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Three newmodels for preference voting and
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Preference voting and aggregation require the determination of the weights associated with different ranking
places. This paper proposes three new models to assess the weights. Two of them are linear programming
(LP) models which determine a common set of weights for all the candidates considered and the other is a
nonlinear programming (NLP) model that determines the most favourable weights for each candidate. The
proposed models are examined with two numerical examples and it is shown that the proposed models cannot
only choose a winner, but also give a full ranking of all the candidates.
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Introduction

In preferential voting systems, each voter selects m candi-
dates from among n candidates (n�m) and ranks them from
the most to the least preferred. Each candidate may receive
some votes in different ranking places. The total score of each
candidate is the weighted sum of the votes he/she receives in
different places. The winner is the one with the biggest to-
tal score. So, the key issue of the preference aggregation in
a preferential voting system is how to determine the weights
associated with different ranking places.

Borda–Kendall (BK) method (Cook and Kress, 1990;
Wang et al, 2005) is perhaps the most widely used procedure
for determining the weights. By the BK method, the first
place is given a weight or mark of m, the second place is
given a weight or mark of m − 1, followed by m − 2, . . . , 2
and the last place is given a weight or mark of one. Be-
cause of its computational simplicity, the BK method is very
popular. But the determination of the weights is somewhat
subjective.

To avoid the subjectivity in determining the weights, Cook
and Kress (1990) suggest using data envelopment analysis
(DEA) to determine the most favourable weights for each can-
didate. Different candidates utilize different sets of weights
to calculate their total scores, which are referred to as the
best relative total scores and are all restricted to be less
than or equal to one. The candidate with the biggest relative
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total score of one is said to be DEA efficient and may be
considered as a winner. This approach proves to be effective,
but very often leads to more than one candidate to be DEA
efficient.

To choose a winner from among the DEA-efficient can-
didates, Cook and Kress (1990) suggest maximizing the gap
between the weights so that only one candidate is left DEA
efficient. This has been found equivalent to imposing a com-
mon set of weights on all the candidates and equivalent to
the BK method in a specific discrimination intensity func-
tion. Green et al (1996) suggest using the cross-efficiency
evaluation technique in DEA to choose the winner. Noguchi
et al (2002) also utilize cross-efficiency evaluation technique
to select the winner, but present a strong ordering constraint
condition on the weights. Hashimoto (1997) proposes the use
of the DEA exclusion model (ie super-efficiency model) to
identify the winner. Obata and Ishii (2003) suggest excluding
non-DEA-efficient candidates and using normalized weights
to discriminate the DEA-efficient candidates. Their method
is subsequently extended to rank non-DEA-efficient candi-
dates by Foroughi and Tamiz (2005) (see also Foroughi et al,
2005). It is found that although the DEA approaches men-
tioned above do not require predetermining the weights sub-
jectively, they still need to choose a discrimination intensity
function and/or discriminating intensity factor subjectively. It
is also found that the winner may be unstable and affected by
the choice of discrimination intensity function and discrimi-
nating intensity factor.

To avoid the instability in choosing a winner, we propose
three new models in this paper to determine the weights
of ranking places. The proposed models do not require
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predetermining any discrimination intensity function and
discriminating intensity factor subjectively and each of
them can lead to a stable full ranking for all the candi-
dates considered. This will be illustrated with two numerical
examples.

The rest of the paper is organized as follows. In the next
section, we develop the models for preference aggregation to
assess the weights associated with different ranking places.
We then examine two numerical examples using the pro-
posed models to illustrate their applications and show their
capabilities of identifying the winner and producing a sta-
ble full ranking for all the candidates considered. Finally, we
conclude the paper.

The models

Let w j be the relative importance weight attached to the j th
ranking place ( j=1, . . . ,m) and vi j be the vote of candidate i
being ranked in the j th place. The total score of each candidate
is defined as

Zi =
m∑
j=1

vi jw j , i = 1, . . . , n (1)

which is a linear function of the relative importance weights.
Once the weights are given or determined, candidates can be
ranked in terms of their total scores.

To determine the relative importance weights, Cook and
Kress (1990) suggest the following DEA model, which de-
termines the most favourable weights for each candidate:

Maximize Zi =
m∑
j=1

vi jw j (2)

s.t.
m∑
j=1

vi jw j �1, i = 1, . . . , n

w j − w j+1�d( j, ε), j = 1, . . . ,m − 1

wm �d(m, ε)

where d(., ε) is referred to as a discrimination intensity func-
tion that is nonnegative and monotonically increasing in a
nonnegative discriminating intensity factor ε and satisfies
d(., 0) = 0. It has been found that the choice of the dis-
crimination intensity functional d(., ε) and the discriminating
intensity factor ε has significant impacts on the winner. For
example, Cook and Kress (1990) investigate three special
cases of the discrimination intensity function d(., ε): d( j, ε)=
ε, d( j, ε) = ε/j and d( j, ε) = ε/j !. Each of them leads to a
different winner. Noguchi et al (2002) examine the six spe-
cial cases of the discriminating intensity factor ε: ε =0, 0.01,
0.05, 0.055, 0.06 and 0.07. These cases also result in different
winners.

To avoid the difficulties in determining the discrimination
intensity function d(., ε) and the discriminating intensity fac-
tor ε, Noguchi et al (2002) suggest a strong ordering DEA

model, which is shown below:

Maximize Zi =
m∑
j=1

vi jw j

s.t.
m∑
j=1

vi jw j �1, i = 1, . . . , n

w1�2w2� · · · �mwm

wm �ε = 2

Nm(m + 1)
(3)

where N is the number of voters. In our view, the strong
ordering constraint w1�2w2� · · · �mwm makes sense
because it satisfies w1 > w2 > · · · > wm and w1 − w2 > w2 −
w3 > · · ·> wm−1 − wm > 0. It also makes the choice of the
discrimination intensity function d(., ε) unnecessary. So, this
strong ordering constraint will be adopted in the new mod-
els to be developed. However, it is found that the choice of
the discriminating intensity factor ε is somewhat arbitrary
and there is no evidence to support ε to take the value of
2/Nm(m + 1). In effect, ε can take any value within the in-
terval [0, 1/Nm]. In addition, to determine the value of ε in
model (3), the number of voters is required to be known, but
this is not always the case (see Example 2 for an instance).

In what follows, we present our new models, which do
not require predetermining any parameters because the new
models usually produce only one best candidate and there
is no need to make any further choice with the help of any
parameters. The new models are given as follows:

LP-1:

Maximize �

s.t. Zi =
m∑
j=1

vi jw j ��, i = 1, . . . , n

w1�2w2� · · · �mwm �0
m∑
j=1

w j = 1 (4)

LP-2:

Maximize �

s.t. �� Zi =
m∑
j=1

vi jw j �1, i = 1, . . . , n

w1�2w2� · · · �mwm �0 (5)

NLP-1:

Maximize Zi =
m∑
j=1

vi jw j

s.t. w1�2w2� · · · �mwm �0
m∑
j=1

w2
j = 1 (6)

LP-1 and LP-2 are two linear programming models. Both
of them maximize the minimum of the total scores of the n
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candidates and determine a common set of weights for all
the candidates. The differences between the two models lie
in that LP-1 requires the weights to be summed to one, while
LP-2 does not, and that LP-2 requires the total score of each
candidate to be equal to or less than one, while LP-1 has
no such a requirement. Once the weights are determined, the
total score of each candidate can be computed by Equation
(1) and the winner can be selected.

NLP-1 is a nonlinear programming model, which deter-
mines the most favourable weights within the feasible region

� =

W = (w1, . . . , wm) |w1�2w2� · · · �mwm �0,

m∑
j=1

w2
j = 1




for each candidate. The NLP-1 is a variant of the following
multiple attribute decision making model developed by Wang
and Fu (1993):

Maximize Zi =
m∑
j=1

zi jw j

s.t.
m∑
j=1

w2
j = 1

w j �0, j = 1, . . . ,m (7)

where zi j is the normalized attribute value of the i th decision
alternative with respect to the j th attribute and w j is the
relative importance weight of the j th attribute. The analytical
solution to model (7) is found to be

w∗
j = zi j

/√∑m

j=1
z2i j , j = 1, . . . ,m (8)

However, due to the presence of the strong ordering con-
straint w1�2w2� · · · �mwm �0, the NLP-1 cannot usually
be solved analytically, but can be solved using Microsoft Ex-
cel Solver or the LINGO software package very easily.

Numerical examples

In this section, we examine two numerical examples using the
proposed models to illustrate their applications and show their
capabilities of choosing the winner and ranking candidates.
Models, linear and nonlinear, are all implemented inMicrosoft
Excel worksheets and are solved using MS-Excel Solver.

Example 1 Consider the example investigated by Cook and
Kress (1990), in which 20 voters are asked to rank four out
of six candidates A–F on a ballot. The votes each candidate
receives are shown in Table 1.

For this example, n = 6, m = 4 and N = 20. If we set
ε = 2/Nm(m + 1) and 4/Nm(m + 1), respectively, and solve

Table 1 Votes received by six candidates

Candidate First Second Third Fourth
place place place place

A 3 3 4 3
B 4 5 5 2
C 6 2 3 2
D 6 2 2 6
E 0 4 3 4
F 1 4 3 3

Table 2 Scores and rankings of the six candidates by different
models

LP-1 LP-2 NLP-1 Borda–Kendall

Candidate Score Rank Score Rank Score Rank Score Rank

A 3.16 4 0.7182 4 5.52 4 32 4
B 4.16 2 0.9455 2 7.26 2 43 1
C 4.08 3 0.9273 3 7.12 3 38 3
D 4.40 1 1 1 7.68 1 40 2
E 1.92 6 0.4364 6 3.35 6 22 6
F 2.28 5 0.5182 5 3.98 5 25 5

Noguchi et al’s model (3), then three and two DEA-efficient
candidates are, respectively, identified. This shows the choice
of ε does have impact on the results and should be chosen very
carefully. However, if the new models are employed to solve
the example, then there is no need to choose any parameter.
By solving LP-1, we get

�∗ = 1.92, w∗
1 = 0.48, w∗

2 = 0.24, w∗
3 = 0.16

and w∗
4 = 0.12

Solving LP-2, we have

�∗ = 0.4364, w∗
1 = 0.1091, w∗

2 = 0.0545,

w∗
3 = 0.0364 and w∗

4 = 0.0273

By solving NLP-1 for each candidate, we obtain the following
two sets of weights for different candidates:

w∗
1 = 0.8381, w∗

2 = 0.4191, w∗
3 = 0.2794 and

w∗
1 = 0.2095 for candidates A,B, D, E, and F

w∗
1 = 0.8422, w∗

2 = 0.4142, w∗
3 = 0.2761

and w∗
1 = 0.2071 for candidate C

The rankings of the six candidates produced by the three
new models are shown in Table 2, from which it is clear
that the three new models all lead to the same ranking, that
is, D 
 B 
 C 
 A 
 F 
 E , where the symbol ‘
’
means ‘be preferred or superior to’. So, candidate D is the
winner. Such a conclusion is consistent with Cook and Kress’s
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Table 3 Votes received by seven candidates

Candidate First rank Second rank

A 32 10
B 28 20
C 13 36
D 20 27
E 27 19
F 30 8
G 0 30

Table 4 Scores and rankings of the seven candidates by
different models

LP-1 LP-2 NLP-1 Borda–Kendall

Candidate Score Rank Score Rank Score Rank Score Rank

A 24.67 2 0.9737 2 33.53 2 74 2
B 25.33 1 1 1 33.99 1 76 1
C 20.67 6 0.8158 6 27.73 6 62 6
D 22.33 5 0.8816 5 27.96 5 67 5
E 24.33 3 0.9605 3 32.65 3 73 3
F 22.67 4 0.8947 4 31.05 4 68 4
G 10.00 7 0.3947 7 13.42 7 30 7

recommendation by setting d( j, ε) = ε/j and maximizing ε,
but is slightly different from the conclusion that B is the
winner drawn by the BK method. This is mainly because
our models and Cook and Kress’s model put more emphasis
upon the first ranking place than the BK method. In fact,
the total of weights used by the BK method is 4 + 3 + 2 +
1 = 10, and the relative weight assigned to the first ranking
place is 4/10=0.4, which is smaller than w∗

1 =0.48 obtained
by LP-1, LP-2 and NLP-1. The three models all produce
the same normalized relative weights for this example. The
advantage of our models over the BK method is that our
models do not need to specify the relative weights, which are
determined automatically by the models, and more emphasis
is put upon the first ranking place. This is useful in preference
voting.

Example 2 Consider the example investigated by Obata and
Ishii (2003) and Foroughi and Tamiz (2005), in which seven
candidates A–G are ranked. Table 3 shows the votes each
candidate receives in the first two places.

For this example, n = 7 and m = 2, but the exact num-
ber of voters is not known. So, the value of the discriminat-
ing intensity factor ε will be difficult to set by Noguchi et
al’s approach. However, there exists no such difficulty with
the new models proposed in this paper. By solving LP-1,
we have

�∗ = 10, w∗
1 = 2/3 and w∗

2 = 1/3

By solving LP-2, we obtain

�∗ = 0.3947, w∗
1 = 0.0263 and w∗

2 = 0.0132

By solving NLP-1 for the seven candidates, respectively,
we get the following three sets of weights for different
candidates:

w∗
1 = 0.9545 and w∗

2 = 0.2983 for candidate A

w∗
1 = 0.8944 and w∗

2 = 0.4472

for candidate B, C, D, E and G

w∗
1 = 0.9662 and w∗

2 = 0.2577 for candidate F

The rankings of the seven candidates generated by the three
new models and the BK method are shown in Table 4. As
can be seen from Table 4, the three new models and the BK
method all lead to the same ranking:B 
 A 
 E 
 F 
 D 

C 
 G. So, candidate B is the winner.

Conclusions

How to determine the weights associated with different rank-
ing places is an important issue of preference voting and ag-
gregation. In this paper, we have proposed three new mod-
els, LP-1, LP-2 and NLP-1, to assess the weights of different
ranking places. The proposed models do not require predeter-
mining any discrimination intensity function and discriminat-
ing intensity factor subjectively and each of them can lead to
a stable full ranking for the candidates considered. The pro-
posed models can be implemented on MS Excel worksheets
and can be solved using MS-Excel Solver very easily. Two
numerical examples are provided and have been examined us-
ing the proposed models. It has been shown that the proposed
models have very strong capabilities of choosing the winner
and ranking the candidates. It is expected that the proposed
models can play an important role in preferential voting and
preferential election decision making in the future.

Acknowledgements— This research was supported by the project on
Human Social Science of MOE, P.R. China under the Grant No.
01JA790082, and also in part by the Hong Kong Research Grants Coun-
cil under the Grant No. City U-1203/04E. We would like to thank two
anonymous referees for their constructive comments and suggestions,
which have been very helpful in improving the paper.

References

Cook WD and Kress M (1990). A data envelopment model for
aggregating preference rankings. Mngt Sci 36: 1302–1310.

Foroughi AA, Jones DF and Tamiz M (2005). A selection method for
a preferential election. Appl Math Comput 163: 107–116.

Foroughi AA and Tamiz M (2005). An effective total ranking model
for a ranked voting system. Omega 33: 491–496.

Green RH, Doyle JR and Cook WD (1996). Preference voting and
project ranking using DEA and cross-evaluation. Eur J Opl Res
90: 461–472.

Hashimoto A (1997). A ranked voting system using a DEA/AR
exclusion model: A note. Eur J Opl Res 97: 600–604.



YM Wang et al—Models for preference voting and aggregation 1393

Noguchi H, Ogawa M and Ishii H (2002). The appropriate total
ranking method using DEA for multiple categorized purposes. J
Comput Appl Math 146: 155–166.

Obata T and Ishii H (2003). A method for discriminating efficient
candidates with ranked voting data. Eur J Opl Res 151: 233–237.

Wang YM and Fu GW (1993). A new multiattribute decision-making
method based on DEA thought. J Ind Eng Eng Mngt 7(1): 44–49
(in Chinese).

Wang YM, Yang JB and Xu DL (2005). A preference aggregation
method through the estimation of utility intervals. Comput Opns
Res 32: 2027–2049.

Received June 2005;
accepted July 2006


