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Abstract

We consider a class of density-flow systems, described by linear hyperbolic con-
servation laws, which can be monitored and controlled at the boundaries. These
control systems are open-loop unstable and subject to unmeasured flow distur-
bances. We address the issue of feedback stabilization and disturbance rejection
under PI boundary control. Explicit necessary and sufficient stability conditions
in the frequency domain are provided.
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1. Introduction

We are concerned with hyperbolic systems of two linear conservation laws
over a finite interval in one spatial dimension of the general form:

∂tH + ∂xQ = 0,

∂tQ+ λ1λ2∂xH + (λ1 − λ2)∂xQ = 0,
t ∈ [0,+∞), x ∈ [0, L], (1)

where λ1 and λ2 are two real positive constants. In these equations H(t, x)
is the density and Q(t, x) is the flow density of some extensive quantity of
interest. Therefore, this system is called a “density-flow” system. For instance,
this system may be used as a valid approximate linearised model for lossless
electrical lines or for horizontal and frictionless open channels or gas pipes, see
Fig.1.
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Figure 1: A density-flow system.

We are concerned with the solutions of the Cauchy problem for the system
(1) under an initial condition:

H(0, x), Q(0, x), x ∈ [0, L],

and two boundary conditions of the form:

Q(t, 0) = Q0(t), Q(t, L) = QL(t), t ∈ [0,+∞). (2)

Any pair of constant states H∗, Q∗ is a potential steady-state of the system.
The Riemann coordinates are defined around a steady-state by the following

change of coordinates:

R1 = Q−Q∗ + λ2(H −H∗),

R2 = Q−Q∗ − λ1(H −H∗).

The inverse change of coordinates is:

H = H∗ +
R1 −R2

λ1 + λ2
,

Q = Q∗ +
λ1R1 + λ2R2

λ1 + λ2
.

With these coordinates, the system (1) is written in characteristic form:

∂tR1 + λ1∂xR1 = 0, ∂tR2 − λ2∂xR2 = 0. (3)

Then, assuming a constant flow rate Q0(t) = QL(t) = Q∗ and expressing the
boundary conditions (2) in Riemann coordinates, we have:

R1(t, 0) = k1R2(t, 0), R2(t, L) = k2R1(t, L),

with

k1 = −λ2
λ1
, k2 = −λ1

λ2
.

Consequently |k1k2| = 1 and the steady state (H∗, Q∗) is not asymptotically
stable.

It is therefore relevant to study the boundary feedback stabilization of the
control system (1)-(2). It is the main concern of this paper.

The PI control structure is described in Section 2. Then, in Section 3,
explicit necessary and sufficient stability conditions in the frequency domain
are provided. The analysis is in the continuation of previous contributions on
PI control of hyperbolic systems by [9], [6], [4]. Finally in Section 4 we show
how the stability analysis can be extended to (acyclic) networks of density-flow
systems.

2



2. The PI control structure

We consider the situation where there is only one boundary control input,
say Q0(t), available for feedback stabilization. The other boundary flow QL(t)
perturbs the system in an unpredictable manner. This disturbance flow cannot
be measured and cannot therefore be directly compensated in the control.

We assume that, in addition to stabilization, the control objective is to
regulate H(t, x) at the “set point” H∗ by using on-line feedback measurements
of H(t, 0).

In such case, in order to eliminate offsets, it is useful to implement an “in-
tegral” action. A so-called “Proportional-Integral” (PI) control law may be of
the following form:

Q0(t) , QR + kP (H∗ −H(t, 0)) + kI

∫ t

0

(H∗ −H(τ, 0))dτ. (4)

The first term QR is a constant reference value for the flow which is arbitrary and
freely chosen by the designer. The second term is the proportional correction
action with the tuning parameter kP . The last term is the integral action
with the tuning parameter kI . In case of a constant (unknown) disturbance
QL(t) = Q∗, the closed-loop system has a unique steady-state (H∗, Q∗). The
control structure is illustrated in Fig.2.

H⇤ H(t, 0)+ –

+

+

QR

kP + kI

Z

Q0(t) QL(t)

Figure 2: Block diagram of the closed-loop system with a Proportional-Integral control.

3. Stability conditions

In Riemann coordinates, the control law (4) provides a first boundary con-
dition at x = 0:

R1(t, 0) = k1R2(t, 0) + k0Z(t), (5)

with k1 ,
kP − λ2
kP + λ1

, k0 ,
kI

kP + λ1
and

Z(t) ,
QR −Q∗

kI
(λ1 + λ2) +

∫ t

0

(R2(τ, 0)−R1(τ, 0))dτ.

3



The constant disturbance QL(t) = Q∗ gives the second boundary condition at
x = L:

R2(t, L) = k2R1(t, L) with k2 = −λ1
λ2
. (6)

From (6), since R1(t, x) and R2(t, x) are constant along their respective charac-
teristic lines, we have that

R2(t+ τ, 0) = k2R1(t, 0) with τ ,
L

λ1
+
L

λ2
(7)

and therefore that
dR2(t+ τ, 0)

dt
= k2

dR1(t, 0)

dt
. (8)

Moreover, by differentiating (5) with respect to time, the first boundary condi-
tion is rewritten as:

dR1(t, 0)

dt
= k1

dR2(t, 0)

dt
+ k0

(
R2(t, 0)−R1(t, 0)

)
. (9)

Then, by eliminating R1(t, 0) and dR1(t, 0)/dt between (7),(8) and (9), we get
that R2(t, 0) is the solution of the following delay-differential equation of neutral
type:

dR2(t+ τ, 0)

dt
− k1k2

dR2(t, 0)

dt
+ k0

(
R2(t+ τ, 0)− k2R2(t, 0)

)
= 0. (10)

The Laplace transform of this equation is:
[
(esτ − k1k2)s+ k0(esτ − k2)

]
R2(s, 0) = 0. (11)

The poles of the system are the roots of the characteristic equation

(esτ − k1k2)s+ k0(esτ − k2) = 0. (12)

We then have the following stability Theorem. In the proof of this Theorem
we use a variant of the Walton-Marshall procedure (see [8] and [7, Section 5.6]).

Theorem 1.
The poles of the system (11) have a strictly negative real part if and only if

• when λ1 6 λ2 (i.e. −1 6 k2 < 0),

|k1k2| < 1 and 0 < k0;

• when λ1 > λ2 (i.e. k2 < −1),

|k1k2| < 1 and 0 < k0 < ω0
k2(1 + k1)

1− k22
sin(ω0τ)

where ω0 is the smallest positive ω such that cos(ωτ) =
1 + k1k

2
2

k2(1 + k1)
.
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Proof. A fundamental property in the stability analysis of the neutral delay-
differential system (11) is that |k1k2| < 1 is a necessary condition to have poles
with a strictly negative real part i.e. <(s) < 0 (see e.g. [2] and [5]). It is also
easily checked that, for every k1 and k2, for every η > ln(|k1k2|) and for every
C0 > 0, there exists C1 > 0 such that

{
|k0| 6 C0, |s| > C1 and (12)

}
⇒
{
<(s) 6 η

}
. (13)

With the notation s , σ + iω, the poles satisfy the following equation:

k0 = − (esτ − k1k2)s

esτ − k2
=

[ωa(σ, ω)− σb(σ, ω)] + i[σa(σ, ω)− ωb(σ, ω)]

e2στ + k22 − 2k2eστ cosωτ

(14)

with

a(σ, ω) , k2e
στ (k1 − 1) sinωτ and (15)

b(σ, ω) , e2στ − k2(1 + k1)eστ cosωτ + k1k
2
2. (16)

Since the left-hand side of equation (14) is real, it follows that the imaginary
part of the right-hand side must be zero. Therefore we are looking for the values
of σ and ω such that

σa(σ, ω) = ωb(σ, ω). (17)

Let us now consider the poles with non-positive real parts, i.e. σ 6 0. If k0 = 0,
we see that the poles are roots of (esτ − k1k2)s = 0. This means that there is a
pole s = 0 at the origin and the other poles are stable if and only if |k1k2| < 1.
Now for small non-zero k0, we have:

(1− k1k2)s+ k0(1− k2) ≈ 0,

that is

s = −k0
1− k2

1− k1k2
.

Since |k1k2| < 1 and k2 = −λ1/λ2 < 0, then, for small k0 > 0, the pole at
zero moves inside the negative half-plane while the other poles stay inside the
negative half-plane.

Now, in order to analyze what happens when k0 > 0 becomes larger, we
consider the conditions for having poles on the imaginary axis i.e. σ = 0. Since
k0 6= 0, the case σ = 0, ω = 0 is excluded. Therefore σ = 0 implies b = 0 from
(17), which together with (16) gives:

cos(ωτ) =
1 + k1k

2
2

k2(1 + k1)
. (18)

In this case, it can be readily verified that if |k1k2| < 1, then

λ1 < λ2 ⇐⇒ |k2| < 1 ⇐⇒
∣∣∣∣

1 + k1k
2
2

k2(1 + k1)

∣∣∣∣ > 1,
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which implies that there is no eigenvalue on the imaginary axis (since | cosωτ | 6
1 obviously). Then, using also (13), we can conclude, using a standard defor-
mation argument on k0, that, when |k2| < 1 and |k1k2| < 1, the poles remain
stable for every k0 > 0.

Let us now consider the case where |k1k2| < 1 and λ1 > λ2 ⇔ k2 < −1 (the
case λ1 = λ2 is discussed later). In this case, it can be readily verified that

∣∣∣∣
1 + k1k

2
2

k2(1 + k1)

∣∣∣∣ < 1.

Therefore, from (14) and (16) with σ = 0, there is a pair of poles ±iω on the
imaginary axis for any positive value of ω such that:

cos(±ωτ) =
1 + k1k

2
2

k2(1 + k1)
and ω sin(ωτ) = −k0(k22 − 1)

k2(1 + k1)
. (19)

Let ω0 be the smallest value of ω such that (19) is satisfied. Now, if iω0 is a
pole on the imaginary axis, the corresponding value of k0 computed from (19)
ω = ω0 is as follows:

k∗0 = ω0
k2(1 + k1)

1− k22
sin(ω0τ) > 0.

Then, using again (13), we can conclude, using a standard deformation argument
on k0, that the poles are stable for any k0 such that 0 < k0 < k∗0 . In order to
determine the motion of the pole on the imaginary axis for small variations of
k0 around k∗0 , we consider the root s of the characteristic equation as an explicit
function of k0. Then, by differentiating the characteristic equation (12), we have
the following expression for the derivative of s with respect to k0:

s′ ,
ds

dk0
=

k2 − esτ
esτ (1 + s(1 + k0))− k1k2

. (20)

We now evaluate this expression at iω:

s′ =
(k2 − cosωτ)− i(sinωτ)

[cosωτ − (1 + k0)ω sinωτ − k1k2] + i[sinωτ + (1 + k0)ω cosωτ ]
.

The real part of s′ is given by

<(s′) =
k2(1 + k1) cos(ωτ)− 1− k2(1 + k0)ω sin(ωτ)− k1k22

[cos(ωτ)− (1 + k0)ω sin(ωτ)− k1k2]2 + [sin(ωτ) + (1 + k0)ω cos(ωτ)]2
.

Now using (19), after some calculations, we get:

<(s′) =
(k0 + k20)(k22 − 1)

(1 + k1)
(

[cos(ωτ)− (1 + k0)ω sin(ωτ)− k1k2]2 + [sin(ωτ) + (1 + k0)ω cos(ωτ)]2
) .

Hence, since k0 > 0, k2 < −1 and |k1| < 1 by assumptions, <(s′) is a positive
number. It follows that any pole reaching the imaginary axis from the left when
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k0 is increasing will cross the imaginary axis from left to right. This readily
implies that, as soon as k0 > k∗0 , there is necessarily at least one pole in the
right half plane.

Let us finally consider the case where λ1 = λ2 (i.e. k2 = −1). In that case,
it follows directly from (18) that cos(ωτ) = −1 and sin(ωτ) = 0 for any pole iω
on the imaginary axis. Therefore the characteristic equation (12) reduces to

(k1 − 1)iω = 0

which is impossible if ω 6= 0 because the conditions k2 = −1 and |k1k2| < 1
imply that |k1| < 1. Hence there is no imaginary pole when λ1 = λ2. This
completes the proof of Theorem 1.

As a matter of illustration, a sketch of the root locus for fixed values of k1
and k2 and increasing values of k0 from 0 to +∞ is given in Fig.3.
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x
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Figure 3: Sketch of the root locus for fixed values of k1 and k2 and increasing values of k0
from 0 to +∞.

In the previous Theorem, for the clarity of the proof, we have carried out
the analysis in terms of the parameters k0, k1 and k2. However, from a practical
viewpoint, it is clearly more relevant and more interesting to express the stability
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conditions in terms of the control tuning parameters kP and kI . Replacing k0,
k1 and k2 by their expressions in function of kP , kI , λ1 and λ2 as given in
(5)-(6), the conditions of Theorem 1 are translated as follows.

Theorem 2. The poles of the closed-loop system (1)-(4) have a strictly negative
real part if and only if the control tuning parameters kP , kI are selected such
that:

• when λ1 < λ2,

kP > 0 and kI > 0 or kP < −
2λ1λ2
λ2 − λ1

and kI < 0;

• when λ1 = λ2, kP > 0 and kI > 0;

• when λ1 > λ2,

kP > 0 and 0 < kI < ω0
(2kP + λ1 − λ2)λ1λ2

λ1 − λ2
sin(ω0τ)

where ω0 is the smallest positive ω such that

cos(ωτ) =
λ22(kP + λ1) + λ21(kP − λ2)

λ1λ2(λ2 − λ1 − 2kP )

4. Networks of density-flow systems

In this section, we examine how the previous stability analysis can be ex-
tended to (acyclic) networks of density-flow systems. Depending on the con-
cerned application, there are different ways of designing such networks. Here,
as a matter of example, we consider a specific structure which leads to a natu-
ral generalization of the control problem addressed in the previous section. But
other structures could be dealt with in a similar way (see e.g. [3], [1] for relevant
related references).

The network has a compartmental structure illustrated in Fig.4. The nodes
of the network are n storage compartments having the dynamics of density-flow
systems (e.g. the pipes of an hydraulic network):

{
∂tHj + ∂xQj = 0,

∂tQj + λjλn+j∂xHj + (λj − λn+j)∂xQj = 0,
j = 1, . . . , n. (21)

Without loss of generality and for simplicity, it can always be assumed that, by
an appropriate scaling, all the pipes have exactly the same length L.

The directed arcs i → j of the network represent instantaneous transfer
flows between the compartments. Additional input and output arcs represent
interactions with the surroundings: either inflows injected from the outside into
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Figure 4: Physical network of density-flow systems

some compartments or outflows from some compartments to the outside. We
assume that there is exactly one and only one control flow, denoted Ui, at the
input of each compartment. All the other flows are assumed to be disturbances
and denoted Dk (k = 1, . . . ,m). The set of 2n PDEs (21) is therefore subject
to 2n boundary flow balance conditions of the form:

Qi(t, 0) = Ui(t) +

m∑

k=1

βikDk(t), i = 1, . . . , n,

Qi(t, L) =

n∑

j=1

Uj(t) +

m∑

k=1

γkiDk(t), i = 1, . . . , n.

(22)

In the summations, only the terms corresponding to actual links between adja-
cent compartments of the network are taken into account, i.e. the coefficients
βik and γik are equal to 1 for the existing links and 0 for the others (see Fig.4
for illustration).

With the matrix notations

H ,



H1

...
Hn


 , Q ,



Q1

...
Qn


 , U ,



U1

...
Un


 , D ,



D1

...
Dm


 ,

Λ+ = diag{λ1, . . . , λn}, Λ− = diag{λn+1, . . . , λ2n},
the system (21) is written

∂tH + ∂xQ = 0,

∂tQ + Λ+Λ−∂xH + (Λ+ − Λ−)∂xQ = 0.
(23)

The boundary conditions (22) are written

Q(t, 0) = U(t) +B0D(t),

Q(t, L) = ALU(t) +BLD(t),
(24)
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with appropriate matrices AL, B0, BL. Let p denote the length of the longest
path in the considered network of density-flow systems. The matrix AL, which
describes the structure of the network, has the property that

ApL = 0. (25)

A steady state for the system (23)-(24) is a quadruple

{H∗,Q∗,U∗,D∗}

which satisfies the boundary conditions:

Q∗ = U∗ +B0D
∗,

Q∗ = ALU∗ +BLD∗.

The network has an infinity of positive steady states which are not asymptot-
ically stable. In order to stabilize the network, each control input is endowed
with a PI control law of the form:

Ui(t) , UR + kPi(H
∗
i −Hi(t, 0)) + kIi

∫ t

0

(H∗i −Hi(τ, 0))dτ, (26)

where UR is an abitrary scaling constant, H∗i is the set point for the i-th com-
partment, kPi and kIi are the control tuning parameters. In matrix form, the
set of control laws (26) is written

U = UR +KP

(
H∗ −H(t, 0)

)
+KI

∫ t

0

(
H∗ −H(τ, 0)

)
dτ, (27)

with KP , diag{kP1, . . . kPn} and KI , diag{kI1, . . . kIn}.
We shall now examine how the stability analysis of Section 4 for the “sin-

gle pipe” case can be generalised to the closed-loop network (23)-(24)-(27) for
constant unknown disturbances D∗. The Riemann coordinates are defined as
follows: {

Ri , Qi −Q∗ + λn+i(Hi −H∗i )

Rn+i , Qi −Q∗ − λi(Hi −H∗i )
i = 1, . . . , n, .

Using this definition, the following equalities hold at the boundaries:

(λi + λn+i)(Qi(t, 0)−Q∗) = (λi + λn+i)
[
kPi(H

∗
i −Hi(t, 0)) + kIiZi(t)

]

= λiRi(t, 0) + λn+iRn+i(t, 0)

= kPi(Rn+i(t, 0)−Ri(t, 0)) + (λi + λn+i)kIiZi(t),

(λi + λn+i)(Qi(t, L)−Q∗) = λiRi(t, L) + λn+iRn+i(t, L),

with Zi(t) such that

dZi
dt

= H∗i −Hi(t, 0) =
Rn+i(t, 0)−Ri(t, 0)

λi + λn+i
.
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Since Ri(t, x) and Rn+i(t, x) are constant along their respective characteristic
lines, we have that

Ri(t+
L

λi
, L) = Ri(t, 0) and Rn+i(t+

L

λn+i
, 0) = Rn+i(t, L).

Then, combining appropriately these equalities, it can be shown after some
computations that, in the frequency domain, the transfer function between
(Qi(t, L)−Q∗) and (Qi(t, 0)−Q∗) is given by:

Gi(s) ,
Qi(s, 0)−Q∗
Qi(s, L)−Q∗ =

1

λn+i

s(λiki − λn+i) + ci(λi − λn+i)
(esτi − kikn+i)s+ ci(esτi − kn+i)

e
sL
λi ,

with the following notations:

ki ,
kPi − λn+i
kPi + λi

, kn+i , −
λi
λn+i

,

ci ,
kIi

kPi + λi
, τi ,

L

λi
+

L

λn+i
.

It follows that the poles of the transfer function Gi(s) are the roots of the
characteristic equation

(esτi − kikn+i)s+ ci(e
sτi − kn+i) = 0

which is, as expected, identical to the characteristic equation of the simple case
of Section 3.

Let us now consider the closed-loop system (23)-(24)-(27) as an input-output
dynamical system with input D and output U. Then, by iterating equations
(24) p-times and using property (25), it can be shown that the transfer matrix
of the system is as follows:

H(s) ,
p−1∑

i=0

(G(s)AL)i(G(s)BL −B0),

with G(s) , diag{G1(s), . . . , Gn(s)}. It follows readily that the poles of H(s)
are given by the collection of the poles of the individual scalar transfer func-
tion Gi(s). Consequently, the system is stable if and only if the conditions of
Theorem 2 hold for each PI controller of the network.

5. Conclusion

In this paper we have addressed the issue of feedback stabilization and distur-
bance rejection for hyperbolic density flow systems under PI boundary control.
Explicit necessary and sufficient stability conditions in the frequency domain
have been provided. It has also been shown how the stability analysis can be
extended to acyclic networks of density-flow systems.
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[8] K. Walton and J.E. Marshall. Direct method for TDS stability analysis. IEE
Proceedings – Control Theory and Applications, 134(2):101–107, 1987.

[9] C-Z. Xu and G. Sallet. Proportional and integral regulation of irrigation
canal systems governed by the Saint-Venant equation. In Proceedings 14-th
IFAC World congress, Beijing, July 1999.

12


