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Jointly sparse signal or support recovery

I Jointly sparse signal or support recovery in Multiple
Measurement Vector (MMV) models refers to the estimation
of M jointly sparse N-dimensional signals or the common
support, respectively, from L (�N) limited noisy linear
measurements based on a common measurement matrix

I Two main challenges:
I Design a common measurement matrix which maximally

retains the information on sparse signals or their common
support when reducing signal dimension

I Recover the jointly sparse signal or the common support with
high recovery accuracy and short computation time
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Grant-free random access

I Grant-free random access has been widely regarded as one
promising solution for supporting massive machine-type
communications (mMTC) for Internet of Things (IoT)

I In mMTC, there are massive IoT devices in each cell, but only
a small number of devices are active at a time

I In grant-free random access, each device is assigned a specific
pilot sequence, all active devices send their pilot sequences,
and each base station (BS) detects the activities of its
associated devices or estimates their channel states
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Channel estimation and device activity detection in
MIMO-based grant-free random access

I Key applications of the jointly sparse signal and support
recovery include channel estimation and device activity
detection in MIMO-based grant-free random access

I Common measurement matrix design, jointly sparse signal
recovery and jointly sparse support recovery for complex
signals correspond to design of pilot sequences, channel
estimation and device activity detection in MIMO-based
grant-free random access

I related work: [Senel & Larsson (2018); Liu & Yu (2018)] and device
activity detection [Haghighatshoar et al. (2018); Chen et al. (2019); Jiang
& Cui (2020); Liu et al. (2018); Chen et al. (2018)]

I Our primary goals:
I Address the aforementioned two challenges in jointly sparse

signal recovery and sparse support recovery for complex signals
I Provide practical solutions with high recovery accuracy and

short computation time for channel estimation and device
activity detection in MIMO-based grant-free random access
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Previous work
I Most existing works on sparse support recovery for SMV

models and jointly support recovery for MMV models focus on
investigating support recovery methods for a given
measurement matrix
I Optimization-based methods: LASSO [Wainwright (2009); Pal

& Vaidyanathan (2015)], ML estimation [Haghighatshoar et al.
(2018); Chen et al. (2019)] and MAP estimation [Jiang & Cui
(2020)]

I Iterative thresholding methods: AMP [Liu et al. (2018); Chen
et al. (2018)] and EM-AMP [Ke et al. (2020); Wei et al.
(2016)]

I Sparse signal recovery for SMV models and jointly sparse
signal recovery for MMV models are more widely investigated,
but still mainly for a given measurement matrix
I Optimization-based methods: LASSO [Tibshirani (1996)] and

GROUP LASSO [Qin et al. (2013)]
I Iterative thresholding methods: AMP [Donoho et al. (2009);

Senel & Larsson (2018); Liu & Yu (2018); Ziniel & Schniter
(2012)] and EM-AMP [Ke et al. (2020); Wei et al. (2016)]
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Previous work
I LASSO [Wainwright (2009); Pal & Vaidyanathan (2015);

Tibshirani (1996)] and GROUP LASSO [Qin et al. (2013)] do
not rely on any information of signals or noise

I MAP, AMP and EM-AMP all assume that the components of
signals are independent, and hence their recovery performance
may be unsatisfactory when such assumption is not satisfied

I Neural networks are recently utilized to exploit properties of
sparse signals from training samples, for the purpose of
designing effective sparse signal recovery methods when the
components of signals are correlated and prior distributions do
not have analytic models
I Some works exploit properties of sparsity patterns of real

signals [Gregor & LeCun (2010); Yao et al. (2017); He et al.
(2018); Wu et al. (2019)]

I Some works exploit properties of sparsity patterns of complex
signals [Taha et al. (2019); Yang et al. (2018); Zhang et al.
(2019)]
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Previous work

I Very few papers [Candes (2008); Eldar et al. (2010)]
investigate the impact of the measurement matrix in sparse
signal recovery
I The authors in [Candes (2008)] show that a measurement

matrix can preserve sparsity information in sparse signals, if it
satisfies the restricted isometry property (RIP)

I The authors in [Eldar et al. (2010)] consider group sparse
signals and show that block-coherence and sub-coherence of a
measurement matrix affect signal recovery performance

I The results in [Candes (2008); Eldar et al. (2010)] may not
hold for sparse support recovery
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Previous work

I Joint design of signal compression and recovery methods for
real signals [Wu et al. (2019); Nguyen et al. (2017); Mousavi
et al. (2017); Adler et al. (2017)] or complex signals [Wen
et al. (2018); Li et al. (2019)] using deep auto-encoders can
significantly improve recovery performance
I All these works are all for SMV models, and their extensions to

MMV models are highly nontrivial
I Neither the neural network for complex signals in [Wen et al.

(2018)] nor direct extensions of the neural networks for real
signals in [Wu et al. (2019); Nguyen et al. (2017); Mousavi
et al. (2017); Adler et al. (2017)] to complex signals can
achieve linear compression for complex signals

I How to jointly design the common measurement matrix and
jointly sparse signal or support recovery methods in MMV
models for complex signals remains open
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Joint sparse signal/support recovery in MMV models
I The support of sparse signal x ∈ CN is the set of locations of

non-zero elements of x:

supp(x) , {n ∈ N|xn 6= 0}

where N , {1, · · · ,N}
I x is sparse if the number of non-zero elements of x is much

smaller than its total number of elements, i.e., |supp(x)| � N

I M signals xm ∈ CN ,m ∈M are jointly sparse if they share a
common support S , supp(xm),m ∈M, where
M , {1, · · · ,M}

I Consider L� N noisy linear measurements ym ∈ CL of xm:

ym = Axm + zm, m ∈M

I A ∈ CL×N is the (known) common measurement matrix
I zm ∼ CN (0L×1, σ

2IL×L) is the additive white Gaussian noise
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Joint sparse signal/support recovery in MMV models

I The compact form of noisy linear measurements is:

Y = AX + Z

I X ∈ CN×M with X:,m = xm,m ∈M
I Y ∈ CL×M with Y:,m = ym,m ∈M
I Z ∈ CL×M with Z:,m = zm,m ∈M

I Jointly sparse signal recovery in MMV models aims to
estimate X from Y

I Jointly sparse support recovery in MMV models aims to
estimate S from Y
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Application: channel estimation and device activity
detection in MIMO-based grant-free random access

I Consider MIMO-based grant-free random access in mMTC
with one M-antenna BS and N single-antenna devices

I Device-activity patterns for IoT traffic are typically sporadic
I xm ∈ CN ,m ∈M, with xm(n) = α(n)hm(n), are jointly sparse

with a common support S = {n ∈ N|α(n) = 1}
I α(n) ∈ {0, 1} denotes the active state of device n
I hm(n) ∈ C denotes the complex channel between the m-th

antenna at the BS and device n

I Each device n has a unique pilot sequence an ∈ CL, and
A ∈ CL×N with A:,n = an, n ∈ N is known at the BS

I In the pilot transmission phase, active devices synchronously
send their pilot sequences to the BS, and Y = AX + Z
represents the received signal at the BS
I Channel estimation, i.e., estimating X from Y corresponds to

jointly sparse signal recovery in MMV models
I Device activity detection, i.e., estimating S from Y,

corresponds to jointly sparse support recovery in MMV models
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A model-driven approach for jointly sparse signal recovery

I Jointly design the common measurement matrix and jointly
sparse signal recovery method for jointly sparse complex
signals

I Utilize the standard auto-encoder structure for real numbers
in deep learning

I Consist of an encoder and a model-driven decoder
I The encoder mimics noisy linear measurement process
I The model-driven decoder mimics jointly sparse signal recovery

process via an approximation part and a correction part
I The approximation part is used to approximate a particular

method for jointly sparse signal recovery
I The correction part aims to reduce the approximation error

I After training, obtain the common measurement matrix by
extracting the weights of the encoder, and directly use the
model-driven decoder for jointly sparse signal recovery
I Should be jointly utilized
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(a) Proposed approach with GROUP LASSO-based decoder
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(b) Proposed approach with AMP-based decoder

Figure: Proposed model-driven approach for jointly sparse signal recovery
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Encoder for jointly sparse signal recovery
I Mimic the noisy linear measurement process for complex

signals based on the two equations for real numbers:

<(Y) = <(A)<(X)−=(A)=(X) + <(Z)

=(Y) = =(A)<(X) + <(A)=(X) + =(Z)

I Consist of two fully-connected two-layer neural networks to
implement the multiplications with <(A) ∈ RL×N and
=(A) ∈ RL×N , respectively
I The input layer has N neurons
I The output layer has L neurons
I The weight of the connection from the n-th neuron in the

input layer to the l-th neuron in the output layer corresponds
to the (l , n)-th element of <(A) or =(A)

I No activation functions are used in the output layer
I The elements of <(Z) ∈ RL×M and =(Z) ∈ RL×M are

generated independently according to N (0, σ
2

2 )

I Extend the one for SMV models [Li et al. (2019)]
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Model-driven decoder for jointly sparse signal recovery
I Mimic the jointly sparse signal recovery process of a particular

method
I Consist of an approximation part and a correction part

I The approximation part uses U (≥ 0) building blocks to
implement U iterations of the iterative algorithm

I Input Y and A, and output X(U)

I The difference between X(U) and the actual X generally
decreases with U

I The correction part uses V (≥ 1) fully connected layers to
reduce the difference between X(U) and X

I Input X(U), and output X̂
I In each of the first V − 1 correction layers, choose rectified

linear unit (ReLU) as the activation function
I In the last correction layer, no activation functions are used
I V influences the training error and generalization error

I U and V are jointly chosen to achieve higher recovery accuracy
and shorter computation time than the underlying method

I Degrade to a particular method (sufficiently large U and
V = 0) or a purely data-driven method (U = 0 and V > 0)
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GROUP LASSO-based decoder
I GROUP LASSO is an optimization-theoretic formulation of

the jointly sparse signal recovery problem in MMV models:

min
X

1

2
‖|AX− Y‖|2F + λ

∑
n∈N
‖Xn,:‖2

I λ ≥ 0 is a regularization parameter influencing the signal
recovery accuracy

I Do not rely on any information of sparse signals or noise
I Reduce to LASSO when M = 1

I GROUP LASSO is convex and can be solved optimally
I The gradient descent method has computational complexity
O(N2M), which is prohibitively high at large N

I The block coordinate descent method [Qin et al. (2013)] has
computational complexity O(LNM)

I The sequential operations cannot make use of the
parallelizable neural network architecture and have
unsatisfactory computation time
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GROUP LASSO-based Decoder
I We develop a fast ADMM algorithm of computational

complexity O(LNM)
I The parallel operations make use of the parallelizable neural

network architecture and significantly reduce computation time
I X(k) converges to an optimal solution as k →∞
I Two parameters λ > 0 and ρ > 0 influence the recovery

accuracy and convergence speed, respectively

Algorithm 1 ADMM for GROUP LASSO

1: Set X(0) = 0N×M , B(0) = 0N×M , C(0) = 0N×M and k = 0.
2: repeat

3: For all n ∈ N , compute X
(k+1)
n,: = max

{
1− λ

ρ‖t(k)‖2
, 0
}
t(k)/AH

:,nA:,n, where

t(k) = AH
:,n

(
A:,nX

(k)
n,: + B

(k) − AX
(k) − C(k)

)
.

4: Update B
(k+1)

= 1
N+ρ

(
Y + ρAX

(k+1)
+ ρC(k)

)
.

5: Update C(k+1) = C(k) + AX
(k+1) − B

(k+1)
.

6: Set k = k + 1.
7: until k = kmax or X(k) satisfies some stopping criterion.
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GROUP LASSO-based Decoder

I The approximation part of the GROUP LASSO-based decoder
approximates the estimation obtained by Algorithm 1
I The operations for complex numbers in Algorithm 1 are readily

implemented with operations for real numbers using a standard
neural network

I Each building block of the approximation part of the GROUP
LASSO-based decoder realizes one iteration of Algorithm 1

I λ > 0 and ρ > 0 are tunable parameters
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AMP-based Decoder

I The AMP algorithm with the MMSE denoiser in [Liu & Yu
(2018)] has computational complexity O(LNM), and achieves
excellent recovery accuracy and short computation time for
large N, M and L
I Assume that α(n), n ∈ N are i.i.d. Bernoulli random variables,

each with probability ε ∈ (0, 1) being 1, ε is known, and
non-zero elements of X are i.i.d. according to CN (0, 1)

I We slightly generalize the AMP algorithm in [Liu & Yu (2018)]
by replacing ε in the update for the estimate of Xn,: with ε(n)
I Assume that α(n), n ∈ N are independent Bernoulli random

variables and the probability of α(n) being 1 is ε(n) ∈ (0, 1)
I The parallel operations make use of the parallelizable neural

network architecture
I Parameters ε(n), n ∈ N influence the recovery accuracy
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AMP-based Decoder

Algorithm 2 Generalization of AMP [Liu & Yu (2018)]

1: Set X(0) = 0M×N , R(0) = Y and k = 0.
2: repeat

3: For all n ∈ N , update X
(k+1)
n,: =

 1

1+(τ(k))2

(
(R(k))HA:,n+(X

(k)
n,: )H

)
1+

1−ε(n)
ε(n)

(
(τ(k))2+1

(τ(k))2
)M exp((η(n))k)

H

, where

τ (k) =
√

1
ML
‖|R(k)‖|F and (η(n))k =

−‖(R(k))HA:,n+(X
(k)
n,: )H‖2

2

(τ (k))2((τ (k))2+1)
.

4: Update R(k+1) = Y−AX(k+1) + N
L
R(k)

∑
n∈N

(
1

1+(τ(k))2
IM×M

1+
1−ε(n)
ε(n)

(
(τ(k))2+1

(τ(k))2
)M exp((η(n))k)

+

(t(n))(k)(η(n))k

((1+(τ (k))2)(τ (k))2)(1+(t(n))(k))2

)
, where (t(n))(k) =

1−ε(n)
ε(n)

( (τ (k))2+1

(τ (k))2 )M exp

(
−‖(R(k))HA:,n+(X

(k)
n,: )H‖2

2

(τ (k))2((τ (k))2+1)

)
.

5: Set k = k + 1.
7: until k = kmax or X(k) satisfies some stopping criterion.
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AMP-based Decoder

I The approximation part of the AMP-based decoder
approximates the estimation obtained by Algorithm 2
I The operations for complex numbers in Algorithm 2 are readily

implemented with operations for real numbers using a standard
neural network

I Each building block of the approximation part of the
AMP-based decoder realizes one iteration of Algorithm 2

I ε(n) ∈ (0, 1), n ∈ N are tunable parameters
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Training Process for jointly sparse signal recovery

I Consider I training samples (X[i ]), i = 1, · · · , I
I X̂[i ] denotes the output of the auto-encoder corresponding to

input X[i ]

I Adopt the mean squared error (MSE) loss function to measure
the difference between X̂[i ] and X[i ]:

Loss
(

(X)
[i ]
i=1,··· ,I , (X̂

[i ])i=1,··· ,I

)
=

1

NI

I∑
i=1

‖|X[i ] − X̂[i ]‖|2F

I Train the auto-encoder using the adaptive moment estimation
(ADAM) algorithm [Kingma et al. (2015)]
I ADAM is an algorithm for first-order gradient-based

optimization and is well suited for problems that are large in
terms of data and/or parameters
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Proposed approach for jointly sparse support recovery
I Jointly design the common measurement matrix and jointly

sparse support recovery method for jointly sparse complex
signals

I Utilize the standard auto-encoder structure for real numbers
in deep learning

I Consist of an encoder, a model-driven decoder and a
thresholding module
I The encoder mimics noisy linear measurement process, same

as for jointly sparse signal recovery
I The model-driven decoder mimics jointly sparse support

recovery process via an approximation part and a correction
part

I The thresholding module generates binary approximations to
obtain the common support

I After training, obtain the common measurement matrix from
the encoder, and directly use the decoder and thresholding
module for jointly sparse support recovery

SJTU Ying Cui 28 / 72



Two instances

£(ï) 

¬(ï)¬(�) 

¬(ï) 

¬(ï)£(�) 

£(ï)£(�) 

£(ï)¬(�) 

¬(�) 

£(�) ¬(�) 

£(�) 

+

-

+

+

+

+

� 
(0 ×/) 

Encoder

Autoencoder

Q

1

Q

1

o

o
o

o

1

o

o

N

1

o

o

o

o

¬(�) 

£(�) 

Q

1

o

o

v
e
c
t
o
r

v
e
c
t
o
r

¬(�)� 

£(�)� 

¬(��t M¤ ) 

L2 

L2+1 

2L2 

+

+

-

+

¬(�)¬(��) 

£(�)£(��) 

¬(�)£(��) 

£(�)¬(��) 

(. × .) 

(. × .) 

Decoder

Thresholding module

»å 
»Ý 

(0 × 1) 

(. ×/) 

(. ×/) 

£(��t M¤ ) 

(. )

M
 

(. )

M
 

L

1

N

1

o

oo

o

L

1

N

1

o

oo

o

V

Correction part

... ...

... ...

Approximation part

(a) Proposed approach with covariance-based decoder (U = 0)

Autoencoder

Q

1

o

o

N

1

o

o

Q

1

o

o

Decoder

V

® 

N

1

o

o

¬(ï) 

£(ï) 

(. × 0) 

(. × 0) 

U

Approximation part Correction part

® ® 

£(ï) 

¬(ï)¬(�) 

¬(ï) 
¬(ï)£(�) 

£(ï)£(�) 

£(ï)¬(�) 

¬(�) 

£(�) 

+

-

+

+

+

+

Encoder

L

1

N

1

o

oo

o

L

1

N

1

o

oo

o¬(�) 

£(�) 

� 
(0 ×/) 

¬(�) 

£(�) 

Thresholding module

»å 
»Ý 

(0 × 1) 

...

...

(b) Proposed approach with MAP-based decoder

Figure: Proposed model-driven approach for jointly sparse support
recovery
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Other instances
I Any model-driven decoder for jointly sparse signal recovery,

e.g., the GROUP LASSO-based decoder and the AMP-based
decoder, can also be used for jointly sparse support recovery
when followed by the thresholding module
I The training process for the encoder and the model-driven

decoder remains the same as for jointly sparse signal recovery
I The only difference is that a thresholding module is used for

producing the common support
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Figure: Proposed approach with AMP-based decoder. The
auto-encoder is the same as that in the jointly sparse signal recovery
part.
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Model-driven decoder for jointly sparse support recovery
I Mimic the jointly sparse support recovery process of a

particular method
I Consist of an approximation part and a correction part

I The approximation part uses U (≥ 0) building blocks to
implement U iterations of the iterative algorithm

I Input Y (and A), and output α(U)

I The different between α(U) and the actual α generally
decreases with U

I The correction part uses V (≥ 1) fully connected layers to
reduce the difference between α(U) and α

I Input α(U), and output α̃
I In each of the first V − 1 correction layers, choose rectified

linear unit (ReLU) as the activation function
I In the last correction layer, choose sigmoid function as the

activation function
I V influences the training error and generalization error

I U and V are jointly chosen to achieve higher recovery accuracy
and shorter computation time than the underlying method

I Degrade to a particular method (sufficiently large U and
V = 0) or a purely data-driven method (U = 0 and V > 0)
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Covariance-based decoder

I Properties of common support [Pal & Vaidyanathan (2015)]:

vec(YYH/M) =A∗ � Ar + vec(E1) + vec(E2)

supp(r) =supp(xm),m ∈M

where r(n) = ‖Xn,:‖2
2/M, and � represents the Khatri-Rao

product between two matrices
I Suppose the non-zero elements of X are i.i.d. with zero mean
I As M →∞, YYH/M → Cov(ym), E1 → 0L×L, E2 → σ2IL×L,

and vec(YYH/M) provides of r

I The covariance-based estimation method for jointly sparse
support recovery in [Pal & Vaidyanathan (2015)] estimates
the common support of xm,m ∈M by estimating the support
of r using LASSO for SMV models, in the case of very large M
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Covariance-based decoder

I Motivated by [Pal & Vaidyanathan (2015)], the
covariance-based decoder estimates supp(r) from noisy linear
measurements vec(YYH/M) of r, obtained through a
measurement matrix A∗ � A
I Work for small M
I Recovery accuracy increases with M

I The approximation part of the covariance-based decoder
provides YYH/M (U = 0)

I The correction part of the covariance-based decoder estimates
vec(YYH/M) from YYH/M
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MAP-based decoder
I Assume that α(n), n ∈ N are independent Bernoulli random

variables, the probability of α(n) being 1 is ε(n) ∈ (0, 1), ε(n),
n ∈ N are known, and non-zero elements of X are i.i.d.
according to CN (0, 1)

I The negative log function of the conditional density of Y given
α (omitting an additive constant )is [Jiang & Cui (2020)]:

fMAP(α) = log |AΓA + σ2IL×L|+ tr((AΓA + σ2IL×L)−1Σ̂)

− 1

M

∑
n∈N

(α(n) log ε(n) + (1− α(n)) log(1− ε(n)))

where Γ = diag(α) and Σ̂ = YYH/M

I The MAP estimation problem for jointly sparse support
recovery in MMV models is:

min
α�0

fMAP(α)
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MAP-based decoder

I The coordinate descent algorithm for the MAP estimation in
[Jiang & Cui (2020)] can obtain a locally optimal solution and
has computational complexity O(NL2)

I We slightly simplify the MAP algorithm in [Jiang & Cui
(2020)] by ignoring the interference

I The approximation part of the MAP-based decoder
approximates the estimation obtained by the MAP algorithm
I The operations for complex numbers in the MAP algorithm are

readily implemented with operations for real numbers using a
standard neural network

I Each building block of the approximation part of the
MAP-based decoder realizes one iteration of the MAP
algorithm

I ε(n) ∈ (0, 1), n ∈ N are tunable parameters

SJTU Ying Cui 35 / 72



Training Process for jointly sparse support recovery

I Consider I training samples (X[i ],α[i ]), i = 1, · · · , I
I α̃[i ] denotes the output of the auto-encoder corresponding to

input X[i ]

I Adopt the binary cross-entropy loss function to measure the
difference between α[i ] and α̃[i ]:

Loss
(

(α[i ])i=1,··· ,I , (α̃
[i ])i=1,··· ,I

)
=

− 1

NI

I∑
i=1

∑
n∈N

(
(α(n))[i ] log((α̃(n))[i ]) + (1− (α(n))[i ]) log(1− (α̃(n))[i ])

)
I Train the auto-encoder using the ADAM algorithm [Kingma

et al. (2015)]
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Thresholding module for jointly sparse support recovery

I The hard thresholding module with threshold r converts the
output of the auto-encoder α̃ ∈ RN to the final output of the
proposed approach α̂ ∈ {0, 1}N [Li et al. (2019)]:

α̂(n) = I[α̃(n) ≥ γ], n ∈ N

I For training samples (X[i ],α[i ]), i = 1, · · · , I , choose the
optimal threshold

γ∗ = arg min
γ

1

NI

I∑
i=1

‖α[i ] − α̂[i ]‖1

as the threshold for the hard thresholding module
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Simulation setup

I Conduct numerical experiments on device activity detection
and channel estimation in MIMO-based grant free random
access

I Consider two choices for N, i.e., N = 100 and N = 1000

I Generate the jointly sparse signal X ∈ CN×M with
xm(n) = α(n)hm(n),m ∈M, n ∈ N according to
hm(n) ∼ CN (0, 1),m ∈M, n ∈ N

I Generate the additive white Gaussian noise Z ∈ CL×M

according to Z:,m ∼ CN (0L×1, σ
2IL×L),m ∈M where

σ2 = 0.1
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Simulation setup
I To demonstrate the ability for effectively utilizing sparse

patterns, consider three types of distributions for α
I The independent case for channel estimation and device

activity detection:
I N devices are divided into two groups N1 and N2 of same size
I The devices in Ni accessing the channel in an i.i.d. manner

with access probability Pr[α(n) = 1] = pi , n ∈ Ni

I p = p1+p2
2

denotes the average access probability
I The correlated case with a single active group for channel

estimation:
I N devices are divided into G groups of the same size N/G
I The active states of devices in each group are the same
I Only one group is selected to be active uniformly at random
I 1/G can be viewed as the access probability p

I The correlated case with i.i.d group activity for device activity
detection:

I N devices are divided into G groups of the same size N/G
I The active states of the devices in each group are the same
I G groups activate in an i.i.d. manner with the access

probability p
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Simulation setup

I All the baseline schemes adopt the same set of pilot sequences
for the N devices whose entries are i.i.d. CN (0, 1)

I In training the architectures of the proposed approaches, set
‖an‖2 =

√
L

I The sizes of training samples and validation samples for
training the architectures of the proposed approaches and the
size of testing samples for evaluating the proposed approaches
and the baseline schemes are selected as 9× 103, 1× 103 and
1× 103, respectively

I The maximization epochs, learning rate and batch size in
training the proposed architectures are set as 1× 105, 0.0001
and 32, respectively
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Channel estimation
I Evaluate the proposed model-driven approach with the

GROUP LASSO-based decoder (at N = 100) and the
AMP-based decoder (at N = 100 and N = 1000)
I GROUP LASSO-NN: U = 200 and V = 3
I AMP-NN: U = 50 and V = 3

I Consider three baseline schemes:
I GROUP LASSO conducts channel estimation using the block

coordinate descent algorithm of computational complexity
O(LNM) [Qin et al. (2013)]: 200 iterations

I AMP conducts channel estimation using the AMP algorithm
with MMSE denoiser based on the known p of computational
complexity O(LNM) [Liu & Yu (2018)]: 50 iterations

I ML-MMSE uses the ML algorithm for device activity detection
of computational complexity O(NL2) [Haghighatshoar et al.
(2018)], and then uses MMSE for channel estimation: 55
iterations

I Evaluate the MSE 1
NT

∑T
t=1 ‖|X[t] − X̂[t]‖|2F and computation

time (on the same server) of each scheme, where T = 1000
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Independent case at N = 100
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(a) MSE versus L/N at

p = 0.1, M = 4, p1/p2 =

3.
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(b) MSE versus p at

L/N = 0.2, M = 4,

p1/p2 = 3.
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(c) MSE versus M at

L/N = 0.12, p = 0.1,

p1/p2 = 3.

Figure: MSE in the independent case at N = 100.

I MSE of each scheme decreases with L/N
I MSE of each scheme increases with p
I MSEs of schemes besides AMP, AMP-NN decrease with M
I GROUP LASSO-NN and AMP-NN always outperform GROUP

LASSO and AMP (due to effective A and correction layers)
I GROUP LASSO-NN outperforms AMP-NN at small N, L/N
I ML-MMSE has the smallest MSE (at long computation time)
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Independent case at N = 100
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(a) MSE versus p1/p2 at L/N =

0.12, M = 4, p = 0.1.
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(b) ε1/ε2 versus p1/p2 at

L/N = 0.12, M = 4, p = 0.1.

Figure: MSE and ε1/ε2 in the independent case at N = 100.
ε1 = 2

N

∑
n∈N1

ε(n) and ε2 = 2
N

∑
n∈N2

ε(n), where ε(n), n ∈ N are
extracted from the trained AMP-based decoder.

I MSEs of GROUP LASSO-NN and AMP-NN decrease with p1/p2

(due to exploitation of the difference of p1 and p2)

I MSEs of others almost do not change p1/p2

I ε1/ε2 increases p1/p2
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Correlated case with a single active group at N = 100
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(a) MSE versus L/N at

p = 0.1, M = 4.
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(b) MSE versus p at

L/N = 0.2, M = 4.
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(c) MSE versus M at

L/N = 0.12, p = 0.1.

Figure: MSE in the correlated case with a single active group at N = 100.

I The gains of GROUP LASSO-NN and AMP-NN over GROUP
LASSO and AMP are larger in the correlated case than in the
independent case (due to exploitation of more features of sparsity
pattens)
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Independent case at N = 1000
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(a) MSE versus L/N at

p = 0.1, M = 16, p1/p2 =

3.
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(b) MSE versus p at

L/N = 0.15, M = 16,

p1/p2 = 3.
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(c) MSE versus M at

L/N = 0.11, p = 0.1,

p1/p2 = 3.

Figure: MSE in the independent case at N = 1000.

I MSE of each scheme always decreases with L/N

I MSE of each scheme increases with p

I MSE of each scheme decreases with M

I AMP-NN and AMP are close (as not many features of sparsity
patterns can be utilized by AMP-NN and AMP already achieves
very excellent recovery accuracy at large N)

I ML-MMSE has the smallest MSE (at long computation time)
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Correlated case with a single active group at N = 1000
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(a) MSE versus L/N at p =

0.1, M = 16.
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(b) MSE versus p at L/N =

0.15, M = 16.
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(c) MSE versus M at

L/N = 0.11, p = 0.1.

Figure: MSE in the correlated case with a single active group at
N = 1000.

I The gain of AMP-NN over AMP is larger in the correlated case
than in the independent case (due to exploitation of more features
of sparsity pattens)

I AMP-NN achieves the smallest MSE (as the underlying AMP
functions well at large N and the encoder and correction layers of
AMP-NN effectively utilize the sparsity patterns)
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Coherence, sub-coherence, block-coherence at N = 1000
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(a) Coherence versus L/N

in the independent case at

p1/p2 = 3.
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(b) Sub-coherence within

one group versus L/N in the

correlated case.
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groups versus L/N in the

correlated case.

Figure: Coherence, sub-coherence and block-coherence at N = 1000,
p = 0.1, M = 16.

I The learned measurement matrix has smaller coherence and sub-coherence (to

more effectively differentiate devices always active simultaneously)
I Coherence and subcoherence reflect the orthogonality of all the columns

or columns within one group

I The learned measurement matrix has larger block-coherence (to sacrifice the

differentiability of devices never active simultaneously)
I Block-coherence reflects the overall orthogonality between two groups of

columns
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Computation time at N = 100 and N = 1000
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(a) Computation time versus

L/N at M = 4, N = 100.
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(b) Computation time versus

L/N at M = 16, N = 1000.

Figure: Computation time in the independent case at p = 0.1, p1/p2 = 3.

I GROUP LASSO-NN has shorter computation time than GROUP
LASSO (due to parallel computation)

I GROUP LASSO and ML-MMSE have much longer computation
time than others, especially at large N, and may not be applicable
for practical mMTC

I AMP-NN and AMP have the shortest computation time (V = 3)
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Device activity detection
I Evaluate the proposed model-driven approach with the

covariance-based decoder and the MAP-based decoder (both
at N = 100) and with the AMP-based decoder (at N = 100
and N = 1000)
I NN: U = 0 and V = 3
I MAP-NN: U = 55 and V = 3
I AMP-NN: U = 50 and V = 3

I Consider four baseline schemes:
I AMP (based on the known p) of computational complexity
O(LNM) [Liu & Yu (2018)]: 50 iterations

I ML of computational complexity O(NL2) [Haghighatshoar
et al. (2018)]: 55 iterations

I GROUP LASSO of computational complexity O(LNM) [Qin
et al. (2013)]: 200 iterations

I covariance-based LASSO of computational complexity
O(LNM) [Pal & Vaidyanathan (2015)]: 200 iterations

I Evaluate the error rate 1
NT

∑T
t=1 ‖α[t] − α̂[t]‖1 and

computation time (on the same server), where T = 1000
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Independent case at N = 100
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(a) Error rate versus L/N

at p = 0.1, M = 4,

p1/p2 = 3.
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(b) Error rate versus p at

L/N = 0.2, M = 4,

p1/p2 = 3.
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(c) Error rate versus M at

L/N = 0.12, p = 0.1,

p1/p2 = 3.

Figure: Error rate in the independent case at N = 100.
I covariance-based LASSO performs much worse than Group LASSO

and AMP at small M (no longer compare with it later)
I Error rates of all schemes show similar trends with respect to L/N,

p and M to MSEs
I MAP-NN and AMP-NN always outperform ML and AMP,

respectively (due to effective A and correction layers)
I MAP-NN outperforms NN (as the underlying MAP is designed for

independence and not many features of sparse patterns exist)
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Independent case at N = 100
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(a) Error rate versus p1/p2 at

L/N = 0.12, M = 4, p = 0.1.
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Figure: Error rate and ε1/ε2 in the independent case at N = 100.
ε1 = 2

N

∑
n∈N1

ε(n) and ε2 = 2
N

∑
n∈N2

ε(n), where ε(n), n ∈ N are
extracted from the trained AMP-based decoder.

I The error rates of NN, MAP-NN and AMP-NN decrease with p1/p2

I The error rates of others almost do not change p1/p2

I ε1/ε2 increases p1/p2
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Correlated case with i.i.d. group activity at N = 100
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(a) Error rate versus L/N

at p = 0.1, M = 4, G =

20.
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(b) Error rate versus p at

L/N = 0.2, M = 4, G =

20.
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(c) Error rate versus M at

L/N = 0.12, p = 0.1, G =

20.

Figure: Error rate in the correlated case with i.i.d. group activity at
N = 100.

I NN outperforms MAP-NN (as NN can better utilize the
correlation information and the underlying MAP is designed
for the independent case)
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Correlated case with i.i.d. group activity at N = 100
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Figure: Error rate versus G in the correlated case with i.i.d. group
activity at L/N = 0.12, M = 4, p = 0.1, N = 100.

I The error rates of NN and MAP-NN increase with G (as correlation
that can be utilized decreases with G )

I The error rate of GROUP LASSO almost does not change with G

I The error rate of ML always decreases with G
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Independent case at N = 1000
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(a) Error rate versus L/N

at p = 0.1, M = 16,

p1/p2 = 3.
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(b) Error rate versus p at

L/N = 0.15, M = 16,

p1/p2 = 3.
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(c) Error rate versus M at

L/N = 0.11, p = 0.1,

p1/p2 = 3.

Figure: Error rate in the independent case at N = 1000.

I Error rates of all schemes show similar trends with respect to L/N,
p and M to MSEs

I AMP-NN always outperforms AMP (due to effective A and
correction layers)

I ML achieves the smallest error rate in the independent case (at the
cost of computation time increase)
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Correlated case with i.i.d. group activity at N = 1000
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(a) Error rate versus L/N

at p = 0.1, M = 16, G =

200.
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(b) Error rate versus p at

L/N = 0.15, M = 16, G =

200.
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(c) Error rate versus M at

L/N = 0.11, p = 0.1, G =

200.

Figure: Error rate in the correlated case with i.i.d. group activity at
N = 1000.

I The gain of AMP-NN versus AMP in the correlated case is larger
than in the independent case
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Correlated case with i.i.d. group activity at N = 1000
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Figure: Error rate versus G in the correlated case with i.i.d. group
activity at L/N = 0.11, M = 16, p = 0.1, N = 1000.

I AMP-NN achieves the smallest error in the correlated with i.i.d.
group activity when G is small (as more correlation information can
be utilized)
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Coherence and sub-coherence at N = 1000
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(a) Coherence versus L/N

in the independent case at

p1/p2 = 3.
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one group versus L/N in

the correlated case.

Figure: Coherence and sub-coherence at N = 1000, p = 0.1, M = 16.

I Coherence for device activity detection in the independent case is
the same as that for channel estimation in the independent case
I The proposed approaches for jointly sparse support recovery

and signal recovery with the AMP-based decoder share the
same auto-encoder structure and training process

I The learned measurement matrix has smaller coherence and
sub-coherence (to more effectively differentiate devices (may) active
simultaneously)

SJTU Ying Cui 58 / 72



Block-coherence at N = 1000
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Figure: Block-coherence across groups versus L/N in the correlated case
at N = 1000, p = 0.1, M = 16.

I The learned measurement matrix has larger block-coherence when
L/N is small
I The differentiability of the devices that have a smaller chance

of being active is sacrificed at small L/N
I The learned measurement matrix has smaller block-coherence when

L/N is large
I The differentiability of the devices that have a smaller chance

of being active can be taken into account at large L/N
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Computation time at N = 100 and N = 1000
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(a) Computation time versus

L/N at M = 4, N = 100.
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(b) Computation time versus

L/N at M = 16, N = 1000.

Figure: Computation time in the independent case at p = 0.1, p1/p2 = 3.

I AMP-NN and MAP-NN have similar computation time to AMP and
ML, respectively (due to the same number of iterations and V = 3)

I GROUP LASSO and ML have much longer computation time than
others, especially at large N, and may not be applicable for practical
mMTC

I When N = 100, NN has the shortest computation time (U = 0)
I When N = 1000, AMP-NN and AMP have the shortest

computation time (V = 3)
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Conclusion

I We propose two-model driven approaches using the standard
auto-encoder structure for real numbers
I One aims to jointly design the common measurement matrix

and jointly sparse signal recovery methods for complex signals,
and can be used in the joint design of pilot sequences and
channel estimation methods

I The other is to jointly design the common measurement
matrix and jointly sparse support recovery methods for
complex signals, and can be applied to the joint design of pilot
sequences and device activity detection

I We propose the Group LASSO-based decoder and AMP-based
decoder, as instances for the model-driven decoder for jointly
sparse signal recovery

I We propose the covariance-based decoder, MAP-based
decoder and AMP-based decoder, as instances for the
model-driven decoder for jointly sparse support recovery
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Conclusion

I The proposed model-driven approaches can greatly benefit
from the underlying advanced methods with theoretical
performance guarantee via the approximation parts of the
model-driven decoders

I The proposed model-driven approaches can also effectively
utilize features of sparsity patterns in designing the encoders
for obtaining effective common measure matrices and
adjusting the correction parts of the model-driven decoders

I The proposed model-driven approaches can provide higher
recovery accuracy with shorter computation time than the
underlying advanced recovery methods

I The obtained results are of critical importance for achieving
massive access in mMTC
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