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ABSTRACT
While index structures are crucial components in high-performance
query processing systems, they occupy a large fraction of the avail-
able memory. Recently-proposed compact indexes reduce this space
overhead and thus speed up queries by allowing the database to
keep larger working sets in memory. These compact indexes, how-
ever, are slower than performance-optimized in-memory indexes
because they adopt encodings that trade performance for memory
efficiency. Applying different encodings within a single index might
allow optimizing both dimensions at the same time – however, it is
not clear which encodings should be applied to which index parts
at build-time.

To take advantage of multiple encodings in one index structure,
we present a new framework forming the basis ofworkload-adaptive
hybrid indexes which moves encoding decisions to run-time instead.
By sampling incoming queries adaptively, it tracks accesses to index
parts and keeps fine-grained statistics which are used for space-
and performance-optimized encoding migrations. We evaluated
our framework using B+-trees and tries, and examine the adapta-
tion process and space/performance trade-off for real-world and
synthetic workloads. For skewed workloads, our framework can
reduce the space by up to 82% while retaining more than 90% of
the original performance.
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Figure 1: Our sampling-based workload adaptation supports
hybrid index structures in choosing the most suitable encod-
ing for each part based on fine-grained access statistics at
run-time. It supports user-defined settings such as an upper
memory budget and it keeps sampling-related overhead lim-
ited by following an adaptive cost-optimized approach.

1 INTRODUCTION
Back in 2006, Jim Gray stated that memory is the new disk and disk
is the new tape [5]. This also applies to modern database systems
that store the entire data in random access memory (RAM) to allow
real-time analyses for trading companies and financial services, for
example. They need to process large datasets efficiently to react to
new developments and updates within a few milliseconds.

While the DRAM-prices have been stable during the last six
to seven years, the data collected by sensors, smartphones, social
media platforms, IoT-devices, and digital market-places increases at
a high rate resulting in data overflows [54], and storing all data in
memory becomes infeasible in many cases. However, as in-memory
database systems become more and more popular for performance-
critical businesses, AWS offers RAM instances that are optimized
for in-memory database systems [1]. These instances are equipped
with in-memory capacities of up to 24 TB, but the hourly cost of
such an instance is more than $120.

To achieve high-performance query-processing for real-time
analyses, index structures such as B-trees, tries, and hash tables are
widely used by DBMSs. Because there might be multiple indexes per
table, especially in OLTP DBMSs, the storage overhead for indexes
can be significant. In many cases, more than half of the available
memory of a DBMS can be attributed to index structures [54].

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1626

https://doi.org/10.1145/3514221.3526121
https://doi.org/10.1145/3514221.3526121


Over the last decades, multiple approaches have been developed
to represent traditional data structures using more compact en-
codings [39]. For example, succinct representations avoid storing
unnecessary pointers in a data structure by calculating the nodes’
position offsets directly [55]. While succinct indexes require sig-
nificantly less memory compared to performance-optimized state-
of-the-art indexes, most of them are slower in point lookups and
scans, and they do not support updates efficiently.

To overcome the disadvantages of memory-efficient but static in-
dexes, Zhang et al. [53] proposed hybrid index which is a dual-stage
architecture combining a regular dynamic index and the memory-
efficient read-only one into a single logical index. The dynamic
component in hybrid index absorbs all updates and periodically
merges all the delta into the more compressed static component.
This approach, however, imposes overhead in the expensive merge
process because different node encodings are separated into two
stand-alone data structures.

“The RUM conjecture” states that we cannot have all three of
read, update, and space optimized for a data structure [11]. For
example, succinct data structures achieve close to theoretically
optimal space, but they sacrifice read performance and updatability.
Most index structures used in today’s DBMSs are designed for
fast reads and updates, and therefore, often at the expense of the
memory overhead.

However, we found that the RUM conjecture could have less
effect when the workloads are skewed. Unlike standard benchmarks
such as TPC-H where the data is uniformly distributed, we observe
heavy skews in real-world workloads. The skew appears in multiple
dimensions such as in query patterns, keys, and access-space [14].

We, therefore, propose to leverage the skewed workload pat-
terns to determine node layouts at a fine-granularity based on their
access frequencies sampled adaptively at run-time so that we can re-
duce the memory overhead of an index while sacrificing minimum
performance (cf. Figure 1). More precisely, given an unbounded
stream of index queries where the keys follow an unknown distri-
bution, our approach adjusts the layout for each node adaptively so
that “hot” nodes are encoded using performance-optimized formats
while “cold” nodes are highly compressed.

The framework we proposed in this paper is divided into two
phases: during the first phase, we sample and aggregate accesses
to different parts in an index 1 . In the second phase, we run a
heuristic-based classification to identify hot and cold parts. Based on
the access statistics and the most recent classifications, we compact
cold parts 2 and expand hot parts 3 adaptively using different
encodings to achieve a better performance-space trade-off. Fur-
thermore, our framework separates all index-related code from the
sampling and classification logic so that it can be easily integrated
into existing indexes and systems.

The evaluation in Section 5 shows that our framework can suc-
cessfully identify the hot and cold parts of an index at a fine gran-
ularity and then adjust their encodings adaptively. For skewed
workloads, our workload-adaptive hybrid indexes reduce the mem-
ory overhead by up to 82% while retaining more than 90% of the
performance compared to the original state-of-the-art indexes.

We make the following contributions:
1. A novel framework that helps indexes choose different encod-

ings adaptively based on our lightweight workload sampling
to make better performance-memory trade-offs.

2. An alternative offline training for hybrid indexes based on
historic or predicted workloads.

3. Applied the framework to two widely-used index structures:
B+- and prefix trees.

4. An in-depth evaluation using both real-world and synthetic
workloads.

In the following, we first present an overview of sampling-
based classification approaches in Section 2. These preliminary
approaches are internally used by our approach, which is intro-
duced in Section 3. We provide detailed insights into our approach
at an algorithmic level and experimentally evaluate the used param-
eters. In Section 4, we integrate our approach into a B+-tree and
a prefix tree. For both indexes, we present an in-depth evaluation
in Section 5. We provide an overview of the related work in Sec-
tion 6. Ultimately, we draw conclusions and outline possible future
work in Section 7. Further experiments based on other datasets and
workloads can be found in the online appendix, which is available
at https://www.hybrid-index.online.

2 PRELIMINARIES
Many existing works leverage skew in the context of database
systems (e.g., [8, 29, 33, 42, 45]). The main idea is to keep frequently
accessed data in DRAM to improve overall system performance [29].
For example, Levandoski et al. proposed different offline algorithms
to efficiently identify hot tuples in Microsoft’s in-memory database
Hekaton so that the cold ones can be swapped out to disk [33]. To
speed up classification, they uniformly sample 10% of all record
accesses and accept a memory hit rate loss of 2.5% compared to
evaluating all record accesses. Depending on the context such as
the available memory and the working set (data which is actively
used), they rephrase the hot-cold-classification as a top-𝑘 frequent
item detection problem: the 𝑘 records with the highest estimated
frequency are classified as hot and are thus kept in memory.

Existing optimizations to the top-𝑘 algorithms [15, 16, 37, 38]
often assume predefined sizes for the data samples. Therefore, it
requires us to determine an appropriate sample size first before we
can identify frequently accessed items at run-time. While a smaller
sample size can lead to higher classification errors, larger sample
size brings extra overhead in collecting and analyzing the samples.

To keep classification errors limited, we make use of error-
bounded top-𝑘 approximations which we formally define as follows.
Let I be a set of items and let D be a multiset defined as a 2-tuple
⟨I,𝑚D⟩ with a function𝑚D : I → N0 describing the multiplicity
of each item in D. Let S = ⟨I,𝑚S⟩. We call S a sample of D,
iff ∀𝑥 ∈ I : 𝑚S (𝑥) ≤ 𝑚D (𝑥). We define 𝑓X : I → [0, 1] to be
a function mapping items to their relative frequencies within an
arbitrary multiset X, with 𝑓X (𝑦) = 𝑚X (𝑦)/

∑
𝑥 ∈I𝑚X (𝑥), and let

𝑓 𝑘X be the kth largest frequency within X for 1 ≤ 𝑘 ≤ |I|.
According to [43], we define the set of top-𝑘 frequent items as
follows:

𝑇𝑂𝑃𝐾 (D,I, 𝑘) = {(𝑥, 𝑓D (𝑥)) | 𝑥 ∈ I ∧ 𝑓D (𝑥) ≥ 𝑓 𝑘D }
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Figure 2: Sample sizes according to Equation (1) for error-
bounded top-𝒌 analyzes for 1M items. Dashed lines denote
the sum of the true top-𝒌 frequencies whereas solid lines
show the sum of the sampled top-𝒌 item frequencies. The
workload is generated using a Lognormal distribution.While
𝝐 < 5% does not yield considerable precision gains, it yields
larger sample sizes. Experiments using other distributions
show similar results and can be found in the online appendix.

An 𝜖-approximation to 𝑇𝑂𝑃𝐾 (D,I, 𝑘) is a set𝑊 of 𝑘 pairs (𝑥, 𝑓 )
such that 𝑥 ∈ I, 𝑓 ∈ [0, 1], and for which the following holds:

∀(𝑥, 𝑓 ) ∈𝑊 : 𝑓D (𝑥) ≥ 𝑓 𝑘D (𝑥) − 𝜖

∀(𝑥, 𝑓 ) ∉𝑊 : 𝑓D (𝑥) < 𝑓 𝑘D (𝑥) + 𝜖

∀(𝑥, 𝑓 ) ∈𝑊 : |𝑓 − 𝑓 𝑘D (𝑥) | ≤ 𝜖
We use the equation introduced in [43] to calculate the required

sample size |S| for an 𝜖-approximation at a probability of 1−𝛿 with
𝛿 ∈ (0, 1).

|S| = 2
𝜖2

ln
2𝑛 + 𝑘 (𝑛 − 𝑘)

𝛿
, with 𝑛 = |I | (1)

In Figure 2, we visualize the classification precision and the
required sample sizes for varying error rates 𝜖 . In the upper plot, we
compare the sum of the top-𝑘 frequencies based on the entire dataset
(dashed line) to the one based on the sample (solid line). The lower
plot shows the required sample size based on Equation (1), where
we observe fast-growing samples for decreasing 𝜖 . We conducted
this experiment for other distributions as well (see online appendix)
and found that 𝜖 = 𝛿 = 0.05 results in an overall frequency decrease
of at most 2.5% for 𝑘 ≤ 1000, which provides a reasonable trade-off
between sample size and accuracy for our application.

In the following section, we present our workload-adaptive ap-
proach which internally uses Equation (1) to calculate sufficient
sample sizes for error-bounded top-𝑘 analyses. The result is used
to adjust the node encodings adaptively in hybrid index structures.

3 ADAPTIVE HYBRID INDEXES
Many DBMS indexes are designed to equally support all possible
access types such as lookups, updates, inserts, or deletes, by using
universal encodings. An example of a universal encoding can be
found in traditional B+-tree implementations (e.g. Postgres [48] and
Umbra [40]): all leaf nodes use the same encoding where a fixed
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Figure 3: Read and write latencies to LZ4-compressed and
uncompressed B+-tree leaf nodes having an average occu-
pancy of 70% and being stored on different storage devices.
The experiments were carried out on an Intel Xeon 6212U
CPU (24 cores) equipped with 192GB DRAM and 768GB Intel
Optane persistent memory. Before each leaf node access, we
drop the caches to get IO-related latencies more accurately.

number of key and value slots are pre-allocated to allow efficient
reads and writes. While such encodings simplify the implementa-
tion, on the one hand, they often result in space overhead. In some
cases, this overhead might also result in indexes larger than main
memory, leading to significant performance degradations due to
paging. Therefore, it is attractive to minimize the space overhead
of an index to allow pure memory residency.

If data does not fit in memory, buffer managers or more light-
weight approaches such as LeanStore [30] will manage the page
replacements. Despite recent advances in SSDs and NVMe-devices,
I/O operations are still multiple orders of magnitude slower than
memory accesses [52]. In Figure 3, we experimentally compare
lookup and insert operations on uncompressed and compressed
B+-tree leaf nodes. With the leaf nodes having an average oc-
cupancy of 70%, LZ4-based compression allowed to reduce the
storage overhead by up to 47%. On-the-fly (de-)compression of
in-memory nodes is faster by multiple orders of magnitude com-
pared to (de-)compression of disk-resident nodes but much slower
compared to uncompressed in-memory nodes. Therefore, applying
more compact or even compressed encodings to rarely accessed
parts might improve the overall latency of indexes by reducing
storage overhead and preventing expensive I/O operations.

However, the main problem of index structures with different
encoding schemes is that the actual workload is not available be-
forehand – instead, indexes get optimized for all possible access
types at development time by applying universal encodings. Using
different encodings, therefore, requires us to get more fine-grained
information at run-time.

There are two different approaches to collect the required infor-
mation. In a decentralized scheme, we would store tracking infor-
mation in the index structure itself. For example, we could add an
information unit (IU) that contains the last access time, the number
of reads, writes, etc. for each index part. Such intrusive changes,
however, add space overhead to all parts of the index – even to
the never-accessed ones. Instead, we propose a new centralized
approach, which stores IUs for accessed parts only. We combine it
with lightweight sampling to reduce tracking-related overhead.
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Figure 4: Basic overview of our workload-sampling approach applied to the example of a tree-like index structure.

In Figure 4, we show a conceptual overview of our approach
applied to a tree having both a performance-optimized and a space-
optimized encoding for the leaf nodes which is similar to our pro-
posed Hybrid B+-tree in Section 4.1 (for implementation details,
please refer to Section 3.1). To identify an appropriate encoding for
each leaf node based on its access frequency, our approach has a
sampling and an adaptation phase.

Phase I – Sampling: As the index processes incoming queries,
it traverses the internal structure from top to bottom. Based on
a predefined, adaptive skip length 𝑠𝑘 , every 𝑠𝑘th leaf node access
gets sampled 1 . For each sample, the leaf node and the access
type (cf. Figure 4 read access to node B ) get passed to the adap-
tation manager and stored in aggregated form 2 . To consider the
most recent accesses of the current sampling phase only, we enu-
merate the sampling phases by increasing epoch numbers and let
aggregates store the epoch in which they were accessed last. In
Section 3.1.3, we discuss the usage of epochs in more detail. When
the required sample size 𝑠 has been reached, the approach continues
to the adaptation phase.

Phase II – Adaptation: Based on the aggregations, all samples
get classified as either hot or cold 3 . As an abbreviation, let N𝑒
denote the set of nodes accessed during epoch 𝑒 . Therefore, we run
a top-𝑘 classification on all nodes in N𝑐 with 𝑐 being the current
epoch, while nodes that were not sampled during 𝑐 are considered
to be cold. In this context, we set 𝑘 to the number of theoretically
expandable nodes based on the index size and the memory budget.
Affording 𝑛 additional bytes, we can keep up to 8𝑛 of the last classi-
fication results as historic information to support future encoding
decisions.

Next, the adaptation manager determines promising encoding
changes based on the available memory, the current and the his-
toric classifications, and heuristics 4 . These heuristics are index-
dependent as they take encoding migration costs and performance
gains into account (cf. Section 3.1.4).

For example, as in Figure 4, node B , which has been classified
as hot, gets expanded from the compressed to the performance-
optimized encoding, whereas node C , which is no longer hot, gets
compacted the other way around.

Sample-based Classification: As tracking all of the internal
node accesses will cause severe performance overhead (cf. Sec-
tion 3.1.3), the adaptation manager considers a sampled subset of
queries only. In this context, we introduce two relevant sampling
parameters: the skip length and the sample size. The skip length
corresponds to the number of skipped queries between two samples,
while the sample size defines the number of sampled accesses before
starting Phase II. Based on the skip length 𝑠𝑘 , the costs for sampling
one access get amortized over 𝑠𝑘 queries: larger skip lengths will
reduce the costs per query and vice versa. However, larger skips
will also increase the time until optimizing frequently accessed
nodes. The adaptation manager sets the skip length adaptively at
run-time: frequent encoding migrations will lead to smaller skip
lengths so that the hybrid index can quickly adapt to workload
changes. For more details, please refer to Section 3.1.3.

To bound sampling errors, we introduced Equation (1) in Sec-
tion 2 to get the sample sizes for error-bounded top-𝑘 approxima-
tions, with 𝑛 being the number of leaf nodes, 𝜖 denoting the classi-
fication error, and 𝛿 representing its reliability. Based on the results
in Figure 2, we set 𝜖 = 𝛿 = 5% as the default values because they pro-
vide a reasonable trade-off between sample size and precision. To
set 𝑘 , we approximate the number of nodes that could be expanded
without exceeding the memory budget. Assuming a tree has𝑛𝑐 com-
pressed and 𝑛𝑢 uncompressed nodes, where compressed/uncom-
pressed nodes use𝑚𝑐 /𝑚𝑢 bytes each on average. For a memory bud-
get𝑚𝑏, we can approximate𝑘 = (𝑚𝑏−(𝑛𝑐 ·𝑚𝑐+𝑛𝑢 ·𝑚𝑢 ))/(𝑚𝑢−𝑚𝑐 ).

At the end of each adaptation phase, the adaptation manager
changes both parameters skip length and sample size adaptively 5 .

We next present the architecture, the unified interface, and the
different strategies for sampling-based classifications in detail. We
then discuss supported user-defined parameters and show how to
use heuristics to determine nodes for potential encoding migrations.

3.1 Architecture and Interface
While Figure 4 shows the concepts of adaptive hybrid indexes, this
section describes the concrete steps to implement them. We present
the framework’s architecture and its unified interface in more detail.
In the rest of this paper, we refer to the controlling instance of the
workload adaptation framework as adaptation manager.
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3.1.1 Tracking Granularity and Encodings. Before making a hybrid
index adaptive, we must determine the tracking granularity: the
basic unit (e.g., key, node, bucket) where we collect statistics and
apply encoding migrations. We then design different encodings for
this basic unit. Each encoding comes with different trade-offs in
read/write performance and space efficiency. Based on the different
encoding characteristics, we implement heuristics that map a basic
unit to an encoding by taking its sampled access information and
the available resources into account. We describe the usage of such
heuristics in more detail in Section 3.1.4.

We must also provide unique identifiers for the basic units. In
most cases (e.g., B-tree nodes) we simply use pointers. For others
such as succinct index representations, we use position offsets.

In our approach, each hybrid index keeps its adaptation man-
ager as a member variable (cf. Listing 1, line 50). This instance is
then used for all workload adaptation-related tasks such as moni-
toring the space consumption and storing the fine-grained access
information, which separates index- from sampling-related code.

3.1.2 Interface. As a next step, we identify those functions which
access or modify the index at the predefined granularity, such as
lookups, inserts, or iterator increments and dereferencing operators.
Each of the relevant functions first checks whether the current
access is considered to be a sample (Listing 1, lines 38 and 42).
Depending on the return value we conditionally pass the accessed
part (here cur_node) alongside the access type to the adaptation
manager using the Track-function (lines 39 and 43).

To enable the adaptation manager to change the encoding of a
tracked part, we implement a callback function that handles the
migration logic between different encodings (line 49). As an exam-
ple, for a B+-tree with compressed and uncompressed leaf nodes,
we provide a callback function implementing the compression and
decompression of leaf nodes.

3.1.3 Phase I: Sampling Phase. During the sampling phase, the
hybrid index invokes the adaptation manager to track a sampled
subset of basic units and corresponding access types. For each unit,
the adaptation manager maintains individual access statistics (cf.
Listing 1, line 6), where accesses are grouped by access type (read,
insert, update, and delete).

To consider only the sampled accesses of the current phase, the
adaptation manager maintains a global epoch counter (cf. line 28),
and each access statistic stores the epoch of last access (cf. line 6).
Before updating access statistics, we first check if its epoch matches
the global epoch. In the case of different epochs, we first reset the
aggregate counters and set the local to the global epoch before
registering new accesses. Storing the epoch of the last access fur-
ther adds new relevant information when deciding which node
encodings should be changed.

To efficiently map identifiers to their access statistics (cf. line 25),
we use a high-performance hop-scotch hashmap for single-threaded
execution [6], and a concurrent cuckoo-based hash map for parallel
workloads (cf. Listing 1, line 25) [34]. It allows concurrent readers
and writers while it retains high throughput under contention.

As an optimization, we install a bloom filter in front of the hash
table to prevent cold nodes from being tracked accidentally (cf.
line 26). Before an identifier gets tracked in the hash map, it must
be added to the filter first. Only in the case the identifier is already

1 // AdaptationManager.hpp
2 template <class Index, typename Identifier, typename Context>
3 class AdaptationManager {
4 public:
5 enum AccessType { READ, WRITE, UPDATE, DELETE };
6 enum AccessStats { size_t reads, size_t writes, BitSet

last_classifications, Epoch last_epoch, ... };↩→
7 explicit AdaptationManager(Index *index);
8 bool IsSample() {
9 if (--skip_length == 0) {
10 skip_length = global_skip_length_.load(); // synchronized
11 return true;
12 }
13 return false;
14 };
15 template <typename... Args>
16 void Track(Identifier&, AccessType&, Args&& ...);
17 void UpdateContext(Identifier&, Context&);
18 private:
19 void Classify(); // Classify nodes as hot and cold
20 void Adapt(); // Start encoding migrations
21 atomic<size_t> global_skip_length_; // Adaptive parameter
22 static thread_local size_t skip_length;
23 atomic<size_t> global_sample_size_; // Adaptive parameter
24 static thread_local size_t sample_size;
25 HashMap<Identifier, pair<AccessStats, Context>> samples_;
26 BloomFilter<Identifier> filter_;
27 Index *index_;
28 Epoch current_epoch_;
29 };
30 // HybridIndex.hpp
31 #include "AdaptationManager.hpp"
32 template <typename K, typename V>
33 class HybridIndex {
34 struct Node {...}
35 friend class AdaptationManager;
36 public:
37 V Lookup(const K& k) { // leave out lookup logic
38 if (adapt_manager_.IsSample())
39 adapt_manager_.Track(node, READ)
40 }
41 bool Insert(K& k, V& v) { // leave out insert logic
42 if (adapt_manager_.IsSample())
43 adapt_manager_.Track(node, INSERT)
44 }
45 private:
46 // Callback functions invoked by adapt_manager_
47 size_t GetUsedMemory();
48 Encoding EvaluateHeuristic(const AccessStats&);
49 void Encode(Node*, EncodingSchema& /*target*/, Node*

/*parent*/);↩→
50 AdaptationManager<HybridIndex<K,V>, Node*, /*Parent-*/ Node*>

adapt_manager_;↩→
51 };

Listing 1: Simplified draft of theworkload sampling interface.
We left out constructors, index-dependent lookup- and insert-
function logic, and thread-local sampling maps.

contained in the filter, it gets added to the hash map. We reset the
filter after each sampling phase. The bloom filter is configured to
use 10 bits per item and its capacity is set to half of the sample size.

To reduce the tracking-related overhead, (e.g. hashing the iden-
tifiers, accessing and modifying the aggregated sampling statistics)
we do not consider all node accesses, but a sampled subset only. As
our approach aims to classify index parts into categories such as
hot and cold, the chance to miss frequently accessed parts decreases
inversely proportional with increasing access frequencies.

While sampling reduces the tracking-related overhead, it intro-
duces new overhead to decide which accesses get sampled. Instead
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Figure 5: Relative sampling overhead for different skip
lengths using the Hybrid B+-tree (cf. Section 4.1). The well-
known STX-B+-tree represents the baseline. The blue line
additionally samples leaf nodes accesses and collects individ-
ual tracking information. It shows the relative overhead of
the workload sampling. The red line shows the performance
overhead for the filter-based optimization. Further experi-
ments can be found in the online appendix.

of probabilistically deciding for each access whether it gets sampled
or not, Vitter et al. suggest minimizing sampling-related overhead
by defining so-called skip lengths: a skip length defines how many
accesses are skipped between two samples [49]. We experimentally
evaluated the sampling overhead for different skip lengths using
the OSM dataset and a log-normal distributed workload in Figure 5.
The STX-B+-tree is the baseline in this experiment, and the tree
represented by the blue line additionally collects access statistics.
For a skip length of 0, which means that all accesses get sampled, we
observe significant overhead of up to 61.9% compared to the base-
line. However, the sampling overhead quickly decrease for larger
skip lengths, e.g. 1.6% for a skip length of 20. The red line shows
the overhead after adding the additional bloom filter. The filter pre-
vents cold nodes from being tracked and reduces sampling-related
overhead significantly. While this experiment shows results for the
log-normal workload, other workloads show similar overhead.

We can further reduce contention by defining one skip per thread
(line 24): decrementing the thread-local skip (line 9) does not require
synchronization. Only in case the skip becomes zero, we reset the
skip to the global skip using an atomic load instruction (line 10).

In some cases we need a way to store additional context in-
formation alongside the identifier to allow for efficient encoding
migrations. For example, we could integrate the adaptation man-
ager to identify hot and cold leaf nodes in a B+-tree. Whenever
we expand or compact a node, its parent must efficiently be made
available to change the corresponding child-node pointer. Based on
variadic template arguments and perfect forwarding, hybrid indexes
can efficiently pass arbitrary context information to the adaptation
manager without requiring changes of our framework.

As context information might change over time (e.g. parent
changes because of node splits), our framework allows to propagate
context changes to the adaptation manager (cf. line 17).

3.1.4 Phase II: Adaptation Phase. When the sample reaches the
predefined size, the adaptation manager terminates the sampling
and passes over to the adaptation phase, which consists of three
steps (cf. 3 - 5 in Figure 4). First, the top-𝑘 frequent nodes of the
last sampling phase get labeled as hot, the rest is considered to be
cold. Second, based on the classification and the index heuristic
function, the adaptation manager determines the most suitable en-
coding for each tracked node and applies the appropriate encoding
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Figure 6: The left plot shows the classification overhead per
sample for different sample sizes and different values for 𝒌.
In the right subplot, we show the size of the hash map that
stores the individual samples and the access statistics.

migrations. Last, the adaptation manager adapts the parameters
skip length and sample size before the next sampling phase starts.

Classification: We implement the top-𝑘 analysis using a pri-
ority queue based on a binary heap having a capacity of 𝑘 . In our
experiment, we use the sum of the read and write access counters
as default priority. However, we could also assign custom weights
to the different access counters. Then, we traverse the hash map
and insert those aggregated samples whose epoch matches the
global epoch, and label them as hot. Nodes, which were not ac-
cessed during the last sampling phase will not be inserted into the
priority queue at all – instead, we can directly classify them as
cold. When nodes are displaced from the priority queue, they are
marked cold again. Therefore, we find the top-𝑘 frequent items in a
single pass and classify all nodes accordingly. This algorithm runs
in O(𝑢 (1 + 𝑙𝑜𝑔(𝑘))) with 𝑢 being the number of unique samples,
and the space to store the priority queue is O(𝑘).

We experimentally evaluated the classification performance for
different numbers of unique samples and different values for 𝑘 in
Figure 6. For 𝑘 ≈ 𝑠/2, the sum of heap inserts and removals reaches
its maximum, while it decreases for smaller and larger 𝑘 , explaining
the different latencies. Assuming a classification latency of 60ns
per sample and a skip length of 𝑠𝑘 = 20, the classification overhead
per query can be amortized to 60ns/20 = 3ns.

Identifying hot nodes based on sampling will also introduce in-
accuracies, therefore, we further back up future encoding decisions
by keeping the most recent 𝑛 classifications. In our example im-
plementation, we use one additional byte to keep the last eight
classifications. This information can be used in the heuristics to
further improve encoding decisions.

Heuristics: After the classification, the adaptation manager
might optionally change the encoding for tracked parts. Making op-
timal encoding-decisions is not possible, as there will be sampling
inaccuracies and future queries and accesses are not known before-
hand. However, we can react to current workload developments
based on the sampled access statistics. Therefore, context-sensitive
heuristic functions (CSHF) support the workload manager to decide
which encoding migrations might improve the performance. As
shown in Figure 7, a CSHF is similar to a decision tree that takes
sampled access statistics and other context information into ac-
count and returns an encoding. Branches represent decisions, while
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leaf nodes contain the suggested encoding. Furthermore, the CSHF
can decide to stop tracking of specific nodes, e.g. if they are cold or
were not sampled for a longer time. Each hybrid index will imple-
ment its own, tailored CSHF as it must take the different encodings
and space-performance implications into account (cf. line 48).

last
classification

. . .cold

memory
budget

# hot
phases . . .≤ 1

Optimized≥ 2

≤ 95%

Compr.> 95%

hot

Figure 7: Heuristic functions propose target encodings de-
pending on a variety of factors such as the current and the
last classifications, system resources, or the last access.

Next, the adaptation manager evaluates the CSHF for all tracked
items and if required, migrates the basic units to their suggested en-
coding. Therefore, the hybrid index implements a callback function
(cf. line 49) to handle the migration between different encodings.

Sampling Parameters: Providing an equation or a metric that
adequately considers all parameters is challenging. Instead, we
identified three important parameters sample size, skip length, and
encoding migration costs and provided experimental validation for
each. Based on these experiments, we let the adaptation manager
set the parameters adaptively at runtime. E.g., the adaptation man-
ager will calculate the new sample size based on Equation (1) as
well as a new skip length. As we discussed earlier, a smaller skip
length allows hybrid indexes to adapt more quickly to workload
changes, but it imposes more sampling overhead. And we use the
number of node encoding changes in the current adaptation phase
to approximate workload stability. For example, if the migrated
nodes make up less than 10% of the sampled accesses, the skip
length will increase to reduce the sampling overhead. Contrary, if
the share exceeds 30%, we decrease the skip length and therefore
increase the sampling frequency. In our example implementation,
the adaptation manager will adaptively set the skip length within
the range [50, 500]. Additionally, the adaptation manager could
randomize 𝑠𝑘 in a limited range to cope with query patterns.

3.1.5 Concurrency. While hybrid indexes work best under skewed
workloads, concurrency requires contention and synchronization
to be kept at a minimum. We compare and evaluate two approaches:
(1) GS: All worker threads (WT) track samples in a global cuckoo
hash map which is optimized for concurrent readers and writ-
ers [34]. During adaptation, the map gets locked globally to process
each sample. (2) TLS: All WTs track the samples in thread-local
maps, which get merged once the target sample size is reached. In
both approaches, one WT runs the adaptation, while the remaining
WTs continue with the sampling phase. While GS optimizes space
efficiency, TLS allocates more memory for thread-local sampling.

3.1.6 OptionalMemory Budget. Our framework allows to set either
an absolute or a relative memory budget. While absolute budgets
are suited for read-only workloads, relative budgets allow us to
define an average ratio of bits per item and therefore provide more
flexibility with inserts and deletes. In other words, a memory budget

Gapped: header slotuse 𝑘0 𝑘1 𝑘2 ⊥ 𝑣0 𝑣1 𝑣2 ⊥

Packed: header slotuse 𝑘0 𝑘1 𝑘2 𝑣0 𝑣1 𝑣2

Succinct: header slotuse 𝑘𝑚𝑖𝑛 𝑣𝑚𝑖𝑛 Δ𝑘1 Δ𝑘2 Δ𝑣1 Δ𝑣2

Figure 8: Three different leaf node encodings are used in our
Hybrid B+-tree implementation. The Gapped encoding stores
a fixed number of slots with possible empty slots (⊥) at the
end. The Packed encoding stores keys and values densely
packed, and the Succinct layout further employs frame-of-
reference encoding.

lets us define a compression ratio in which the index structure can
be adaptively optimized. During execution, the adaptation manager
optimizes the index while keeping its size below the upper bound.

3.2 Trained Hybrid Indexes
In some contexts, dataset and workload remain stable for a longer
time, or a workload prediction might be available beforehand. E.g.,
self-driving database systems as proposed by Pavlo et al. in 2017 [41]
build indexes based on predicted workload patterns. Therefore,
more space-efficient hybrid indexes could make use of such fine-
grained predictions for training. Furthermore, onlineworkload adap-
tation imposes additional overhead to collect, aggregate, and classify
samples, so it might be desirable to train hybrid indexes based on
previous workloads in these cases beforehand.

Therefore, our framework also implements an offline solution
for hybrid indexes: given a predicted or a historic workload, the
adaptation manager analyzes the access patterns and ranks the
nodes according to their access frequencies. Starting with the most
promising nodes, the adaptation manager optimizes the nodes until
all nodes are optimized or the memory budget is reached.

4 EXAMPLE IMPLEMENTATIONS
In this section, we apply our approach to two state-of-the-art index
structures: B+trees and radix trees.

4.1 Hybrid B+-Tree
Although invented for disk-based database systems, B+-trees are
still the most widely-used indexes, even for in-memory DBMSs [53].
Most implementations make use of two encoding schemes: one for
inner and another one for leaf nodes. While both node types have a
fixed number of slots, long-running systems with millions of insert
and delete queries lead to unused slots. While these empty slots
do allow for efficient inserts and deletes, they also often result in
space utilization below 70% [8].

4.1.1 Tracking Granularity and Encodings. We first determine a
suitable tracking granularity. For the B+-tree, leaf nodes make a
good candidate as they make up the largest part of the overall data
structure and maintain all keys and values. Figure 8 introduces
three leaf node encodings that trade-off space and performance
differently.

Gapped is the traditional, universal encoding for B+-tree leaf
nodes. Those nodes support all access types efficiently by accepting
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free slots (⊥), but they require a fixed amount of memory. The more
space-efficient Packed layout allocates memory for the used slots
only. This packed representation supports efficient read, update,
and delete operations (using tombstones), but does not support
efficient inserts. It stores the number of elements and two arrays
for keys and values. As an alternative, the Succinct encoding trades
performance for space efficiency more aggressively. For a leaf node,
it combines frame-of-reference (FOR) encoding with bit packing to
store the keys and values in a compressed fashion. The first (and
smallest) key/value is stored separately. While this node layout still
allows for random access, it requires additional instructions and
bitwise operations to access keys and values. This results in higher
access latencies compared to the gapped and packed encoding
schemes for smaller indexes, however, for larger indexes exceeding
the caches, the succinct layout will cause fewer cache misses which
might outweigh the additional CPU costs. In Table 1, we provide a
performance analysis for the different layouts. Gapped and packed
nodes achieve significantly higher throughput, whereas succinct
nodes require 73% less space on average compared to gapped nodes.
Furthermore, special allocators and memory pools can optimize the
allocation of differently sized nodes to prevent heap fragmentation.

4.1.2 EncodingMigrations. In Figure 9, we experimentally evaluate
the migration costs between the different node encodings for two
index sizes. The left index consumes around 10MB and entirely fits
into the L3 cache, while the right index needs around 1GB. For both
indexes, we observe significant overhead for switching between
the succinct and one of the other encodings: in these cases, the
migration will modify the physical key and value representation
and comes at the cost of additional instructions. In contrast, migrat-
ing between packed and gapped node layouts is cheaper as these
migrations use a system call to copy keys and values.

4.1.3 Tracking Leaf Nodes. Tracking leaf nodes during reads and
inserts is straightforward as the leaf and its context is directly
available. Scans, however, require minor, structural changes: each
inner node has a link to its right sibling, and iterators keep a pointer
to the current parent. In the case of a sampled leaf node access
through an iterator, the parent can be efficiently retrieved.

4.1.4 Handling Updates. Inserts and deletes will cause split and
merged nodes. In case a leaf node gets a new parent, this information
must be propagated to the tracking framework: we pass the leaf
node and its new parent to the adaptation manager, that will update
the context information of the actually tracked leaf nodes only.

Table 1: Different leaf node encodings storing 64-bit key-
value pairs of the OSM dataset (cf. Section 5.1) and their
performance implications on uniform lookups for a node
occupancy of 70%.

Leaf Node
Encoding

Average
Size

Lookup
Latency Instruc. LLC

Misses
Branch
Misses

Gapped 4096B 56ns 85 2.1 4.44

Packed 2872B 57ns 84 1.4 4.46

Succinct 1076B 125ns 341 1.1 6.69
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Figure 9: Evaluation of the migration costs between different
leaf node encodings for two selected index sizes. The used
CPU is equipped with an L3 cache size of 64MB.

4.1.5 Concurrency Control. We synchronize Hybrid B+-tree using
Optimistic Lock Coupling (OLC) as described in [32]. Each node
stores a lock and an atomic version counter. Compared to lock
coupling, OLC scales significantly better on multi-core systems,
because it minimizes the number of acquired locks.

4.2 Hybrid Trie: ART and FST
Tries are pointer-based index structures and are mainly used to in-
dex variable-length keys. Especially on modern hardware, research
has shown that tries achieve high performance [10, 13, 31, 35, 50, 55].
Compared to B-trees, tries do not store entire keys on each level,
but they index key suffixes, also referred to as labels, instead, where
each level stores the next 𝑘 > 0 bits of the key.

The Adaptive Radix Tree (ART) was introduced in 2013 and
represents the default index structure in HyPer [31]. It allows to
dynamically choose between four differently sized node types based
on the number of labels stored within a node. While each node type
has different implications on lookup performance [19], the node
type is chosen based on the indexed keys only and does not depend
on the actual workload. ART requires 𝑘 to be 8 and therefore limits
the maximum fanout to 28 = 256.

Besides ART, there is another state-of-the-art trie called Fast
Succinct Trie (FST) which has been introduced by Zhang et al. in
2018 [55]. Compared to ART, FST does not store child pointers to
traverse the index structure, but instead, it computes the position of
the next node based on two bitmaps, one storing the existing labels
and another one maintaining the information whether a path termi-
nates. While FST does not impose any restrictions on 𝑘 , we assume
𝑘 = 8 in the following for the sake of simplicity. Furthermore, FST
uses two different encoding schemes for upper and lower levels:
The upper, more frequently accessed parts are encoded using amore
performance-optimized and space-demanding encoding, referred
to as FST-dense, where each node stores the key-labels implicitly by
using 2𝑘 bits per node, which allows for fast random access within
each node. The lower levels use the FST-sparse encoding which
stores existing labels explicitly. This might reduce the space usage1
but also requires an explicit search within the nodes and therefore
more computations for sparse-encoded nodes.

1The sparse encoding requires less space compared to the dense encoding when the
average number of stored labels 𝑙 within the nodes is smaller than 256/8 = 32.
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Figure 10: Our workload-adaptive Hybrid Trie. It combines
the Adaptive Radix Tree and the Fast Succinct Trie level-wise
at build-time. Combined with our sampling framework, it
supports branch-wise refinements at run-time.

In Table 2, we compare the sizes of ART and the two FST en-
codings for the prefix-random dataset (cf. Section 5.1). While ART
allows for faster lookups, it requires significantly more memory.
FST requires additional instructions to compute the position of
the next node and value resulting in decreased performance. For
FST-sparse, we measured more cache misses than for ART, which
can be explained with the efficient path compression in ART: while
FST-sparse requires less memory, its lookups will traverse more
nodes on average and therefore cause more cache misses.

Based on the work of Anneser et al. in 2020 [9], we introduce
Hybrid Trie: an adaptive, level-wise combination of ART and FST.

4.2.1 Tracking Granularity and Encodings. Hybrid Trie combines
ART and FST level-wise: levels 0 to 𝑐𝐴𝑅𝑇 (incl.) are represented by
ART, levels between 𝑐𝐴𝑅𝑇 and 𝑐𝐹𝑆𝑇 (incl.) are represented by FST-
dense, and the remaining levels are encoded using FST-sparse, as
illustrated in Figure 10. We chose the level-wise combination with
ART being at the top based on the fact that all queries start at the
root node and ART achieves significantly higher throughput.

To allow for more fine-grained control and branch-wise expan-
sions beyond the cutoff level 𝑐𝐴𝑅𝑇 , we extend Hybrid Trie with verti-
cal refinements. While ART uses pointer tagging to differentiate
pointers and inlined TIDs, we use an extra bit to further differentiate
the case of inlined FST node numbers. The tagged pointers can then
be used as unique identifiers by the adaptation manager.

4.2.2 Interface and Callbacks. Since FST is a static index supporting
only lookups and range scans, we do not handle inserts as they
would require a complete rebuild of FST each time. To support
efficient inserts, we experimented with storing multiple FSTs (one
per “cold” subtree) instead of a single, global one. However, as
each FST adds some storage overhead (for header information and
auxiliary data structures), this approach did not pay off. We hence
leave inserts for future work.

Next, we identify the functions accessing nodes below 𝑐𝐴𝑅𝑇 . In
Listing 2, we show how the simplified lookup code integrates with
the sampling framework. To enable fast node migrations, we pro-
vide additional context for each tracked identifier: we store its
parent, the key label within the parent, and the FST node number.

The callback function Encode(...) implements the migration
logic between ART and FST nodes. Compacting ART nodes to
the FST representations (cf. 2 in Figure 10) requires deleting the
expanded node and replacing the tagged identifier within the parent

1 V Lookup(const K& key) {
2 const bool isSample = adapt_manager_->IsSample();
3 Node* node = root_;
4 while (node != nullptr && isARTPointer(node)) {
5 node = findChild(node, key[level++]);
6 if (isSample && level > c_art)

7 adapt_manager_->Track(node, READ, ...);
8 }
9 if (isFSTNode(node))
10 return fst_->Lookup(getFSTNode(node), key, level);
11 return getValue(node);
12 }

Listing 2: Simplified lookup code for Hybrid Trie. The high-
lighted lines handle the required calls to the workload sam-
pling framework. In line 7, we dropped additional arguments
such as the parent identifier and the key-part at the current
level. This function is intentionally not declared const as it
may modify the internal structure.

Table 2: Space and performance metrics for different trie
indexes measured for the prefix-random dataset and work-
load (cf. Section 5.1).

Per Lookup-Query

Index Size Latency Instruc. LLC
misses

Branch
misses

ART 274MB 81ns 177 8.49 0.03

FST-dense 116MB 206ns 675 6.33 1.82

FST-sparse 104MB 576ns 4337 9.2 9.64

node with the FST node number. Expanding FST nodes to ART
nodes (cf. 1 ) requires us to determine the appropriate ART node
type based on the number of labels within the node. In both cases,
we retain the historic access statistics in the workload tracking.

We experimentally evaluated the latencies for migrating nodes
between ART and FST. Migrations from FST to ART cause overhead
of up to ≈5000ns on average (assuming a node occupancy of 50%):
labels stored within the FST node must first be collected and then
inserted into the new ART node. Migrating the other way around
takes up to ≈100ns only, as it does not involve the construction
of a new node, but the deletion of the existing ART node and its
replacement in the parent node with the FST node number.

5 EVALUATION
We conduct all experiments on a 16-core AMD Ryzen 9 3950X CPU
@ 3.5GHz equipped with 64GB DDR4-2667 RAM and compile the
C++ code with GCC 9.3.0, using the flags O3 and march=native.
Please note that the CPU overhead for sampling, compacting, and
expanding nodes are already included in the shown performance.

5.1 Datasets and Workloads
The OSM-dataset [26, 36] comprises 400M uniformly sampled Open
Street Map locations represented as 64-bit S2-cell-identifiers [4]. We
further use the RocksDB tool dbbench to generate 64-bit user-ids

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1634



Table 3: Operation counts and distribution types for each
workload. The synthetic workloadsW1.1-W2 were generated
by us, W3 is a realistic workload generated using RocksDB’s
dbbench [14], and W4 has been generated using YCSB [17].
The scan length is uniformly distributed within [10, 50], and
for W4 [100, 250].

Reads Scans Inserts

W1.1 49% Zipfian 49% Zipfian 2% Zipfian
W1.2 49% Normal 49% Normal 2% Zipfian
W1.3 49% Lognormal 49% Lognormal 2% Lognormal

W2 56% Lognormal 20% Lognormal24% Uniform
W3 [14] 100% prefix-rand.
W4 YCSB 75% Zipfian 25% Zipfian
W5.1 20% Zipfian 80% Zipfian
W5.2 20% Zipfian 80% Zipfian
W6.1 100% Zipfian
W6.2 100% Zipfian

and anonymized workloads that contain common patterns seen
at Facebook [3, 14]. Besides fixed-size keys, we use a dataset of
33M unique email addresses (host-reversed, e.g. foo.com@) drawn
from a real-world dataset (average length = 22 bytes, max length
= 49 bytes). Further optimizations such as key compression are
orthogonal to our approach: Adaptive indexes choose the most
promising internal node encodings adaptively at run-time, while
key compression, e.g. [56], is performed at key granularity.

Based on the datasets, we generate different workloads. Figure 11
visualizes the cumulative distribution functions (CDF) of the work-
loads W1.1 - W1.3 applied to the OSM dataset.

In Table 3, we show the number of operations and the used
distribution for each workload and query type.We use the following
relative distributions to decide on record selections and scan lengths:
Zipf with 𝛼 ∈ [1, 1.5] and 𝑁 being the number of keys, Normal with
𝜇=0.5 and 𝜎=0.03, Lognormal with 𝜇=0 and 𝜎=0.1, and Uniform.

Additionally, we used RocksDB’s dbbench to generate a more
realistic workload based on the prefix-random configuration de-
scribed by Cao et al. in 2020 [14]. They analyzed RocksDB work-
loads at Facebook and extracted common characteristics, which are
re-generated by dbbench. Furthermore, they found a correlation
between key prefixes and lookup frequencies: while most keys are
not accessed at all, there are some hot key prefix ranges which are

0 1
0

1
Zipfian

0 1

Normal

0 1

Lognormal

0 1

Uniform

Figure 11: Cumulative distribution functions (CDFs) of the
workloads (from left to right) W1.1, W1.2, W1.3, and a uni-
form distribution on the OSM dataset.

accessed frequently. We evaluate this workload using ART and FST.
We use a custom read-only YCSB configuration with a hot set size
of 1% of the dataset (cf. W4).

We further use the Yahoo! Cloud Service Benchmark (YCSB) [17]
to generate a dataset of 200M key-value pairs (16 bytes each) and
workloadW4with 200MZipfian-distributed queries.WorkloadsW5.1
and W5.2 let us investigate the performance of adaptive indexes for
write-dominated workloads, while workload W6 evaluates point
lookups and scans on the mail dataset using Hybrid Trie.

5.2 Hybrid B+-tree
For the following evaluation of the Hybrid B+-tree, we assume
an average leaf node occupancy of 70%. We refer to the adaptive
Hybrid B+-tree as AHI-BTree.

In Figure 12, we use the OSM dataset and the workloads W1.1 -
W1.3 to show the performance developing over time and the average
space consumption for the adaptive and pre-trained Hybrid B+-tree
and compare them to the succinct, packed, and gapped tree variants
which do apply a single encoding to all of their leaf nodes. For each
workload phase, we observe a short period of time in which the la-
tencies of the adaptive index decrease, and then stabilize at a lower
level. During this time, the workload adaptation detects frequently
accessed nodes and migrates them to performance-optimized en-
codings. In contrast to the first and last phases, the second phase
W1.2 is less skewed, which is the reason for the increased latencies.
The adaptive tree achieves 85%, 99%, and 84% of the throughput of
the performance-optimized Gapped tree on average per workload
phase. At the same time, the adaptive tree reduces the memory foot-
print (2.36GB) by up to 72% compared to the Gapped tree (8.66GB).

To better understand the space-performance trade-off, we use
the cost function𝐶 = 𝑃𝑟𝑆 defined by Zhang et al. in 2018 [55], with
𝑃 representing the performance (latency) and 𝑆 representing the
index size. The exponent 𝑟 defines the relative importance between
𝑃 and 𝑆 : 0 ≤ 𝑟 < 1 considers space to be more important, while
𝑟 > 1 trades performance for space.

Figure 13 visualizes 𝐶 for 𝑟 = 1 (space and performance are
equally important) by using blue curves and shows the average per-
formance and last measured index size. Indexes on the same curve
are considered to be “indifferent” in the space-performance trade-
off. According to𝐶 , the succinct, adaptive, and pre-trained variants
provide a better space-performance trade-off than the gapped and
packed variants. For the highly skewed Lognormal workload W1.3,
the adaptive tree achieves the best trade-off.

In Figure 14, we investigate to what extent the adaptive tree can
leverage differently skewed workloads. We generate the workloads
based on W1.1 for parameter 𝛼 ∈ (0, 1.6]. For 𝛼 = 1, our adaptive
tree reduces the index size by 71%/59% while it increases query la-
tency by 17%/7% wrt. the Gapped/Packed trees. With decreasing 𝛼 ,
AHI-BTree cannot retain the high performance improvements: the
access frequency of the 10K most frequent nodes (out of 2M nodes)
decreases from 67% for 𝛼 =1 to 45%/28%/11% for 𝛼 = 0.9/0.8/0.7.
For this experiment, the break-even point is at 𝛼 ≈0.6: for 𝛼 <0.6,
sampling overhead outweighs performance improvements due to
node expansions, and for 𝛼 >0.6, the contrary is the case.
Despite the sampling overhead, we observe no considerable perfor-
mance decreases for AHI-BTree wrt. the Succinct tree (3% higher
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Figure 12: Query latency evolving over time for the OSM-dataset and three selected workloads using the Hybrid B+-tree and its
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latency) under less skewed workloads (𝛼 =0.01).
AHI-BTree eagerly migrates Succinct nodes to the Gapped encod-
ing on inserts and defers their compaction until they are cold again.
For 𝛼 = 0.01, inserts affect 26% of all nodes and the adaptive tree
allocates 46% more memory compared to the Succinct tree.

Figure 15 shows the impact of the memory budget on the per-
formance of AHI-BTree. With increasing budgets, AHI-BTree can
expand more nodes to the performance-optimized encodings. As
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dominated and W5.2 is scan-dominated. We run both work-
loads consecutively.

the most frequently accessed nodes get optimized first, the per-
formance improvements per additional MB are larger for smaller
memory budgets under skewed workloads.

Figure 16 shows the performance for AHI-BTree running work-
load W5. With Succinct nodes being optimized for read accesses
only, insert operations during the write-intensive workload W5.1
require expensive changes to the node structure. While AHI-BTree
uses the Succinct encoding as default for cold nodes, it eagerly mi-
grates nodes to the Gapped encoding on inserts. At the beginning

Session 23: Storage and Indexing SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

1636



0 2 4
Size [GB]

0

500

1000

La
te
nc
y
[n
s]

Lognorm. & Uniform [W2]

0 2 4
Size [GB]

0

500

YCSB [W4]

AHI-BTree
Succinct

Packed
Gapped

DualStage-Succinct
DualStage-Packed

Figure 17: We compare the space and performance of our
Hybrid B+-tree to the Dual-Stage Hybrid B+-Tree described
in [53]. During the benchmark, the dynamic stage contains
the latest inserted keys (5% of all data). The dataset contains
200M consecutive 64-bit keys and 64-bit TIDs.

1 2 4 8 16
0
3
6
9

M
op

er
at
io
ns
/s

Writes [W5.1]

1 2 4 8 16
0

10

20

Reads [W5.2]

Threads [log]

Succinct Packed Gapped
AHI-BTree-GS AHI-BTree-TLS

Figure 18: Average throughput for the two concurrent work-
load adaptations based on Global Sampling (GS) and Thread-
Local Sampling (TLS) applied to the Hybrid B+-tree. We run
both workloads W5.1 and W5.2 separately using different
numbers of worker threads.

of W5.2, previously expanded nodes, which are rarely accessed in
W5.2, get compacted again to reduce the memory footprint.

In Figure 17, we compare our approach to the Dual-Stage (DS)
framework proposed by Zhang et al. in 2016 [53]. DS consists of a
dynamic stage for recently modified data and a static stage for the
remaining data. Inserts, deletes, and updates modify the dynamic
stage, whereas reads first check the dynamic stage, and if the key
was not found, they continue the lookup in the static stage. We can
see that our approach outperforms DS in both dimensions, space
and performance. Based on the access statistics, it allows for more
fine-grained encoding decisions and can therefore leverage skew
to a higher extent. Contrary, DS keeps only recently inserted or
modified items in performance-optimized structures independent
of the workload skew. As described in [53], we add the LevelDB [2]
bloom filter to DS to further speed up lookups as it allows to skip
the dynamic stage in most cases when the key does not exist there.

In Figure 18, we compare the performance of the two concurrent
adaptation approaches (cf. Section 3.1.5) and apply them to the Hy-
brid B+-tree to run workloads W5.1 and W5.2 on the OSM dataset.
We pin each thread to one logical core. For both workloads, thread-
local sampling (TLS) achieves higher throughputs compared to
global sampling (GS). GS locks the entire map during the adaptation
phases and table resizing operations, which leads to high contention
that severely degrades performance while executing the read-only
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Figure 19: Space and performance for point lookups (W6.1)
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show the time of the adaptations. Sampling phases take place
between two subsequent adaptations.

workloadW5.2. The skewed inserts in W5.1, however, already incur
high contention and the performance gains due to node expansions
outweigh the sampling overhead of both approaches. Compared to
single-threaded workload adaptation, the shared and the thread-
local maps allocate up to 10x more memory (up to 1.5%/2.4% of the
index) to reduce sampling-related contention.

5.3 Hybrid Trie
In Figure 19, we consider index size and performance of FST, ART,
as well as the trained and the adaptive Hybrid Tries (AHI-Trie) for
point lookups and scans on 33M email addresses. While FST stores
one character per level, ART nodes inline up to eight common prefix
characters. This reduces the tree height from 49 to 32 levels and
improves performance. For Hybrid Trie, ART stores the upper 9
levels which contain 5.23% of all nodes (≈ 4.28% of the size).
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Table 4: Overview of the Lines of Code (LOC) per lookup
and insert functions of our two workload adaptive hybrid
indexes compared to their non-adaptive counterparts.

Lookup Insert
Index Logic Tracking Logic Tracking

B+-tree 13 - 100 -
AHI-BTree 15 +1 119 +5

ART/FST 18/46 - - -
AHI-Trie (ART/FST) 25/47 +3/+0 - -

We compare the performance and size of the adaptive and pre-
trained Hybrid Trie to ART and FST in Figure 20 for the prefix-
random workload W3 and a dataset of 172M 64-bit user ids. We
split the workload into two phases and assigned the different prefix
ranges (defined by the 44 most significant key bits) randomly to one
of the phases. The sampling and adaptation phases for the adaptive
trie are highlighted: black dots indicate adaptation phases, while
sampling phases take place between two adaptations. The duration
of a sampling phase is the product of skip length and sample size.
As the sample size does not significantly change in this example
(not visualized), the sampling phase duration is mainly determined
by the changing skip lengths.

At the beginning of each phase, we observe an increased number
of encoding migrations. For phase 1, there are expansions only, as
all nodes below 𝑐𝐴𝑅𝑇 are stored in FST. However, during phase 2,
nodes frequently accessed in phase 1, are considered to be cold now,
and, after a short delay, get compacted again.

After the workload manager identified and expanded/compacted
the hot/cold nodes, it increases the skip length to lower sampling-
related overhead (cf. Section 3.1.3). This increase results in a larger
distance between two consecutive adaptation phases. In contrast,
when the workload manager detects an increased number of mi-
grations, it decreases the skip length to allow faster adaptations.

5.4 Code Complexity
To give a rough overview of the required changes and the addi-
tional code complexity, we use the metric Lines of Code (LoC) –
without considering comments, locks, and empty lines. In Table 4,
we denote the lookup and insert functions of the original indexes
and compare them to our workload-adaptive variants. We differ-
entiate LoC into the actual logic (e.g., traversing the B+-tree) and
the workload-tracking-related code (e.g., adding a sample to the
adaptation manager). It can be seen that the tracking-related over-
head is limited to at most 3/5 additional lines for lookups/inserts
while coping with different encodings adds also extra complexity.
An additional function handles the encoding migrations (140 lines
for the Hybrid B+-tree, 51/70 lines for expansions/compactions in
Hybrid Trie). Subclasses further encapsulate the communication
between index and adaptation manager. These consist of 107/88
LoC for Hybrid B+-tree/Hybrid Trie.

6 RELATEDWORK
Previous research proposed different strategies to reduce storage
overhead and to leverage skew in DBMSs. Back in 2012, Funke et al.

introduced an online compaction of hybrid in-memory OLTP/OLAP
DBMSs based on a hot/cold clustering [21]. In this approach, the
access frequencies get tracked at a VM page level. In contrast to
this, Levandoski et al. monitor sampled accesses at a record level
and write them to a log-file which is evaluated offline at a later
point in time [33]. Both approaches primarily aim to move cold
data to secondary storage devices to free memory capacities.

In 2016, Zhang et al. propose several compaction rules to reduce
the memory footprints of in-memory DBMSs by reducing the space
overhead of index structures such as B+-trees, radix trees, and skip
lists [53]. In contrast to previous work, these techniques aim for
full in-memory indexing as opposed to migrating cold data to disk:
frequently accessed parts get stored using performance-optimized
structures, whereas cold data gets compacted, but remains in mem-
ory. Our experiment in Figure 3 confirms that despite the most
recent advances of SSD and NVMe disks, random I/O is still mul-
tiple orders of magnitude slower than on-the-fly in-memory de-
compression. While the introduced compaction rules might create
immutable indexes, this problem is mitigated by their proposed dual-
stage architecture: the dynamic stage contains the deltas created
by inserts which are periodically merged into the compacted index.

Contrary, our approach applies different encodings within one
single-stage index based on fine-grained access statistics. It does
not require index developers to define complicated or expensive
merge routines. Nevertheless, implementing different encodings
and migration functions might also increase the code complexity.
Besides the complexity, our adaptation framework has shown that
it can leverage skewed workloads to a higher extent.

Succinct data structures such as FST [55] (which we use in Hy-
brid Trie) or its alternatives [12, 23, 44] also trade performance for
memory efficiency. Succinct [7] and BlowFish [25] are two exam-
ples of data systems that use succinct data structures (in this case
compressed suffix arrays [24]) for reduced space utilization and
improved query performance through fitting more data in memory.

Learned indexes [18, 20, 22, 27, 28, 46, 47] also aim to reduce index
size while retraining or even increasing lookup performance over
traditional structures. Yet, we argue that the idea of learned indexes
is orthogonal to our approach. For example, the Learned Index with
Precise Precisions (LIPP) provides tight precision guarantees for
all key ranges [51]. Combined with our approach, we could detect
hot/cold ranges and increase/lower their precision bounds to reduce
LIPP’s size without affecting query performance.

7 CONCLUSIONS
We have presented an adaptive workload sampling approach that
allows for switching between different node encodings at run-time
and applied it to B+-trees and tries. We have shown that it provides
significant space benefits without severely impacting performance
under skewed workloads while causing negligible overhead under
uniform workloads.
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