
Aspect-Oriented Linearizability Proofs

Thomas A. Henzinger1, Ali Sezgin1, and Viktor Vafeiadis2

1 IST Austria {tah,asezgin}@ist.ac.at
2 MPI-SWS viktor@mpi-sws.org

Abstract. Linearizability of concurrent data structures is usually proved
by monolithic simulation arguments relying on identifying the so-called
linearization points. Regrettably, such proofs, whether manual or auto-
matic, are often complicated and scale poorly to advanced non-blocking
concurrency patterns, such as helping and optimistic updates.

In response, we propose a more modular way of checking linearizability of
concurrent queue algorithms that does not involve identifying lineariza-
tion points. We reduce the task of proving linearizability with respect
to the queue specification to establishing four basic properties, each of
which can be proved independently by much simpler arguments. As a
demonstration of our approach, we verify the Herlihy and Wing queue,
an algorithm that is challenging to verify by a simulation proof.

1 Introduction

Linearizability [8] is widely accepted as the standard correctness requirement
for concurrent data structure implementations. It amounts to showing that all
methods are atomic and obey the high-level sequential specification of the data
structure. For example, an unbounded queue must support the following two
methods: enqueue, which extends the queue by appending one element to its
end, and dequeue, which removes and returns the first element of the queue.

The standard way to prove that a concurrent queue implementation is lin-
earizable is to prove an invariant which relates the state of the implementation to
the state of the specification. A well-established approach (e.g. [1–5, 11, 13–15])
is to identify the linearization points, which when performed by the implemen-
tation change the state of the specification, and to then construct a forward or
backward simulation.

While for a number of concurrent algorithms, spotting the linearization points
may be straightforward (and has even been automated to some extent [15]), in
general specifying the linearization points can be very difficult. Due to helping,
they can lie in code not syntactically belonging to the thread and operation in
question, and can also depend on future behavior. There are numerous exam-
ples in the literature, where this is the case. To mention only a few concurrent
queues: the Herlihy and Wing queue [8], the optimistic queue [10], the elimina-
tion queue [12], the baskets queue [9], the flat-combining queue [6].

2 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

1: var q.back : int← 0
2: var q.items : array of val

← {NULL, NULL, . . .}

3: procedure enq(x : val)
4:

〈
i← INC(q.back)

〉
. E1

5:
〈
q.items[i]← x

〉
. E2

6: procedure deq() : val
7: while true do
8:

〈
range← q.back − 1

〉
. D1

9: for i = 0 to range do
10:

〈
x← SWAP(q.items[i], NULL)

〉
. D2

11: if x 6= NULL then return x

Fig. 1. Herlihy and Wing queue [8].

The HW Queue. In this paper, we focus on the Herlihy and Wing queue [8]
(henceforth, HW queue for short) that illustrates nicely the difficulties encoun-
tered when defining a simulation relation based on linearization points. The code
is given in Fig. 1. The queue is represented as a pre-allocated unbounded array,
q.items, initially filled with NULLs, and a marker, q.back, pointing to the end of
the used part of the array. Enqueuing an element is done in two steps: the marker
to the end of the array is incremented (E1), thereby reserving a slot for storing
the element, and then the element is stored at the reserved slot (E2). Dequeue is
more complex: it reads the marker (D1), and then searches from the beginning
of the array up to the marker to see if it contains a non-NULL element. It removes
and returns the first such element it finds (D2). If no element is found, dequeue
starts again afresh. Each of the four statements surrounded by 〈〉 brackets and
annotated by Ei or Di for i = 1, 2 is assumed to execute in isolation.

Consider the following execution fragment, where · denotes context switches
between concurrent threads,

(t : E1) · (u : E1) · (v : D1, D2) · (u : E2) · (t : E2) · (w : D1)

which have threads t and u executing enqueue instances, v and w executing de-
queue instances. At the end of this fragment, v is ready to dequeue the element
enqueued by u, and w is ready to dequeue the element enqueued by t. In order to
define a simulation relation from this interleaving sequence to a valid sequential
queue behavior, where operations happen in isolation, we have to pick the lin-
earization points for the two completed enqueue instances. The difficulty lies in
the fact that no matter which statements are chosen as the linearization points
for the two enqueue instances, there is always an extension to the fragment in-
consistent with the particular choice of linearization points. For instance, if we
pick (t : E1) as the linearization point for t, then the extension

(v : D2, return) · (z : D1, D2, return)

requiring u’s element be enqueued before that of t’s, will be inconsistent. If on the
other hand, any statement which makes u linearize before t, then the extension

(w : D2, return) · (z : D1, D2, D2, return)

requiring the reverse order of enqueueing will be inconsistent. This shows not
only that finding the correct linearization sequence can be challenging, but also

Aspect-Oriented Linearizability Proofs 3

that the simulation proofs will require to reason about the entire state of the
system, as the local state of one thread can affect the linearization of another.

Our Contribution. In our experience, this and similar tricks for reducing synchro-
nization among threads so as to achieve better performance, make concurrent
algorithms extremely difficult to reason about when one is constrained to estab-
lishing a simulation relation. However, if two methods overlap in time, then the
only thing enforced by linearizability is that their effects are observed in some
and same order by all threads. For instance, in the example given above, the
simple answer for the particular ordering between the linearization points of the
enqueue instances of t and u, is that it does not matter! As long as enqueue
instances overlap, their values can be dequeued in any order.

Building on this main observation, our contribution is to simplify linearizabil-
ity proofs by modularizing them. We reduce the task of proving linearizability
to establishing four relatively simple properties, each of which may be reasoned
about independently. In (loose) analogy to aspect-oriented programming, we are
proposing “aspect-oriented” linearizability proofs for concurrent queues, where
each of these four properties will be proved independently.

So what are these properties? A correct (i.e., linearizable) concurrent queue:
(1) must not allow dequeuing an element that was never enqueued;
(2) it must not allow the same element to be dequeued twice;
(3) it must never reorder enqueued elements; and
(4) it must correctly report whether the queue is empty or not.

Although similar properties were already mentioned by Herlihy and Wing [8],
we for the first time prove that suitably formalized versions of these four prop-
erties are not only necessary, but also sufficient, conditions for linearizability
with respect to the queue specification, at least for what we call purely-blocking
implementations. This is a rather weak requirement satisfied by all non-blocking
methods, as well as by possibly blocking methods, such as HW deq() method,
whose blocking executions do not modify the global state.

The rest of the paper is structured as follows: §2 recalls the definition of
linearizability in terms of execution histories; §3 formalizes the aforementioned
four properties, and proves that they are necessary and sufficient conditions
for proving linearizability of queues; §4 returns to the HW queue example and
presents a detailed manual proof of its correctness; and §5 explains how the bulk
of this proof was also performed automatically by an adaptation of Cave [15].
Finally, in §6 we discuss related work, and in §7 we conclude.

2 Technical Background

In this section, we introduce common notations that will be used throughout
the paper and recall the definition of linearizability.

Histories, Linearizability. For any function f from A to B and A′ ⊆ A, let

f(A′)
def
= {f(a) | a ∈ A′}. Given two sequences x and y, let x · y denote their

concatenation, and let x ∼perm y hold if one is a permutation of the other.

4 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

A data structure D is a pair (D,ΣD), where D is the data domain and ΣD
is the method alphabet. An event of D is a triple (m, di, do), for some m ∈ ΣD,
d1, d2 ∈ D. Intuitively, (m, di, do) denotes the application of method m with
input argument di returning the output value do. A sequence over events of D is
called a behavior. The semantics of data structure D is a set of behaviors, called
legal behaviors.

Each event a = (m, di, do) generates two actions: the invocation of a, written
as inv(a), and the response of a, written as res(a). We will also use mi(di) and
mr(do) to denote the invocation and the response actions, respectively. When a
particular method m does not have an input (resp., output) parameter, we will
write (m,⊥, x) (resp., (m,x,⊥)), and mi() (resp., mr()) for the corresponding
invocation (resp., response) action.

In this paper, a history of D is a sequence of invocation and response actions
of D. We will assume the existence of an implicit identifier in each history c that
uniquely pairs each invocation with its corresponding response action, if the
latter also occurs in c. A history c is well-formed if every response action occurs
after its associated invocation action in c. We will consider only well-formed
histories. An event is completed in c, if both of its invocation and response
actions occur in c. An event is pending in c, if only its invocation occurs in c.
We define remPending(c) to be the sub-sequence of c where all pending events
have been removed. An event e precedes another event e′ in c, written e ≺c e

′, if
the response of e occurs before the invocation of e′ in c. For event e, Before(e, c)
denotes the set of all events that precede e in c. Similarly, After(e, c) denotes
the set of all events that are preceded by e in c. Formally,

Before(e, c)
def
= {e′ | e′ ≺c e} and After(e, c)

def
= {e′ | e ≺c e

′} .

History c is called complete if it does not have any pending events. For a possi-
bly incomplete history c, a completion of c, written ĉ, is a (well-formed) complete
history such that ĉ = remPending(c · c′) where c′ contains only response events.
Let Compl(c) denote the set of all completions of c.

A history is called sequential if all invocations in c are immediately followed
by their matching responses, with the possible exception of the very last action
which can only be the invocation of a pending event. We identify complete
sequential histories with behaviors of D by mapping each consecutive pair of
matching actions in the former to its event constructing the latter. A sequential
history s is a linearization of a history c, if there exists ĉ ∈ Compl(c) such that
ĉ ∼perm s and whenever e ≺ĉ e

′ we have e ≺s e
′.

Definition 1 (Linearizability [8]). A set of histories C is linearizable with
respect to a data structure D, if for any c ∈ C, there exists a linearization of c
which is a legal behavior of D.

Queues. The method alphabet ΣQ of a queue is the set {enq, deq}. We will take
the data domain to be the set of natural numbers, N, and a distinguished symbol
NULL not in N. Events are written as enq(x), short for (enq, x,⊥), and deq(x),

Aspect-Oriented Linearizability Proofs 5

short for (deq,⊥, x). Events with enq are called enqueue events, and those with
deq are called dequeue events.

Let c be a history. Enq(c) denotes the set of all enqueue events invoked (and
not necessarily completed) in c. Similarly, Deq(c) denotes the set of all dequeue
events invoked in c. A set A ⊆ Enq(c) ∪Deq(c) is closed under ≺c if a ∈ A and
b ≺c a, then b ∈ A.

For an enq event e in c, Valc(e) denotes the value to be inserted by e in c.
Formally, Valc(enq(x)) = x. Similarly, for a completed deq event d in c, Valc(d)
denotes the value removed by d in c. Formally, Valc(deq(x)) = x. For a pending
deq event, Valc(deq(x)) is undefined.

We will use a labelled transition system, LTSQ, to define the queue semantics.
The states of LTSQ are sequences over N, the initial state is the empty sequence ε.

There is a transition from q to q′ with action a, written q
a−→ q′, if (i) a = enq(x)

and q′ = q · x, or (ii) a = deq(x) and q = x′ · q′, or (iii) a = deq(NULL) and
q = q′ = ε. A queue is partial if the last transition (NULL returning dequeue
event) is not allowed.

A run of LTSQ is an alternating sequence q0l1q1 . . . lnqn of states and queue

events such that for all 1 ≤ i ≤ n, we have qi−1
li−→ qi. The trace of a run is the

sequence l1 . . . ln of the events occurring on the run. A queue behavior b is legal
iff there is a run of LTSQ with trace b.

We find it useful to express the queue semantics in an alternative formulation.

Definition 2. A queue behavior b has a sequential witness if there is a total
mapping µseq from Deq(b) to Enq(b) ∪ {⊥} such that

– µseq(d) = e implies Valb(d) = Valb(e),
– µseq(d) = ⊥ iff Valb(d) = NULL,
– µseq(d) = µseq(d′) 6= ⊥ implies d = d′,
– e ≺b e

′ and there exists d′ with µseq(d′) = e′ imply µ−1seq(e) ≺b d
′,

– µseq(d) = ⊥ implies that
|{e ∈ Enq(b) | e ≺b d}| = |{d′ ∈ Deq(b) | d′ ≺b d ∧ µseq(d′) 6= ⊥}|.

Proposition 1. A queue behavior b is legal iff b has a sequential witness.

Proof (Sketch). If b is legal, then, by definition, it has a run r in LTSQ with trace

b. Let d be a dequeue event occurring in b. Then there is a transition q
d−→ q′ in r.

If d = deq(x) for some x ∈ N, then set µseq(d) = e where e is the enqueue event
enq(x) which has inserted x into the state sequence. If d = deq(NULL), then set
µseq(d) = ⊥. Then, it is easy to check that µseq satisfies all the conditions of
being a sequential witness for b.

For the other direction, let µseq be a sequential witness for b. We observe
that i) an element x is in state q iff an enqueue event enq(x) has happened on
the prefix of the run ending at q and the dequeue event with µseq(d) = e has not
happened on the same prefix, ii) for any two enqueue events e, e′ with e ≺b e

′,
Valb(e) occurs in a state before Valb(e

′), iii) the relative ordering of inserted
elements in a state does not change as long as both are in the state, iv) each

6 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

enqueue event inserts exactly one element to the state, v) each dequeue event
deq(x) with x 6= NULL removes exactly one element from the state, and vi) the
dequeue event deq(NULL) does not change the state. Then, by induction on the
length of b, we show that b has a run in LTSQ. ut

3 Conditions for Queue Linearizability

3.1 Generic Necessary and Sufficient Conditions

We start by reducing the problem of checking linearizability of a given history,
c, with respect to the queue specification to finding a mapping from its dequeue
events to its enqueue events satisfying certain conditions. Intuitively, we map
each dequeue event to the enqueue event whose value the dequeue removed, or
to nothing if the dequeue event returns NULL. We say that the mapping is safe
if it pairs each deq event with a proper enq event, implying that elements are
inserted exactly once and removed at most once. A safe mapping is ordered if
it additionally respects precedence induced by c. Finally, an ordered mapping
is a linearizability witness if all NULL returning deq events see at least one state
where the queue is logically empty. Below, we formalize these notions.

Definition 3 (Safe Mapping). A mapping Match from Deq(c) to Enq(c)∪{⊥}
is safe for c if
(1) for all d ∈ Deq(c), if Match(d) 6= ⊥, then Valc(d) = Valc(Match(d));
(2) for all d ∈ Deq(c), Match(d) = ⊥ iff Valc(d) = NULL; and
(3) for all d, d′ ∈ Deq(c), if Match(d) = Match(d′) 6= ⊥, then d = d′.

Definition 4 (Ordered Mapping). A safe mapping Match for c is ordered if
(1) for all d ∈ Deq(c), we have d 6≺c Match(d); and
(2) for all d, d′ ∈ Deq(c), if Match(d) ≺c Match(d′), then d′ 6≺c d.

Definition 5 (Linearization Witness). An ordered mapping Match for c is
a linearization witness if for any d ∈ Deq(c) with Valc(d) = NULL, there ex-
ists a subset D′ ⊆ Deq(c) such that Match(D′) is closed under ≺c and D′ ∩
After(d, c) = ∅ and Before(d, c) ∩ Enq(c) ⊆ Match(D′).

The main result of this section is stated below.

Theorem 1. A set of histories C is linearizable with respect to queue iff every
c ∈ C has a completion ĉ ∈ Compl(c) that has a linearization witness.

Proof. (⇒) If c ∈ C is linearizable with respect to queue, then there is a lin-
earization s of c which is a legal queue behavior. By Prop. 1, s has a sequential
witness µseq. The mapping µseq satisfies the conditions of a linearization witness
since all ≺c orderings are preserved in s.

(⇐) Pick a c ∈ C and let ĉ ∈ Compl(c) be its completion that has a lin-
earization witness Match. Let < be some arbitrary total order on the events of
ĉ. We construct the linearization of ĉ inductively as follows:

Aspect-Oriented Linearizability Proofs 7

Let c′ be the prefix of ĉ that has been processed, and let s′ be the resulting
sequential history. All events in s′ are placed. Events that are not placed but are
pending after c′ are called candidate. We extend c′ until the first response action
that happens after c′ in ĉ. Formally, let c′ · ce · ar be a prefix of ĉ such that ce
contains only invocation actions and ar is a response action. Let A denote the
set of all candidate events after c′ · ce · ar. The new s′ is obtained by appending
some a ∈ A as the next event if
(1) a is an enqueue event, and there does not exist another enqueue event e such
that Match−1(e) ≺ĉ Match−1(a) and e is not placed in s′; or
(2) a is a dequeue event with Val ĉ(a) 6= NULL, Match(a) is placed in s′, and there
does not exist another dequeue event d such that Match(d) ≺ĉ Match(a) and d
is not placed in s′; or
(3) a is a dequeue event with Val ĉ(a) = NULL and the number of enqueue events
in s′ is equal to the number of dequeue events d with Val ĉ(d) 6= NULL in s′.
In case, where both first and second conditions are satisfied, the candidate el-
ement minimal with respect to < is appended to s′. This iteration is repeated
until there are no candidate events that satisfy any of the conditions, at which
point the inductive step ends with setting c′ to c′ ·ce ·ar. The existence of Match
guarantees that such a sequence can be constructed. The constructed sequence
s has Match also as a sequential witness, completing the proof. ut

3.2 Necessary and Sufficient Conditions for Complete Histories

We now focus on complete histories, namely ones with no pending events. We
observe that their linearizability violations can always be manifested in terms of
the dequeued values. Intuitively, the possible violations are:

(VFresh) A dequeue event returning a value not inserted by any enqueue event.
(VRepet) Two dequeue events returning the value inserted by the same enqueue

event.
(VOrd) Two ordered dequeue events returning values inserted by enqueue events

in the inverse order.
(VWit) A dequeue event returning NULL even though the queue is never logically

empty during the execution of the dequeue event.

We have the following result which ties the above violation types to lineariz-
able queues.

Proposition 2. A complete history c has a linearization which is a legal queue
behavior iff it has none of the VFresh, VRepet, VOrd, VWit violations.

Proof (Sketch). First, note that as c has no pending events, Compl(c) = {c}.
If c has a linearization which is a legal queue behavior, then by Theorem 1, c
has a linearization witness Match, and so none of the violations can happen. As
Match is safe, (VFresh) and (VRepet) cannot happen; as it is ordered, (VOrd)
cannot occur; and as it is a linearization witness, likewise (VWit) cannot happen.
Similarly, in the other direction, the absence of all the violations ensures the
existence of a linearizability witness. ut

8 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

We remark that none of the violations mentions the possibility of an element
inserted by an enqueue being lost forever. This is intentional, as such histories
are ruled out by the following proposition.

Proposition 3. Given an infinite sequence of complete histories c1, c2, . . . not
containing any of the violations above, where for every i, ci is a prefix of ci+1,
and the number of dequeue events in ci is less than that of ci+1, if c1 contains
an enqueue event enq(x), then exists some cj containing deq(x).

Proof. We prove this by contradiction. If there is no deq(x) event, then enq(x)
is always in the queue, and so, from the absence of VWit violations, none of
the dequeue events following enq(x) can return NULL. Also, since dequeue events
cannot return values that were not previously enqueued (VFresh) and cannot
return the same value multiple times (VRepet), and since the number of dequeue
events is increasing, then there must also be new enqueue events. However, only
finitely many of those are not preceded by enq(x) which completes in c1. This
means that eventually one dequeue event has to return an element inserted by
enq(y) such that enq(x) ≺cj enq(y), which is VOrd. ut

For checking purposes, we find it useful to re-state the third violation as the
following equivalent proof obligation.

(POrd) For any enqueue events e1 and e2 with e1 ≺c e2 and Valc(e1) 6= Valc(e2),
a dequeue event cannot return Valc(e2) if Valc(e1) is never removed in c.

Thus, we need an invariant which specifies all those executions satisfying the
premise of POrd, and prove that such an execution cannot end with a dequeue
event (in the sense that no other method is preceded by that dequeue event)
returning the value of e2.

3.3 Necessary and Sufficient Conditions for Purely-Blocking Queues

There is a subtle complication in the statement of Theorem 1. The witness
mapping is chosen relative to some completion of the concurrent history un-
der consideration. However, because implementations may become blocked, such
completions may actually never be reached. This means that one cannot reason
about the correctness of a queue implementation by considering only reachable
states. What we would ideally like to do is to claim that if the implementation
violates linearizability, then there is a finite complete history of the implemen-
tation which has no witness. In other words, if the implementation contains
an incomplete history with no witness, then that execution is the prefix of a
complete history of the implementation.

Let C be the set of all possible execution histories of a library implementation.
We call a library implementation completable iff for every history c ∈ C, we have
Compl(c)∩C 6= ∅. For completable implementations, it suffices to consider only
complete executions.

Aspect-Oriented Linearizability Proofs 9

Theorem 2. A completable queue implementation is linearizable iff all its com-
plete histories have none of the VFresh, VRepet, VOrd and VWit violations.

Proof. (⇒) If some complete history has a violation, by Prop. 2, it has no lin-
earization, contradicting the assumption that the implementation is linearizable.

(⇐) Consider an arbitrary history c of the implementation. As the imple-
mentation is completable, there exists a completion ĉ ∈ Compl(c) that is a valid
history of the implementation. From our assumptions, ĉ cannot have a violation,
and so by Prop. 2, ĉ has a linearization, and therefore so does c. ut

Since it may not be obvious how to easily prove that an implementation is
completable, we introduce the stronger notion of purely-blocking implementa-
tions, that is straightforward to check. We say that an implementation is purely-
blocking when at any reachable state, any pending method, if run in isolation
will terminate or its entire execution does not modify the global state.

Proposition 4. Every purely-blocking implementation is completable.

Proof. Given a history c ∈ C, we will construct ĉ ∈ Compl(c) ∩ C. We fix a total
order of pending events, and consider them in that order. For a pending method
e, if running it in isolation terminates, then extend c with the corresponding
response for e. Otherwise, the execution of e does not modify any global state
and so can be removed from the history without affecting its realizability. ut

We remark that our new notion of purely-blocking is a strictly weaker re-
quirement than the standard non-blocking notions: obstruction-freedom, which
requires all pending methods to terminate when run in isolation, as well as the
stronger notions of lock-freedom and wait-freedom. (See [7] for an in depth ex-
position of these three notions.)

4 Manually Verifying the Herlihy-Wing Queue

Let us return to the HW queue presented in §1 and prove its correctness manually
following our aspect-oriented approach.

First, observe that HW queue is purely-blocking: enq() always terminates,
and deq() can update the global state only by reading x 6= NULL at E2, in which
case it immediately terminates. So from Prop. 4 and Theorem 2, it suffices to
show that it does not have any of the four violations. The last one, VWit, is
trivial as the HW deq() never returns NULL. So, we are left with three violations
whose absence we have to verify: VFresh, VRepet, and VOrd.

Intuitively, there are no VFresh violations because deq() can return only a
value that has been stored inside the q.items array. The only assignments to
q.items are E1 and D2: the former can only happen by an enq(x), which puts x
into the array; the latter assigns NULL.

Likewise, there are no VRepet violations because whenever in an arbitrary
history two calls to deq() return the same x, then at least twice there was an
element of the q.items array holding the value x and was updated to NULL

10 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

procedure deq(v : val)
while true do〈

range← q.back − 1
〉

for i = 0 to range do
〈x← q.items[i];
assume(x = v ∧ x 6= NULL);
q.items[i]← NULL

〉
;

return x

 t
〈x← q.items[i];
assume(x = NULL);
q.items[i]← NULL

〉

Fig. 2. The HW dequeue method instrumented with the prophecy variable v guessing
its return value, where t stands for non-deterministic choice.

by the SWAP instruction at D2. Therefore, at least two assignments of the form
q.items[]← x happened; i.e. there were at least two enq(x) events in the history.

We move on to the more challenging third condition, VOrd. We actually con-
sider its equivalent reformulation, POrd. Fix a value v2 and consider a history c
where every method call enqueuing v2 is preceded by some method call enqueu-
ing some different value v1 and there are no deq() calls returning v1 (there may
be arbitrarily many concurrent enq() and deq() calls enqueuing or dequeuing
other values). The goal is to show that in this history, no deq() return v2.

Let us suppose there is a dequeue d returning v2, and try to derive a contradic-
tion. For d to return v2, it must have read range ≥ i2 such that q.items[i2] = v2.
So, d must have read q.back at D1 after enq(v2) incremented it at E1.

Since, enq(v1) ≺c enq(v2), it follows that enq(v2) will have read a larger
value of q.back at E1 than enq(v1). So, in particular, once enq(v1) finishes, the
following assertion will hold:

∃i1 < q.back. q.items[i1] = v1 ∧ (∀j < i1. q.items[j] 6= v2) (∗)

Note that since, by assumption, v1 can never be dequeued, and any later enq(v2)
can only affect the q.items array at indexes larger than i1, (∗) is an invariant.

Given this invariant, however, it is impossible for d to return v2, as in its
loop it will necessarily first have encountered v1.

5 Automation

As can be seen from our previous informal argument, establishing absence of
VFresh and VRepet violations was relatively straightforward, whereas proving
POrd was somewhat more involved. Therefore, in this section, we will focus on
automating the proof of the third property, POrd. Towards the end of the section,
we will discuss the automatic verification of the absence of VWit violations for
queue implementations, where deq may return NULL.

Prophetic Instrumentation of Dequeues. Our proof technique relies heavily on
instrumenting the deq() function with a prophecy variable ‘guessing’ the value
that will be returned when calling it. Essentially, we construct a method, deq(v),

Aspect-Oriented Linearizability Proofs 11

such that the set of traces of
⊔

x∈N∪{NULL} deq(x) is equal to the set of traces of

deq(), where t stands for non-deterministic choice. Figure 2 shows the resulting
automatically-generated instrumented definition of deq(v) for the HW queue.

Our implementation of the instrumentation performs a sequence of simple
rewrites, each of which does not affect the set of traces produced:

return E assume(v = E); return E

if B then C else C ′ (assume(B);C) t (assume(¬B);C ′)

C; assume(B) assume(B);C provided fv(B) ⊆ Locals \ writes(C)

C; (C1 t C2)! (C;C1) t (C;C2)

(C1 t C2);C! (C1;C) t (C2;C)

In general, the goal of applying these rewrite rules is to bring the introduced
assume(v = E) statements as early as possible without unduly duplicating code.

Proving Absence of VOrd Violations. It turns out that our automated technique
for proving POrd also establishes absence of VFresh violations as a side-effect.
We reduce the problem of proving absence of VFresh and VOrd violations to
the problem of checking non-termination of non-deterministic programs with an
unbounded number of threads. The reduction exploits the instrumented deq(v)
definition: deq() cannot return a result x in an execution precisely if deq(x)
cannot terminate in that same execution.

Theorem 3. A completable queue implementation has no VFresh and VOrd vi-
olations iff for all n ∈ N and forall v1 and v2 such that v1 6= v2, the program3

Prg
def
= b← false; (deq(v2) ‖

n times︷ ︸︸ ︷
C‖ . . . ‖C)

does not terminate, where

C
def
= (enq(v1); b← true) t (assume(b); enq(v2)) t

⊔
x 6=v2

enq(x) t
⊔

x6=v1

deq(x) .

Proof. (⇒) We argue by contradiction. Consider a terminating history c of Prg .
If enq(v2) is not invoked in c, then as there are no VFresh violations, we know that
no deq() in c can return v2, contradicting our assumption that c is a terminating
history of Prg . Otherwise, if enq(v2) is invoked in c, then at some earlier point
assume(b) was executed, and since initially b was set to false, this means that
b ← true was executed and therefore enq(v1) ≺c enq(v2). Consequently, from

3 For simplicity, we assume that the methods cannot distinguish the thread in which
they are running (i.e., they do not use thread-local storage or thread identifiers).
Handling thread identifiers properly is not difficult: we have to record a set of thread
identifiers that are not currently in use. Before each method invocation, we have to
atomically pick and remove an identifier from that set, and on returning from the
method, we have to add the current identifier back the set of unused identifiers.

12 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

POrd, if there is deq() in c returns v2, there must be a deq() in c that can be
completed to return v1, contradicting our assumption that c is a terminating
history of Prg .

(⇐) We have two properties to prove. For VFresh, it suffices to consider
the restricted parallel context that never chooses to execute the first two of
the non-deterministic choices. In this restricted context, namely one that never
enqueues v2, deq(v2) does not terminate, and so deq() cannot return v2. For
VOrd, consider a history in which every enq(v2) happens after some enqueue of
a different value, say enq(v1), and in which there is no deq(v1). Such a history
can easily be produced by the unbounded parallel composition of C, and so
deq(v2) also does not terminate, as required. ut

To prove non-termination, we essentially prove the partial-correctness Hoare
triple, {true} Prg {false}. Given a sound program logic, the only way for such a
triple to hold is for the program to always diverge.

Implementation within Cave. To prove such triples, we have midly adapted
the implementation of Cave [15], a sound but incomplete thread-modular con-
current program verifier that can handle dynamically allocated linked list data
structures, fine-grained concurrency. The tool takes as its input a program con-
sisting of some initialization code and a number of concurrent methods, which
are all executed in parallel an unbounded number of times each. When successful,
it produces a proof in RGSep that the program has no memory errors and none
of its assertions are violated at runtime. Internally, it performs RGSep action
inference [16] with a rich shape-value abstract domain [14] that can remember
invariants of the form that value v1 is inside a linked list. Cave also has a way
of proving linearizability by a brute-force search for linearization points (see [15]
for details), but this is not applicable to the HW queue and therefore irrelevant
for our purposes.

The main modifications we had to perform to the tool were: (1) to add code
that instruments deq() methods with a prophecy argument guessing its return
value, thereby generating deq(v); (2) to improve the abstraction function so that
it can remember properties of the form v2 /∈ X, which are needed to express the
(∗) invariant of the proof in §4; and (3) to add some glue code that constructs
the Prg verification condition and runs the underlying prover to verify it.

As Cave does not support arrays (it only supports linked lists), we gave the
tool a linked-list version of the HW queue, for which it successfully verified that
there are no VFresh and VOrd violations.

Showing Absence of VWit Violations. Here, we have to show that any dequeue
event cannot return empty if it never goes through a state where the queue is
logically empty. This in turn means that we have to express non-emptiness using
only the actions of the history (and not referring to the linearization point or the
gluing invariant which relates the concrete states of the implementation to the
abstract states of the queue). For the following let us fix a (complete) concurrent
history c and a dequeue of interest d which returns NULL and does not precede
any other event in c.

Aspect-Oriented Linearizability Proofs 13

Let c′ be some prefix of c and let e ∈ Enq(c′) be a complete enqueue event in
c′. We will call e alive after c′ if there is no completion of c′ in which the dequeue
event deq(Valc′(e)) occurs. Let di denote the dequeue event which removes the
element inserted by the enqueue event ei; that is, di = deq(Valc(ei)). A sequence
e0e1 . . . en of enqueue events in Enq(c) is covering for d in c if the following holds:

– e0 is alive at c′ where c′ is the maximal prefix of c such that d /∈ Deq(c′).
– For all i ∈ [1, n], ei starts before d completes.
– For all i ∈ [1, n], we have ei ≺c di−1.
– en is alive at c.

Note that all di must exist by the third condition and that dn does not exist by
the last condition. Then, the sequence is covering for d if d0 does not start before
d starts, and every enqueue event ei completes before the dequeue event di−1
starts. Intuitively, this means that at every state visited during the execution of
d, the queue contains at least one element. The property corresponding to the
last violation (VWit) then becomes the following:

(PWit) A dequeue event d cannot return NULL if there is a covering for d.

We will actually re-state the same property in a simpler way by making the
following observation.

Proposition 5. There is a covering for d in c iff at every prefix c′ of c such
that d is running, there is at least one alive enqueue event.

Then, we can alternatively state PWit as follows:

(PWit′) A dequeue event d cannot return NULL if for every prefix c′ at which d
is pending there exists an alive enqueue event.

Note that, POrd can also be stated in terms of alive enqueue events.

(POrd′) For any enqueue events e1 and e2 with e1 ≺c e2 and Valc(e1) 6= Valc(e2),
a dequeue event cannot return Valc(e2) if e1 is alive at c.

6 Related Work

Linearizability was first introduced by Herlihy and Wing [8], who also presented
the HW queue as an example whose linearizability cannot be proved by a simple
forward simulation where each method performs its effects instantaneously at
some point during its execution. The problem is, as we have seen, that neither of
E1 or E2 can be given as the (unique) linearization point of enq events, because
the way in which two concurrent enqueues are ordered may depend on not-yet-
completed concurrent deq events. In other words, one cannot simply define a
mapping from the concrete HW queue states to the queue specification states.
Nevertheless, Herlihy and Wing do not dismiss the linearization point technique
completely, as we do, but instead construct a proof where they map concrete
states to non-empty sets of specification states.

14 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis

This mapping of concrete states to non-empty sets of abstract states is closely
related to the method of backward simulations, employed by a number of manual
proof efforts [3, 5, 13], and which Schellhorn et al. [13] recently showed to be a
complete proof method for verifying linearizability. Similar to forward simulation
proofs, backward simulation proofs, are monolithic in the sense that they prove
linearizability directly by one big proof. Sadly, they are also not very intuitive and
as a result often difficult to come up with. For instance, although the definition of
their backward simulation relation for the HW queue is four lines long, Schellhorn
et al. [13] devote two full pages to explain it.

As a result, most work on automatically verifying linearizability (e.g. [2, 14,
15, 1]) has relied on the simpler technique of forward simulations, even though
it is known to be incomplete. The programmer is typically required to annotate
each method with its linearization points and then the verifier uses some kind
of shape analysis that automatically constructs the simulation relation. This
approach seems to work well for simple concurrent algorithms such as the Treiber
stack and the Michael and Scott queues, where finding the linearization points
may be automated by brute-force search [15], but cannot handle more challenging
examples such as the ones mentioned in the introduction.

Among this line of work, the most closely related one to this paper is the
recent work by Abdulla et al. [1], who verify linearizability of stack and queue
algorithms using observer automata that report specification violations such as
our VOrd. Their approach, however, still requires users to annotate methods
with linearization points, because checker automata are synchronized with the
linearization points of the implementation.

We would also like to point out that the use of forward simulations is not
limited to automated verifications of linearizability. Several manual verification
also used forward simulations (e.g. [4, 3]).

To the best of our knowledge, there exist only two earlier published proofs of
the HW queue: (1) the original pencil-and-paper proof by Herlihy and Wing [8],
and (2) a mechanized backward simulation proof by Schellhorn et al. [13].

Both proofs are manually constructed. In comparison, our new proof is sim-
pler, more modular, and largely automatically generated.4 This is largely due to
the fact that we have decomposed the goal of proving linearizability into proving
four simpler properties, which can be proved independently. This may allow one
to adapt the HW queue algorithm, e.g. by checking emptiness of the queue and
allowing deq to return NULL, and affecting only the proof of absence of VWit
violations without affecting the correctness arguments of the other properties.

Our violation conditions are arguably closer to what programmers have in
mind when discussing concurrent data structures. Informal specifications writ-
ten by programmers and bug reports do not mention that some method is not
linearizable, but rather things like that values were dequeued in the wrong order.

4 We say ‘largely’ because we have not yet automated the verification of the absence of
VRepet violations, which requires a simple counting argument, nor the (admittedly
trivial) proof that the HW queue is purely-blocking. We intend to implement these
in the near future.

Aspect-Oriented Linearizability Proofs 15

7 Conclusion

We have presented a new method for checking linearizability of concurrent
queues. Instead of searching for the linearization points and doing a monolithic
simulation proof, we verify four simple properties whose conjunction is equivalent
to linearizability with respect to the atomic queue specification. By decomposing
linearizability proofs in this way, we obtained a much simpler correctness proof of
the Herlihy and Wing queue [8], and one which can be produced automatically.

We conjecture that our new property-oriented approach to linearizability
proofs will be equally applicable to other kinds of concurrent shared data struc-
tures, such as stacks, sets, and maps. In the future, we would like to build tools
that will automate this kind of reasoning for such data structures.

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L., Jonsson, B., Rezine, A.: An integrated
specification and verification technique for highly concurrent data structures. In:
TACAS’13. pp. 324–338. Springer (2013)

2. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstrac-
tion for verifying linearizability. In: CAV (2007)

3. Colvin, R., Doherty, S., Groves, L.: Verifying concurrent data structures by simu-
lation. ENTCS 137(2), 93–110 (2005)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential
linearisation points. In: FM’11. pp. 323–337. Springer (2011)

5. Doherty, S., Moir, M.: Nonblocking algorithms and backward simulation. In: Kei-
dar, I. (ed.) DISC. LNCS, vol. 5805, pp. 274–288. Springer (2009)

6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: SPAA ’10. pp. 355–364. ACM (2010)

7. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc. (2008)

8. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. pp. 463–492 (1990)

9. Hoffman, M., Shalev, O., Shavit, N.: The baskets queue. In: OPODIS’07. pp. 401–
414. Springer (2007)

10. Ladan-Mozes, E., Shavit, N.: An optimistic approach to lock-free FIFO queues. In:
DISC ’04. pp. 117–131. Springer-Berlin (2004)

11. Liu, Y., Chen, W., Liu, Y.A., Sun, J.: Model checking linearizability via refinement.
In: FM ’09. pp. 321–337. Springer (2009)

12. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free FIFO queues. In: SPAA ’05. pp. 253–262. ACM (2005)

13. Schellhorn, G., Wehrheim, H., Derrick, J.: How to prove algorithms linearisable.
In: CAV’12. pp. 243–259. Springer (2012)

14. Vafeiadis, V.: Shape-value abstraction for verifying linearizability. In: Jones, N.D.,
Müller-Olm, M. (eds.) VMCAI. LNCS, vol. 5403, pp. 335–348. Springer (2009)

15. Vafeiadis, V.: Automatically proving linearizability. In: CAV’10. pp. 450–464.
Springer (2010)

16. Vafeiadis, V.: RGSep action inference. In: Barthe, G., Hermenegildo, M.V. (eds.)
VMCAI. LNCS, vol. 5944, pp. 345–361. Springer (2010)

