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To verify the solution of a typical Crocco boundary problem, a numerical experiment has
been performed using an implicit second-order difference scheme. The computational exper-
iment showed uniform convergence in the 0 < x < 1 interval for the numerical approximation
of the solution to a weak solution with a small interval discrete sampling (of the order of N =
104 nodes). It was shown that a numerical solution approximated a weak solution of the typical
Crocco limit problem, except for the right end of the integration interval. The solution of the
Crocco boundary problem could be continued to the left of the point x = x, while preserving
the continuity and smoothness of the solution at this point. The point x = 1 represents the
natural upper bound of the solution domain.
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YUCNEHHAS BEPUDUKALIUA C/IABbIX PELLEHUN
TUNMUYHOU NPEAE/IbHOMU 3A[AYU KPOKKO C MOMOLbIO
HESIBHOM PABHOCTHOM CXEMbl BTOPOIO NMOPAAKA

M.P. lNempuueHko, E.B. Komo6
CaHkT-lNeTepbyprcknini NONUTEXHUYECKUI YHUBEPCUTET lMeTpa Benukoro,
CaHkT-MeTepbypr, Poccuiickas Peaepauus

HNns  Bepudukauuu pelieHus: TUMIMYHOW TipeaenbHON 3amauym  Kpokko mpoBeneH
YUCJIEHHBIN 5KCIEPUMEHT C UCITOJb30BaHUEM HESIBHOUM Pa3HOCTHOI CXeMbl BTOPOTO TOPSI/IKA.
BoluncauTebHBIN 9KCTIEPUMEHT TT0Ka3al paBHOMEPHYIO Ha TTpoMexxyTKe 0 < X < 1 cXOaAuMOCThb
YUCJIEHHOW amnMpOKCHMAalWW PEUIeHUs] K CllaboMy pelIeHWI0 Mpu HEeOOIbIION TIOTHOCTH
MMCKpeTH3auu rnmpoMexyrtka (rmopsinka N = 10* y3noB). [TokazaHo, 4TO YMCIEHHOE pelleHue
armpoKCUMUPYET cIaboe pellieHre TUMUYHOU TpeaebHoi 3amaun Kpokko, Kpome mpaBoro
KOHIIA TIPOMEXYTKa MHTeTpupoBaHus — Touku x = 1. Pemenue npenenpHolt 3amaun Kpokko
MOXEeT OBbITh MPOJOJKEHO JieBee TOUKM X=(0 ¢ COXpaHEHUEM HEeNMpPEPbIBHOCTU W TJIAIKOCTH
penieHust B 3Toil Touke. Touka x = 1 MpeacTaBiaseT eCTECTBEHHYIO BEPXHIO TpaHUIly 00acTu
ompeaeieHust pelieHus.

Kunrouesbie caoBa: TunmyHas npeaeibHasd 3agaya Kpokko, HessBHas pa3HOCTHAs cxema, ciadboe
peleHue, roMoTONnus
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Introduction

It is known that the typical Crocco boundary
problem is stated as follows [1]:

W+ =0,D(y)=(x:0<x, <x<1);
Im(y)=(y:y,>y>0); (1)
' (%) =(1)=0,
where y;:= y(x,)) > 0.

In the classic case of a typical boundary
problem,

y=1/2, x,= 0, y,:= »(0).

This study deals with this particular
classical case.

We can prove that two-point boundary
conditions (1) are equivalent to the Cauchy
condition:

y(0)—a=y'(0)=0.

Let @ = 0. Then y(x)=%2/3(-x)" is
the solution of a homogeneous one-point prob-
lem for the Crocco equation on the negative
semi-axis x < 0.

In hydrodynamic problems, y(x) is the di-
mensionless friction factor, x is the dimension-
less longitudinal component of velocity in the
boundary layer on a plate in plane flow in the
longitudinal direction.

Then y(0) = a is the shear stress on the
wall (Blasius constant) [2]. In seepage the-
ory, x is the dimensionless depth of seepage
flow through a scalar (homogeneous and iso-
tropic) porous medium, y is the Crocco po-
tential, defined as

y(x) = [sdx', y(1)=y'(0)=0,

where s is the longitudinal coordinate measured
along the seepage flow.

The constant y, = y(x,) in seepage problems
is proportional to seepage flow in the outflow
face [3].

Steady-state solutions for free surface seep-
age in a scalar medium are found in terms of
analytic theory of ordinary differential equa-
tions [3]. Modern results of such solutions are
given in [4—6].

The following statements are true for a typical
Crocco problem (1).
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1. The Crocco equation has two solution
branches: positive y,(x) and negative y (x). The
negative branch is defined as the solution to a
boundary problem:

2y y"+yx=0, D(y )=(x:x,<x<1),
V(0)=y(1) =0, Im(y_)=(y_:=y,>y_>0);

with y, (x) +y_ (x) =0, Vxe (O,l).

The proof is trivial.

Below we consider only the positive branch
of the solution of the Crocco equation, i.e.,
V(x) =y, (x).

2. The solution of a typical Crocco bound-
ary problem (1) has the following properties:

Y'(x)<0, y"(x)<0;
V' (X)—=5—> -,

x—1-0

soy,=a>yx),0<x<1

To prove Statement 2, we formally reduce
the order of the Crocco equation, reformulat-
ing it as an integral equation:

2y'=— ﬂaygo, 0<x<l.
0 V()

The integral on the right-hand side can be cal-
culated using the Bonnet mean value theorem.
We obtain:

23y’ =-1/2x" (1-0%), )

where 0 is a regular fraction, 0 < 06 <1.

Now we need only to pass to the limit for
x — 1-0, Q.E.D.

The solution of Eq. (2), such that the val-
ue of y(1) is zero, y(1) = 0, has the following
form:

12(x,0) =1/6(1-0°)(1-x°). 3)

Solution (3) continuously depends on the
magnitude of the fraction 6. Its mean over 0
is the so-called weak solution of the typical
Crocco boundary problem, interpreted as the
distribution over 6 with a distribution density
y(x; 6) [7].

In view of expression (3), the weak solution
of the typical Crocco boundary problem is:

Y(x)=1/3J1-x", 4)

63



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 12 (2) 2019

and then y, = y(0) = 1/3, which is a good
rational approximation for the Blasius constant.
The exact value of the Blasius constant was
calculated in Varin’s study [8]. It can be
seen from formula (4) that the weak solution
can be continued to negative values of x
while preserving the solution smooth and
continuous at the point x = 0.

The solution of the typical Crocco
boundary problem is related to the solution
of a nonlinear integral equation:

y(x)=(1/ 2){1 < _yfz;ds -] (x;f S))S ds}, (5)

which gives the following expression for the
Blasius constant:
= y(0)=(1/2) (=s)sds.
o Y(s)

The solution of Eq. (5) can also be obtained
in the form of a Lagrange series [9]. It was
proved that the convergence radius of the La-
grange number is less than unity and the series
diverges at x — 1—0.

An alternative solution in the form of a La-
grange series is forming an iterative process:

50 =(1/ 2){I I B

k =1(1)o0,

where the subscript k& indicates the iteration
number.

The values of the Blasius constant ob-
tained during the iterative process are found
from the sequence

0 -(1/2)[ =2

We successively find the following values for
different k:

k=1:y,(x)=y, =+1/12 =0.2887,
k=2:y,(x)y, = (1/12)(1 x),
() =(1-x") /12, 3,(0)=1/4/12;
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k=3:

()= \/—U (1- s)sds I(x s)sdsJ

ln\/§xJ3r21n\/1+x+x2 +

B ] e

-

and so on.
Accordingly, the first three iterated values of
the Blasius constant form a sequence

1,(0)=1//12 =0.2887...,
,(0)=0.2887...,
,(0) = 0.4278...,

and, on average, y(0) for the first three iterations
lies in the range

0.3299 < p(0) < 0.3344.

The iterative process leads to trivial and
lengthy calculations, which is already clear
at the third iteration. Evidently, any iterated
solution has all the basic properties of the

solution to boundary problem (1):
Vx € (0,1), Vk =1(1)oo,

V() <0, y/(x)<0,
V(X)) =5~

x—>1-0

The iterative process is inconvenient as
the expressions for the iterated solutions are
cumbersome and there is no proof for the
convergence of the process. Both of these
obstacles can be avoided by using the difference
approximation of boundary problem (1).

Interest in numerical solutions to the
Blasius equation appeared immediately after he
published his study in 1908 [2], due to general
disappointment in the integration method using
power series (see [8] and its preprint detailing
the history of the issue). Modern studies [10, 11,
13—21] mainly consist of attempts to improve
the convergence of predictor-corrector methods
for solving ordinary differential equations of
the boundary layer. Ref. [22] is an exception,
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developing Kaplun’s method interpreted in
terms of homotopy mappings of the integration
interval on a compact set. In the case of boundary
problem (1), the mappings are compact.

Let linear homotopy

Ft,x): (0 < £< 1) x (0 < x <1)) — (0, a)

represent the solution to boundary problem (1).

Then F0,x) represents the solution in the
neighborhood of the point x = 0, and F(1,x)
in the neighborhood of the point x = 1. For
example, for a weak solution,

F(0,x)=(1/3)(1-x*/2-x°/8),
F(1x)=(1/3)V1-x.

A linear homotopy mapping has the form:
y(x)=F(t,x)=(1-1)F(0,x)+F (1,x) =

1-x
=(1-¢)/3(1-x*/3-x°/8 _
(1-1) ( x x )+t‘/ 3

A weak solution also represents some ho-
motopy with the parameter 6 € (0,1). Indeed,

¥ (x.0)=(1/6)(1-07)(1-x"),
¥ (x.1)=0, y* (x,0)=(1/6)(1-x*).

Finally, [12] reintroduces the method of
power expansions. However, its results coin-
cide with the data given in [8] on flat series,
as well as preprints of this study in Keldysh
Institute Preprints, published earlier.

The computational domain in the numer-
ical solution of problem (1) on the interval x
€ (0,1) consists of N segments with a constant
step h = l/N(x Jjh,j=0,1, .., N). We use a
second-order difference scheme for discretizing
Eq. (1)

e N
h Y,
Equality (6) is a discrete equivalent of the
exact equality
" X
Yy ==r—
y
This expression is linear with respect to
the component y,, and therefore if the
components y, ,, y, (where j = 1(1)) of the
vector y are known a linear system of algebraic
equations is obtarned to calculate Vi
The boundary conditions in problem (D)
take the following form upon discretization:

3y,=4y,+,
2h

If the differences in equalities (6), (7) are
denoted by

fo :3yo
X .
[i=ya =2y, + vty =, (8)

Sy =Vns

then problem (6)—(8) can be written in the
form equivalent to a linear algebraic system

F(y) =0,
where F, y are vectors taking the form
F=1ff-- /I,
= [y, al”

=0, y, =0. (7

=4y +

The resulting nonlinear system is solved by
the Newton iterative method:

YD =yl + Apk),

where Ay® is the residual vector,

Ay = [Ap,® Ay, ®... Ay, ©]T.

It is obtained as a solution of the linearized
matrix equation with the Jacobi matrix J (y) of
order N + 1:

Jo (VAP =-F ("), )
oy O(fgses fy)
JF (k) ~\Jo>sINJ
"= 3 r) (10)

It is assumed that the matrix JJy) is
well-conditioned. Then system (10) is correct
and uniquely solvable:

Ay® =-J! (y("))F(y(k)).
Substituting equality (8) into Eq. (9), we
obtain, in view of equality (10), the following
expressions:
3Ay(k) 4Ay(k)+Ay(k) (k),

= -am e,

f(k) _y(k) 2y§k)+y§/3+yhz L (12)

J
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a, AV +b A+ Ay =0 (13)

J-1 J T

5 X.
a;=1,b;==2—yh (y(kj) )2 ¢ =1, (14

j

Ay ==y

Evidently, system of equations (11)—(14)
contains three unknowns in each of the equa-
tions and is similar to a tridiagonal system. The
first and the last equations in such systems usu-
ally contain only two unknowns. However, the
first equation in this system contains three un-
knowns: Ay, Ay,®, Ay,®.

To eliminate the unknown Ay ®, Eq. (11)
can be represented as follows:

] as)

Next, substituting expressions (13) and
(14) into Eq. (15) with j = 1, we obtain the
expression:

Mo = 1A -l -

bay® +éan =1, (16)
where X
b =b+4/3a,
¢, =¢, —1/3a,, (17)

j?l(k) _ fl(k) _1/3f0(k).

The matrix of system of equations (11),
(15), (16) is tridiagonal. This system can be
solved by sweeping with respect to the indices j:

AW =p,—q,00%). (18)

It follows from equality (16) that

p == 7b,q =¢1b,. (19)
It follows from Egs. (15), (19) that
(k) (k)
alp._,—q.. A )+b Ay +
/( J-1 J1T ) JT (20)

(k) L (0 _
+e, Ay + f; =0.

In view of the boundary condition y, = 0,
we obtain the following equalities for all &:

W =) =o0.
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After calculating 12 and g, for j =1, 2,...,
N — 1 using expressions (18) and (19), we can
calculate Ay® forj= N—1, N— 2, ..., 0 using
expression (’ 18).

Calculations continue until a predetermined
accuracy ¢ is reached:

.

where ||*|| denotes, for example, sup that is the
norm of the residual vector or any equivalent
norm of the matrix.

Fig. 1 shows the numerical solution of prob-
lem (4), (5) on the interval x ¢ [0, 1] fory =1
with a different number of steps N for ¢ = 107¢.
The fiber bundle of numerical solutions is small
on the scale of the figure even when changing
the number N of the nodes into which the in-
tegration interval 0 < x < 1 is divided by 4(!)
orders, 102< N < 10°. The following expression
is considered as the initial approximation:

Yo =(1/2) (1 = x>

The bold solid line in Fig. 1 corresponds to
a weak solution (4) with the Blasius constant
of 0.4714 (the exact value is 0.4696).

Table 1 lists the Blasius constants y(0),
calculated with y = 1 and different numbers
of steps N, and the values obtained by other
authors [12—16].

It follows from the data given in Table
that the first three exact significant digits of
the Blasius constant can be calculated with
a small number of nodes, with N > 10,000.
The derivative of the numerical solution at
the right endpoint of the integration interval,
i.e., at x =1 — 0, is bounded from below and
no numerical solution curve has a vertical
tangent (see Fig. 1). It is to be expected that
the values of numerical derivatives should
be bounded, since one-sided differences are
used.

To extend the solution of problem (1) to
the domain x < 0, a second-order difference
scheme (6) is used with the following
boundary conditions:

y(0)-7,='(0)=0, (1)

where j, is the value of y(0) from the solution
obtained on the interval x ¢ [0, 1], i.e., the
Blasius constant of the numerical solution.
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Fig. 1. Numerical solution of Crocco problem on interval x ¢ [0, 1] with y = 1, with a different
number of steps N: 100, 1000, 10 000, 100 000, 10°¢ (fiber bundle of lines 7);
line 2 is the initial approximation y, = 1/2, line 3 is weak solution (4)
with the Blasius constant y, = 0.4714

Table
Calculated values of Blasius constant y(0)
with varying parameters and number of partitions
of integration interval

Number of Value of y(0)
Source Steps N
p =05 y=10
100 0.339566 0.472865
. 1000 0.335198 0.471984
This 10,000 0.332051 0.470430
paper
100,000 0.332053 0.469855
1,000,000 0.332053 0.469676
[13] 0.332057 0.469600
[14] - 0.3320573362 | 0.4695999889
[15] 0.332057 0.469599
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Upon discretization, boundary conditions
(21) take the form

Yo = Yo :(yo_yf1)/h:03

and it follows then that y, = 5, = y_,.
Therefore,

yj :2yj+] _yj+2 _yhzxjﬂ /yj+]’
=23, M,

where M is the number of calculation steps
in the region x < 0 (a natural number).

Fig. 2 shows a positive numerical solution of
boundary problem (1), extended to the negative
semi-axis. The extended solution is preserved
continuous and smooth at the point of contact
x=—0.

Extension of the positive and negative
branches of the weak solution to the negative
semi-axis has the following form:

y(x):iam, a=1/(3\/§)

Evidently, if —x >> 1, a weak solution has
an order that coincides with the order of the
exact solution of boundary problem (1):

y(x)=(=x)".

y

>

Conclusions

The study we have carried out allows us to
draw the following conclusions.

1. The weak solution of the Crocco problem
has all the properties of an exact solution: there
is a zero derivative at x = 0, an unbounded de-
rivative at x = 1, the solution can be extended
to the negative semi-axis x < 0 while preserving
continuity and smoothness at x = 0.

2. The values of the Blasius constant that we
have obtained for the weak solution were: y(0)
= 1/3 with y = 1/2 and y (0) = 0.4714 with vy
= 1; the approximate value of the Blasius con-
stant differs from the exact value

(1(0) = 0.332059, y = 1/2 and
1(0) = 0.4696, y = 1)

by less than 0.4%.

3. The numerical experiment revealed that
the numerical approximation of the solution
uniformly converges on the interval 0 < x < 1
to a weak solution with a small discretization
of the interval (of the order of N = 10* nodes).

4. The derivative of the numerical solution
is bounded from below at the right endpoint of
the integration interval, x =1 — 0, and the nu-
merical solution curve does not have a vertical
tangent. It is to be expected that the values of
numerical derivatives should be bounded, since
one-sided differences are used.
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Fig. 2. Solution of Crocco problem on interval x ¢ [—1, 1] with y =1
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