 kHz and 50 kHz.
In a nutshell, a sampling frequency of 10 kHz, in our setup,
can miss up to 50% of the used method dynamic energy due to
missed high frequencies components. Overall, our results cast
serious doubts on previous studies as we prove that a proper
methodology is needed and that an adequate set up is a must.

We know that different applications and libraries use differ-
ent energy [22] but we do not know what is the energy esti-
mation error for different libraries and components. Therefore,
future works will aim to verify, for different configurations
and applications, the real energy consumption. We surmise
that different applications have different power spectra; that
applications power spectra shapes depend on used libraries
and component; and that if the power spectra is not properly
computed one may falsely believe to have optimized the
application energy consumption while she has actually not.
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