
Neural Radiance Transfer Fields for Relightable

Novel-view Synthesis with Global Illumination

Linjie Lyu1, Ayush Tewari2, Thomas Leimkühler1, Marc Habermann1, and
Christian Theobalt1

1Max Planck Institute for Informatics, Saarland Informatics Campus
2MIT

Input Views

...

Novel View Relighting with Global Illumination

Fig. 1. Our method takes multiple views of a scene under one unknown illumination
condition as input and allows novel-view synthesis and relighting (corresponding envi-
ronment maps in green insets) with intricate multi-bounce illumination (orange insets).

Abstract. Given a set of images of a scene, the re-rendering of this
scene from novel views and lighting conditions is an important and chal-
lenging problem in Computer Vision and Graphics. On the one hand,
most existing works in Computer Vision usually impose many assump-
tions regarding the image formation process, e.g. direct illumination and
predefined materials, to make scene parameter estimation tractable. On
the other hand, mature Computer Graphics tools allow modeling of com-
plex photo-realistic light transport given all the scene parameters. Com-
bining these approaches, we propose a method for scene relighting under
novel views by learning a neural precomputed radiance transfer function,
which implicitly handles global illumination effects using novel environ-
ment maps. Our method can be solely supervised on a set of real images
of the scene under a single unknown lighting condition. To disambiguate
the task during training, we tightly integrate a differentiable path tracer
in the training process and propose a combination of a synthesized OLAT
and a real image loss. Results show that the recovered disentanglement of
scene parameters improves significantly over the current state of the art
and, thus, also our re-rendering results are more realistic and accurate.

1 Introduction

The image formation process is influenced by many factors such as the scene
geometry, the object materials, the lighting, and the properties of the recording
camera. Recovering these properties solely from the final images of the scene is an
important inverse problem in Computer Vision and enables several applications
such as scene understanding, virtual reality, and controllable image synthesis.
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Since this is an ill-posed and challenging inverse problem, existing methods make
several assumptions about the 3D scene. Common assumptions are that scenes
are diffuse [47], or can be described by some predefined material models [54, 51].
Importantly, most methods only consider the direct scene illumination [30, 54, 3,
4, 38, 51, 25]. These assumptions limit existing methods from recovering accurate
and rich scene properties, resulting in limited re-rendering results as well, e.g.
global illumination effects cannot be modeled.

In parallel, the field of Computer Graphics has extensively researched the
problem of photorealistic image synthesis. These methods take a well-defined
3D scene and render a realistic image. Methods have explored different ways
of modeling indirect illumination using path tracing. Since most path tracing
methods are inefficient, precomputed radiance transfer (PRT) was introduced as
an efficient approximation of global illumination [36, 35, 37, 43, 46, 16] . However,
these approaches usually do not consider recovering the PRT solely from images.

In this paper, we combine the learning of precomputed radiance transfer
function with inverse rendering, thus combining the best of Computer Vision
and Computer Graphics. The precomputed radiance transfer function is param-
eterized as a neural network. Thus, it does not require any predefined approx-
imation function, e.g. spherical harmonics. As we model the material using a
learned PRT, our method does not share common limitations with existing in-
verse rendering methods – our method is capable of dealing with complex light
paths such as indirect reflections and shadows, and is also not limited to any
predefined BRDF model. Our method is learned on multi-view observations of
a scene under a single unknown light condition. In addition to the PRT, it also
recovers the scene illumination as an environment map, and the scene geometry
defined as a neural signed distance field. Thus, our method enables applications
such as novel-view synthesis and global relighting using environment maps. Ex-
isting methods, which enable these applications while taking global illumination
into account, rely on light-stage datasets, where the object is captured from
multiple views under different light conditions. We show that such a setup is not
essential. In contrast to real light-stage data, we generate synthetic light-stage
data of the scene using a high-quality renderer. This enables correct disentan-
glement of the material and illumination properties in the scene, while the real
multi-view data allows us to capture photorealistic details and to overcome the
common assumptions made by the renderer. In summary, our contributions are:

– A method for recovering the radiance transfer field from images of objects
under an unknown light condition, hence enabling free-viewpoint relighting
with realistic global illumination.

– A neural precomputed radiance transfer (PRT) field for multi-bounce global
illumination computation and neural implicit surface rendering.

– A novel supervision strategy leveraging a differentiable ray-tracer for physi-
cally based scene reconstruction, multiple light bounce rendering, and a new
synthetic OLAT supervision.

Our qualitative and quantitative results demonstrate a clear step forward in
terms of the recovery of scene parameters as well as the synthesis quality of
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our approach under novel views and lighting conditions when comparing to the
previous state of the art. We will make the code and the new dataset publicly
available.

2 Related Work

In the following, we focus on previous work concerning radiance transfer and
inverse rendering. Although our method also recovers the scene geometry using
an off-the-shelf implicit geometry reconstruction approach [44], it is not the main
focus of this work and, thus, we do not review related work in this area.

Precomputed Radiance Transfer. Precomputed Radiance Transfer (PRT) [36] is
a powerful approach for efficient rendering of global illumination [35]. Typically,
static geometry and reflectance in combination with distant illumination are
assumed, which allows to partially precompute light transport for free-viewpoint
synthesis and dynamic lighting. Extensions to e.g., dynamic objects [37] or near-
field illumination [43, 46] exist. The generic formalization of PRT [16] enables
the incorporation of arbitrarily complex light transport, including multi-bounce
light paths. While these works improve the runtime of the forward rendering
pipeline, they do not consider recovering the PRT solely from a set of real world
images of the object. In contrast, we employ this concept to efficiently decompose
illumination and reflectance for view synthesis and relighting, taking into account
full global illumination, but apply these concepts in an inverse setting where we
aim to recover the PRT from images by means of training a neural PRT network.

The versatility of PRT has encouraged the exploration of different angular
basis functions, such as spherical harmonics [36, 13], Haar wavelets [26], spherical
isotropic [42] and anisotropic [49] radial basis functions. While the inherent prior
of such basis functions can be beneficial for inverse problems, they also limit the
range of illumination effects that can be explained by such a basis. As a remedy,
we use the primal directional basis [9] in combination with a neural network, to
overcome the limitations of classical basis functions. We encode the full radiance
transfer into a neural field [40, 48]. Recently, Rainer et al. [32] have explored
PRT-inspired neural field-based forward rendering of synthetic scenes – with
full knowledge of all scene parameters, as in most works discussed above. In
contrast, our framework is concerned with global illumination-aware novel-view
synthesis and relighting from multi-view data under one unknown illumination
condition. Further, the transfer from distant illumination to local lighting is
traditionally concerned with the incoming radiance at a surface point [12], i.e.,
the convolution with reflectance is excluded from precomputation to increase
efficiency and to reduce storage requirements. In contrast, we follow ideas from
PRT-based relighting [26, 41] in that we directly predict outgoing radiance.

Inverse Rendering and Relighting. Inverse rendering [22, 33] aims at estimating
scene properties such as geometry, lighting, and materials from image observa-
tions. In this work, we are particularly interested in decoupling lighting using
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multi-view data, and therefore focus our literature review on corresponding re-
lated work in illumination decomposition and relighting.

Controllable illumination in a multi-view light stage [7] is conceptually the
most straightforward way of obtaining a light-reflectance decomposition in the
presence of global illumination, via one-light-at-a-time (OLAT) captures. Even
though not trivial, novel-view synthesis and relighting boils down to clever in-
terpolation [39, 53, 29]. In contrast, input to our method is casually-captured
multi-view data under unknown illumination, while embedding synthetic OLAT
data generation into the training process to aid disentanglement.

Techniques for inverse rendering from multi-view data typically impose strong
assumptions on lighting and material, with shading models commonly only con-
sidering direct illumination [30, 54, 3, 4, 38, 51, 25]. Different scene representations
have been explored in this context, including meshes [30, 25], signed distance
functions (SDFs) [51], or neural radiance or reflectance fields [23, 54, 3, 4, 38]. A
common paradigm is the explicit reconstruction of a material representation,
e.g., an albedo and roughness map, limiting them to recover appearance effects
within the range of these predefined representations. In contrast, our approach
seeks to decompose observed color into illumination and a radiance transfer func-
tion in a surface-based scene representation, enabling relighting with intricate
indirect illumination, while reconstructing materials only for supervision.

Incorporating multiple light bounces into inverse rendering and relighting can
be done by using heuristic lighting models [14, 21], by assuming known illumina-
tion [8], or by employing physically-based rendering to approximate irradiance
[31]. Chen et al. [5] approximate PRT in neural rendering, given geometry, with-
out physically-based modeling of multiple light bounces. Thul et al. [41] utilize
PRT in a custom optimization to perform global illumination-aware decompo-
sition of lighting and materials, approximating the required gradients with a
single-bounce model. In contrast, differentiable path tracing [28, 18, 2] can be
used to obtain full gradients for global illumination-aware inverse rendering [1,
27]. We also leverage the concept of differentiable path tracing [28] during train-
ing as a means for achieving disentanglement. Different from path tracing, our
performance at inference time is independent of light transport complexity and
by design produces noise-free renderings of multi-bounce illumination.

3 Method

Our method takes m ≈ 64 posed multi-view images under an unknown illumi-
nation condition as input and allows efficient novel-view synthesis and relighting
for the object depicted in these images. To this end, our approach leverages the
concept of precomputed radiance transfer (PRT) to factor multi-view observa-
tions into illumination and reflectance. Thus, at inference, novel illumination
conditions in the form of environment maps can be multiplied with our learned
reflectance field given a user-defined camera viewpoint.

In more detail, the rendering equation and its equivalent formulation in the
PRT framework forms the theoretical foundation of our approach, and we provide
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Fig. 2. Overview of our pipeline. The Shading blocks evaluate Eq. 2. The directional
inputs to the radiance transfer field are omitted to avoid clutter. The blue area marks
the parts run at test time, when any environment map can be used to light the scene
with full global illumination.

a brief overview of it (Sec. 3.1). Then, we introduce our neural radiance transfer
field (NRTF), a neural network that takes as input a point on the surface and
its normal, as well as the incoming and outgoing light directions and predicts
the radiance transfer of the scene. This radiance can then be multiplied with
an arbitrary environment map enabling global illumination relighting (Sec. 3.2).
To achieve this, we first estimate scene geometry from the available multi-view
observations using implicit surface reconstruction [44] (Sec. 3.2). In order to train
the NRTF, an approximate disentanglement between the observed material and
lighting in the multi-view training images is required. Our solution for this is
to leverage a differentiable path tracer [28]. It allows the joint optimization of a
spatially-varying BSDF and the environment map (Sec. 3.3). Once the BSDF is
obtained, the path tracer can be used to synthesize one-light-at-a-time (OLAT)
renderings of the scene (Sec. 3.4). The NRTF is trained using a combined loss,
consisting of a real image loss that helps to recover photoreal material effects
beyond the effects possible with the BSDF model, as well as a synthetic OLAT
loss that acts as a prior improving generalization to novel lighting conditions
(Sec. 3.4). An overview of our pipeline is shown in Fig. 2.

3.1 Background

We are interested in estimating radiance L arriving from scene point x ∈ R
3 in

direction ωo ∈ Ω, where Ω denotes the space of 3D directions, i.e., points on the
unit sphere. The rendering equation [11] describing global light transport can be
formulated as

L (x,ωo) =

∫

Ω+

L (x,ωi) ρ (x,ωi,ωo) (ωi · n) dωi , (1)
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where Ω+ is a hemisphere centered at the surface normal n of x, ωi is an
incoming direction, and ρ is the bidirectional scattering distribution function
(BSDF) encoding spatially-varying surface material reflectance. Solving this in-
tegral equation including global illumination, i.e., multiple light bounces with
potentially complex inter-reflections, lends itself to a recursive algorithm like
path tracing [11], which stochastically samples light paths to obtain a Monte
Carlo estimate of the solution. While modern differentiable variants of path
tracing for inverse rendering [27] show promising results, they suffer from high
computational costs, especially in the presence of complex light paths. To gain
efficiency, we consider distant but otherwise arbitrary illumination, i.e., lighting
that can be modeled using an environment map. Therefore, inspired by PRT,
we rewrite the rendering equations as

L (x,ωo) =

∫

Ω+

Le (ωi)T (x,n,ωi,ωo) dωi , (2)

where Le (ωi) is the incoming environment light from direction ωi, which is no-
tably independent of x. The crucial ingredient of this formulation is the collapsed
radiance transfer function T , which transforms the global distant illumination
Le from direction ωi into local reflected radiance at position x into direction ωo.
Given an environment map and the scene-specific transfer function T , all that
is needed to compute global illumination for a pixel is to obtain the primary
intersection point x, evaluate T for all environment map texels, multiply with
the respective illumination, and sum all contributions. If T is compact and easy
to evaluate, arbitrarily complex global illumination can be efficiently computed
on a GPU in a map-reduce fashion.

3.2 Neural Radiance Transfer Field (NRTF)

We model the radiance transfer function T using our neural radiance transfer
field

Tθ (H(x),n,F(ωi),F(ωo)) = ct, (3)

where ct ∈ R
3 denotes transferred RGB color and θ indicates the trainable

parameters. We parameterize Tθ using a multi-layer perceptron (MLP). Here,
we apply a multi-resolution hash encoding H(·) [24] to the 3D position x, and
a spherical harmonics encoding F(·) [50] to light directions ωi and ωo. The
hash encoding enables faster training and evaluation of our networks. Details
about the network architecture and the encoding strategy can be found in the
supplemental document. When rendering an image from an arbitrary camera
view centered at o, we shoot a ray r(t) = o + tωo through a pixel with 2D
coordinate u, and compute the intersection point x with respect to the scene
geometry. At x, we now evaluate a discretized version of Eq. 2 using our learned
Tθ: With ω̂ denoting discrete incoming directions, corresponding to the pixels
of a discretized environment map L̂e, we write

Lθ(u) = Lθ (x,ωo) =
∑

ω̂i

L̂e(ω̂i) · Tθ (H(x),n,F(ω̂i),F(ωo)) . (4)
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Note that this process is repeated for each pixel of the output image. It is worth
emphasizing again that this formulation can capture multi-bounce lighting effects
and complex material reflectance. Importantly, x, ωo, and L̂e, i.e., the camera
and the environment map can be modified at test time, enabling free-viewpoint
rendering and scene relighting. In the following, we explain how we first obtain
the scene geometry from the set of multi-view images and then provide details on
how the NRTF can be trained without ground truth scene lighting and material.

Geometry Estimation. In general, our approach is agnostic to the type of surface-
based geometry representation. Recent neural rendering methods [40] have demon-
strated state-of-the-art shape reconstruction results using implicit neural SDF
representations. We leverage the recently proposed NeuS [44] for computing the
SDF geometry of the object. NeuS takes multi-view images and camera poses
as input and reconstructs the geometry, represented as a neural field. Since ren-
dering an explicit mesh is significantly more efficient than rendering an SDF, we
extract a mesh from the implicit surface using Marching Cubes [20] and use this
mesh in our method. We utilize Blender’s “Smart UV Project” operator [6] to
automatically generate the texture map for the mesh extracted from the SDF.

3.3 Path Tracing for Initial Light and Material Estimation

As an initial step, we leverage the state-of-art differentiable path tracer Mit-
suba 2 [28] to optimize material properties and scene illumination. We choose
a blended BSDF type, where a rough conductor BSDF with roughness α and a
diffuse BSDF with a 512×512 texture A is combined using a convex combination
with weight w. Illumination is represented as a 32 × 16 environment map L̂e.
Jointly optimizing light and material properties is difficult due to the ambigu-
ities in the image formation process. In order to make our optimization stable,
we assume the object to have a specular material that does not vary spatially.
However, we use a spatially-varying diffuse texture A for capturing details. While
these assumptions are often incorrect for many complex scenes, we show that
our neural radiance transfer function is capable of reconstructions beyond these
assumptions. Using the reconstructed geometry, it is straightforward to obtain
foreground masks for each input view Ii, and we define the set of all foreground
pixels as Mi.

We jointly optimize w,α,A, L̂e from the input multi-view images and the
precomputed geometry, using the following loss term:

L(w,α,A, L̂e) = LPT(w,α,A, L̂e) + λregLreg(A, L̂e) . (5)

It consists of a data term and a regularizer that is weighted by λreg. The data
term is defined as

LPT(w,α,A, L̂e) =
m
∑

i=1

∑

u∈Mi

||Îi(u)− Ii(u)||
2 . (6)
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Here, Îi is the path-traced reconstruction using up to five light bounces from
the estimated scene parameters rendered from the ith viewpoint, u denotes 2D
pixel coordinates, and || · || is the Euclidean norm. We use two regularizers to
better constrain the problem:

Lreg(A, L̂e) =
∑

ω̂i

|∇L̂e(ω̂i)|+ λBDSF

∑

u
′∈Mtex

|∇A(u′)| (7)

where ∇(·) denotes the image gradient, λBDSF is a weighting factor, and | · |
denotes the L1 norm. u′ are 2D uv-coordinates in the texture map and Mtex is
the set of texels that is covered by the unwrapped geometry. The first term, LEnv,
is a regularizer on the environment map reconstruction, while the second term,
LBSDF, regularizes the texture reconstruction. Both encourage image gradient
sparsity. We refer to the supplemental document for more details.

3.4 Training the Neural Radiance Transfer Field

OLAT Synthesis. Our goal is to train the neural transfer field for the input
scene. If we train the neural network only with the input illumination condition,
the network can easily overfit, thus, not being able to disentangle illumination
and material. Traditionally, learning-based methods, which disentangle material
and illumination properties, rely on light-stage capture setups [7, 39, 53, 29]. In
contrast to these approaches, we only rely on a single illumination condition. We
show that it is possible to train for disentanglement even in this more challenging
setup, by simulating a virtual light stage. Using the reconstruction obtained with
the differentiable path tracer, we render synthetic images of the scene under novel
one-light-at-a-time (OLAT) illumination conditions. Here, only one pixel on the
environment map is active at a time. We sample OLAT images for training
and novel camera views from every incoming light direction. We use Blender [6]
to render the OLAT images with the reconstructed geometry and material as
input. In total, we synthesize Nc ∗Ne OLAT images as extra supervision, where
Nc is the number of sampled camera views and Ne is the number of texels in the
environment map. Note that the OLAT representation forms a complete basis for
illumination conditions, i.e., any environment map can be computed as a linear
combination of OLAT environment maps. Using these OLATs for our network
supervision enables generalization to unseen illumination conditions and camera
views.

NRTF Training. We train our NRTF in two stages. First, we train on the OLAT
dataset using the following loss:

LOLAT(θ) =

Nc
∑

i=1

∑

u∈Mi

∣

∣

∣

∣

∣

∣

∣

∣

Lθ,i(u)−Oi(u)

sg (Lθ,i(u)) + ϵ

∣

∣

∣

∣

∣

∣

∣

∣

2

, (8)

Here, Oi is the ith OLAT image from Blender and Lθ,i is the corresponding
estimate from our NRTF using Eq. 4. Stop gradient is denoted by sg(·). We set
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ϵ = 1e − 3 to avoid division by zero and optimize for the network parameters
θ. As shown in Noise2Noise [17], this loss works better for high-dymanic range
images in the presence of path-tracing noise. Training on the OLAT images
enables relighting and novel-view synthesis using the learned transfer function.

However, the method so far is heavily influenced by the lighting-reflectance
ambiguity, and by the assumption of a global specularity parameter. Thus, in
a second step, we further finetune the network on the input multi-view images.
Here, we sample images from the real images as well as the synthetic OLAT
images in a minibatch for training. The loss for this stage is defined as

L(θ, L̃e) = LOLAT(θ, L̃e) + λPRTLPRT(θ, L̃e) + λEnvCLEnvC(L̃e) . (9)

LOLAT is used for the OLAT images in the batch. It is defined as in Eq. 8, how-
ever, we also finetune the environment map L̃e in this stage using the previously
obtained environment map L̂e for initialization. We further use a masked L2 loss
for real images as:

LPRT(θ, L̃e) =
m
∑

i=1

∑

u∈Mi

||Lθ,i(u)− Ii(u)||
2 , (10)

Training on real images allows us to update the environment map. We add a
regularizer, which penalizes the output to be too far from the initial environment
map.

LEnvC(L̃e) =
∑

ω̂i

||L̃e(ω̂i))− L̂e(ω̂i)||
2 , (11)

where L̂e(ω̂i) denotes the initial environment map estimate.

4 Results

Next, we report results of the experiments we conducted to evaluate our method.
We construct five synthetic scenes to showcase global illumination effects and
further utilize four real scenes from the DTU dataset [10]. For each scene, we
take 32-64 input views with a resolution of 800× 600 pixels. During training, all
our environment maps have a resolution of 32× 16 pixels in latlong format, but
this resolution can be different at test time due to our continuous neural-field
formulation. On a single Quadro RTX 8000 GPU, training takes half an hour for
initial light and material estimation, eight hours for OLAT training, and an ad-
ditional 16 hours for the final joint optimization to reach highest-quality results.
Factorizing lighting and reflectance is fundamentally ambiguous [15] and cannot
be resolved from image observations in general [34, 19], especially when allowing
for spatially-varying materials [33]. To aid meaningful comparisons nevertheless,
we follow the procedure of Zhang et al. [54] and other works for all qualitative
and quantitative results on synthetic scenes: We compute the mean RGB value
of the ground truth environment map and normalize our estimated lighting by
its inverse.
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Fig. 3. Qualitative results on synthetic data. First column: Example input view for
training. Second column: Our estimated environment map and the corresponding
ground truth. Third and fourth column: Novel view synthesis results of our approach.
Note that our method achieves sharp and accurate novel views that are almost indis-
tinguishable from the input views in terms of quality. Last two columns: Relighting
results of our method using novel environment maps (see insets). Also for novel light-
ing conditions our approach achieves convincing results with sharp specular reflections
and secondary light bounce effects, e.g. indirect reflections on the wing of the airplane.

4.1 Qualitative Results

In Fig. 3, we demonstrate qualitative results of our method. Next to a repre-
sentative input view (first column), we show the estimated and ground truth
lighting (second column), followed by two exemplary novel views created with
our method (third and fourth column). Finally, we show relighting results (re-
maining two columns) using different environment maps (insets). We see that
our method produces high-quality relightable novel views, while successfully in-
corporating global-illumination effects like higher-order specular reflections and
subtle color bleeding (see also Fig. 1). In our supplemental video, we further
show that our method is also temporally stable when smoothly changing the
camera view or rotating an environment map.

Real Data. In Fig. 4, we show results of our method on real scenes of the DTU
dataset [10]. We can successfully synthesize high-quality novel views and plausi-
ble relighting. This shows that our method is robust to such real world captures,
which are very challenging due to the lack of very precise camera calibration and
foreground segmentation, camera noise, and other effects that are typically not
present in synthetic datasets.

Beyond the Model Assumptions. In Fig. 5, we show that our approach can learn
spatially-varying material effects beyond the ones that can be explained by the
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Input View View Synthesis Relighting

Fig. 4. Qualitative results on real data [10]. First column: Example input views used
for training our method. Second and third column: Novel view results. Note that even
for real data our method achieves realistic novel view renderings. Last three columns:
Relighting results using the environment maps depicted in the insets. Also here, note
that our method can achieve plausible relighting effects.

b)

Mitsuba 2 Ours GT

Fig. 5. Supervision with real input images lets our NRTF (center) learn appearance
effects beyond the material model used during initialization with Mitsuba 2 (left),
producing images close to the ground truth (right). Notice that our approach captures
spatially-varying material roughness, see close-ups. Images show a relit novel view.

light and material models of the differentiable path tracer [28]. This is due to
the real image loss, which lets the network learn appearance effects from real
observations.

4.2 Comparisons

We compare our approach against several alternatives on the task of novel-
view synthesis with relighting: On the one hand, we analyze the capabilities of
stand-alone differentiable path-tracing using Mitsuba2 [28], which can be used
to perform inverse rendering in the presence of global illumination. On the other
hand, we consider three recent neural field-based inverse-rendering approaches
PhySG [51], Neural-PIL [4], and NeRFactor [54], all employing only a direct
illumination model. We omit a comparison to NeRD [3] as Neural-PIL can be
considered as the follow-up. We also compare with RNR [5], providing it with
the same geometry as ours. Further, we provide more results on NeRFactor [54]
dataset in the supplemental document.
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Table 1. Numerical comparisons for novel-view synthesis and relighting. We compare
to the recent state of the art Mitsuba2 [28], PhySG [51], Neural-PIL [4], NeRFactor[54]
and RNR [5] in terms of image-based metrics, i.e. PSNR and SSIM, and perceptual
metrics, i.e. LPIPS. For both tasks, novel view synthesis and relighting, we achieve the
best performance.

Novel View Synthesis Novel View Synthesis & Relighting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Mitsuba2 [28] 23.50 0.7567 0.0763 21.69 0.5722 0.0812
PhySG [51] 20.52 0.8563 0.2577 17.30 0.6252 0.2736

Neural-PIL [4] 17.07 0.5563 0.1159 14.76 0.4895 0.1328
NeRFactor [54] 21.97 0.6394 0.1691 15.83 0.6470 0.2033

RNR [5] 22.54 0.8122 0.0960 18.06 0.7009 0.1081
Ours 28.73 0.9151 0.0454 23.06 0.8247 0.0692

A qualitative comparison is shown in Fig. 6. Despite the fact that our method
provides the sharpest and most realistic results, it is worth noting that our
method is the only one that can recover accurate indirect lighting effects, e.g. the
self-reflection on the wing of the airplane and the color spill of the squares onto
the statue. This is further confirmed by the quantitative analysis in Table 4.2.
We compute image errors for four scenes, each with five views and three lighting
conditions according to three metrics on the tasks of novel-view synthesis and
novel-view synthesis with relighting. In particular, we evaluate the Peak Signal-
to-noise Ratio (PSNR), the Structural Similarity Index Measure (SSIM) [45],
and the learned perceptual image patch similarity (LPIPS) [52]. PSNR and SSIM
are purely image-based metrics and, thus, sometimes do not reflect the perceived
image quality. For this reason, we also provide the perceptual LPIPS metric.
We observe that our approach again delivers the highest-quality results for both
tasks across all metrics.

4.3 Ablation & Extension

Here, we study ablations and extensions in order to gain further insights into our
system. All results are compiled into Table 4.3, where the evaluation protocol is
the same as in Sec. 4.2. First, we consider omitting the OLAT loss (Sec. 3.4). We
observe that result quality reduces significantly for the relighting task compared
to our full method. This is due to the poor disentanglement of lighting and
reflectance and the fact that the network can overfit to the lighting condition in
the training data, which also explains why the novel view synthesis without the
OLAT loss is slightly more accurate than our method.

Second, we investigate the behavior of our approach when input views are
captured undermultiple unknown illumination conditions. In this experiment, we
use three different environment maps. When reconstructing geometry (Sec. 3.2),
we select only a subset of multi-view images with the same illumination condi-
tion, while during initial light and material estimation (Sec. 3.3), we optimize
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Fig. 6. Comparisons to related works [28, 51, 4, 5, 54] for novel-view synthesis and dis-
entanglement of lighting (left three columns), and relighting (right three columns).
Note that for both tasks we achieve the best results in terms of rendering quality. It
is also worth noting that we are the only method, which can accurately reproduce the
indirect illumination effects such as the self-reflection on the wing of the airplane.

for three individual environment maps. Not surprisingly, we observe that this
extended setup increases result quality even more compared to our full single-
lighting approach. Yet, it has a significantly less pronounced effect compared to
the omission of the OLAT training stage, indicating that our pipeline achieves
a solid disentanglement for the single-illumination condition.

5 Limitations and Future Work

Although our method improves the state of the art in terms of image quality and
global illumination handling, it still has some limitations, which open up future
work in this direction. In particular, our method relies on an accurate geome-
try estimate of the scene and we are not jointly optimizing the scene geometry
along with the material and lighting of the scene. Future work could involve a
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Table 2. Ablations and extensions. First, we evaluate the effect of the proposed syn-
thetic OLAT loss. One can clearly see that without the OLAT loss the performance
of our method drastically drops for the relighting task. This can be explained by the
fact that the OLAT loss acts as a regularizer and prevents overfitting to the single
environment map that is recovered during training. Moreover, we evaluate how our
method performs when the object was observed under multiple lighting conditions.
Interestingly, with this additional input, our method can achieve even better results,
especially for the relighting task.

Novel View Synthesis Novel View Synthesis & Relighting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w/o OLAT Loss 31.35 0.9668 0.063 10.03 0.4547 0.4487
Full 29.56 0.9418 0.066 24.76 0.8665 0.069

Multiple Envmaps 30.62 0.9166 0.043 26.67 0.9071 0.047

joint reasoning of all these aspects in a differentiable manner such that optimiz-
ing all scene aspects jointly can be achieved. Further, our relighting results are
only correct up to a global scale due to the inherent ambiguity between scene
illumination and the object material. Here, future research could explore a min-
imal setup required to disentangle such ambiguities, e.g. it may be that a single
measurement on the surface can resolve the ambiguity. Last, our method takes
several seconds per frame. Ideally, it would run at real time enabling interactive
scene relighting with global illumination. Thus, exploring more efficient scene
representations could be an interesting research branch for the future.

6 Conclusion

We presented neural radiance transfer fields, which enable global illumination
scene relighting and view synthesis given multi-view images of the object. At
the technical core, our method implements the concept of precomputed radiance
transfer that disentangles illumination from appearance. To this end, we pro-
pose a neural radiance transfer field represented as an MLP and show how at
train time differentiable path tracing and a dedicated OLAT loss can be used
to let the network accurately learn such a disentanglement. Once trained, our
rendering formulation allows novel-view synthesis and relighting, which is aware
of global-illumination effects. Our results demonstrate a clear improvement over
the current state of the art while future work could involve further improving
the runtime and a joint reasoning of geometry, material, and scene lighting.

Acknowledgements. We would like to thank Xiuming Zhang for his help with
the NeRFactor comparisons. Authors from MPII were supported by the ERC
Consolidator Grant 4DRepLy (770784).



Neural Radiance Transfer Fields 15

References
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