
Autofolding for Source Code Summarization
Jaroslav Fowkes∗, Pankajan Chanthirasegaran∗, Razvan Ranca†,

Miltiadis Allamanis∗, Mirella Lapata∗ and Charles Sutton∗
∗School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
{jaroslav.fowkes, pchanthi, m.allamanis, csutton}@ed.ac.uk; mlap@inf.ed.ac.uk

†Tractable, Oval Office, 11-12 The Oval, London, E2 9DT, UK
razvan@tractable.io

Abstract—Developers spend much of their time read-
ing and browsing source code, raising new oppor-
tunities for summarization methods. Indeed, modern
code editors provide code folding, which allows one
to selectively hide blocks of code. However this is
impractical to use as folding decisions must be made
manually or based on simple rules. We introduce the
autofolding problem, which is to automatically create a
code summary by folding less informative code regions.
We present a novel solution by formulating the problem
as a sequence of AST folding decisions, leveraging a
scoped topic model for code tokens. On an annotated
set of popular open source projects, we show that our
summarizer outperforms simpler baselines, yielding a
28% error reduction. Furthermore, we find through a
case study that our summarizer is strongly preferred
by experienced developers. More broadly, we hope this
work will aid program comprehension by turning code
folding into a usable and valuable tool.

I. Introduction
Engineering large software systems presents many chal-

lenges due to the inherent complexity of software. Because
of this complexity, programmers tend to spend more time
reading and browsing code than actually writing it [1],
[2]. Despite much research [3], there is still a large need
for better tools that aid program comprehension, thereby
reducing the cost of software development.

A key insight is that source code is written to be
understood not only by machines, but also by humans.
Programmers devote significant time and attention to
writing their code in an idiomatic and intuitive way that
can be easily understood by others — source code is
a means of human communication. This fact raises the
intriguing possibility that technology from the natural
language processing (NLP) community can be adapted to
help developers make sense of large repositories of code.
Often during development and maintenance, developers
skim the code in order to quickly understand it [4]. A good
summary of the source code aims to support this use case:
by eliding less-important details, a summary can be easier
to read quickly and help the developer to gain a high-level
conceptual understanding of the code.

Source code summarization has potential for valuable
applications in many software engineering tasks, such as:
(a) Understanding new code bases. Often developers need
to quickly familiarize themselves with the core parts of

a large code base. This can happen when a developer
is joining an existing project, or when a developer is
evaluating whether to use a new software library. (b) Code
reviews. Reviewers need to quickly understand the key
changes before reviewing the details. (c) Locating relevant
code segments. During program maintenance, developers
often skim code, reading only a couple lines at a time,
while searching for a code region of interest [4].
For this reason, many code editors include a feature

called code folding, which allows developers to selectively
display or hide blocks of source code. This feature is
commonly supported in editors and is familiar to de-
velopers [5]–[7]. But in current Integrated Development
Environments (IDEs), folding quickly becomes impractical
because the folding decisions must be done manually by
the programmer, or based on simple rules, such as folding
code blocks based on depth [8], that some IDEs take
automatically. This creates an obvious chicken-and-egg
problem, because the developer must already understand
the source file to decide what should be folded.
In this paper, we propose that code folding can be a

valuable tool for aiding program comprehension, provided
that folding decisions are made automatically based on
the code’s content. We consider the autofolding problem, in
which the goal is to automatically create a code summary
by folding non-essential code elements that are not useful
on first viewing. To our knowledge, we are the first to
systematically study and quantitatively compare differ-
ent methods for the autofolding problem. An illustrative
example is shown in Figure 1. To any Java developer
the function of the StatusLine constructor and the clone,
getCode, getReason and toString methods are obvious even
without seeing their method bodies. One possible sum-
mary of this source file is shown in Figure 2.
The key problem in content-based autofolding is to

determine which tokens in a file are most representative of
its content. We compare two different content models for
this task: a simple vector space model (VSM) and a topic
model that, building on work in NLP summarization [9],
endows different scopes (files, projects, and the corpus)
with separate topics, allowing the model to separate out
those tokens that are used most often in a particular file.
We find that the summaries from the topic model are
significantly better than those from the VSM.

1 /* Header */
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first
5 * line of a response message */
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine */
11 public StatusLine(int c, String r) {
12 code = c;
13 reason = r;
14 }
15
16 /** Create a new copy of the request-line */
17 public Object clone() {
18 return new StatusLine(getCode(), getReason());
19 }
20
21 /** Indicates whether some other Object
22 * is "equal to" this StatusLine */
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {
32 return false;
33 }
34 }
35
36 public int getCode() {
37 return code;
38 }
39
40 public String getReason() {
41 return reason;
42 }
43
44 public String toString() {
45 return "SIP/2.0 " + code + " " + reason + "\r\n";
46 }
47 }

Figure 1: Original source code. A snippet from bigbluebutton’s
StatusLine.java. We use this as a running example.

Previous work in code summarization has considered
summarization using: (a) program slicing (i.e. hiding irrel-
evant lines of code for a chosen program path) [10], [11];
(b) natural language paraphrases [12], [13]; (c) short lists
of keywords [14]–[17]; or (d) (potentially discontiguous)
lines of code that match a user’s query [18]. In contrast,
our work is based on the idea that an effective summary
can be obtained by carefully folding the original file —
summarizing code with code. Our main contributions in
this paper are:
• We introduce a novel autofolding method for source code
summarization, called TASSAL1, based on optimizing
the similarity between the summary and the source
file. Because of certain constraints among the folding
decisions, we formulate this method as a contiguous
rooted subtree problem (Section III-C). This is, to our
knowledge, the first content-based autofolding method
for code summarization.
1https://github.com/mast-group/tassal

1 /* Header...*/
2 package org.zoolu.sip.header;
3
4 /** SIP Status-line, i.e. the first...*/
6 public class StatusLine {
7 protected int code;
8 protected String reason;
9

10 /** Construct StatusLine...*/
11 public StatusLine(int c, String r) {...}
15
16 /** Create a new copy of the request-line ..*/
17 public Object clone() {...}
20
21 /** Indicates whether some other Object...*/
23 public boolean equals(Object obj){
24 try {
25 StatusLine r = (StatusLine) obj;
26 if (r.getCode() == (getCode()&&
27 r.getReason().equals(getReason()))
28 return true;
29 else
30 return false;
31 } catch (Exception e) {...}
34 }
35
36 public int getCode() {...}
39
40 public String getReason() {...}
43
44 public String toString() {...}
47 }

Figure 2: A summary of the file in Figure 1 (left) which results from
folding lines 1, 4–5, 11–14, 21–22, 31–33, 36-38 and 40-42. The ellipses
indicate folded segments of code.

• To determine which non-essential regions should be
folded, we introduce a novel topic model for code (Sec-
tion III-B), building on machine learning methods used
in NLP [9], which separates tokens according whether
they best characterize their file, their project, or the
corpus as a while. This allows TASSAL summaries to
focus on file-specific tokens.

• We perform a comprehensive evaluation of our method
on a set of popular open source projects from GitHub
(Section IV), and find that TASSAL performs better
than simpler baselines (Section V) at matching human
judgements, with a relative error reduction of 28%. Fur-
thermore, in a user study with experienced developers,
TASSAL is strongly preferred to the baselines.

• We created a live demo of TASSAL [19] to showcase how
it can be used to summarize open-source Java projects
on GitHub. Our demo can be found at http://groups.inf.
ed.ac.uk/cup/tassal/demo.html and a video highlighting
the main features of TASSAL can be found at https:
//youtu.be/_yu7JZgiBA4.

More broadly, we hope that this work will aid program
comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

II. Related Work
The application of NLP methods to the analysis of

source code text is only just beginning to be explored.
Recent work has applied language modelling [20]–[24],
natural language generation [12], [25], machine translation

2

http: //groups.inf.ed.ac.uk/cup/tassal/demo.html
http: //groups.inf.ed.ac.uk/cup/tassal/demo.html
https://youtu.be/_yu7JZgiBA4
https://youtu.be/_yu7JZgiBA4

[26], and topic modelling [27] to the text of source code
from large software projects. A main challenge in this area
is to adapt existing NLP techniques to source code text.
In contrast to natural languages, programming languages
are unambiguous, employ little redundancy, are meant to
be interpreted literally, and consist of strictly structured
text. To exploit these features of the problem, we perform
the summarization at the code block level, leveraging the
fact that source code is syntactically unambiguous.

There is some existing work on the use of code folding
(also known as code elision) to aid comprehension. In
particular, Cockburn et al. [28] find that illegible elision
of all method bodies in a class improves programmer
efficiency in editing and browsing tasks. Rugaber et al. [7]
consider a conceptual model for manual folding, extend-
ing it to non-contiguous regions of code. Kullbach et al.
[6] develop the GUPRO IDE to aid in the comprehension
of C preprocessor code via rule-based folding of macro
expansions and file includes. Also, Hendrix et al. develop
the GRASP program comprehension tool, combining control
structure diagramming with manual folding [5]. Bragdon
et al. [8] perform code autofolding of long methods based
on code block depth in their proposed Code Bubbles IDE.
However, they do not evaluate the effectiveness of the
autofolding method on its own, but rather as part of a
larger UI. By contrast, we are the first to quantitatively
study and evaluate the autofolding problem directly.

The task of natural language summarization has
been studied extensively [29], mostly focusing on extractive
summarization — the problem of extracting the most
relevant text segments from documents. Source code iden-
tifiers (e.g., variable names) are information-rich and have
been shown to be important for tasks such as feature
location [30], [31]. NLP techniques have been used on
these identifiers for information retrieval tasks such as
automatically selecting labels for software artifacts [32].
Extractive summarization has also been applied for the
automatic summarization of bug reports [33], [34].

We are aware of only a few previous methods that
consider the problem of code summarization. One of the
first approaches is program slicing [10], [11] which hides
irrelevant LOC for a chosen program path – essentially a
very specific form of query-based summarization. Program
slicing focuses on the display of a path for a specific
statement or variable of interest, and is not obviously
applicable to the first look problem that we consider.
Most similar to our work are Haiduc et al. [14], [15] and
the follow up work by Eddy et al. [16] and Rodeghero
et al. [35], who also consider the problem of summarizing
source code, particularly methods and classes, but in their
work code fragments are summarized by a short list of
keywords. For example, the equals method in Figure 1
might be summarized by the list of terms (equals, code,
reason, Status). McBurney et al. [17] take this idea further
and present the keywords in a navigable tree structure,
with more general topics near the top of the tree. In

our work, we summarize code with code, which we would
argue has the potential to provide a much richer and more
informative summary.
Also, Ying et al. [18] consider the problem of summa-

rizing a list of code fragments, such as those returned
by a code search engine. They use a supervised learning
approach at the level of lines of code. Because they
consider the results of code search, their classifier uses
query-level features, e.g., whether a line of code uses any
identifiers that were present in the query. This is a source
of information that is not available in our problem setting.
In contrast, we target use cases in which the developer
is skimming the source code to get an overview of its
operation, rather than performing a directed keyword
search. Kim et al. [36] develop a system that augments
API documentation with code example summaries but
these are mined from the web and are therefore limited
to APIs which have examples already written for them —
our approach is applicable to any source file.
On a more technical level, our folding-based summaries

are distinguished from this previous work in that our
summaries are coherent with respect to the programming
language’s syntax. Indeed, Eddy et al. [16] observe that
developers prefer summaries with a natural structure.
Folding on code blocks also enables us to retain method
headers in the summary — identified by Haiduc et al. [15]
as highly relevant to developers and accounting for the
high scores of their best performing method. Additionally,
our method leverages a multiple-project corpus during the
summarization process, which we exploit to identify tokens
which are less characteristic of a particular file.
In addition to extractive summarization methods, ab-

stractive summarization techniques have also been
used in software engineering research. Work in this area
includes synthesis of API usage examples [37], extraction
of API usage patterns [38], [39], and generation of natural
language summaries for source code [12], [13].
The use of topic models for source code has also

been studied in depth [32], [40]–[45]. Marcus et al. [46], [47]
used Latent Semantic Indexing (LSI) [48] for identifying
traceability links and concept location in source code.
More closely related to our work, Haiduc et al. [15] used
LSI as a content model for their keyword-based source
code summarizer. In their follow up paper, Eddy et al.
additionally used a hierarchical pachinko allocation model
(hPAM) [49], a family of generative topic models that
build on Latent Dirichlet Allocation (LDA) [50] with a
hierarchical topic structure. McBurney et al. [17] used the
hierarchical document topic model (HDTM) [51] for their
structured keyword-based summaries. Note that HDTM is
not the same as the topic model we propose: our model
discerns file-specific tokens, leveraging the hierarchical
structure present in the code, whereas HDTM infers a
tree that represents similarities between methods. Also,
Movshovitz et al. [27] successfully used LDA and link-LDA
[52] for predicting class Javadoc comments from source file

3

text.
We cast autofolding as an instance of the general prob-

lem of selecting an optimal subtree given a certain
budget. This problem has been studied theoretically by
Guha et al. [53], who propose a dynamic programming
solution, but this is only pseudo-polynomial time, and so
is unlikely to scale well in practice.

III. Problem Formulation
Our aim in this paper is to summarize source code

so that it conveys the most important aspects of its
intended function. We envisage our proposed Tree-based
Autofolding Software Summarization ALgorithm (TAS-
SAL) being embedded in a programming language IDE
and providing real-time summaries to the user of selected
files. The summarization could be useful at multiple levels,
ranging from a single source file to an entire corpus.
For the purposes of this paper, we will focus on the
Java programming language as it is a popular, high-level,
platform-independent language. However, since TASSAL
works entirely with the source code’s Abstract Syntax Tree
(AST), it can be applied to any programming language for
which an AST can be defined.

The target use case we envisage for TASSAL is that of
a developer not familiar with a project wishing to obtain
an overview of a given file. For example, a developer who
is considering using a new project on GitHub might like
to get an overview of the algorithms used in each file of
the project. We call this the first-look problem. The first-
look problem is in contrast to tasks such as debugging and
code reviewing for which a more focused summary may be
desirable; we leave these other tasks to future work.

The outline of TASSAL is as follows: TASSAL takes as
input a set of source files along with a desired compression
ratio (i.e. level of summarization) and outputs a summary
of each file where uninformative regions of code have
been folded (see Figure 2 for an example). In order to
achieve this TASSAL first selects the AST locations to
obtain suitable regions to fold (Section III-A). It then
applies a source code language model to each foldable
region. The aim of this model is to identify, for every
source file, which tokens specifically characterize the file,
as opposed to project-specific or Java-generic tokens that
are not as informative for understanding the file. To this
end, we develop a scoped topic model for source code
(Section III-B), which we apply to rank how informative
each code region is to its enclosing file. Using this ranking
TASSAL then leverages an optimization algorithm to
determine the most uninformative regions to fold while
achieving the desired level of compression. This is a novel
optimization procedure that takes the structure of the
code into account (Section III-C).

A. Problem Definition
Most modern IDEs already have extensive support for

folding specific code regions as well as the ability to fold

1. StatusLine.java

(1-48)

2. header

(1-1)

3. class jdoc

(4-5)

4. class

(6-47)

5. constructor

(11-14)

6. equals jdoc

(21-22)

7. equals

(23-34)

8. getCode

(36-38)

9. getReason

(40-42)

10. try

(24-30)

11. catch

(31-33)

Figure 3: Partial foldable tree constructed for StatusLine.java
(Figure 1). Numbered breadth-first with labels denoting block types
and line numbers in brackets, cf. the source code snippet in Figure 1.
Note that we have omitted some nodes for clarity.

regions based on user-specfied rules. IDEs with support for
automatically folding regions based on their location have
also been proposed [8]. But to the best of our knowledge
the problem of automatically determining which regions
to fold based on their content is novel. When we say that
we fold a source code region we mean that the region is
replaced by a one line summary and a symbol indicating
that the region was folded. We define the autofolding prob-
lem as that of choosing a set of code regions to fold, such
that the total length of the folded file as a fraction of the
original is below a user-specified compression ratio, and
the remaining, unfolded, text captures the most important
aspects of the file in question. Autofolding can be seen as
a special case of extractive summarization.
To encourage intuitive summaries, we let the system

perform folding only on code blocks (regions of source code
delimited by { , }), comment blocks (regions delimited
by /*(*) , */), and import statements. We call these the
foldable regions of the code. Our reasoning for this is
that it is a summary many programmers are familiar with
as these are the regions that can be manually folded in
the majority of modern IDEs and text editors. Moreover,
code blocks are natural units for extractive summarization
since they take advantage of the code structure specified
by the programmer. However, since our approach works
within the code’s AST, it can be trivially extended to
fold any contiguous region of interest. For example, in our
implementation we have added optional features to allow
autofolding of line comments, fields and method signatures.
Also, it would be a trivial extension to allow statements, or
a carefully designed subset thereof, to be folded. In keeping
with the manual folding conventions in IDEs, the one line
summary we display for a folded region consists of the
first non-empty line of the code block, then an ellipsis,
and finally the right delimiter of the region (see Figure 2).
We formalize the autofolding problem by using the AST

representation of the source code [54]. Given a program’s
AST, we define the program’s foldable nodes as those AST
nodes which correspond to a foldable region of code. By
starting at the root of an AST and sequentially extracting

4

all foldable nodes, we construct a directed foldable tree,
containing just the AST nodes we are interested in. Fig-
ure 3 shows a partial foldable tree for the running example.

Constructing a foldable tree enables us to formulate
the summarization problem mathematically as finding the
best contiguous rooted subtree that takes up no more than
a predefined number of lines of source code (LOC). That is
to say, we unfold all nodes in the best subtree and fold the
remaining nodes in the tree. Note that we require the tree
to be rooted and contiguous as otherwise this would lead
to confusing situations where we would have a deep node
present in the summary with no context. We will describe
the precise formulation in the next two sections.

B. Content Model
In order to determine which nodes of the foldable tree

should be unfolded, we require a content selection method
for choosing the best nodes to retain in the summary.
Intuitively, one would like to retain the most informative
nodes and a natural approach, as in text summarization,
is to tokenize the node text and select the nodes with the
most representative tokens. For this reason we make use
of a topic model, an extension of the TopicSum model [9].
The high-level idea is to extend a standard topic model,
latent Dirichlet allocation, with topics that are specific to
particular projects, files and methods, thus allowing the
model to identify which tokens are predominantly used
in a specific file or project. Other types of probabilistic
models that have been used for code are not well suited for
this task. For example, n-gram language models can learn
only local patterns of nearby tokens, whereas we require
a global model of the distribution of code across files. An
n-gram model has no way to identify whether the usages
of a token are concentrated within a single file.
Tokenization A first idea would be to have one token in
the topic model for each Java token in the code. However,
some tokens (e.g. operators and delimiters) are not infor-
mative about the program content and identifier names
have substructure that we wish to exploit. For example,
in Figure 1, the getCode method name is closely related
to the code member variable, which becomes apparent to
the topic model only if it is split into two tokens get and
code. For these reasons, we preprocess the Java tokens
before incorporating them into the topic model. Given a
code block, we first tokenize it into a set of Java tokens
using standard tools for the Java programming language.
Then we remove all tokens except for identifiers, i.e.,
programmer assigned names of variables, methods, classes,
etc. Finally, we convert each of the identifiers into a new
set of tokens by splitting on camel case and underscores,
and converting to lowercase (e.g., FooBarBaz becomes three
tokens foo, bar, and baz, as would foo_bar_baz). Addition-
ally, we include the text of all comment blocks in the topic
model, splitting the comment text based on words, again
applying the identifier splitting procedure on any comment
tokens that contain camel case or underscores. Let the

vocabulary V = {t1, . . . tT } be the set of all unique tokens
that occur in the corpus. We use the term lexical item
t ∈ V to refer to elements in the vocabulary (which can
occur multiple times in the corpus as different tokens).
We do not use a stoplist because we expect that the

set of appropriate stop words for program text would be
different to those for natural language text. Instead, our
topic model identifies background words automatically.
Vector Space Model (VSM) The VSM is a standard
method in information retrieval [55], in which documents
are represented by continuous-valued vectors, and similar-
ity is measured by metrics such as the cosine similarity
between such vectors. To apply this idea to summariza-
tion, we compare a vector representing a source file with
a vector representing a summary, and find the closest
match. More specifically, for a file f , let vf be the log
term frequency (tf) vector; this is vector containing the log
frequency of each token in the file. Similarly, for a potential
summary u we can define a log-tf vector vu. Then if we
have a set of potential summaries of the file f , we can
choose the summary that maximizes

σ(u) = csim(vf ,vu), (1)

where csim denotes the cosine similarity. One potential
disadvantage of this method is that vf includes many
generic tokens that are used throughout the project or
multiple projects. Therefore we next turn to methods that
specifically identify such generic tokens.
Topic Model Now we describe an approach to identifying
file specific tokens based on a topic model. Because topic
models are less familiar to a software engineering audience,
we will explain the model in some detail; although the
mathematics of this section may seem complex to some
readers, in fact, the model that we employ is a straight-
forward extension to the basic latent Dirichlet allocation
(LDA) model [50], [56]. A topic model [57] is a type of
statistical model over documents, that represents each
document as a combination of topics, which are groups
of words that tend to occur together. Formally, each topic
is modelled as a probability distribution φk over lexical
items and can be viewed as a vector of length T where
each entry φkt is a probability. A document is modelled
as a probability distribution θd over K topics; this can
again be represented as a vector where each element
θdk is a probability that represents how important topic
φk is to document d. Given a document d with tokens
wd = (w(d)

1 . . . w
(d)
Nd

), we seek to infer topic assignments
z

(d)
i for each token w

(d)
i . Each topic assignment z(d)

i ∈
{1 . . .K} is an indicator variable that specifies which topic
was responsible for generating the token w

(d)
i . We use

zd = (z(d)
1 . . . z

(d)
Nd

) to denote a vector of topic assignments
to all the tokens in document d.

Topic modelling typically follows the paradigm of
Bayesian statistics. One first defines a probability distri-
bution P (φ1 . . . φK , θ1 . . . θD, z1 . . . zD,w1 . . .wD) that de-

5

scribes how the topics and documents would be distributed
if all modelling assumptions were correct. Often the easiest
way to describe such a model is to consider an algorithm
that samples from it. In the case of a topic model, this will
be an algorithm that samples documents. Then, when we
receive a corpus of documents w1 . . .wD, we infer topics
for that corpus by computing the posterior distribution
P (φ1 . . . φK , θ1 . . . θD, z1 . . . zD|w1 . . .wD). The posterior
distribution is the conditional distribution over the quanti-
ties we don’t know, given the ones that we do; it is uniquely
determined by the joint probabilistic model and the laws of
probability. Given samples from the posterior distribution,
we estimate each topic φk by averaging over the samples.
TopicSum [9] is a scoped topic model that extends LDA

to handle topics at multiple levels. In TopicSum, each topic
can be one of three kinds: a) a probability distribution over
words that is local to a single document, b) a distribution
over words that is local to a subcollection of related
documents (such as all articles from the New York Times),
c) a distribution over background words that is available
to all documents in the corpus. The intention is that
the background topic models stop words, the document
subcollection topic represents significant content and the
document topic very specific document words.
We adapt TopicSum to source code by defining a set of

scopes that are appropriate for program text. Specifically,
in our model we consider five different kinds of topic:
one topic φf for each file f , one topic φp for each soft-
ware project p and three background topics shared across
projects. Although the model isn’t aware of this, in prac-
tice we find that the three background topics correspond
to common Java tokens (φBJ

), common Javadoc comment
tokens (φBD

) and common header comment tokens (φBH
).

This model fits well into our summarization procedure
because it separates out which tokens are characteristic of
general Java code, of a specific project and of a specific file,
so that when we generate the summary we can focus on
preserving the file-specific tokens rather than the generic
Java tokens.

We describe the model by providing a procedure to
sample from it. In our model, a file f in project p is
generated as follows: each token w

(nfp)
i in every foldable

node n of the file is chosen from a specific topic φ
z

(nfp)
i

,
where the topic assignment z(nfp)

i is selected according to
the distribution over topics θn in the node n. That is, we
have the following generative procedure:
1) Choose token distributions φk ∼ Dirichlet(T, βk) for

topics k ∈ {BJ , BD, BH , p, f}.
2) Choose topic distribution θn ∼ Dirichlet(K,αm) for

node n.
3) For each token w(nfp)

i in node n:
a) Choose a topic z(nfp)

i ∼ Categorical(K, θn).
b) Choose a token w(nfp)

i ∼ Categorical(T, φ
z

(nfp)
i

).
Here αm and βk denote hyperparameters for the prior
distributions of topics and tokens, i.e. the initial topic and

Project

File

Node

Token

z

w

φB θn

φf

φp

Figure 4: Graphical model depiction of the TASSAL content model
using plate notation (we refer readers unfamiliar with such notation
to the tutorial [58]). The plates denote repeated groups of variables.

token assignments. Readers familiar with topic models will
recognize this as a simple scoped extension of LDA [56].
Figure 4 is a graphical illustration of our model using plate
notation, we refer readers unfamiliar with such notation to
the tutorial [58].
To estimate the topics φk, we need to compute the

posterior distribution over the topic assignments z. Un-
fortunately, as in most topic models, this distribution
is intractable, so we use a popular approximation called
collapsed Gibbs sampling. Collapsed Gibbs sampling is a
stochastic iterative procedure, which does not make ex-
plicit reference to the parameters θd and φk, which at each
iteration returns samples of topic assignments z(nfp)

i for
each token w(nfp)

i in the corpus. It can be shown that such
successive samples approximate the posterior marginal
distribution over topic assignments [56], marginalizing out
θd and φk. We omit the details of the algorithm for space,
but it is a simple extension of the one used for LDA [56].
For the purposes of this paper, the sampler can be thought
of simply as a black box that outputs a topic assignment
z

(nfp)
i for each token in the corpus.
Once we have samples of z(nfp)

i , it is easy to compute
an estimate of each topic distribution φk, which is what
we will need for summarization. These can be estimated
using the maximum a posteriori (MAP) estimate [56]

φ̂kt =
Nt|k + βk∑T

t=1
(
Nt|k + βk

) , (2)

where Nt|k denotes the number of times the lexical item t
has been assigned to topic k in the entire set of samples
{z(nfp)

i |∀i, n, f, p}. In other words, we simply compute the
proportion of times that topic k is used to generate each
lexical item t ∈ V.
Additionally, unlike the original TopicSum model which

used fixed hyperparameters αm,β, we incorporate effi-
cient hyperparameter optimization, namely MacKay and
Peto’s method [59] with histogram based computation of
the necessary counts (see [60] for details).

6

C. Optimization Method
Given a content model, we now need an algorithm that

extracts the most relevant summary by selecting suitable
AST nodes to unfold in the foldable tree. We propose
an iterative greedy optimization algorithm to extract the
most relevant rooted contiguous subtree from the foldable
tree given constraints on the subtree size. At each iteration
of the greedy procedure, we have a candidate summary,
i.e., a subtree we have gathered so far and decided to
include in the summary. We then consider each additional
node of the foldable tree to decide whether it is relevant
and should also be included.

We need to compare a candidate summary to the origi-
nal file f . For a VSM, cosine similarity is a standard mea-
sure. For topic models, a suitable information-theoretic
measure for this similarity is the Kullback-Leibler (KL)
divergence, which measures the difference between two
probability distributions. To convert the candidate sum-
mary into a probability distribution, we divide the number
of times each token w occurs in the summary over the
total number of tokens in the summary, i.e. by using the
empirical unigram distribution. Using our topic model, we
can estimate the file token distribution φ̂f via (2). We
can therefore assign the node under consideration a score
based on the KL divergence between the corresponding file
token distribution φ̂f and the empirical unigram distribu-
tion of the candidate summary. Intuitively, we want our
summary to contain tokens that characterize the file rather
than tokens that are common elsewhere in the corpus.

Formally, for each node i let ui ∈ {0, 1} indicate whether
it is unfolded, with 1 corresponding to true (i.e. unfolded)
and let u be the vector containing all the ui (so that u
contains ui at position i). We define a score σ(u) for a
candidate summary u. For the VSM, we use σ(u) as (1)
whereas for the topic model we use the score

σ(u) = −KL(φ̂f |Pu) (3)

where φ̂f denotes the file token distribution, Pu the em-
pirical unigram distribution over tokens in the candidate
summary and KL(·|·) the KL divergence. Foldable regions
with no tokens are assigned a score of −∞ for consistency,
which means that they are never unfolded.

We can now formulate the autofolding summarization
problem as finding the optimal rooted contiguous subtree.
Requiring the subtree to be rooted and contiguous ensures
that all nodes in the summary are presented within their
syntactic context. Suppose we wish to summarize a file
using a line-level compression ratio of p%, i.e., we would
like to compress the file to p% of its original size in
LOC. We can then define Lmax, the maximum number
of lines of code that are allowed in the summary, as
Lmax := (p/100)L0 where L0 denotes the number of LOC
in the original file. Note that since we are folding on a block
level, a line-level compression ratio of p% does not mean
that p% of the blocks are compressed, in fact for small files
all the blocks are often folded at 50% compression.

Moreover, folding on a block level also means that
in practice the specified line-level compression ratio will
never be achieved exactly, but instead the returned sum-
mary will always be slightly shorter. In certain situations,
it may be desirable to allow the specified compression
ratio to be slightly exceeded, such as when a slightly
larger summary would have many more relevant terms.
In our approach, we do not handle this tradeoff in the
optimization method and the target compression ratio is
taken as a hard maximum. It would be interesting to
modify the user interface so as to indicate when a slight
increase in compression ratio would lead to large increase
in the estimated quality of the summary, for example, by
visualizing the score σ(u) alongside a slider that controls
the compression ratio, but we leave this to future work.
Let G = (V,E) be the foldable tree, that is, a directed

tree with a set of AST nodes V = {1, . . . , N} consisting
of the aforementioned foldable regions and E a set of
directed edges between the nodes, where it is understood
that (i, j) ∈ E means that i is the parent node of j (cf.
Figure 3). Furthermore, for a node i ∈ V let Li denote the
number of LOC underneath node i. We then define Ci, the
cost of unfolding node i as the number of LOC unique to
node i, i.e., underneath node i but not any of its children.
Formally,

Ci := (Li − 1)−
∑

j:(i,j)∈E

(Lj − 1). (4)

The first line of a node is never folded (cf. Figure 2), hence
the minus one. Let σ(z) denote the score obtained from the
summary nodes u1, . . . , uN as defined in (1) or (3). The
optimal rooted contiguous subtree problem is

max
u

σ(u) (5a)

s.t.
N∑

i=1
Ciui ≤ Lmax (5b)

ui ≥ uj if (i, j) ∈ E (5c)
ui ∈ {0, 1} ∀ i ∈ V. (5d)

That is, we unfold the nodes which maximise the total
score (5a) subject to staying below the maximum allowed
LOC (5b) and retaining a rooted contiguous subtree (5c).
As the score (3) is nonlinear we approximate this prob-

lem using a greedy approximation algorithm: that is we
unfold the next available node that will give the maximum
score (3) per cost (4) increase, honoring the cost constraint
(5b) and unfolding any folded parent nodes (5c). That
is, starting from all the nodes being folded (i.e. u = 0),
iteratively choose the node that maximizes

σ(u + ei)/Ci

while
∑N

i=1 Ciui ≤ Lmax. Here ei denotes the i-th unit
vector, which is 1 at position i and 0 everywhere else.

7

Project Description LOC Methods Classes Forks Watchers
storm Distributed Computation System 59,827 5,740 761 1,416 7,471
elasticsearch REST search engine 518,905 32,077 4,990 1,283 5,246
spring-framework Application Framework 798,249 47,214 8,395 1,774 2,568
libgdx Game Development Framework 334,706 33,821 2,651 1,844 2,243
bigbluebutton Web Conferencing System 105,315 6,364 852 1,602 969
netty Network Application Framework 160,579 10,324 1,267 927 2,304

Table I: The top Java projects on GitHub, used in the current work. Ordered by popularity.

IV. Experimental Setup

In this section, we describe how we obtain a gold stan-
dard summary on real code. The gold standard allows au-
tomatic evaluation, which is the de facto standard in NLP
summarization [61]. Automatic evaluation is a standard
technique in modern artificial intelligence research. It is
vital because it leads to a rapid development cycle in which
we can compare many more differing algorithms than
would be possible with user studies alone. In particular,
it enables us to perform a comprehensive evaluation of
TASSAL in Section V.
Data To evaluate the performance of TASSAL we
obtained the source code for the top six Java projects
on the popular GitHub service for hosting open source
code repositories. The top six projects were determined
by a popularity score, which is the sum of the number of
forks and the number of watchers, where each is separately
normalized to have zero mean and unit variance. We
selected the projects with the highest score that were
greater than 100,000 KB in size as of December 1st 2013.
These are given in Table I along with a brief description
of their domains.

For each of these six projects, we divided the project
files into quartiles by file size, and sampled four files
from each quartile, to obtain a total of 96 files (12, 347
LOC), each one of which was annotated by two human
annotators. Only .java files were considered (excluding
the package-info.java files, which only contain package-
level documentation). Figure 5 shows the distribution of
file sizes across the top projects.
Annotation Procedure Human annotators were given
guidelines prior to performing the annotation. Annotators
were asked, for each source code file, to manually fold
the file in Eclipse until they reached a compression ratio
of 50% and save their work. The annotators were asked
to fold regions that would be least useful to a developer
who was reading the file for the first time in order to
understand its overall purpose, reflecting our interest in
the first-look problem. A compression ratio of 50% was
chosen as, on average, it gave the best balance between
providing a reasonable summary whilst not eliding all the
interesting details of the underlying source code. Although
50% may not seem like a dramatic compression, in fact
many of the remaining lines are block headers or blank
(cf. the running example in Figure 2). We found that on

average across all 96 files in the annotated dataset, half
of the LOC remaining unfolded in the file were blank or
block headers. Moreover, when we ran TASSAL on the
dataset, we found that 22% of files had their top-level class
entirely folded due to the fact that unfolding any nodes
in the top level class would have resulted in exceeding the
50% compression ratio.
Annotators were allowed to browse the full source code

of the project while annotating each file. We used two
experienced Java developers as annotators, who each inde-
pendently annotated the entire data set. We performed our
annotation prior to the development of our summarization
system so it was impossible for the annotators to uncon-
sciously favour the system’s output in their judgements.
Annotators were asked to fold regions until they thought

the file conveyed the most important aspects of its func-
tion (or equivalently provided a good overview of its
purpose to a programmer unfamiliar with it) with the
following constraints: Annotators were asked to always
fold import statements and header comments (such as
copyright notices). Empty and one-line blocks were also
folded by default. Setters and getters along with other I/O
methods were asked to be folded, unless they contained
core logic of the code. Similarly, annotators were asked to
fold commonly overridden and overloaded methods (e.g.
toString() methods) unless they provide sufficient new
information about the functionality of the code. Finally,
Javadoc and block comments were left unfolded if they
were informative and succinctly explained the function
of the associated class or method. Comments whose text
spanned only one line were folded by default.
As for potential threats to validity, the first concern

that could be raised is whether it is indeed possible to
expect different annotators who are generating a reference
summary to have similar ideas about what constitutes
a good summary. To address this concern, we report in
the next section the inter-annotator agreement at the line
level, which reflects substantial agreement among the an-
notators. Second, one could raise the concern that different
types of developers, or developers who are considering
different tasks, would require different types of summaries.
We would agree with this concern: it is certainly true that
developers who are familiar with the projects could favor a
different type of summary than the annotators. However,
recall that in this study, our target use case focuses on
the first-look problem, i.e. developers who are new to the

8

0 2 4 6 8 10 12
File Size (KB)

0

100

200

300

400

500

600

700

800

Figure 5: Histogram of file sizes across the top projects (dashed
vertical lines denote quartiles).

projects, for which we would argue our annotators are
good representatives. Finally, note that annotators were
asked to fold regions whereas TASSAL unfolds regions,
however this is merely for mathematical convenience and
the two formulations are entirely equivalent.
Annotation Statistics As autofolding is a new task, we
need to verify that the task is well-defined. We therefore
calculated the line-level agreement between annotators
and found that it was substantial, with a Fleiss’ Kappa
value of 0.71 at 50% compression, averaged across all files.
Figure 6 shows the line-level inter-annotator agreement for
each of the 96 files at a compression ratio of 50% and one
can see that for the majority of files we obtain substantial
agreement between the two annotators. We also found
that the line-level annotation agreement for non-trivial
nodes (i.e. nodes that are not block comments or import
statements) was moderate with a Fleiss’ Kappa of 0.60.

V. Results
In this section, we evaluate the performance of TAS-

SAL against our annotated test set from Section IV. We
begin by training and assessing the quality of TASSAL’s
underlying topic model before moving on to a comprehen-
sive evaluation of TASSAL itself. As our method is fully
unsupervised, we use all 96 annotated files from the six
projects in our corpus for evaluation.
Topic Model We train TASSAL’s topic model on all
12,093 .java files from the six projects in our corpus. This
enables the topic model to automatically discern common
coding patterns, such as common libraries, and thus allows
TASSAL to recognize unimportant code. We run the
topic sampling algorithm for 5,000 iterations, performing
hyperparameter optimization every 10 iterations, to infer
our trained model.

To demonstrate that the topic model learns to distin-
guish between project-specific and file-specific tokens, we
show the top ten tokens in each of the five topic types (Java

0 10 20 30 40 50 60 70 80 90 100
File no. (increasing size)

−0.5

0.0

0.5

1.0

F
le

is
s'

 K
a
p
p
a

Figure 6: Line-level inter-annotator agreement for the 96 source files
at a compression ratio of 50%.

background, Javadoc background comment, header back-
ground comment, project and file) for two projects and two
files in Table II. Note that background tokens which are
very common in a file/project can also appear among the
top ten file/project tokens. One can see that these are rep-
resentative of their respective topics: the Java background
topic contains many commonly used terms in Java such
as get, set, map and object. The background comment
topics on the other hand contain common English stop
words such as the, a, or and one can clearly see the
distinction between the topics, i.e., words that commonly
appear in headers (such as license, distributed) are
found in the header background comment topic whereas
those that commonly appear in Javadoc comments (link,
code) are found in the Javadoc background comment
topic. Looking at the topics for the spring-framework
project one can see that it contains the fully resolved
project name org.springframework as well as common
project-specific tokens such as bean, context and factory.
Similarly, the bigbluebutton project contains the spe-
cific tokens sip, event, message and gnu. Looking at
selected files from both projects, the DataSourceUtils file
topic contains tokens specific to the function of that file,
e.g. connection, data, synchronization and isolation.
Finally, the QuaLsp file topic, a codec implementation,
contains the very function-specific tokens lsp and ld8.
This illustrates the quality of our proposed topic model

and suggests that it can distinguish file- and project-
specific tokens from those that are common across all Java
projects. It also raises the exciting possibility that our
topic model is robust enough for wider applications and
not merely restricted to summarization.
Baselines To provide a comprehensive performance
comparison of TASSAL, we also evaluate three alternative
baseline systems that represent more naïve approaches
for summarizing source code. All baselines start from a
fully folded tree and gradually unfold nodes, making local

9

Background Project File
Java header comments Javadoc comments spring-framework bigbluebutton DataSourceUtils QuaLsp

get the the bean sip connection lsp
string license a org org con j
value or to test log holder constants
name under of context it source k
type you link springframework event data ld8
object distributed for exception gnu synchronization mode
i of is request listener isolation tmp
set 0 this factory message order wegt
exception is and get public level index
map 2 code class general close m

Table II: The top ten tokens in each topic-type as found by our topic model.

decisions, until they reach the required compression ratio.
If a node is to be unfolded, all of its parent nodes are also
unfolded as well. The baselines are:
Shallowest unfold the shallowest available node first,
choosing randomly if there is more than one. This would
unfold node 1 in Figure 3 first, followed by either node
2, 3 or 4, etc.
Largest unfold the largest available node first, as mea-
sured by the number of tokens, breaking ties randomly.
In Figure 3, this would unfold the class block (node 4)
first, followed by the class Javadoc (node 3), etc.
Javadoc first unfold all Javadoc comments (in random
order) and then fallback at random to an available node,
unfolding methods last. This would unfold the Javadoc
nodes 3, 6 in Figure 3 first and the method nodes 5, 8,
9 last (7 would already be unfolded as it is the parent of
10 and 11).
Each of the baselines represents a possible assumption that
we can make about summarizing source code. The Largest
baseline assumes that the largest nodes are more valuable
in a summary, the Shallowest baseline is representative of
the folding approach used in the Code Bubbles IDE [8]
and the Javadoc baseline is representative of the current
defaults of IDEs such as Eclipse. While we are aware that
these baselines are rather simple methods, this reflects the
fact that the autofolding problem has not received much
attention in the research literature — to our knowledge,
there simply do not exist more advanced methods in the
literature for us to compare against.

To further verify our annotation procedure, we imple-
mented the basic guidelines followed by the annotators as
an additional system:
Guidelines unfold getters/setters, I/O methods
(read|write|load|save.*), block comments, import
statements and empty blocks last in that order, unfolding
other node types first in random order. In Figure 3, this
would unfold nodes 1, 3–7, 10, 11 first in random order
followed by the getter nodes 8, 9 and the header node 2.
This allows us to get some good insight into how much
additional content-sensitive folding was done by the an-
notators after these basic annotation guidelines were fol-
lowed: we found that only 27% of all nodes were forced

to be folded by the guidelines, meaning that 73% of all
nodes that were folded in the gold standard require human
judgement.

Performance To assess the performance of TASSAL and
the baselines, we used the annotated test set provided by
each of the two annotators as our gold standard in turn,
averaging the results across both annotators. In this way
we can measure whether the output of the summarizer
matches human judgements.
For each file in the test set, we treated the folding

problem as a binary classification, classifying each line
of code in a foldable region as either unfolded (positive)
or folded (negative), excluding one-line foldable regions
(which are indistinguishable since all foldable regions are
folded to one line). This enabled us to calculate the average
accuracy, precision and recall of our summarizer across all
test files and also F1 as the harmonic mean of the average
precision and recall.
We compared both TASSAL with the topic model

and TASSAL with VSM (which we denote as TASSAL
VSM). The resulting average performance metrics at a
compression ratio of 50% are given in Table III. As one
can clearly see from the results, TASSAL (with topic
model) outperformed all the systems, by a margin of
about 10% when compared against the best performing
baseline (Javadoc). TASSAL VSM on the other hand
performed poorly, losing to the Javadoc baseline. We also
performed the same analysis on each foldable region of
code, i.e. classifying each foldable region as either unfolded
or folded. The resulting average performance metrics are
given in Table IV and one can see that TASSAL is once
again the best performing system.
We are also interested in the performance of TAS-

SAL on non-trivial foldable regions, i.e. foldable regions
that are not Java block comments or import statements.
Note that Javadoc comments are considered non-trivial as
these often contain usage and implementation details. We
therefore performed the same analysis as above on non-
trivial regions at both a line- and node-level. The results
are given in Tables V,VI and one can see that TASSAL
remains the best performing system. One can clearly see

10

Accuracy F1 Precision Recall
TASSAL 0.77 0.75 0.74 0.76
TASSAL VSM* 0.65 0.61 0.61 0.60
Javadocs* 0.68 0.65 0.64 0.66
Shallowest* 0.65 0.62 0.60 0.63
Largest* 0.60 0.56 0.56 0.57
Guidelines 0.74 0.71 0.71 0.72

Table III: Per-line evaluation statistics for the summarizers evaluated
on all nodes at a compression ratio of 50%. Averaged across annota-
tors and all test files, ordered best first. *significantly different from
TASSAL (p < 0.05).

Accuracy F1 Precision Recall
TASSAL 0.69 0.55 0.53 0.56
TASSAL VSM* 0.57 0.43 0.39 0.50
Javadocs 0.60 0.46 0.42 0.52
Shallowest 0.61 0.46 0.43 0.50
Largest 0.65 0.47 0.47 0.46
Guidelines 0.62 0.50 0.47 0.54

Table IV: Per-node evaluation statistics for the summarizers eval-
uated on all nodes at a compression ratio of 50%. Averaged across
annotators and all test files, ordered best first. *significantly different
from TASSAL (p < 0.05).

the advantage of using a topic model here, as TASSAL
consistently outperforms TASSAL VSM which exhibits
similar performance to the baselines.

Turning our attention to the Guidelines system, we find
that it performs very well as expected (we are after all
following and evaluating on the annotation guidelines),
outperforming all the baselines and TASSAL VSM. This
not only further validates our annotated dataset (demon-
strating that our annotators did indeed follow the basic
guidelines given to them), but also demonstrates that
TASSAL is indeed able to match human judgements: 28%
of the nodes folded by the Guidelines system at 50%
compression are required to be folded by the annotation
guidelines, meaning that 22% of the folded nodes require
human judgement. As TASSAL clearly outperforms the
Guidelines system in Tables III–VI, we can conclude that,
despite being an unsupervised system, TASSAL is able, to
some degree, to match the intuitive human judgements of
the annotators. Conversely, this also shows that TASSAL
VSM is either unable to match the basic guidelines or
the human judgements or both, clearly demonstrating the
need for a more sophisticated content model.

As for statistical significance, we calculated two-tailed
p-values using sigf [62] for the F1 scores on both gold stan-
dards. The difference between TASSAL and the baselines
is significant at the line-level for all nodes and non-trivial
nodes (p < 0.05). At the node-level, the difference between
TASSAL and the baselines is not significant.

As a further test of whether the proposed summaries
are plausible, we consider several classes of methods that
are likely to be uninteresting, and verify that TASSAL
usually folds them. We show the percentage of times
header comments, imports, constructors, getters, setters

Accuracy F1 Precision Recall
TASSAL 0.62 0.66 0.57 0.77
TASSAL VSM* 0.54 0.55 0.50 0.60
Javadocs* 0.54 0.57 0.50 0.66
Shallowest* 0.56 0.57 0.52 0.63
Largest* 0.54 0.53 0.50 0.57
Guidelines 0.59 0.62 0.55 0.72

Table V: Per-line evaluation statistics for the summarizers evaluated
on nontrivial nodes at a compression ratio of 50%. Averaged across
annotators and all test files, ordered best first. *significantly different
from TASSAL (p < 0.05).

Accuracy F1 Precision Recall
TASSAL 0.71 0.59 0.57 0.61
TASSAL VSM* 0.61 0.51 0.49 0.53
Javadocs 0.63 0.52 0.49 0.56
Shallowest 0.65 0.51 0.51 0.51
Largest 0.70 0.52 0.60 0.46
Guidelines 0.65 0.56 0.54 0.59

Table VI: Per-node evaluation statistics for the summarizers eval-
uated on nontrivial nodes at a compression ratio of 50%. Averaged
across annotators and all test files, ordered best first. *significantly
different from TASSAL (p < 0.05).

and other generally uninteresting pattern-based method
types were folded at 50% compression in Table VII.
TASSAL folds these methods in most cases. Furthermore,
when such methods are included in the summary, these
exceptional methods turn out to be qualitatively more
interesting, as we verify by manual examination. We show
example snippets in Figures 7–9. As one can see, the
unfolded methods tend to exhibit unusual or non-standard
behaviour in the method body, so much so that they
cannot be easily summarized by their signature alone. This
lends further evidence to the credibility and usefulness of
our summarization approach.
It is also evident from the results that the Shallowest

and Largest baselines perform poorly and it is not difficult
to see why. The shallowest nodes tend to be top-level code
blocks defining methods and classes, which rarely contain
core logic directly. Rather, the core logic tends to be nested
in children of top-level blocks, such as if-else statements,
for/while loops and try-catch blocks. The Largest nodes
may contain a substantial amount of code but rarely the
core logic as the number of tokens is a bad indicator of code
importance. To see this, consider header comments which
contain many tokens (words) often stating the code copy-
right, or common class methods such as the equals method
in Figure 1 which perform routine functions yet contain
blocks with many identifiers. The Javadoc baseline, on the
other hand, represents the de facto summarization method
currently used in IDEs and therefore performs much better
as one would expect.
We compared the performance of the summarization

systems at a range of compression ratios (effectively treat-
ing it as a threshold) against the gold standard at the
fixed compression ratio of 50%. The standard approach

11

header import construct get set put is has read write add remove contains clear reset
80% 70% 83% 83% 88% 100% 91% 100% 75% 80% 100% 80% 100% 100% 83%

Table VII: The percentage of times specific types of node in the test set (header comments, import statements, constructors and method
names starting with the listed keywords) were folded at 50% compression by TASSAL.

All Nodes Nontriv. Nodes
Per-line Per-node Per-line Per-node

TASSAL 0.86 0.79 0.57 0.79
TASSAL VSM 0.72 0.56 0.51 0.63
Javadocs 0.81 0.71 0.53 0.71
Shallowest 0.77 0.69 0.54 0.71
Largest 0.73 0.74 0.55 0.79
Guidelines 0.82 0.66 0.54 0.69

Table VIII: Area under the curve (AUC) for the receiver operating
characteristic (ROC) curves of the summarization systems as the
compression ratio is varied.

to evaluating a binary classifier with a threshold is via
the area under the curve (AUC) values for its receiver
operating characteristic (ROC) curve. An ROC curve plots
the recall (equiv. true positive rate) against the fraction
of false positives out of the negatives (false positive rate)
at various thresholds (compression ratios). Essentially the
higher above the diagonal a binary classifier is, the better
it performs and a good measure for this is the AUC.
Intuitively, the AUC measures the quality of the ranked
list produced by the system, i.e., where all the lines/nodes
are ranked by how likely the system is to fold them,
whereas the F scores we used earlier measure only the
performance at a single compression ratio. The AUC for
each of the summarizers is given in Table VIII. Once again,
we can see that TASSAL outperforms all the baselines
with an AUC of 0.86 when evaluated per-line on all nodes
in the gold standard.

Finally, it should be noted that TASSAL has a very
fast runtime, needing less than five seconds of CPU time
to summarize an average file in the dataset on a 2.66GHz
Core 2 Quad machine (note that this excludes training the
topic model which, in an implemented system, we assume
is handled in an offline preprocessing step).
Developer Study We conducted a developer study
to test whether content-based autofolding methods pro-
duces better summaries than non-content based methods.
We asked developers to rate the summaries produced by
our best content-based method, TASSAL using the topic
model, and the summaries the three non-content baselines
and one randomly chosen annotator at a compression ratio
of 50%. We recruited six experienced developers for our
study, separate from the annotators who created the gold
standard. All were recently graduated computer science
masters students with an average 5.3 years Java pro-
gramming experience and 4 years industry programming
experience.

To this end, we randomly selected four of the six projects
and five of the annotated files from each project for the

Conciseness Usefulness
Summary Mean St. dev. Mean St. dev.
Gold 3.34 1.03 3.33 1.04
TASSAL 3.27 1.01 3.18 0.97
Javadocs* 3.07 1.03 2.69 1.09
Shallowest* 2.97 1.05 2.50 1.15
Largest* 3.08 1.07 2.67 1.06

Table IX: Mean and standard deviation averaged across developer
ratings for summaries produced by the four summarization systems
and a randomly chosen gold standard at a compression ratio of 50%.
*significantly different from Gold and TASSAL (p < 0.05).

study, resulting in 20 files in total. For every file, develop-
ers were presented with each of the five possible summaries
in random order and asked to rate the conciseness and
usefulness of each summary on a five-point Likert scale
(higher is better). Developers were allowed to browse the
full source code of each project during the study.
We show the average ratings across all six developers

in Table IX along with the average standard deviations.
One can see that summaries produced by TASSAL score
around 0.2 points higher on conciseness and 0.5 points
higher on usefulness than the three baselines. Moreover,
TASSAL is only 0.07 points lower on conciseness and
0.15 points lower on usefulness than the gold standard
summary. We performed ANOVA on the developer con-
ciseness and usefulness ratings for the different summaries
and found that the difference between TASSAL and the
baselines was significant (p < 0.05) as denoted in Table IX
whereas the difference between TASSAL and the gold
standard was indeterminate.
In a follow up questionnaire we asked the developers to

summarize the measures they used to rate each summary.
The developers generally favoured the same criteria that
we identified when creating the annotation guidelines for
the gold standard in Section IV. That is to say, the
developers preferred not to see accessor and housekeeping
methods but felt it was important to show method/class
Javadoc comments (as reported in previous code summa-
rization studies [15], [16]).
In short, the study results clearly show that our summa-

rization system is not only preferred by developers over the
baselines, it is almost as good as the summary produced
by an expert annotator.
Some of the developers also offered interesting qualita-

tive feedback about their experience with TASSAL, even
though we did not explicitly ask them for this information.
Developer 2 felt that in order to understand a project
better, he would like to see “some kind of graph of
class relationships” from which he could determine “which

12

public SocksInitResponse(SocksAuthScheme authScheme) {
super(SocksResponseType.INIT);
if (authScheme == null)

throw new NullPointerException("authScheme");
this.authScheme = authScheme;

}

public ChannelGroupException(
Collection<Map.Entry<Channel, Throwable>> causes) {

if (causes == null)
throw new NullPointerException("causes");

if (causes.isEmpty())
throw new IllegalArgumentException("causes must be

non empty");
failed = Collections.unmodifiableCollection(causes);

}

Figure 7: Snippets of constructors that were unfolded by TASSAL.

public <T> T getOption(ChannelOption<T> option) {
if (option == SO_TIMEOUT)
return (T) Integer.valueOf(getSoTimeout());

return super.getOption(option);
}

public void set(final ContactID c) {
indexA = c.indexA;
indexB = c.indexA;
typeA = c.typeA;
typeB = c.typeB;

}

Figure 8: Snippets of getters/setters that were unfolded by TASSAL.

public void readFrom(StreamInput in) throws IOException {
super.readFrom(in);
if (in.getVersion().onOrBefore(Version.V_0_90_3))
in.readBoolean(); // refresh flag

full = in.readBoolean();
force = in.readBoolean();

}

public static void writeVLong(DataOutput stream, long i)
throws IOException {
if (i >= -112 && i <= 127) {

stream.writeByte((byte) i);
return;

}
int len = -112;
if (i < 0) {

i ^= -1L; // take one's complement'
len = -120;

}
long tmp = i;
while (tmp != 0) {

tmp = tmp >> 8;
len--;

}
stream.writeByte((byte) len);
len = (len < -120) ? -(len + 120) : -(len + 112);
for (int idx = len; idx != 0; idx--) {

int shiftbits = (idx - 1) * 8;
long mask = 0xFFL << shiftbits;
stream.writeByte((byte) ((i & mask) >> shiftbits));

}
}

Figure 9: Snippets of readers/writers that were unfolded by TASSAL.

class is the most important, which package is the most
important, how each of the classes fits in holistically and
how often some methods or classes are called or created”,
in order to see the big picture before diving deeper into
individual classes. Developer 5 thought that it would be
helpful to include the ability to unfold method comments
and bodies “so the person browsing [the summary] could
dig in deeper in a way that suited them”. This ability for
the user to selectively unfold folded regions of code was
subsequently implemented in our live demo of TASSAL
(see Section VI). Developer 5 also preferred to understand
the intention of a piece of code first and if they “had some
doubts” then take a closer look, lending further support
for the need for a tool such as TASSAL.

VI. Web Demo
We created a live demo of TASSAL [19] using the Play

Framework (https://www.playframework.com) to show-
case how it can be used to summarize open-source Java
projects on GitHub (however note that TASSAL can
summarize the source code of any Java project). Our demo
of TASSAL can be found at http://groups.inf.ed.ac.uk/
cup/tassal/demo.html and a video highlighting the main
features of TASSAL can be found at https://youtu.be/
_yu7JZgiBA4.
A screenshot of the demo is shown in Figure 10 and as

one can see from the figure, the basic layout of the demo is
very simple. On the left hand side is a tree view showing all
the Java source files for a user-selected project on GitHub.
Upon clicking on a source file, the remainder of the screen

uses the Javascript-based ACE code editor (https://ace.
c9.io) to show a summary of the file where less informative
code regions have been folded. The user can adjust the
conciseness of the summary using the compression ratio
slider at top-left, ranging from viewing the complete file
(0%) to folding all the foldable regions (100%). As a sanity
check, the fold icons () to the left of the line numbers
denote the code regions that were marked as folded by
TASSAL. Note that while TASSAL is able to fold fields,
we did not find a satisfactory way to implement this in
ACE and therefore omitted it from the demo (however
the fold icons for fields are still displayed).
If the user wishes to unfold a folded region, they can do

so by clicking on the symbol denoting the fold () and
conversely, they can fold any foldable region by clicking
on the down arrow (H) to the right of the line numbers as
is standard in modern editors. One can see from the ex-
ample (StatusLine.java from the bigbluebutton project
displayed at 50% compression) that the header has been
folded, as have the toString, getCode, getReason, clone and
equals methods, i.e. Java boilerplate code — precisely the
less salient code regions. Note also, how by folding the
less informative regions the code remains readable and
navigable and no information is lost. This is not true of
other summarization approaches to source code [10], [11],
[14]–[17], [35].
As for the choice of language model, using TASSAL with

the topic model will in general produce better summaries
(Section V), however training a topic model is too expen-

13

https://www.playframework.com
http://groups.inf.ed.ac.uk/cup/tassal/demo.html
http://groups.inf.ed.ac.uk/cup/tassal/demo.html
https://youtu.be/_yu7JZgiBA4
https://youtu.be/_yu7JZgiBA4
https://ace.c9.io
https://ace.c9.io

Figure 10: A screenshot of our source code autofolding tool being used to summarize StatusLine.java from bigbluebutton.

sive for an interactive system. Therefore, we train the topic
model in advance on a small set of projects and cache
the topic assignments. If the user requests summaries of
GitHub projects for which we have not run the topic
model, we fall back to the the VSM model. When both
language models are available, the user can toggle between
them by means of a radio button in the top-left corner.

VII. Discussion and Conclusions
We presented a novel fully unsupervised approach for

extractive source code summarization, proposing that the
folding procedure common to IDEs can serve as the basis
of an automatic summary. We formulated this autofolding
problem as an optimal subtree problem on the source
code’s AST. Our method incorporates a novel topic model
for source code that identifies which tokens are most rel-
evant to their enclosing files and projects. Our evaluation
demonstrates that our summarizer outperforms several
baselines, achieving an error reduction of 28%, is favoured
by experienced developers and even outperforms methods
used as standard in modern IDEs. Furthermore, our live
demo showcases how our summarizer can be used to
summarize open-source Java projects on GitHub.

As with all automatic summarization systems, TASSAL
is not perfect and indeed any algorithm that performs
summarization based solely on file topics cannot be, since
language, be it natural or programming, has a rich se-
mantic structure. However, by looking in detail at the
summaries produced, we can gain an insight into situations
where TASSAL fails to perform optimally and what im-
provements, if any, we can make. A detailed examination

of the file summaries used in the developer study brought
to light the following cases: (a) Unfolding obvious com-
ments. Once a Javadoc comment containing very standard
content (parameter and return types) and little additional
information (stating that the method is a constructor) was
unfolded. It is very difficult for for an automatic system
to determine what constitutes an obvious comment as
this requires deeper semantic information. (b) Unfolding
getters/setters with obvious names. Once a getter with an
obvious name was unfolded because it had an interesting
method body. Again, it is difficult for for an automatic
system to determine what constitutes an obvious name as
this also requires more semantic information. (c) Deciding
whether a Javadoc or associated class/method body pro-
vides a better summary. Once a class Javadoc provided a
better summary of the class than the body of the class,
which was itself interesting. Once again, an automatic
system would require substantial semantic information to
correctly decide this.
In future, we would like to extend our approach to

generate targeted summaries for specific software engi-
neering tasks such as bug localization or code review
as well as investigating the possibility of folding at a
statement (rather than block) level while maintaining a
coherent summary. We would also like to explore the idea,
suggested by one of the study participants, of creating
a higher-level overview of class relationships that would
allow a developer to see the bigger picture before delving
into summaries of specific classes. Finally, in response to
the shortcomings in TASSAL’s current content model, we
would like to see whether a more sophisticated content

14

model based on deep learning would be better able to
capture the semantic information in the source code.

More broadly, NLP techniques for source code are only
just beginning to be explored and have the potential
for a much wider range of exciting applications from
learning coding conventions to programming with natural
language.

Acknowledgments

This work was supported by the Engineering and
Physical Sciences Research Council (grant number
EP/K024043/1) and by Microsoft Research through its
PhD Scholarship Programme. We are also grateful to
Rebecca Mason for allowing us to adapt her TopicSum
implementation to source code and would like to thank
Brian Doll for useful discussions.

References

[1] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: a study of developer work habits,” in International
Conference on Software Engineering (ICSE). ACM, 2006, pp.
492–501.

[2] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An
exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks,” IEEE
Transactions on Software Engineering, vol. 32, no. 12, pp. 971–
987, 2006.

[3] M.-A. Storey, “Theories, methods and tools in program compre-
hension: Past, present and future,” in International Workshop
on Program Comprehension (IWPC). IEEE, 2005, pp. 181–
191.

[4] J. Starke, C. Luce, and J. Sillito, “Searching and skimming:
An exploratory study,” in International Conference on Software
Maintenance (ICSM). IEEE, 2009, pp. 157–166.

[5] T. D. Hendrix, J. H. Cross II, L. A. Barowski, and K. S. Mathias,
“Visual support for incremental abstraction and refinement in
Ada 95,” in ACM SIGAda Ada Letters, vol. 18, no. 6. ACM,
1998, pp. 142–147.

[6] B. Kullbach and V. Riediger, “Folding: An approach to enable
program understanding of preprocessed languages,” in Working
Conference on Reverse Engineering (WCRE). IEEE, 2001, pp.
3–12.

[7] S. Rugaber, N. Chainani, O. Nnadi, and K. Stirewalt, “A
conceptual model for folding,” Georgia Institute of Technology,
Tech. Rep. GT-CS-08-09, 2008.

[8] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola Jr,
“Code bubbles: rethinking the user interface paradigm of inte-
grated development environments,” in International Conference
on Software Engineering (ICSE). ACM, 2010, pp. 455–464.

[9] A. Haghighi and L. Vanderwende, “Exploring content models
for multi-document summarization,” in Association for Com-
putational Linguistics (ACL). ACL, 2009, pp. 362–370.

[10] J. Silva, “A vocabulary of program slicing-based techniques,”
ACM Computing Surveys (CSUR), vol. 44, no. 3, p. 12, 2012.

[11] Y. P. Khoo, J. S. Foster, M. Hicks, and V. Sazawal, “Path
projection for user-centered static analysis tools,” in Program
analysis for software tools and engineering (PASTE). ACM,
2008, pp. 57–63.

[12] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary com-
ments for Java methods,” in International Conference on Auto-
mated Software Engineering (ASE). ACM, 2010, pp. 43–52.

[13] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language
summaries for Java classes,” in International Conference on
Program Comprehension (ICPC). IEEE, 2013, pp. 23–32.

[14] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program
comprehension with source code summarization,” in Interna-
tional Conference on Software Engineering (ICSE), vol. 2.
IEEE, 2010, pp. 223–226.

[15] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use
of automated text summarization techniques for summarizing
source code,” in Working Conference on Reverse Engineering
(WCRE), 2010, pp. 35–44.

[16] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver,
“Evaluating source code summarization techniques: Replication
and expansion,” in International Conference on Program Com-
prehension (ICPC). IEEE, 2013, pp. 13–22.

[17] P. W. McBurney, C. Liu, C. McMillan, and T. Weninger, “Im-
proving topic model source code summarization,” in Interna-
tional Conference on Program Comprehension (ICPC). ACM,
2014, pp. 291–294.

[18] A. T. T. Ying and M. P. Robillard, “Code fragment summariza-
tion,” in Foundations of Software Engineering (FSE). ACM,
2013, pp. 655–658.

[19] J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. La-
pata, and C. Sutton, “TASSAL: Autofolding for source code
summarization,” in International Conference on Software En-
gineering (ICSE) Companion. ACM, 2016, pp. 649–652.

[20] M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” in Working Conference
on on Mining Software Repositories (MSR). IEEE, 2013, pp.
207–216.

[21] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On
the naturalness of software,” in International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 837–847.

[22] F. Jacob and R. Tairas, “Code template inference using lan-
guage models,” in ACM Southeast Regional Conference (ACM
SE). ACM, 2010, p. 104.

[23] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a
name? A study of identifiers,” in International Conference on
Program Comprehension (ICPC). IEEE, 2006, pp. 3–12.

[24] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“A statistical semantic language model for source code,” in Joint
Meeting on Foundations of Software Engineering (FSE). ACM,
2013, pp. 532–542.

[25] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically
detecting and describing high level actions within methods,”
in International Conference on Software Engineering (ICSE),
2011, pp. 101–110.

[26] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Lexical
statistical machine translation for language migration,” in Joint
Meeting on Foundations of Software Engineering (FSE). ACM,
2013.

[27] D. Movshovitz-Attias and W. W. Cohen, “Natural language
models for predicting programming comments,” in Association
for Computational Linguistics (ACL), 2013, pp. 35–40.

[28] A. Cockburn and M. Smith, “Hidden messages: evaluating the
efficiency of code elision in program navigation,” Interacting
with Computers, vol. 15, no. 3, pp. 387–407, 2003.

[29] K. Spärck Jones, “Automatic summarising: The state of the
art,” Information Processing & Management, vol. 43, no. 6, pp.
1449–1481, 2007.

[30] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The effect
of lexicon bad smells on concept location in source code,” in
International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2011, pp. 125–134.

[31] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of
Software: Evolution and Process, vol. 25, no. 1, pp. 53–95, 2013.

[32] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, “Labeling source code with information retrieval
methods: an empirical study,” Empirical Software Engineering,
vol. 19, no. 5, pp. 1383–1420, 2014.

[33] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum:
approach for unsupervised bug report summarization,” in Foun-
dations of Software Engineering (FSE). ACM, 2012, p. 11.

[34] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing soft-
ware artifacts: a case study of bug reports,” in International

15

Conference on Software Engineering (ICSE). ACM, 2010, pp.
505–514.

[35] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and
S. D’Mello, “Improving automated source code summarization
via an eye-tracking study of programmers,” in International
Conference on Software Engineering (ICSE). ACM, 2014, pp.
390–401.

[36] J. Kim, S. Lee, S.-W. Hwang, and S. Kim, “Enriching documents
with examples: A corpus mining approach,” Transactions on
Information Systems (TOIS), vol. 31, no. 1, p. 1, 2013.

[37] R. P. Buse and W. Weimer, “Synthesizing API usage examples,”
in International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 782–792.

[38] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang,
“Mining succinct and high-coverage API usage patterns from
source code,” in International Workshop on Mining Software
Repositories (MSR). IEEE Press, 2013, pp. 319–328.

[39] T. Xie and J. Pei, “MAPO: Mining API usages from open source
repositories,” in International Workshop on Mining Software
Repositories (MSR). ACM, 2006, pp. 54–57.

[40] M. Gethers, T. Savage, M. Di Penta, R. Oliveto, D. Poshyvanyk,
and A. De Lucia, “CodeTopics: which topic am I coding now?”
in International Conference on Software Engineering (ICSE).
ACM, 2011, pp. 1034–1036.

[41] T. Savage, B. Dit, M. Gethers, and D. Poshyvanyk, “Topic XP:
Exploring topics in source code using latent Dirichlet alloca-
tion,” in International Conference on Software Maintenance
(ICSM). IEEE, 2010, pp. 1–6.

[42] S. W. Thomas, “Mining software repositories using topic mod-
els,” in International Conference on Software Engineering
(ICSE). ACM, 2011, pp. 1138–1139.

[43] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya,
“A theory of aspects as latent topics,” in ACM Sigplan Notices,
vol. 43, no. 10. ACM, 2008, pp. 543–562.

[44] M. Allamanis and C. Sutton, “Why, when, and what: analyzing
stack overflow questions by topic, type, and code,” in Working
Conference on Mining Software Repositories (MSR). IEEE,
2013, pp. 53–56.

[45] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk,
and A. De Lucia, “How to effectively use topic models for
software engineering tasks? an approach based on genetic algo-
rithms,” in International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 522–531.

[46] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,”
in International Conference on Software Engineering (ICSE).
Washington, DC, USA: IEEE, 2003, pp. 125–135.

[47] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An infor-
mation retrieval approach to concept location in source code,” in
Working Conference on Reverse Engineering (WCRE). IEEE,
2004, pp. 214–223.

[48] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas,
and R. A. Harshman, “Indexing by latent semantic analysis,”
JASIS, vol. 41, no. 6, pp. 391–407, 1990.

[49] D. Mimno, W. Li, and A. McCallum, “Mixtures of hierarchical
topics with pachinko allocation,” in International Conference
on Machine Learning (ICML). ACM, 2007, pp. 633–640.

[50] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet
allocation,” Journal of machine Learning research, vol. 3, pp.
993–1022, 2003.

[51] T. Weninger, Y. Bisk, and J. Han, “Document-topic hierarchies
from document graphs,” in International Conference on Infor-
mation and Knowledge Management (CIKM). ACM, 2012, pp.
635–644.

[52] E. Erosheva, S. Fienberg, and J. Lafferty, “Mixed-membership
models of scientific publications,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 101,
no. Suppl 1, pp. 5220–5227, 2004.

[53] S. Guha, A. Moss, J. S. Naor, and B. Schieber, “Efficient recov-
ery from power outage,” in Symposium on Theory of Computing
(STOC). ACM, 1999, pp. 574–582.

[54] Eclipse-Contributors, “Eclipse JDT,” http://www.eclipse.org/
jdt/, 2013, visited December 21, 2013.

[55] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[56] M. Steyvers and T. Griffiths, “Probabilistic topic models,”
Handbook of latent semantic analysis, vol. 427, no. 7, pp. 424–
440, 2007.

[57] D. Blei, “Probabilistic topic models,” Communications of the
ACM, vol. 55, no. 4, pp. 77–84, 2012.

[58] W. L. Buntine, “Operations for learning with graphical models,”
Journal of Artificial Intelligence Research, vol. 2, pp. 159–225,
1994.

[59] D. J. MacKay and L. C. B. Peto, “A hierarchical dirichlet
language model,” Natural language engineering, vol. 1, no. 03,
pp. 289–308, 1995.

[60] H. M. Wallach, “Structured topic models for language,” Ph.D.
dissertation, 2008.

[61] C.-Y. Lin, “ROUGE: A package for automatic evaluation of
summaries,” in Text Summarization Branches Out: Proceedings
of the ACL-04 Workshop, 2004, pp. 74–81.

[62] S. Padó, User’s guide to sigf: Significance testing by approxi-
mate randomisation, 2006.

16

http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/

