
Building Query Compilers

(Under Construction)

[expected time to completion: 5 years]

Guido Moerkotte

October 31, 2024

Contents

I Basics 3

1 Introduction 5

1.1 General Remarks . 5

1.2 DBMS Architecture . 5

1.3 Interpretation versus Compilation 6

1.4 Requirements for a Query Compiler 9

1.5 Search Space . 11

1.6 Generation versus Transformation 12

1.7 Focus . 12

1.8 Organization of the Book . 13

2 Textbook Query Optimization 15

2.1 Example Query and Outline . 15

2.2 Algebra . 16

2.3 Canonical Translation . 17

2.4 Logical Query Optimization . 20

2.5 Physical Query Optimization . 24

2.6 Discussion . 25

3 Join Ordering 31

3.1 Queries Considered . 31

3.1.1 Query Graph . 32

3.1.2 Join Tree . 33

3.1.3 Simple Cost Functions . 34

3.1.4 Classification of Join Ordering Problems 40

3.1.5 Search Space Sizes . 41

3.1.6 Problem Complexity . 45

3.2 Deterministic Algorithms . 47

3.2.1 Heuristics . 47

3.2.2 Determining the Optimal Join Order in Polynomial Time 49

3.2.3 The Maximum-Value-Precedence Algorithm 56

3.2.4 Dynamic Programming 61

3.2.5 Memoization . 79

3.2.6 Join Ordering by Generating Permutations 79

3.2.7 A Dynamic Programming based Heuristics for Chain Queries 81

3.2.8 Transformation-Based Approaches 94

i

ii CONTENTS

3.3 Probabilistic Algorithms . 101
3.3.1 Generating Random Left-Deep Join Trees with Cross Prod-

ucts . 101
3.3.2 Generating Random Join Trees with Cross Products . . . 103
3.3.3 Generating Random Join Trees without Cross Products . 107
3.3.4 Quick Pick . 116
3.3.5 Iterative Improvement . 116
3.3.6 Simulated Annealing . 117
3.3.7 Tabu Search . 118
3.3.8 Genetic Algorithms . 119

3.4 Hybrid Algorithms . 122
3.4.1 Two Phase Optimization 122
3.4.2 AB-Algorithm . 122
3.4.3 Toured Simulated Annealing 122
3.4.4 GOO-II . 123
3.4.5 Iterative Dynamic Programming 123

3.5 Ordering Order-Preserving Joins 123
3.6 Characterizing Search Spaces . 131

3.6.1 Complexity Thresholds 131
3.7 Discussion . 135
3.8 Bibliography . 136

4 Database Items, Building Blocks, and Access Paths 137
4.1 Disk Drive . 137
4.2 Database Buffer . 146
4.3 Physical Database Organization 147
4.4 Slotted Page and Tuple Identifier (TID) 150
4.5 Physical Record Layouts . 151
4.6 Physical Algebra (Iterator Concept) 152
4.7 Simple Scan . 152
4.8 Scan and Attribute Access . 153
4.9 Temporal Relations . 155
4.10 Table Functions . 155
4.11 Indexes . 156
4.12 Single Index Access Path . 158

4.12.1 Simple Key, No Data Attributes 158
4.12.2 Complex Keys and Data Attributes 163

4.13 Multi Index Access Path . 165
4.14 Indexes and Joins . 167
4.15 Remarks on Access Path Generation 172
4.16 Counting the Number of Accesses 172

4.16.1 Counting the Number of Direct Accesses 172
4.16.2 Counting the Number of Sequential Accesses 182
4.16.3 Pointers into the Literature 187

4.17 Disk Drive Costs for N Uniform Accesses 188
4.17.1 Number of Qualifying Cylinders, Tracks, and Sectors . . . 188
4.17.2 Command Costs . 189

CONTENTS iii

4.17.3 Seek Costs . 189

4.17.4 Settle Costs . 191

4.17.5 Rotational Delay Costs 191

4.17.6 Head Switch Costs . 193

4.17.7 Discussion . 193

4.18 Concluding Remarks . 194

4.19 Bibliography . 194

II Foundations 197

5 Logic, Null, and Boolean Expressions 199

5.1 Two-Valued Logic . 199

5.2 Null Values . 199

5.2.1 Functions and Operators 199

5.2.2 Comparison Operators . 201

5.3 Three-Valued Logic . 202

5.4 Preparation of Boolean Expressions 204

5.5 Equivalence Classes based on Equality 204

5.6 Nullability Inference . 206

5.7 Bibliography . 206

6 Functional Dependencies 207

6.1 Functional Dependencies . 207

6.2 Functional Dependencies in the presence of NULL values 208

6.3 Deriving Functional Dependencies over algebraic operators 208

6.4 Bibliography . 208

7 An Algebra for Sets, Bags, and Sequences 209

7.1 Sets, Bags, and Sequences . 209

7.1.1 Sets . 209

7.1.2 Duplicate Data: Bags . 211

7.1.3 Explicit Duplicate Control 214

7.1.4 Ordered Data: Sequences 215

7.2 Aggregation Functions . 216

7.3 Operators . 220

7.3.1 Preliminaries . 221

7.3.2 Signatures . 223

7.3.3 Projection . 225

7.3.4 Selection . 226

7.3.5 Map . 226

7.3.6 Unary Grouping . 227

7.3.7 Unnest Operators . 228

7.3.8 Flatten Operator . 229

7.3.9 Join Operators . 229

7.3.10 Groupjoin . 230

7.3.11 Min/Max Operators . 231

iv CONTENTS

7.3.12 Other Dependent Operators 232

7.4 Linearity of Algebraic Operators 233

7.4.1 Linearity of Algebraic Operators 233

7.4.2 Exploiting Linearity . 238

7.5 Representations . 239

7.5.1 Three Different Representations 239

7.5.2 Conversion between Representations 241

7.5.3 Conversion between Bulk Types 241

7.5.4 Adjusting the Algebra . 242

7.5.5 Partial Preaggregation . 243

7.6 A Note on Equivalences . 243

7.7 Simple Reorderability . 244

7.7.1 Unary Operators . 244

7.7.2 Push-Down/Pull-Up of Unary into/from Binary Operators246

7.7.3 Binary Operators . 248

7.8 Predicate Detachment and Attachment 253

7.9 Basic Equivalences for D-Join . 255

7.10 Equivalences for Outerjoins . 257

7.10.1 Outerjoin Simplification 263

7.10.2 Generalized Outerjoin . 264

7.11 Equivalences for Unary Grouping 266

7.11.1 An Elementary Fact about Grouping 266

7.11.2 Join . 266

7.11.3 Left Outerjoin . 277

7.11.4 Left Outerjoin with Default 280

7.11.5 Full Outerjoin . 281

7.11.6 D-Join . 284

7.11.7 Groupjoin . 286

7.11.8 Intersection and Difference 291

7.12 Eliminating Redundant Joins . 291

7.13 Semijoin and Antijoin Reducer 293

7.14 Outerjoin Simplification . 293

7.15 Correct and Complete Exploration of the Core Search Space . . . 293

7.15.1 The Core Search Space 293

7.15.2 Exploration . 295

7.15.3 More Issues . 303

7.16 Logical Algebra for Sequences . 307

7.16.1 Introduction . 307

7.16.2 Algebraic Operators . 308

7.16.3 Equivalences . 311

7.16.4 Bibliography . 311

7.17 Literature . 311

7.18 ToDo . 312

CONTENTS v

8 Declarative Query Representation 313

8.1 Calculus Representations . 313

8.2 Datalog . 313

8.3 Tableaux Representation . 313

8.4 Monoid Comprehension . 313

8.5 Expressiveness . 313

8.6 Bibliography . 313

9 Translation and Lifting 315

9.1 Query Language to Calculus . 315

9.2 Query Language to Algebra . 315

9.3 Calculus to Algebra . 315

9.4 Algebra to Calculus . 315

9.5 Bibliography . 315

10 Query Equivalence, Containment, Minimization, and Factor-
ization 317

10.1 Set Semantics . 318

10.1.1 Conjunctive Queries . 318

10.1.2 . . . with Inequalities . 320

10.1.3 . . . with Negation . 321

10.1.4 . . . under Constraints . 321

10.1.5 . . . with Aggregation . 321

10.2 Bag Semantics . 321

10.2.1 Conjunctive Queries . 321

10.3 Sequences . 322

10.3.1 Path Expressions . 322

10.4 Minimization . 323

10.5 Detecting common subexpressions 323

10.5.1 Simple Expressions . 323

10.5.2 Algebraic Expressions . 323

10.6 Bibliography . 323

III Rewrite Techniques 325

11 Simple Rewrites 327

11.1 Simple Adjustments . 327

11.1.1 Rewriting Simple Expressions 327

11.1.2 Normal forms for queries with disjunction 329

11.2 Deriving new predicates . 329

11.2.1 Collecting conjunctive predicates 329

11.2.2 Equality . 329

11.2.3 Inequality . 330

11.2.4 Aggregation . 331

11.2.5 ToDo . 333

11.3 Predicate Push-Down and Pull-Up 333

vi CONTENTS

11.4 Eliminating Redundant Joins . 333

11.5 Distinct Pull-Up and Push-Down 333

11.6 Set-Valued Attributes . 333

11.6.1 Introduction . 333

11.6.2 Preliminaries . 334

11.6.3 Query Rewrite . 335

11.7 Bibliography . 336

12 View Merging 339

12.1 View Resolution . 339

12.2 Simple View Merging . 339

12.3 Predicate Move Around (Predicate pull-up and push-down) . . . 340

12.4 Complex View Merging . 341

12.4.1 Views with Distinct . 341

12.4.2 Views with Group-By and Aggregation 342

12.4.3 Views in IN predicates . 343

12.4.4 Final Remarks . 343

12.5 Bibliography . 344

13 Quantifier treatment 345

13.1 Pseudo-Quantifiers . 345

13.2 Existential quantifier . 346

13.3 Universal quantifier . 346

13.4 Bibliography . 350

14 Unnesting Nested Queries 351

15 Optimizing Queries with Materialized Views 353

15.1 Conjunctive Views . 353

15.2 Views with Grouping and Aggregation 353

15.3 Views with Disjunction . 353

15.4 Bibliography . 353

16 Semantic Query Rewrite 355

16.1 Constraints and their impact on query optimization 355

16.2 Semantic Query Rewrite . 355

16.3 Exploiting Uniqueness in Query Optimization 356

16.4 Bibliography . 356

IV Plan Generation 357

17 Current Search Space and Its Limits 359

17.1 Plans with Outer Joins, Semijoins and Antijoins 359

17.2 Expensive Predicates and Functions 359

17.3 Techniques to Reduce the Search Space 359

17.4 Bibliography . 359

CONTENTS vii

18 Dynamic Programming-Based Plan Generation 361

18.1 Introduction . 361

18.2 Hypergraphs . 362

18.3 CCPs: Csg-Cmp-Pairs for Hypergraphs 363

18.4 Neighborhood . 364

18.5 The CCP Enumerator BuEnumCppHyp 365

18.5.1 BuEnumCcpHyp . 366

18.5.2 EnumerateCsgRec . 367

18.5.3 EmitCsg . 368

18.5.4 EnumerateCmpRec . 369

18.5.5 EmitCsgCmp . 369

18.5.6 Neighborhood Calculation 369

18.6 DPhyp . 370

18.7 Adding Selections . 370

18.8 Adding Maps . 370

18.9 Adding Grouping . 370

19 Optimizing Queries with Disjunctions 371

19.1 Introduction . 371

19.2 Using Disjunctive or Conjunctive Normal Forms 372

19.3 Bypass Plans . 372

19.4 Implementation remarks . 374

19.5 Other plan generators/query optimizer 374

19.6 Bibliography . 375

20 Generating Plans for the Full Algebra 377

21 Generating DAG-structured Plans 379

22 Simplifying the Query Graph 381

22.1 Introduction . 381

22.2 On Optimizing Join Queries . 382

22.3 Graph Simplification Algorithm 383

22.3.1 Simplifying the Query Graph 384

22.3.2 The Full Algorithm . 386

22.3.3 Join Ordering Criterion 387

22.3.4 Theoretical Foundation 388

22.4 The Time/Quality Trade-Off . 390

23 Deriving and Dealing with Interesting Orderings and Group-
ings 393

23.1 Introduction . 393

23.2 Problem Definition . 394

23.2.1 Ordering . 394

23.2.2 Grouping . 396

23.2.3 Functional Dependencies 397

23.2.4 Algebraic Operators . 397

viii CONTENTS

23.2.5 Plan Generation . 398
23.3 Overview . 399
23.4 Detailed Algorithm . 402

23.4.1 Overview . 402
23.4.2 Determining the Input . 403
23.4.3 Constructing the NFSM 404
23.4.4 Constructing the DFSM 407
23.4.5 Precomputing Values . 408
23.4.6 During Plan Generation 408
23.4.7 Reducing the Size of the NFSM 408
23.4.8 Complex Ordering Requirements 412

23.5 Experimental Results . 413
23.6 Total Impact . 413
23.7 Influence of Groupings . 415
23.8 Annotated Bibliography . 419

24 Cardinality and Cost Estimation 423
24.1 Introduction . 423
24.2 A First Approach . 426

24.2.1 Top-Most Cost Formula (Overall Costs) 426
24.2.2 Summation of Operator Costs 426
24.2.3 CPU Cost . 427
24.2.4 Abbreviations . 427
24.2.5 I/O Costs . 427
24.2.6 Cardinality Estimates . 429

24.3 The Simple Profile: A First Logical Profile and its Propagation . 431
24.3.1 The Logical Profile . 431
24.3.2 Assumptions . 432
24.3.3 Profile Propagation for Selection 434
24.3.4 Profile Propagation for Join 440
24.3.5 Profile Propagation for Projection 441
24.3.6 Profile Propagation for Division 445
24.3.7 Remarks . 446

24.4 Approximation of a Set of Values 447
24.4.1 Approximations and Error Metrics 447
24.4.2 Example Applications . 448

24.5 Approximation with Linear Models 449
24.5.1 Linear Models . 449
24.5.2 Example Applications . 453
24.5.3 Linear Models Under l2 460
24.5.4 Linear Models Under l∞ 465
24.5.5 Linear Models Under lq 468
24.5.6 Non-Linear Models under lq 475
24.5.7 Multidimensional Models under lq 476

24.6 Traditional Histograms . 477
24.6.1 Bucketization . 478
24.6.2 Heuristics to Determine Bucket Boundaries 479

CONTENTS ix

24.7 More on Q . 480
24.7.1 Properties of the Q-Error 480
24.7.2 Properties of Estimation Functions 488
24.7.3 θ,q-Acceptability . 489
24.7.4 Testing θ,q-Acceptability for Buckets 490
24.7.5 From Buckets To Histograms 493
24.7.6 Q-Compression . 502

24.8 One Dimensional Synopses . 505
24.8.1 Four Level Tree and Variants 505
24.8.2 Q-Histograms (Type I) . 508
24.8.3 Q-Histogram (Type II) . 508

24.9 Sketches For Counting The Number of Distinct Values 508
24.9.1 Linear Counting . 510
24.9.2 DvByKMinVal . 510
24.9.3 Logarithmic Counting . 511
24.9.4 SuperLogLog Counting 512
24.9.5 HyperLogLog Counting 515
24.9.6 DvByMinAvg . 515
24.9.7 DvByKMinAvg . 516
24.9.8 Pointers to the Literature 517

24.10Multidimensional Synopsis . 517
24.10.1 Introductory Example . 518
24.10.2Solving the Introductory Problem without 2-Dimensional

Synopsis . 519
24.10.3Statistical Views . 520
24.10.4Regular Partitioning: equi-width 521
24.10.5Equi-Depth Histogram . 521
24.10.6 2-Dimensional Synopsis based on SVD 521
24.10.7PHASED . 521
24.10.8MHIST . 521
24.10.9GENHIST . 521
24.10.10HiRed . 521
24.10.11VI Histograms . 521
24.10.12Grid Trees . 521
24.10.13More . 521

24.11Iterative Selectivity Combination 522
24.12Maximum Entropy . 522
24.13Selected Issues . 523

24.13.1Exploiting and Augmenting Existing DBMS Data Struc-
tures . 523

24.13.2Sampling . 526
24.13.3Query Feedback . 526
24.13.4Combining Data Summaries with Sampling 526
24.13.5Wavelets . 526
24.13.6Selectivity of String-Valued Attributes 526

24.14Cost Functions . 526
24.14.1Disk-based Joins . 526

x CONTENTS

24.14.2Main Memory Joins . 526

24.14.3Additional Pointers to the Literature 526

V Implementation 529

25 Architecture of a Query Compiler 531

25.1 Compilation process . 531

25.2 Architecture . 531

25.3 Control Blocks . 531

25.4 Memory Management . 533

25.5 Tracing and Plan Visualization 533

25.6 Driver . 533

25.7 Bibliography . 533

26 Internal Representations 537

26.1 Requirements . 537

26.2 Algebraic Representations . 537

26.2.1 Graph Representations . 538

26.2.2 Query Graph . 538

26.2.3 Operator Graph . 538

26.3 Query Graph Model (QGM) . 538

26.4 Classification of Predicates . 538

26.5 Treatment of Distinct . 538

26.6 Query Analysis and Materialization of Analysis Results 538

26.7 Query and Plan Properties . 539

26.8 Conversion to the Internal Representation 541

26.8.1 Preprocessing . 541

26.8.2 Translation into the Internal Representation 541

26.9 Bibliography . 541

27 Details on the Phases of Query Compilation 543

27.1 Parsing . 543

27.2 Semantic Analysis, Normalization, Factorization, Constant Fold-
ing, and Translation . 543

27.3 Normalization . 545

27.4 Factorization . 545

27.5 Constant Folding . 546

27.6 Semantic analysis . 546

27.7 Translation . 548

27.8 Rewrite I . 553

27.9 Plan Generation . 553

27.10Rewrite II . 553

27.11Code generation . 553

27.12Bibliography . 554

CONTENTS xi

28 Hard-Wired Algorithms 555

28.1 Hard-wired Dynamic Programming 555

28.1.1 Introduction . 555

28.1.2 A plan generator for bushy trees 559

28.1.3 A plan generator for bushy trees and expensive selections 560

28.1.4 A plan generator for bushy trees, expensive selections and
functions . 560

28.2 Bibliography . 560

29 Rule-Based Algorithms 563

29.1 Rule-based Dynamic Programming 563

29.2 Rule-based Memoization . 563

29.3 Bibliography . 563

30 Example Query Compiler 565

30.1 Research Prototypes . 565

30.1.1 AQUA and COLA . 565

30.1.2 Black Dahlia II . 565

30.1.3 Epoq . 565

30.1.4 Ereq . 567

30.1.5 Exodus/Volcano/Cascade 568

30.1.6 Freytags regelbasierte System R-Emulation 570

30.1.7 Genesis . 571

30.1.8 GOMbgo . 573

30.1.9 Gral . 576

30.1.10Lambda-DB . 579

30.1.11Lanzelotte in short . 579

30.1.12Opt++ . 580

30.1.13Postgres . 580

30.1.14Sciore & Sieg . 582

30.1.15Secondo . 582

30.1.16Squiral . 582

30.1.17System R and System R∗ 584

30.1.18Starburst and DB2 . 584

30.1.19Der Optimierer von Straube 587

30.1.20Other Query Optimizer 588

30.2 Commercial Query Compiler . 590

30.2.1 The DB 2 Query Compiler 590

30.2.2 The Oracle Query Compiler 590

30.2.3 The SQL Server Query Compiler 594

VI Selected Topics 595

31 Generating Plans for Top-N-Queries? 597

31.1 Motivation and Introduction . 597

31.2 Optimizing for the First Tuple 597

xii CONTENTS

31.3 Optimizing for the First N Tuples 597

32 Recursive Queries 599

33 Issues Introduced by OQL 601
33.1 Type-Based Rewriting and Pointer Chasing Elimination 601
33.2 Class Hierarchies . 603
33.3 Cardinalities and Cost Functions 605

34 Issues Introduced by XPath 607
34.1 A Naive XPath-Interpreter and its Problems 607
34.2 Dynamic Programming and Memoization 607
34.3 Naive Translation of XPath to Algebra 607
34.4 Pushing Duplicate Elimination 607
34.5 Avoiding Duplicate Work . 607
34.6 Avoiding Duplicate Generation 607
34.7 Index Usage and Materialized Views 607
34.8 Cardinalities and Costs . 607
34.9 Bibliography . 607

35 Issues Introduced by XQuery 609
35.1 Reordering in Ordered Context 609
35.2 Result Construction . 609
35.3 Unnesting Nested XQueries . 609
35.4 Cardinalities and Cost Functions 609
35.5 Bibliography . 609

36 Outlook 611

A Query Languages? 613
A.1 Designing a query language . 613
A.2 SQL . 613
A.3 OQL . 613
A.4 XPath . 613
A.5 XQuery . 613
A.6 Datalog . 613

B Query Execution Engine (?) 615

C Glossary of Rewrite and Optimization Techniques 617

D Useful Formulas 623

Bibliography 624

Index 693

E ToDo 695

List of Figures

1.1 DBMS architecture . 6

1.2 Query interpreter . 6

1.3 Simple query interpreter . 7

1.4 Query compiler . 7

1.5 Query compiler architecture . 8

1.6 Execution plan . 10

1.7 Potential and actual search space 12

1.8 Generation vs. transformation . 13

2.1 Relational algebra . 17

2.2 Equivalences for the relational algebra 18

2.3 (Simplified) Canonical translation of SQL to algebra 19

2.4 Text book query optimization . 20

2.5 Logical query optimization . 21

2.6 Different join trees . 27

2.7 Plans for example query (Part I) 28

2.8 Plans for example query (Part II) 29

2.9 Physical query optimization . 30

2.10 Plan for example query after physical query optimization 30

3.1 Query graph for example query of Section 2.1 32

3.2 Query graph shapes . 33

3.3 Illustrations for the IKKBZ Algorithm 55

3.4 A query graph, its directed join graph, some spanning trees and
join trees . 56

3.5 A query graph, its directed join tree, a spanning tree and its
problem . 58

3.6 Search space with sharing under optimality principle 63

3.7 Algorithm DPsize . 70

3.8 Algorithm DPsub . 72

3.9 Size of the search space for different graph structures 74

3.10 Algorithm DPccp . 75

3.11 Enumeration Example for DPccp 75

3.12 Sample graph to illustrate EnumerateCsgRec 77

3.13 Call sequence for Figure 3.12 . 77

3.14 Example of rule transformations (RS-1) 99

xiii

xiv LIST OF FIGURES

3.15 Encoding Trees . 104

3.16 Paths . 105

3.17 Tree-merge . 108

3.18 Algorithm UnrankDecomposition 110

3.19 Leaf-insertion . 110

3.20 A query graph, its tree, and its standard decomposition graph . . 111

3.21 Algorithm Adorn . 114

3.22 A query graph, a join tree, and its encoding 121

3.23 Pseudo code for IDP-1 . 124

3.24 Pseudocode for IDP-2 . 125

3.25 Subroutine applicable-predicates 127

3.26 Subroutine construct-bushy-tree 128

3.27 Subroutine extract-plan and its subroutine 128

3.28 Impact of selectivity on the search space 134

3.29 Impact of relation sizes on the search space 134

3.30 Impact of parameters on the performance of heuristics 134

3.31 Impact of selectivities on probabilistic procedures 135

4.1 Disk drive assembly . 138

4.2 Disk drive read request processing 139

4.3 Time to read 100 MB from disk (depending on the number of
8 KB blocks read at once) . 142

4.4 Time needed to read n random pages 144

4.5 Break-even point in fraction of total pages depending on page size145

4.6 Physical organization of a relational database 148

4.7 Slotted pages and TIDs . 150

4.8 Various physical record layouts 151

4.9 Clustered vs. non-clustered index 157

4.10 Illustration of seek cost estimate 190

5.1 Truth tables for two-valued logic 199

5.2 Laws for two-valued logic . 200

5.3 Comparison functions in the presence of NULL values 201

5.4 Truth tables for three-valued logic 202

5.5 True-/false-interpretation and Negation 203

7.1 Laws for Set Operations . 210

7.2 Laws for Bag Operations . 212

7.3 Decomposition of aggregate functions 219

7.4 Example for map and group operators 226

7.5 Three possible representations of a bag 240

7.6 Example for outerjoin reorderability (for strict q) 257

7.7 Example for outerjoin reorderability (for non-strict q′) 258

7.8 Example for outerjoin reorderability (for partially non-strict q′) . 258

7.9 Example for outerjoin associativity for strict q 259

7.10 Example for outerjoin associativity for non-strict q′ 260

7.11 Example for outerjoin l-asscom for strict q 260

LIST OF FIGURES xv

7.12 Example for grouping and join 268

7.13 Extended example for grouping and join 269

7.14 Example for Eqv. 7.113 . 274

7.15 Example relations . 289

7.16 Join results . 289

7.17 Left- and right-hand sides . 290

7.18 Transformation rules for assoc, l-asscom, and r-asscom 294

7.19 Core search space example . 295

7.20 The complete search space . 296

7.21 Algorithm DPsube . 297

7.22 Calculating TES for simple operator trees 299

7.23 Example showing the incompleteness of CD-A 301

7.24 Calculating conflict rules for simple operator trees 301

7.25 Example showing the incompleteness of CD-B 302

7.26 Conflict detection for unary and binary operators 304

7.27 Example for Map Operator . 309

7.28 Examples for unary grouping and the groupjoin 310

11.1 Simplification rules for boolean expressions 330

11.2 Axioms for equality . 330

11.3 . 337

11.4 Axioms for inequality . 338

18.1 Sample hypergraph . 362

18.2 Trace of algorithm for Figure ?? 367

18.3 Pseudocode for calcNeighborhood 370

19.1 DNF plans . 372

19.2 CNF plans . 373

19.3 Bypass plans . 373

22.1 Runtimes for Different Query Graphs 383

22.2 Exemplary Simplification Steps for a Star Query 384

22.3 Pseudo-Code for a Single Simplification Step 385

22.4 The Full Optimization Algorithm 387

22.5 The Effect of Simplification Steps for a Star Query with 20 Re-
lations . 391

22.6 The Effect of Simplification Steps for a Grid Query with 20 Re-
lations . 392

23.1 Propagation of orderings and groupings 398

23.2 Possible FSM for orderings . 400

23.3 Possible FSM for groupings . 401

23.4 Combined FSM for orderings and groupings 401

23.5 Possible DFSM for Figure 23.4 401

23.6 Preparation steps of the algorithm 403

23.7 Initial NFSM for sample query 405

23.8 NFSM after adding DFD edges 406

xvi LIST OF FIGURES

23.9 NFSM after pruning artificial states 406

23.10Final NFSM . 406

23.11Resulting DFSM . 407

23.12contains Matrix . 407

23.13transition Matrix . 407

23.14Plan generation for different join graphs, Simmen’s algorithm
(left) vs. our algorithm (middle) 413

23.15Memory consumption in KB for Figure 23.14 415

23.16Time requirements for the preparation step 418

23.17Space requirements for the preparation step 419

24.1 Overview of operations for cardinality and cost estimations . . . 424

24.2 Sample for range query result estimation under CVA and ESA. . 435

24.3 Calculating the lower bound D⊥G 444

24.4 Calculating the estimate for DG 445

24.5 Example frequency density and cumulated frequency 455

24.6 Cumulated frequency and its approximation 456

24.7 Q-error and plan optimality . 460

24.8 Algorithm for best linear approximation under l∞ 469

24.9 Algorithm finding best linear approximation under lq. 474

24.10Sample data sets . 477

24.11Q-compression, logb-based . 502

24.12Binary Q-compression . 504

24.13FLT example 1 . 505

24.14FLT example 2 . 507

24.15Car database example . 510

24.16Linear Counting . 511

24.17Algorithm DvByKMinVal . 511

24.18Algorithm LogarithmicCounting 512

24.19Algorithm PCSA . 513

24.20Filling M for LogLogCounting, SuperLogLogCounting, and Hy-
perLogLogCounting . 514

24.21SuperLogLog Counting . 514

24.22Calculation of α̃ . 515

24.23HyperLogLog Counting . 516

24.24DvByMinAvg . 517

24.25DvByKMinAvg . 518

24.26Example for Equi-Depth Tree . 521

24.27Sample B+-Tree . 523

25.1 The compilation process . 532

25.2 Class Architecture of the Query Compiler 534

25.3 Control Block Structure . 535

27.1 Expression . 544

27.2 Expression hierarchy . 545

27.3 Expression . 546

LIST OF FIGURES xvii

27.4 Query 1 . 547
27.5 Internal representation . 549
27.6 An algebraic operator tree with a d-join 552
27.7 Algebra . 553

28.1 A sample execution plan . 556
28.2 Different join operator trees . 557
28.3 Bottom up plan generation . 559
28.4 A Dynamic Programming Optimization Algorithm 561

30.1 Beispiel einer Epoq-Architektur 566
30.2 Exodus Optimierer Generator . 568
30.3 Organisation der Optimierung . 571
30.4 Ablauf der Optimierung . 574
30.5 Architektur von GOMrbo . 575
30.6 a) Architektur des Gral-Optimierers; b) Operatorhierarchie nach

Kosten . 576
30.7 Die Squiralarchitektur . 583
30.8 Starburst Optimierer . 585
30.9 Der Optimierer von Straube . 587

33.1 Algebraic representation of a query 601
33.2 A join replacing pointer chasing 603
33.3 A Sample Class Hierarchy . 604
33.4 Implementation of Extents . 605

xviii LIST OF FIGURES

Preface

Goals

Primary Goals:

• book covers many query languages (at least SQL, OQL, XQuery (XPath))

• techniques should be represented as query language independent as pos-
sible

• book covers all stages of the query compilation process

• book completely covers fundamental issues

• book gives implementation details and tricks

Secondary Goals:

• book is thin

• book is not totally unreadable

• book separates concepts from implementation techniques

Organizing the material is not easy: The same topic pops up

• at different stages of the query compilation process and

• at different query languages

Acknowledgements

Introducer to query optimization: Günther von Bültzingsloewen

Peter Lockemann

First paper coauthor: Stefan Karl,

Coworkers: Alfons Kemper, Klaus Peithner, Michael Steinbrunn, Donald
Kossmann, Carsten Gerlhof, Jens Claussen,

Sophie Cluet, Vassilis Christophides, Georg Gottlob, V.S. Subramanian,

Sven Helmer, Birgitta König-Ries, Wolfgang Scheufele, Carl-Christian Kanne,
Thomas Neumann, Norman May, Matthias Brantner

Robin Aly

xix

LIST OF FIGURES 1

Discussions: Umesh Dayal, Dave Maier, Gail Mitchell, Stan Zdonik, Tamer
Özsu, Arne Rosenthal,

Don Chamberlin, Bruce Lindsay, Guy Lohman, Mike Carey, Bennet Vance,
Laura Haas, Mohan, CM Park,

Yannis Ioannidis, Götz Graefe, Serge Abiteboul, Claude Delobel Patrick
Valduriez, Dana Florescu, Jerome Simeon, Mary Fernandez, Christoph Koch,
Adam Bosworth, Joe Hellerstein, Paul Larson, Hennie Steenhagen, Harald
Schöning, Bernhard Seeger,

Encouragement: Anand Deshpande
Manuscript: Simone Seeger,
and many others to be inserted.

2 LIST OF FIGURES

Part I

Basics

3

Chapter 1

Introduction

1.1 General Remarks

Query languages like SQL or OQL are declarative. That is, they specify what
the user wants to retrieve and not how to retrieve it. It is the task of the
query compiler to generate a query evaluation plan (evaluation plan for short,
or execution plan or simply plan) for a given query. The query evaluation plan
(QEP) essentially is an operator tree with physical algebraic operators as nodes.
It is evaluated by the runtime system. Figure 1.6 shows a detailed execution
plan ready to be interpreted by the runtime system. Figure 28.1 shows an
abstraction of a query plan often used to explain algorithms or optimization
techniques.

The book tries to demystify query optimization and query optimizers. By
means of the multi-lingual query optimizer BD II, the most important aspects
of query optimizers and their implementation are discussed. We concentrate
not only on the query optimizer core (Rewrite I, Plan Generator, Rewrite II)
of the query compilation process but touch on all issues from parsing to code
generation and quality assurance.

We start by giving a two-module overview of a database management sys-
tem. One of these modules covers the functionality of the query compiler.
The query compiler itself involves several submodules. For each submodule we
discuss the features relevant for query compilation.

1.2 DBMS Architecture

Any database management system (DBMS) can be divided into two major
parts: the compile time system (CTS) and the runtime system (RTS). User
commands enter the compile time system which translates them into executa-
bles which are then interpreted by the runtime system (Fig. 1.1).

The input to the CTS are statements of several kinds, for example connect
to a database (starts a session), disconnect from a database, create a database,
drop a database, add/drop a schema, perform schema changes (add relations,
object types, constraints, . . .), add/drop indexes, run statistics commands,
manually modify the DBMS statistics, begin of a transaction, end of a transac-

5

6 CHAPTER 1. INTRODUCTION

CTS

RTS

user command (e.g. query)

execution plan

result

Figure 1.1: DBMS architecture

calculus
interpretation

Rewrite

query
result

Figure 1.2: Query interpreter

tion, add/drop a view, update database items (e.g. tuples, relations, objects),
change authorizations, and state a query. Within the book, we will only be
concerned with the tiny last item.

1.3 Interpretation versus Compilation

There are two essential approaches to process a query: interpretation and com-
pilation.

The path of a query through a query interpreter is illustrated in Figure 1.2.
Query interpretation translates the query string into some internal representa-
tion that is mostly calculus-based. Optionally, some rewrite on this representa-
tion takes place. Typical steps during this rewrite phase are unnesting nested
queries, pushing selections down, and introducing index structures. After that,
the query is interpreted. A simple query interpreter is sketched in Figure 1.3.
The first function, interprete, takes a simple SQL block and extracts the dif-
ferent clauses, initializes the result R and calls eval. Then, eval recursively
evaluates the query by first producing the cross product of the entries in the
from clause. After all of them have been processed, the predicate is applied and
for those tuples where the where predicate evaluates to true, a result tuple is
constructed and added to the result set R. Obviously, the sketeched interpreter
is far from being efficient. A much better approach has been described by Wong
and Youssefi [931, 962].

Let us now discuss the compilation approach. The different steps are sum-

1.3. INTERPRETATION VERSUS COMPILATION 7

interprete(SQLBlock x) {

/* possible rewrites go here */
s := x.select();
f := x.from();
w := x.where();
R := ∅; /* result */
t := []; /* empty tuple */
eval(s, f , w, t, R);
return R;

}

eval(s, f , w, t, R) {

if(f .empty())
if(w(t))
R += s(t);

else
foreach(t′ ∈ first(f))

eval(s, tail(f), w, t ◦ t′, R);
}

Figure 1.3: Simple query interpreter

calculus algebra
code

generation

plan generation /

translation

execution

plan

Rewrite / TransformationRewrite

query

Figure 1.4: Query compiler

marized in Figure 1.4. First, the query is rewritten. Again, unnesting nested
queries is a main technique for performance gains. Other rewrites will be dis-
cussed in Part ??. After the rewrite, the plan generation takes place. Here,
an optimal plan is constructed. Whereas typically rewrite takes place on a
calculus-based representation of the query, plan generation constructs an alge-
braic expression containing well-known operators like selection and join. Some-
times, after plan generation, the generated plan is refined: some polishing takes
place. Then, code is generated, that can be interpreted by the runtime system.
More specifically, the query execution engine—a part of the runtime system—
interpretes the query execution plan. Let us illustrate this. The following query

8 CHAPTER 1. INTRODUCTION

parsing

nfst

rewrite I

plan generation

rewrite II

code generation

abstract syntax tree

internal representation

internal representation

internal representation

internal representation

execution plan

query

query

optimizer

CTS

Figure 1.5: Query compiler architecture

is Query 1 of the now obsolete TPC-D benchmark [878].

SELECT RETURNFLAG, LINESTATUS,
SUM(QUANTITY) as SUM QTY,
SUM(EXTENDEDPRICE) as SUM EXTPR,
SUM(EXTENDEDPRICE * (1 - DISCOUNT)),
SUM(EXTENDEDPRICE * (1 - DISCOUNT)*

(1 + TAX)),
AVG(QUANTITY),
AVG(EXTENDEDPRICE),
AVG(DISCOUNT),
COUNT(*)

FROM LINEITEM
WHERE SHIPDDATE <= DATE ’1998-12-01’
GROUP BYRETURNFLAG, LINESTATUS
ORDER BYRETURNFLAG, LINESTATUS

1.4. REQUIREMENTS FOR A QUERY COMPILER 9

The CTS translates this query into a query execution plan. Part of the plan
is shown in Fig. 1.6. One rarely sees a query execution plan. This is the reason
why I included one. But note that the form of query execution plans differs
from DBMS to DBMS since it is (unfortunately) not standardized the way SQL
is. Most DBMSs can give the user abstract representations of query plans. It
is worth the time to look at the plans generated by some commercial DBMSs.

I do not expect the reader to understand the plan in all details. Some of
these details will become clear later. Anyway, this plan is given to the RTS
which then interprets it. Part of the result of the interpretation might look like
this:

RETURNFLAG LINESTATUS SUM QTY SUM EXTPR . . .
A F 3773034 5319329289.68 . . .
N F 100245 141459686.10 . . .
N O 7464940 10518546073.98 . . .
R F 3779140 5328886172.99 . . .

This should look familar to you.
The above query plan is very simple. It contains only a few algebraic op-

erators. Usually, more algebraic operators are present and the plan is given in
a more abstract form that cannot be directly executed by the runtime system.
Fig. 2.10 gives an example of an abstracted more complex operator tree. We
will work with representations closer to this one.

A typical query compiler architecture is shown in Figure 1.5. The first com-
ponent is the parser. It produces an abstract syntax tree. This is not always the
case but this intermediate representation very much simplifies the task of fol-
lowing component. The NFST component performs several tasks. The first step
is normalization. This mainly deals with introducing new variables for subex-
pressions. Factorization and semantic analysis are performed during NFST.
Last, the abstract syntax tree is translated into the internal representation. All
these steps can typically be performed during a single path through the query
representation. Semantic analysis requires looking up schema definitions. This
can be expensive and, hence, the number of lookups should be minimized. Af-
ter NFST the core optimization steps rewrite I and plan generation take place.
Rewrite II does some polishing before code generation. These modules directly
correspond to the phases in Figure 1.4. They are typically further devided into
submodules handling subphases. The most prominent example is the prepara-
tion phase that takes place just before the actual plan generation takes place.
In our figures, we think of preparation as being part of the plan generation.

1.4 Requirements for a Query Compiler

Here are the main requirements for a query compiler:

1. Correctness

2. Completeness

3. Generate optimal plan (viz avoid the worst case)

10 CHAPTER 1. INTRODUCTION

(group

(tbscan

{segment ’lineitem.C4Kseg’ 0 4096}

{nalslottedpage 4096}

{ctuple ’lineitem.cschema’}

[20

LOAD_PTR 1

LOAD_SC1_C 8 1 2 // L_RETURNFLAG

LOAD_SC1_C 9 1 3 // L_LINESTATUS

LOAD_DAT_C 10 1 4 // L_SHIPDATE

LEQ_DAT_ZC_C 4 ’1998-02-09’ 1

] 2 1 // number of help-registers and selection-register

) 10 22 // hash table size, number of registers

[// init

MV_UI4_C_C 1 0 // COUNT(*) = 0

LOAD_SF8_C 4 1 6 // L_QUANTITY

LOAD_SF8_C 5 1 7 // L_EXTENDEDPRICE

LOAD_SF8_C 6 1 8 // L_DISCOUNT

LOAD_SF8_C 7 1 9 // L_TAX

MV_SF8_Z_C 6 10 // SUM/AVG(L_QUANTITY)

MV_SF8_Z_C 7 11 // SUM/AVG(L_EXTENDEDPRICE)

MV_SF8_Z_C 8 12 // AVG(L_DISCOUNT)

SUB_SF8_CZ_C 1.0 8 13 // 1 - L_DISCOUNT

ADD_SF8_CZ_C 1.0 9 14 // 1 + L_TAX

MUL_SF8_ZZ_C 7 13 15 // SUM(L_EXTDPRICE * (1 - L_DISC))

MUL_SF8_ZZ_C 15 14 16 // SUM((...) * (1 + L_TAX))

] [// advance

INC_UI4 0 // inc COUNT(*)

MV_PTR_Y 1 1

LOAD_SF8_C 4 1 6 // L_QUANTITY

LOAD_SF8_C 5 1 7 // L_EXTENDEDPRICE

LOAD_SF8_C 6 1 8 // L_DISCOUNT

LOAD_SF8_C 7 1 9 // L_TAX

MV_SF8_Z_A 6 10 // SUM/AVG(L_QUANTITY)

MV_SF8_Z_A 7 11 // SUM/AVG(L_EXTENDEDPRICE)

MV_SF8_Z_A 8 12 // AVG(L_DISCOUNT)

SUB_SF8_CZ_C 1.0 8 13 // 1 - L_DISCOUNT

ADD_SF8_CZ_C 1.0 9 14 // 1 + L_TAX

MUL_SF8_ZZ_B 7 13 17 15 // SUM(L_EXTDPRICE * (1 - L_DISC))

MUL_SF8_ZZ_A 17 14 16 // SUM((...) * (1 + L_TAX))

] [// finalize

UIFC_C 0 18

DIV_SF8_ZZ_C 10 18 19 // AVG(L_QUANTITY)

DIV_SF8_ZZ_C 11 18 20 // AVG(L_EXTENDEDPRICE)

DIV_SF8_ZZ_C 12 18 21 // AVG(L_DISCOUNT)

] [// hash program

HASH_SC1 2 HASH_SC1 3

] [// compare program

CMPA_SC1_ZY_C 2 2 0

EXIT_NEQ 0

CMPA_SC1_ZY_C 3 3 0

])
Figure 1.6: Execution plan

4. Efficiency, generate the plan fast, do not waste memory

5. Graceful degradation

1.5. SEARCH SPACE 11

6. Robustness

First of all, the query compiler must produce correct query evaluation plans.
That is, the result of the query evaluation plan must be the result of the query
as given by the specification of the query language. It must also cover the
complete query language. The next issue is that an optimal query plan must
(should) be generated. However, this is not always that easy. That is why some
database researchers say that one must avoid the worst plan. Talking about
the quality of a plan requires us to fix the optimization goal. Several goals are
reasonable: We can optimize throughput, minimize response time, minimize
resource consumption (both, memory and CPU), and so on. A good query
compiler supports two optimization goals: minimize resource consumption and
minimize the time to produce the first tuple. Obviously, both goals cannot be
achieved at the same time. Hence, the query compiler must be instructed about
the optimization goal.

Irrespective of the optimization goal, the query compiler should produce the
query evaluation plan fast. It does not make sense to take 10 seconds to optimize
a query whose execution time is below a second. This sounds reasonable but
is not trivial to achieve. As we will see, the number of query execution plans
that are equivalent to a given query, i.e. produce the same result as the query,
can be very large. Sometimes, very large even means that not all plans can
be considered. Taking the wrong approach to plan generation will result in no
plan at all. This is the contrary of graceful degradation. Expressed positively,
graceful degradation means that in case of limited resources, a plan is generated
that may not be the optimal plan, but also not that far away from the optimal
plan.

Last, typical software quality criteria should be met. We only mentioned
robustness in our list, but others like maintainability must be met also.

1.5 Search Space

For a given query, there typically exists a high number of plans that are equiva-
lent to the plan. Not all of these plans are accessible. Only those plans that can
be generated by known optimization techniques (mainly algebraic equivalences)
can potentially be generated. Since this number may still be too large, many
query compilers restrict their search space further. We call the search space
explored by a query optimizer the actual search space. The potential search
space is the set of all plans that are known to be equivalent to the given query
by applying the state of the art of query optimization techniques. The whole
set of plans equivalent to a given query is typically unknown: we are not sure
whether all optimization techniques have been discovered so far. Figure 1.7
illustrates the situation. Note that we run into problems if the actual search
space is not a subset of the equivalent plans. Then the query compiler produces
wrong results. As we will see in several chapters of this book, some optimization
techniques have been proposed that produce plans that are not equivalent to
the original query.

12 CHAPTER 1. INTRODUCTION

search space

equivalent

actual

potential
search space

plans

Figure 1.7: Potential and actual search space

1.6 Generation versus Transformation

Two different approaches to plan generation can be distinguished:

• The transformation-based approach transforms one query execution plan
into another equivalent one. This can, for example, happen by applying
an algebraic equivalence to a query execution plan in order to yield a
better plan.

• The generic or synthetic approach produces a query execution plan by
assembling building blocks and adding one algebraic operator after the
other, until a complete query execution plan has been produced. Note
that in this approach only when all building blocks and algebraic opertors
have been introduced the internal representation can be executed. Before
that, no (complete) plan exists.

For an illustration see Figure 1.8.

A very important issue is how to explore the search space. Several well-
known approaches exist: A∗, Branch-and-bound, greedy algorithms, hill-climbing,
dynamic programming, memoization, [209, 530, 531, 682]. These form the basis
for most of the plan generation algorithms.

1.7 Focus

In this book, we consider only the compilation of queries. We leave out many
special aspects like query optimization for multi-media database systems or

1.8. ORGANIZATION OF THE BOOK 13

a) Generative Approach b) Transformational Approach

Figure 1.8: Generation vs. transformation

multidatabase systems. These are just two omissions. We further do not con-
sider the translation of update statements which — especially in the presence
of triggers — can become quite complex. Furthermore, we assume the reader to
be familiar with the fundamentals of database systems [264, 484, 650, 709, 816]
and their implementation [403, 316]. Especially, knowledge on query execution
engines is required [347].

Last, the book presents a very personal view on query optimization. To
see other views on the same topic, I strongly recommend to read the literature
cited in this book and the references found therein. A good start are overview
articles, PhD theses, and books, e.g. [902, 322, 445, 446, 468, 543] [610, 613,
662, 830, 850, 886, 887].

1.8 Organization of the Book

The first part of the book is an introduction to the topic. It should give an
idea about the breadth and depth of query optimization. We first recapitulate
query optimization the way it is described in numerous text books on database
systems. There should be nothing really new here except for some pitfalls we
will point out. The Chapter 3 is devoted to the join ordering problem. This
has several reasons. First of all, at least one of the algorithms presented in

14 CHAPTER 1. INTRODUCTION

this chapter forms the core of every plan generator. The second reason is that
this problem allows to discuss some issues like search space sizes and problem
complexities. The third reason is that we do not have to delve into details.
We can stick to very simple (you might call them unrealistic) cost functions,
do not have to concern ourselves with details of the runtime system and the
like. Expressed positively, we can concentrate on some algorithmic aspects
of the problem. In Chapter 4 we do the opposite. The reader will not find
any advanced algorithms in this chapter but plenty of details on disks and cost
functions. The goal of the rest of the book is then to bring these issues together,
broaden the scope of the chapters, and treat problems not even touched by
them. The main issue not touched is query rewrite.

Chapter 2

Textbook Query Optimization

Almost every introductory textbook on database systems contains a section on
query optimization (or at least query processing) [264, 484, 650, 709, 816]. Also,
the two existing books on implementing database systems contain a section on
query optimization [403, 316]. In this chapter we give an excerpt1 of these
sections and subsequently discuss the problems with the described approach.
The bottom line will be that these descriptions of query optimization capture
the essence of it but contain pitfalls that need to be pointed out and gaps to
be filled.

2.1 Example Query and Outline

We use the following relations for our example query:

Student(SNo, SName, SAge, SYear)
Attend(ASNo, ALNo, AGrade)

Lecture(LNo, LTitle, LPNo)
Professor(PNo, PName)

Those attributes belonging to the key of the relations have been underlined.

With the following query we ask for all students attending a lecture by a
Professor called “Larson”.

select distinct s.SName
from Student s, Attend a, Lecture l, Professor p
where s.SNo = a.ASNo and a.ALNo = l.LNo

and l.LPNo = p.PNo and p.PName = ‘Larson’

The outline of the rest of the chapter is as follows. A query is typically
translated into an algebraic expression. Hence, we first review the relational
algebra and then discuss the translation process. Thereafter, we present the two
phases of textbook query optimization: logical and physical query optimization.
A brief discussion follows.

1We do not claim to be fair to the above mentioned sections.

15

16 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

2.2 Algebra

Let us briefly recall the standard definition of the most important algebra-
ic operators. Their inputs are relations, that is sets of tuples. Sets do not
contain duplicates. The attributes of the tuples are assumed to be simple (non-
decomposable) values. The most common algebraic operators are defined in
Fig. 2.1. Although the common set operations union (∪), intersection (∩), and
setdifference (\) belong to the relational algebra, we did not list them. Re-
member that ∪ and ∩ are both commutative and associative. \ is neither of
them. Further, for ∪ and ∩, two distributivity laws hold. However, since these
operations are not used in this section, we refer to Figure 7.1 in Section 7.1.1.

Before we can understand Figure 2.1, we must clarify some terms and no-
tations. For us, a tuple is a mapping from a set of attribute names (or at-
tributes for short) to their corresponding values. These values are taken from
certain domains. An actual tuple is denoted embraced by brackets. They
include a comma-separated list of the form attribute name, column and at-
tribute value as in [name: ‘‘Anton’’, age: 2]. If we have two tuples
with different attribute names, they can be concatenated, i.e. we can take the
union of their attributes. Tuple concatentation is denoted by ‘◦’. For exam-
ple [name: ‘‘Anton’’, age: 2] ◦ [toy: ‘‘digger’’] results in [name:

‘‘Anton’’, age: 2, toy: ‘‘digger’’]. Let A and A′ be two sets of at-
tributes where A′ ⊆ A holds. Further let t a tuple with schema A. Then, we can
project t on the attributes in A (written as t.A). The resulting tuple contains on-
ly the attributes in A′; others are discarded. For example, if t is the tuple [name:
‘‘Anton’’, age: 2, toy: ‘‘digger’’] and A = {name, age}, then t.A is
the tuple [name: ‘‘Anton’’, age: 2].

A relation is a set of tuples with the same attributes. The schema of a
relation is the set of attributes. For a relation R this is sometimes denoted by
sch(R), the schema of R. We denote it by A(R) and extend it to any algebraic
expression producing a set of tuples. That is, A(e) for any algebraic expression
is the set of attributes the resulting relation defines. Consider the predicate
age = 2 where age is an attribute name. Then, age behaves like a free variable
that must be bound to some value before the predicate can be evaluated. This
motivates us to often use the terms attribute and variable synonymously. In the
above predicate, we would call age a free variable. The set of free variables of
an expression e is denoted by F(e).

Sometimes it is useful to work with sequences of attributes in compari-
son predicates. Let A = ⟨a1, . . . , ak⟩ and B = ⟨b1, . . . , bk⟩ be two attribute
sequences. Then for any comparison operator θ ∈ {=,≤, <,≥, >, ̸=}, the ex-
pression AθB abbreviates a1θb1 ∧ a2θb2 ∧ . . . ∧ akθbk.

Often, a natural join is defined. Consider two relations R1 and R2. Define
Ai := A(Ri) for i ∈ {1, 2}, and A := A1 ∩ A2. Assume that A is non-empty
and A = ⟨a1, . . . , an⟩. If A is non-empty, the natural join is defined as

R1 BR2 := ΠA1∪A2(R1 Bp ρA:A′(R2))

where ρA:A′ renames the attributes ai in A to a′i in A
′ and the predicate p has

the form A = A′, i.e. a1 = a′1 ∧ . . . ∧ an = a′n.

2.3. CANONICAL TRANSLATION 17

σp(R) := {r|r ∈ R, p(r)}
ΠA(R) := {r.A|r ∈ R}

R1 AR2 := {r1 ◦ r2|r1 ∈ R1, r2 ∈ R2}
R1 Bp R2 := σp(R1 AR2)

Figure 2.1: Relational algebra

For our algebraic operators, several equivalences hold. They are given in
Figure 2.2. For them to hold, we typically require that the relations involved
have disjoint attribute sets. That is, we assume—even for the rest of the book—
that attribute names are unique. This is often achieved by using the notation
R.a for a relation R or v.a for a variable ranging over tuples with an attribute
a. Another possibility is to use the renaming operator ρ.

Some equivalences are not always valid. Their validity depends on whether
some condition(s) are satisfied or not. For example, Eqv. 2.4 requires F(p) ⊆ A.
That is, all attribute names occurring in pmust be contained in the attribute set
A the projection retains: otherwise, we could not evaluate p after the projection
has been applied. Although all conditions in Fig. 2.2 are of this flavor, we will
see throughout the course of the book that more complex conditions exist.

2.3 Canonical Translation

The next question is how to translate a given SQL query into the algebra.
Since the relational algebra works on sets and not bags (multisets), we can only
translate SQL queries that contain a distinct. Further, we restrict ourselves EX
to flat queries not containing any subquery. Since negation, disjunction, aggre-
gation, and quantifiers pose further problems, we neglect them. Further, we
do not allow group by, order by, union, intersection, and except in our
query. Last, we allow only attributes in the select clause and not more complex
expressions.

Thus, the generic SQL query pattern we can translate into the algebra looks
as follows:

select distinct a1, a2, . . . , am
from R1c1, R2c2, . . . , Rncn
where p

Here, the Ri are relation names and the ci are correlation names. The ai in
the select clause are attribute names (or expressions of the form ci.ai) taken
from the relations in the from clause. The predicate p is assumed to be a
conjunction of comparisions between attributes or attributes and constants.

The translation process then follows the procedure described in Figure 2.3.
First, we construct an expression that produces the cross product of the entries

18 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

σp1∧...∧pk(R) ≡ σp1(. . . (σpk(R)) . . .) (2.1)

σp1(σp2(R)) ≡ σp2(σp1(R)) (2.2)

ΠA1(ΠA2(. . . (ΠAk
(R)) . . .)) ≡ ΠA1(R)

if Ai ⊆ Aj for i < j (2.3)

ΠA(σp(R)) ≡ σp(ΠA(R))

if F(p) ⊆ A (2.4)

(R1 AR2)AR3 ≡ R1 A (R2 AR3) (2.5)

(R1 Bp1,2 R2)Bp2,3 R3 ≡ R1 Bp1,2 (R2 Bp2,3 R3)

if F(p1,2) ⊆ A(R1) ∪ A(R2)

and F(p2,3) ⊆ A(R2) ∪ A(R3) (2.6)

R1 AR2 ≡ R2 AR1 (2.7)

R1 Bp R2 ≡ R2 Bp R1 (2.8)

σp(R1 AR2) ≡ σp(R1)AR2

if F(p) ⊆ A(R1) (2.9)

σp(R1 Bq R2) ≡ σp(R1)Bq R2

if F(p) ⊆ A(R1) (2.10)

ΠA(R1 AR2) ≡ ΠA1(R1)AΠA2(R2)

if A = A1 ∪A2, Ai ⊆ A(Ri) (2.11)

ΠA(R1 Bp R2) ≡ ΠA1(R1)Bp ΠA2(R2)

if F(p) ⊆ A, A = A1 ∪A2,

and Ai ⊆ A(Ri) (2.12)

σp(R1θR2) ≡ σp(R1)θσp(R2)

where θ is any of ∪, ∩, \ (2.13)

ΠA(R1 ∪R2) ≡ ΠA(R1) ∪ΠA(R2) (2.14)

σp(R1 AR2) ≡ R1 Bp R2 (2.15)

Figure 2.2: Equivalences for the relational algebra

found in the from clause. The result is

((. . . ((R1 AR2)AR3) . . .)ARn).

Next, we add a selection with the where predicate:

σp((. . . ((R1 AR2)AR3) . . .)ARn).

Last, we project on the attributes found in the select clause.

Πa1,...,an(σp((. . . ((R1 AR2)AR3) . . .)ARn)).

For our example query

2.3. CANONICAL TRANSLATION 19

1. Let R1 . . . Rk be the entries in the from clause of the query. Construct
the expression

F :=

{
R1 if k = 1
((. . . (R1 AR2)A . . .)ARk) else

2. The where clause is optional in SQL. Therefore, we distinguish the
cases that there is no where clause and that the where clause exists
and contains a predicate p. Construct the expression

W :=

{
F if there is no where clause
σp(F) if the where clause contains p

3. Let s be the content of the select distinct clause. For the canonical
translation it must be of either ’*’ or a list a1, . . . , an of attribute names.
Construct the expression

S :=

{
W if s = ’*’
Πa1,...,an(W) if s = a1, . . . , an

4. Return S.

Figure 2.3: (Simplified) Canonical translation of SQL to algebra

select distinct s.SName
from Student s, Attend a, Lecture l, Professor p
where s.SNo = a.ASNo and a.ALNo = l.LNo

and l.LPNo = p.PNo and p.PName = ‘Larson’

the result of the translation is

Πs.SName(σp(((Student[s]AAttend[a])A Lecture[l])A Professor[p]))

where p equals

s.SNo = a.ASNo and a.ALNo = l.LNo and l.LPNo = p.PNo and p.PName =
‘Larson’.

Note that we used the notation R[r] to say that a relation named R has the
correlation name r. During the course of the book we will be more precise
about the semantics of this notation and it will deviate from the one suggested
here. We will take r as a variable successively bound to the elements (tuples)
in R. However, for the purpose of this chapter it is sufficient to think of it
as associating a correlation name with a relation. The query is represented
graphically in Figure 2.7 (top).

20 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

1. translate query into its canonical algebraic expression

2. perform logical query optimization

3. perform physical query optimization

Figure 2.4: Text book query optimization

2.4 Logical Query Optimization

Textbook query optimization takes place in two separate phases. The first phase
is called logical query optimization and the second physical query optimization.
Figure 2.4 lists all these steps together with the translation step. In this section
we discuss logical query optimization. The foundation for this step is formed
by the set of algebraic equivalences (see Figure 2.2). The set of algebraic equiv-
alences spans the potential search space for this step. Given an initial algebraic
expression—resulting from the translation of the given query—the algebraic
equivalences can be used to derive all algebraic expressions that are equivalent
to the initial algebraic expression. This set of all equivalent algebraic expres-
sions can be derived by applying the equivalences first to the initial expression
and then to all derived expressions until no new expression is derivable. There-
by, the algebraic equivalences can be applied in both directions: from left to
right and from right to left. Care has to be taken that the conditions attached
to the equivalences are obeyed.

Of course, whenever we find a new algebraic equivalence that could not
be derived from those already known, adding this equivalence increases our
potential search space. On the one hand, this has the advantage that in a larg-
er search space we may find better plans. On the other hand, it increases the
already large search space which might cause problems for its exploration. Nev-
ertheless, finding new equivalences is a well-established sport among database
researchers.

One remark on better plans. Plans can only be compared if costs can be at-
tached to them via some cost function. This is what happens in most industrial
strength query optimizers. However, at the level of logical algebraic expres-
sions adding precise costs is not possible: too many implementation details are
missing. These are added to the plan during the next phase called physical
query optimization. As a consequence, we are left with plans without costs.
The only thing we can do is to heuristically judge the effectiveness of applying
an equivalence from left to right or in the opposite direction. As always with
heuristics, the hope is that they work for most queries. However, it is typically
very easy to find counter examples where the heuristics do not result in the
best plan possible. (Again, best with respect to some metrics.) This finding can
be generalized: any query optimization that takes place in more than a single
phase risks missing the best plan. This is an important observation and we will
come back to this issue more than once.

After these words of warning let us continue to discuss textbook query

2.4. LOGICAL QUERY OPTIMIZATION 21

1. break up conjunctive selection predicates
(Eqv. 2.1: →)

2. push down selections
(Eqv. 2.2: →), (Eqv. 2.9: →)

3. introduce joins
(Eqv. 2.15: →)

4. determine join order
Eqv. 2.8, Eqv. 2.6, Eqv. 2.5, Eqv. 2.7

5. introduce and push down projections
(Eqv. 2.3: ←), (Eqv. 2.4: →),
(Eqv. 2.11: →), (Eqv. 2.12: →)

Figure 2.5: Logical query optimization

optimization. Logical query optimization requires the organization of all equiv-
alences into groups. Further, the equivalences are directed. That is, it is fixed
whether they are applied in a left to right or right to left manner. A directed
equivalence is called rewrite rule. The groups of rewrite rules are then suc-
cessively applied to the initial algebraic expression. Figure 2.5 describes the
different steps performed during logical query optimization. Associated with
each step is a set of rewrite rules that are applied to the input expression to
yield a result expression. The numbers correspond to the equivalences in Fig-
ure 2.2. A small arrow indicates the direction in which the equivalences are
applied.

The first step breaks up conjunctive selection predicates. The motivation
behind this step is that selections with simple predicates can be moved around
easier. The rewrite rule used in this step is Equivalence 2.1 applied from left to
right. For our example query Step 1 results in

Πs.SName(
σs.SNo=a.ASNo(
σa.ALNo=l.LNo(
σl.LPNo=p.PNo(
σp.PName=‘Larson′(

((Student[s]AAttend[a])A Lecture[l])A Professor[p])))))

The query is represented graphically in Figure 2.7 (middle).
Step 2 pushes selections down the operator tree. The motivation here is to

reduce the number of tuples as early as possible such that subsequent (expen-
sive) operators have smaller input. Applying this step to our example query
yields:

Πs.SName(

22 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

σl.LPNo=p.PNo(
σa.ALNo=l.LNo(
σs.SNo=a.ASNo(Student[s]AAttend[a])
ALecture[l])

A(σp.PName=‘Larson′(Professor[p]))))

The query is represented graphically in Figure 2.7 (bottom).

Excursion In general, we might encounter problems when pushing down se-
lections. It may be the case that the order of the cross products is not well-suited
for pushing selections down. If this is the case, we must consider reordering cross
products during this step (Eqv. 2.7 and 2.5). To illustrate this point consider
the following example query.

select distinct s.SName
from Student s, Lecture l, Attend a
where s.SNo = a.ASNo and a.ALNo = l.LNo

and l.LTitle = ‘Databases I’

After translation and Steps 1 and 2 the algebraic expression looks like

Πs.SName(
σs.SNo=a.ASNo(
σa.ALNo=l.LNo(

(Student[s]A σl.LT itle=‘Databases I′(Lecture[l]))AAttend[a]))).

Neither of σs.SNo=a.ASNo and σa.ALNo=l.LNo can be pushed down further. Only
after reordering the cross products such as in

Πs.SName(
σs.SNo=a.ASNo(
σa.ALNo=l.LNo(

(Student[s]AAttend[a])A σl.LT itle=‘Databases I′(Lecture[l]))))

can σs.SNo=a.ASNo be pushed down:

Πs.SName(
σa.ALNo=l.LNo(
σs.SNo=a.ASNo(Student[s]AAttend[a])

Aσl.LT itle=‘Databases I′(Lecture[l])))

This is the reason why in some textbooks reorder cross products before selec-
tions are pushed down [264]. In this appoach, reordering of cross products takes
into account the selection predicates that can possibly be pushed down to the
leaves and down to just prior a cross product. In any case, the Steps 2 and 4
are highly interdependent and there is no simple solution. 2

After this small excursion let us resume rewriting our main example query.
The next step to be applied is converting cross products to join operations (Step
3). The motivation behind this step is that the evaluation of cross products
is very expensive and results in huge intermediate results. For every tuple in

2.4. LOGICAL QUERY OPTIMIZATION 23

the left input an output tuple must be produced for every tuple in the right
input. A join operation can be implemented much more efficiently. Applying
Equivalence 2.15 from left to right to our example query results in

Πs.SName(
((Student[s]Bs.SNo=a.ASNo Attend[a])

Ba.ALNo=l.LNoLecture[l])
Bl.LPNo=p.PNo(σp.PName=‘Larson′(Professor[p])))

The query is represented graphically in Figure 2.8 (top).

The next step is really tricky and involved: we have to find an optimal
order for evaluating the joins. The join’s associativity and commutativity
gives us plenty of alternative (equivalent) evaluation plans. For our rather
simple query Figure 2.6 lists some of the possible join orders where we left
out the join predicates and used the single letter correlation names to denote
the relations to be joined. Only p abbreviates the more complex expression
σp.PName=‘Larson′(Professor[p]). The edges show how plans can be derived
from other plans by applying commutativity (c) or associativity (a).

Unfortunately, we cannot ignore the problem of finding a good join order.
It has been shown that the order in which joins are evaluated has an enormous
influence on the total evaluation cost of a query. Thus, it is an important
problem. On the other hand, the problem is really tough. Most join ordering
problems turn out to be NP-hard. As a consequence, many different heuristics
and cost-based algorithms have been invented. They are discussed in depth in
Chapter 3. There we will also find examples showing how important (in terms
of costs) the right choice of the join order is.

To continue with our example query, we use a very simple heuristics: among
all possible joins select the one first that produces the smallest intermediate
result. This can be motivated as follows. In our current algebraic expression,
the first join to be executed is

Student[s]Bs.SNo=a.ASNo Attend[a].

All students and their attendances to some lecture are considered. The result
and hence the input to the next join will be very big. On the other hand, if there
is only one professor named Larson, the output of σp.PName=‘Larson′(Professor[p])
is a single tuple. Joining this single tuple with the relation Lecture results in
an output containing one tuple for every lecture taught by Larson. For a large
university, this will be a small subset of all lectures. Continuing this line, we
get the following algebraic expression:

Πs.SName(
((σp.PName=‘Larson′(Professor[p])

Bp.PNo=l.LPNoLecture[l])
Bl.LNo=a.ALNoAttend[a])

Ba.ASno=s.SNoStudent[s])

The query is represented graphically in Figure 2.8 (middle).

24 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

The last step minimizes intermediate results by projecting out irrelevant
attributes. An attribute is irrelevant, if it is not used further up the operator
tree. When pushing down projections, we only apply them just before a pipeline EX
breaker [347]. The reason is that for pipelined operators like selection, elimi-
nating superfluous attributes does not gain much. The only pipeline breaker
occurring in our plan is the join operator. Hence, before a join is applied, we
project on the attributes that are further needed. The result is

Πs.SName(
Πa.ASNo(

Πl.LNO(
Πp.PNo(σp.PName=‘Larson′(Professor[p]))
Bp.PNo=l.LPNo

Πl.LPno,l.LNo(Lecture[l]))
Bl.LNo=a.ALNo

Πa.ALNo,a.ASNo(Attend[a]))
Ba.ASno=s.SNo

Πs.SNo,s.SName(Student[s]))

This expression is represented graphically in Figure 2.8 (bottom).

2.5 Physical Query Optimization

Physical query optimization adds more information to the logical query eval-
uation plan. First, there exist many different ways to access the data stored
in a database. One possibility is to scan a relation to find the relevant tuples.
Another alternative is to use an index to access only the relevant parts. If an
unclustered index is used, it might be beneficial to sort the tuple identifiers
(TIDs2) to turn otherwise random disk accesses into sequential accesses. Since
there is a multitutude of possibilities to access data, this topic is discussed in
depth in Chapter 4. Second, the algebraic operators used in the logical plan
may have different alternative implementations. The most prominent exam-
ple is the join operator that has many different implementations: simple nested
loop join, blockwise nested loop join, blockwise nested loop join with in-memory
hash table, index nested loop join, hybrid hash join, sort merge join, bandwidth
join, special spatial joins, set joins, and structural joins. Most of these join im-
plementations can be applied only in certain situations. Most algorithms only
implement equi-joins where the join predicate is a conjunction of simple equal-
ities. Further, all the implementations differ in cost and robustness. But also
other operators like grouping may have alternative implementations. Typically,
for these operators exist sort-based and hash-based alternatives. Third, some
operators require certain properties for their input streams. For example, a sort
merge join requires its input to be sorted on the join attributes occurring in
the equalities of the join predicate. These attributes are called join attributes.
The sortedness property can be enforced by a sort operator. The sort operator

2Sometimes TIDs are called RIDs (Row Identifiers).

2.6. DISCUSSION 25

is thus an enforcer since it makes sure that the required property holds. As we
will see, properties and enforcers play a crucial role during plan generation.

If common subexpressions are detected at the algebraic level, it might be
beneficial to compute them only once and store the result. To do so, a tmp
operator must be introduced. Later on, we will see more of these operators
that materialize (partial) intermediate results in order to avoid the same com-
putation to be performed more than once. An alternative is to allow QEPs
which are DAGs and not merely trees (see Section ??).

Physical query optimization is concerned with all the issues mentioned
above. The outline of it is given in Figure 2.9. Let us demonstrate this for
our small example query. Let us assume that there exists an index on the name
of the professors. Then, instead of scanning the whole professor relation, it
is beneficial to use the index to retrieve only those professors named Larson.
Further, since a sort merge join is very robust and not the slowest alternative,
we choose it as an implementation for all our join operations. This requires that
we sort the inputs to the join operator on the join attributes. Since sorting is
a pipeline breaker, we introduce it between the projections and the joins. The
resulting plan is

Πs.SName(
Sorta.ASNo(Πa.ASNo(

Sortl.LNo(Πl.LNO(
Sortp.PNo(Πp.PNo(IdxScanp.PName=‘Larson′(Professor[p])))

B
smj
p.PNo=l.LPNo

Sortl.LPNo(Πl.LPno,l.LNo(Lecture[l])))

B
smj
l.LNo=a.ALNo

Sorta.ALNo(Πa.ALNo,a.ASNo(Attend[a]))))

B
smj
a.ASno=s.SNo

Sorts.SNo(Πs.SNo,s.SName(Student[s])))

where we annotated the joins with smj to indicate that they are sort merge
joins. The sort operator has the attributes on which to sort as a subscript. We
cheated a little bit with the notation of the index scan. The index is a physical
entity stored in the database. An index scan typically allows to retrieve the
TIDs of the tuples qualifying the predicate. If this is the case, another access
to the relation itself is necessary to fetch the relevant attributes (p.PNo in
our case) from the qualifying tuples of the relation. This issue is rectified in
Chapter 4. The plan is shown as an operator graph in Figure 2.10.

2.6 Discussion

This chapter left open many interesting issues. We took it for granted that the
presentation of a query is an algebraic expression or operator tree. Is this really
true? We have been very vague about ordering joins and cross products. We
only considered queries of the form select distinct. How can we assure correct
duplicate treatment for select all? We separated query optimization into two
distinct phases: logical and physical query optimization. Any separation into

26 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

different phases results in the danger of not producing an optimal plan. Logical
query optimization turned out to be a little difficult: pushing selections down
and reordering joins are mutually interdependent. How can we integrate these
steps into a single one and thereby avoid the problem mentioned? Further, our
logical query optimization was not cost based and cannot be: too much infor-
mation is still missing from the plan to associate precise costs with a logical
algebraic expression. How can we integrate the phases? How can we determine
the costs of a plan? We covered only a small fraction of SQL. We did not discuss
disjunction, negation, union, intersection, except, aggregate functions, group-
by, order-by, quantifiers, outer joins, and nested queries. Furthermore, how
about other query languages like OQL, XPath, XQuery? Further, enhance-
ments like materialized views exist nowadays in many commercial systems.
How can we exploit them beneficially? Can we exploit semantic information?
Is our exploitation of index structures complete? What happens if we encounter
NULL-values? Many questions and open issues remain. The rest of the book
is about filling these gaps.

2.6. DISCUSSION 27

a

a

c

a

c

c

c

c

a

c

c

c

c

l

p

c

c

c

c

c

c

c

c

a

a

c

c

c

c

c

c

c

c

c

a

a

l

a

c

p

a

a

a

a

a

p

a

a

a

a

c

p

p

p

p

p

a

a

a

a

p

p

p

p p

p

p

pp

l
l

l
l

l

l
l l

l

l l
l

l

l l l

l

l l l

l

l l l

l

l l l

l

p

as

p

as

l

p

as
s a

s

c

sa

a
sa

p

sa
sa

p

s

p

s s

as

s

p

s

p

s

p

s

p

s

p

c

s

p
sa

sa

p

s

p

s

p

s

s

a

s

a

s

a

s

a

c s

a

a

s

as

as

c

B

B

B

B

B

B

B

B

B

B

B B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B

B

B

Figure 2.6: Different join trees

28 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

Professor[p]Attend[a] Lecture[l]Student[s]

Πs.SName

l.LPNo= p.PNo∧ p.PName= ′Larson′

σs.SNo= a.ASNo∧ a.ALNo= l.LNo∧

A

A

A

Professor[p]Lecture[l]Student[s] Attend[a]

Πs.SName

σl.LPNo= p.PNo

σs.SNo= a.ASNo

σa.ALNo= l.LNo

A

A

A

σp.PName= ′Larson′

Lecture[l]

Student[s] Attend[a]

Professor[p]

σp.PName= ′Larson′σa.ALNo= l.LNo

σs.SNo= a.ASNo

Πs.SName

σl.PNo= p.PNo

A

A

A

Figure 2.7: Plans for example query (Part I)

2.6. DISCUSSION 29

Professor[p]

Student[s] Attend[a]

Lecture[l]

Πs.SName

σp.PName= ′Larson′

Bs.SNo=a.ASNo

Ba.ALNo= l.LNo

Bl.PNo= p.PNo

Student[s]

Lecture[l]

Professor[p]

Attend[a]

Πs.SName

σp.PName= ′Larson′

Bp.PNo= l.LPNo

Bl.LNo= a.ALNo

Ba.ASNo= s.SNo

Student[s]

Professor[p]

Attend[a]

Lecture[l]

Πs.SNo,s.SName

Πp.PNo

σp.PName= ′Larson′

Πs.SName

Πa.ASNo

Πl.LNo Πa.ALNo,a.ASNo

Πl.LPNo,l.LNo

Ba.ASNo= s.SNo

Bl.LNo

Bp.PNo= l.LPNo

Figure 2.8: Plans for example query (Part II)

30 CHAPTER 2. TEXTBOOK QUERY OPTIMIZATION

1. introduce index accesses

2. choose implementations for algebraic operators

3. introduce physical operators (sort, tmp)

Figure 2.9: Physical query optimization

Attend[a]

Student[s]

Lecture[l]

Professor[p]

Πs.SNo,s.SName

Sorta.ALNo

Πa.ALNo,a.ASNo

Πl.LPNo,l.LNo

Πs.SName

Sorts.SNoSorta.ASNo

Πa.ASNo

Sortl.LNo

Πl.LNo

Sortl.LPNoSortp.PNo

Πp.PNo

IdxScanp.PName=′Larson′

B
smj
p.PNo=l.LPNo

B
smj
l.LNo=a.ALNo

B
smj
a.ASno= s.SNo

Figure 2.10: Plan for example query after physical query optimization

Chapter 3

Join Ordering

The problem of join ordering is a very restricted and — at the same time —
a very complex one. We have touched this issue while discussing logical query
optimization in Chapter 2. Join ordering is performed in Step 4 of Figure 2.5.
In this chapter, we simplify the problem of join ordering by not considering du-
plicates, disjunctions, quantifiers, grouping, aggregation, or nested queries. Ex-
pressed positively, we concentrate on conjunctive queries with simple and cheap
join predicates. What this exactly means will become clear in the next section.
Subsequent sections discuss different algorithms for solving the join ordering
problem. Finally, we take a look at the structure of the search space. This is
important if different join ordering algorithms are compared via benchmarks.
If the wrong parameters are chosen, benchmark results can be misleading.

The algorithms of this chapter form the core of every plan generator.

3.1 Queries Considered

A conjunctive query is one whose where clause contains a (complex) predicate
which in turn is a conjunction of (simple) predicates. Hence, a conjunctive
query involves only and and no or or not operations. A simple predicate is of
the form e1θe2 where θ ∈ {=, ̸=, <,>,≤,≥} is a comparison operator and the ei
are simple expressions in attribute names possibly containing some simple and
cheap arithmetic operators. By cheap we mean that it is not worth applying
extra optimization techniques. In this chapter, we restrict simple predicates
even further to the form A = B for attributes A and B. A and B must also
belong to different relations such that every simple predicate in this chapter
is a join predicate. There are two reasons for this restriction. First, the most
efficient join algorithms rely on the fact that the join predicate is of the form
A = B. Such joins are called equi-joins. Any other join is called a non-equi-
join. Second, in relational systems joins on foreign key attributes of one relation
and key attributes of the other relation are very common. Other joins are rare.

A base relation is a relation that is stored (explicitly) in the database. For
the rest of the chapter, let Ri (1 ≤ i ≤ n) be n relations. These relations
can be base relations but do not necessarily have to be. They could also be
base relations to which predicates have already been supplied, e.g. as a result

31

32 CHAPTER 3. JOIN ORDERING

Student Attend

LectureProfessor

a.ALNo = l.LNo

l.LPNo = p.PNo

p.PName = ’Larson’

s.SNo = a.ASNo

Figure 3.1: Query graph for example query of Section 2.1

of applying the first three steps of logical query optimization.
Summarizing, the queries we consider can be expressed in SQL as

select distinct *
from R1,. . . ,Rn

where p

where p is a conjunction of simple join predicates with attributes from exactly
two relations. The latter restriction is not really necessary for the algorithms
presented in this chapter but simplifies the exposition.

3.1.1 Query Graph

A query graph is a convenient representation of a query. It is an undirected
graph with nodes R1, . . . , Rn. For every simple predicate in the conjunction P
whose attributes belong to the relations Ri and Rj , we add an edge between
Ri and Rj . This edge is labeled by the simple predicate. From now on, we
denote the join predicate connecting Ri and Rj by pi,j . In general, pi,j can be
a conjunction of simple join predicates connecting Ri and Rj .

If query graphs are used for more than join ordering, selections need to be
represented. This is done by self-edges from the relation to which the selection
applies to itself. For the example query of Chapter 2.6, Figure 3.1 contains the
according query graph.

Query graphs can have many different shapes. The shapes that play a
certain role in query optimization and the evaluation of join ordering algorithms
are shown in Fig. 3.2. The query graph classes relevant for this chapter are chain
queries, star queries, tree queries, cyclic queries and clique queries. Note that
these classes are not disjoint and that some classes are subsets of other classes.

EX
In this chaper, we only treat connected query graphs. These can be evalu-

ated without cross products.

Excursion In general, the query graph is a hypergraph [888] as the following
example shows.

3.1. QUERIES CONSIDERED 33

chain queries star queries tree query

cyclic query cycle queries grid query clique queries

Figure 3.2: Query graph shapes

select *

from R1, R2, R3, R4

where f(R1.a, R2.a,R3.a) = g(R2.b,R3.b,R4.b)

3.1.2 Join Tree

A join tree is an algebraic expression in relation names and join operators.
Sometimes, cross products are allowed, too. A cross product is the same as a
join operator with true as its join predicate. A join tree has its name from its
graph representation. There, a join tree is a binary tree whose leaf nodes are
the relations and whose inner nodes are joins (and possibly cross products).
The edges represent the input/output relationship. Examples of join trees have
been shown in Figure 2.6.

Join trees fall into different classes. The most important classes are left-deep
trees, right-deep trees, zig-zag trees, and bushy trees. Left-deep trees are join
trees where every join has one of the relations Ri as its right input. Right-deep
trees are defined analogously. In zig-zag trees at least one input of every join
is a relation Ri. The class of zig-zag trees contains both left-deep and right-
deep trees. For bushy trees no restriction applies. Hence, the class of bushy
trees contains all of the above three classes. The roots of these notions date
back to the paper by Selinger et al. [784], where the search space of the query
optimizer was restricted to left-deep trees. There are two main reasons for this
restriction. First, only one intermediate result is generated at any time during
query evaluation. Second, the number of left-deep trees is far less than the
number of e.g. bushy trees. The other classes were then added later by other
researchers whenever they found better join trees in them. The different classes
are illustrated in Figure 2.6. From left to right, the columns contain left-deep,
zig-zag, right-deep, and bushy trees.

34 CHAPTER 3. JOIN ORDERING

Left-deep trees directly correspond to an ordering (i.e. a permutation) of
the relations. For example, the left-deep tree

((((R2 BR3)BR1)BR4)BR5)

directly corresponds to the permutation R2, R3, R1, R4, R5. It should be clear
that there is a one-to-one correspondence between permutations and left-deep
join trees. We will also use the term sequence of relations synonymously. The
notion of join ordering goes back to the times where only left-deep trees were
considered and, hence, producing an optimal join tree was equivalent to opti-
mally ordering the joins, i.e. determining a permutation with lowest cost.

Left-deep, right-deep, and zig-zag trees can be classed under the general
term linear trees. Sometimes, the term linear trees is used synonymously for
left-deep trees. We will not do so. Join trees are sometimes called operator trees
or query evaluation plans. Although this is not totally wrong, these terms have
a slightly different connotation. Operator trees typically contain more than
only join operators. Query evaluation plans (QEPs or plans for short) typically
have more information from physical query optimization associated with them.

3.1.3 Simple Cost Functions

In order to judge the quality of join trees, we need a cost function that associates
a certain positive cost with each join tree. Then, the task of join ordering is to
find among all equivalent join trees the join tree with lowest associated costs.

One part of any cost function are cardinality estimates. They are based on
the cardinalities of the relations, i.e. the number of tuples contained in them.
For a given relation Ri, we denote its cardinality by |Ri|.

Then, the cardinality of intermediate results must be estimated. This is
done by introducing the notion of join selectivity. Let pi,j be a join predicate
between relations Ri and Rj . The selectivity fi,j of pi,j is then defined as

fi,j =
|Ri Bpi,j Rj |
|Ri| ∗ |Rj |

This is the number of tuples in the join’s result divided by the number of tuples
in the Cartesian Product between Ri and Rj . If fi,j is 0.1, then only 10% of
all tuples in the Cartesian Product survive the predicate pi,j . Note that the
selectivity is always a number between 0 and 1 and that fi,j = fj,i. We use an
f and not an s, since the selectivity of a predicate is often called filter factor .

Besides the relation’s cardinalities, the selectivities of the join predicates
pi,j are assumed to be given as input to the join ordering algorithm. Therefore,
we can compute the output cardinality of a join Ri Bpi,j Rj , as

|Ri Bpi,j Rj | = fi,j |Ri||Rj |

From this it becomes clear that if there is no join predicate for two relations
Ri and Rj , we can assume a join predicate true and associate a selectivity of
1 with it. The output cardinality is then the cardinality of the cross product

3.1. QUERIES CONSIDERED 35

between Ri and Rj . We also define fi,i = 1 for all 1 ≤ i ≤ n. This allows us to
keep subsequent formulas simple.

We now need to extend our cardinality estimation to join trees. This can be
done by recursively applying the above formula. Consider a join tree T joining
two join trees T1 and T2, i.e. T = T1 B T2. Then, the result cardinality |T | can
be calculated as follows. If T is a leaf Ri, then |T | := |Ri|. Otherwise,

|T | = (
∏

Ri∈T1,Rj∈T2

fi,j) |T1| |T2|.

Note that this formula assumes that the selectivities are independent of each
other. Assuming independence is common but may be very misleading. More
on this issue can be found in Chapter ??. Nevertheless, we assume independence
and stick to the above formula.

For sequences of joins we can give a simple cardinality definition. Let s =
R1, . . . , Rn be a sequence of relations. Then

|s| =
n∏

k=1

|Rk|(
k∏

i=1

fi,k).

Given the above, a query graph alone is not really sufficient for the speci-
fication of a join ordering problem: cardinalities and selectivities are missing.
On the other hand, from a complete list of cardinalities and selectivities we can
derive the query graph. Obviously, the following defines a chain query with
query graph R1 −−−R2 −−−R3:

|R1| = 10

|R2| = 100

|R3| = 1000

f1,2 = 0.1

f2,3 = 0.2

In all examples, we assume for all i and j for which fi,j is not given that there
is no join predicate and hence fi,j = 1.

We now come to cost functions. The first cost function we consider is called
Cout. For a join tree T , Cout(T) is the sum of all output cardinalities of all joins
in T . Recursively, we can define Cout as

Cout(T) =

{
0 if T is a single relation
|T |+ Cout(T1) + Cout(T2) if T = T1 B T2

From a theoretial point of view, Cout has many interesting properties: it is
symmetric, it has the ASI property, and it can be applied to an expression of
the logical algebra. From a practical point of view, however, it is rarely applied
(yet).

In real cost functions, the cardinalities only serve as input to more complex
formulas capturing the costs of a join implementation. Since real cost functions

36 CHAPTER 3. JOIN ORDERING

are too complex for this section, we stick to simple cost functions proposed by
Krishnamurthy, Boral, and Zaniolo [520]. They argue that these cost functions
are appropriate for main memory database systems. For the three different
join implementations nested loop join (nlj), hash join (hj), and sort merge join
(smj), they give the following cost functions:

Cnlj(e1 Bp e2) = |e1||e2|
Chj(e1 Bp e2) = h|e1|
Csmj(e1 Bp e2) = |e1|log(|e1|) + |e2|log(|e2|)

where ei are join trees and h is the average length of the collision chain in the
hash table. We will assume h = 1.2. All these cost functions are defined for a
single join operator. The cost of a join tree is defined as the sum of the costs of
all joins it contains. We use the symbols Cx to also denote the costs of not only
a single join but the costs of the whole tree. Hence, for sequences s of relations,
we have

Cnlj(s) =
n∑

i=2

|s1, . . . , si−1| ∗ |si|

Chj(s) =
n∑

i=2

1.2|s1, . . . , si−1|

Csmj(s) =
n∑

i=2

|s1, . . . , si−1| log(|s1, . . . , si−1|) +
n∑

i=2

|si| log(|si|)

Some notes on the cost functions are in order. First, note that these cost
functions are even for main memory a little incomplete. For example, constant
factors are missing. Second, the cost functions are mainly devised for left-deep
trees. This becomes apparent when looking at the costs of hash joins. It is
assumed that the right input is already stored in an appropriate hash table.
Obviously, this can only hold for base relations, giving rise to left-deep trees.
Third, Chj and Csmj do not work for cross products. However, we can extend
these cost functions by defining the cost of a cross product to be equal to
its output cardinality, which happens to be the cost of Cnlj. Fourth, in reality,
more complex cost functions are used and other parameters like the width of the
tuples—i.e. the number of bytes needed to store them—also play an important
role. Fifth, the above cost functions assume that the same join algorithm is
chosen throughout the whole plan. In practice, this will not be true.

For the above chain query, we compute the costs of different join trees. The
last join tree contains a cross product.

Cout Cnlj Chj Csmj

R1 BR2 100 1000 12 697.61
R2 BR3 20000 100000 120 10630.26
R1 AR3 10000 10000 10000 10000.00
(R1 BR2)BR3 20100 101000 132 11327.86
(R2 BR3)BR1 40000 300000 24120 32595.00
(R1 AR3)BR2 30000 1010000 22000 143542.00

3.1. QUERIES CONSIDERED 37

For the calculation of Cout note that |R1 BR2 BR3| = 20000 is included in all
of the last three lines of its column. For the nested loop cost function, the costs
are calculated as follows:

Cnlj((R1 BR2)BR3) = 1000 + 100 ∗ 1000 = 101000

Cnlj((R2 BR3)BR1) = 100000 + 20000 ∗ 10 = 300000

Cnlj((R1 AR3)BR2) = 10000 + 10000 ∗ 100 = 1010000

The reader should verify the other costs.
Several observations can be made from the above numbers:

• The costs of different join trees differ vastly under every cost function.
Hence, it is worth spending some time to find a cheap join order.

• The costs of the same join tree differ under the different cost functions.

• The cheapest join tree is (R1 BR2)BR3 under all four cost functions.

• Join trees with cross products are expensive.
Thus, a heuristics often used is not to consider join trees that contain
unnecessary cross products. (If the query graph consists of several un-
connected components, then and only then cross products are necessary.
In other words: if the query graph is connected, no cross products are
necessary.).

• The join order matters even for join trees without cross products.

We would like to emphasize that the join order is also relevant under other cost
functions.

Avoiding cross products is not always beneficial, as the following query
specifiation shows:

|R1| = 1000

|R2| = 2

|R3| = 2

f1,2 = 0.1

f1,3 = 0.1

For Cout we have costs

Join Tree Cout

R1 BR2 200
R2 AR3 4
R1 BR3 200
(R1 BR2) 1 R3 240
(R2 AR3) 1 R1 44
(R1 BR3) 1 R2 240

38 CHAPTER 3. JOIN ORDERING

Note that although the absolute numbers are quite small, the ratio of the best
and the second best join tree is quite large. The reader is advised to find more
examples and to apply other cost functions.

The following example illustrates that a bushy tree can be superior to any
linear tree. Let us use the following query specification:

|R1| = 10

|R2| = 20

|R3| = 20

|R4| = 10

f1,2 = 0.01

f2,3 = 0.5

f3,4 = 0.01

If we do not consider cross products, we have for the symmetric (see below)
cost function Cout the following join trees and costs:

Join Tree Cout

R1 BR2 2
R2 BR3 200
R3 BR4 2
((R1 BR2)BR3)BR4 24
((R2 BR3)BR1)BR4 222
(R1 BR2)B (R3 BR4) 6

Note that all other linear join trees fall into one of these classes, due to the
symmetry of the cost function and the join ordering problem. Again, the reader
is advised to find more examples and to apply other cost functions.

If we want to annotate a join operator by its implementation—which is
necessary for the correct computation of costs—we write Bimpl for an imple-
mentation impl. For example, Bsmj is a sort-merge join, and the according cost
function Csmj is used to compute its costs.

Two properties of cost functions have some impact on the join ordering
problem. The first is symmetry. A cost function Cimpl is called symmetric
if Cimpl(R1 Bimpl R2) = Cimpl(R2 Bimpl R1) for all relations R1 and R2. For
symmetric cost functions, it does not make sense to consider commutativity.
Hence, it suffices to consider left-deep trees only if we want to restrict ourselves
to linear join trees. Note that Cout, Cnlj, Csmj are symmetric while Chj is not.

The other property is the adjacent sequence interchange (ASI) property.
Informally, the ASI property states that there exists a rank function such that
the order of two subsequences is optimal if they are ordered according to the
rank function. The ASI property is formally defined in Section 3.2.2. Only for
tree queries and cost functions with the ASI property, a polynomial algorithm
to find an optimal join order is known. Our cost functions Cout and Chj have the
ASI property, Csmj does not. Summarizing the properties of our cost functions,
we see that the classification is orthogonal:

3.1. QUERIES CONSIDERED 39

ASI ¬ ASI

symmetric Cout, Cnlj Csmj

¬ symmetric Chj (see text)

For the missing case of a non-symmetric cost function not having the ASI
property, we can use the cost function of the hybrid hash join [238, 677].

We turn to another not really well-researched topic. The goal is to cut
down the number of cost functions which have to be considered for optimization
and to possibly allow for simpler cost functions, which saves time during plan
generation. Unfortunately, we have to restrict ourselves to left-deep join trees.
Let s denote a sequence or permutation of a given set of joins. We define an
equivalence relation on cost functions.

Definition 3.1.1 Let C and C ′ be two cost functions. Then

C ≡ C ′ :≺≻ (∀s C(s) minimal ≺≻ C ′(s) minimal)

Here, s is a join sequence.

Obviously, ≡ is an equivalence relation.

Now we can define the ΣIR property.

Definition 3.1.2 A cost function C is ΣIR :≺≻ C ≡ Cout.

That is, ΣIR is the set of all cost functions that are equivalent to Cout.

Let us consider a very simple example. The last element of the sum in Cout

is the size of the final join (all relations are joined). This is not the case for the
following cost function:

C ′out(s) :=
n−1∑

i=2

|s1, . . . , si|

Obviously, we have C ′out is ΣIR. The next observation shows that we can
construct quite complex ΣIR cost functions:

Observation 3.1.3 Let C1 and C2 be two ΣIR cost functions. For non-
decreasing functions f1 : R → R and f2 : R × R → R and constants c ∈ R
and d ∈ R+, we have that EX

C1 + c
C1 ∗ d
f1 ◦ C1

f2 ◦ (C1, C2)

are ΣIR. Here, ◦ denotes function composition and (·, ·) function pairing.

There are of course many more possibilites of constructing ΣIR functions. For
the cost functions Chj, Csmj, and Cnlj, we now investigate which of them have
the ΣIR property.

40 CHAPTER 3. JOIN ORDERING

Let us consider Chj first. From

Chj(s) =
n∑

i=2

1.2|s1, . . . , si−1|

= 1.2|s1|+ 1.2

n−1∑

i=2

|s1, . . . , si|

= 1.2|s1|+ 1.2C ′out(s)

and observation 3.1.3, we conclude that Chj is ΣIR for a fixed relation to be
joined first. If we can optimize Cout in polynomial time, then we can optimize
Cout for a fixed starting relation. Indeed, by trying each relation as a starting
relation, we can find the optimal join tree in polynomial time. An algorithmEX
that computes the optimal solution for an arbitrary relation to be joined first
can be found in Section 3.2.2.

Now, consider Csmj. Since

n∑

i=2

|s1, . . . , si−1|log(|s1, . . . , si−1|)

is minimal if and only if
n∑

i=2

|s1, . . . , si−1|

is minimal and
∑n

i=2 |si| log(|si|) is independent of the order of the relations
within s — that is constant — we conclude that Csmj is ΣIR.

Last, we have that Cnlj is not ΣIR. To see this, consider the following
counter example with three relations R1, R2, and R3 of sizes 10, 10, and 100,
resp. The selectivities are f1,2 =

9
10 , f2,3 =

1
10 , and f1,3 =

1
10 . Now,

|R1R2| = 90

|R1R3| = 100

|R2R3| = 100

and

Cnl(R1R2R3) = 10 ∗ 10 + 90 ∗ 100 = 9100

Cnl(R1R3R2) = 10 ∗ 100 + 100 ∗ 10 = 2000

Cnl(R2R3R1) = 10 ∗ 100 + 100 ∗ 10 = 2000

We see that R1R2R3 has the smallest sum of intermediate result sizes but
produces the highest cost. Hence, Cnlj is not ΣIR.

3.1.4 Classification of Join Ordering Problems

After having discussed the different classes of query graphs, join trees and
cost functions, we can classify join ordering problems. To define a certain join
ordering problem, we have to pick one entry from every class:

3.1. QUERIES CONSIDERED 41

Query Graph Classes × Possible Join Tree Classes × Cost Function
Classes

The query graph classes considered are chain, star , tree, and cyclic. For the join
tree classes we distinguish between the different join tree shapes, i.e. whether
they are left-deep, zig-zag, or bushy trees. We left out the right-deep trees, since
they do not differ in their behavior from left-deep trees. We also have to take
into account whether cross products are considered or not. For cost functions,
we use a simple classification: we only distinguish between those that have the
ASI property and those that do not. This leaves us with 4∗3∗2∗2 = 48 different
join ordering problems. For these, we will first review search space sizes and
complexity. Then, we discuss several algorithms for join ordering. Last, we give
some insight into cost distributions over the search space and how this might
influence the benchmarking of different join ordering algorithms.

3.1.5 Search Space Sizes

Since search space sizes are easier to count if cross products are allowed, we
consider them first. Then we turn to search spaces where cross products are
not considered.

Join Trees with Cross Products We consider the number of join trees for
a query graph with n relations. When cross products are allowed, the number
of left-deep and right-deep join trees is n!. By allowing cross products, the
query graph does not restrict the search space in any way. Hence, any of the n!
permutations of the n relations corresponds to a valid left-deep join tree. This
is true independent of the query graph.

Similarly, the number of zig-zag trees can be estimated independently of
the query graph. First note that for joining n relations, we need n − 1 join
operators. From any left-deep tree, we derive zig-zag trees by using the join’s
commutativity and exchange the left and right inputs. Hence, from any left-
deep tree for n relations, we can derive 2n−2 zig-zag trees. We have to subtract
another one, since the bottommost joins’ arguments are exchanged in different
left-deep trees. Thus, there exists a total of 2n−2n! zig-zag trees. Again, this
number is independent of the query graph.

The number of bushy trees can be estimated as follows. First, we need the
number of binary trees. For n leaf nodes, the number of binary trees is given
by C(n− 1), where C(n) is defined by the recurrence

C(n) =
n−1∑

k=0

C(k)C(n− k − 1)

with C(0) = 1. The numbers C(n) are called the Catalan Numbers (see [209]).
They can also be computed by the following formula:

C(n) = 1

n+ 1

(
2n

n

)
.

42 CHAPTER 3. JOIN ORDERING

The Catalan Numbers grow in the order of Θ(4n/n3/2).

After we know the number of binary trees with n leaves, we now have to
attach the n relations to the leaves in all possible ways. For a given binary
tree, this can be done in n! ways. Hence, the total number of bushy trees is
n!C(n− 1). This can be simplified as follows (see also [307, 532, 867]):

n!C(n− 1) = n!
1

n

(
2(n− 1)

n− 1

)

= n!
1

n

(2n− 2)!

(n− 1)!((2n− 2)− (n− 1))!

=
(2n− 2)!

(n− 1)!

Chain Queries, Left-Deep Join Trees, No Cartesian Product We now
derive the function that calculates the number of left-deep join trees with no
cross products for a chain query of n relations. That is, the query graph is
R1 – R2 – . . . – Rn−1 – Rn. Let us denote the number of join trees by f(n).
Obviously, for n = 0 there is only one (the empty) join tree. For n = 1, there
is also only one join tree (no join). For larger n: Consider the join trees for R1

– . . . – Rn−1 where relation Rn−1 is the k-th relation from the bottom where k
ranges from 1 to n− 1. From such a join tree we can derive join trees for all n
relations by adding relation Rn at any position following Rn−1. There are n−k
such join trees. Only for k = 1, we can also add Rn below Rn−1. Hence, for
k = 1 we have n join trees. How many join trees with Rn−1 at position k are
there? For k = 1, Rn−1 must be the first relation to be joined. Since we do not
consider cross products, it must be joined with Rn−2. The next relation must
be Rn−3, and so on. Hence, there is only one such join tree. For k = 2, the first
relation must be Rn−2, which is then joined with Rn−1. Then Rn−3, . . . , R1

must follow in this order. Again, there is only one such join tree. For higher k,
for Rn−1 to occur safely at position k (no cross products) the k − 1 relations
Rn−2, . . . , Rn−k must occur before Rn−1. There are exactly f(k − 1) join trees
for the k− 1 relations. On each such join tree we just have to add Rn−1 on top
of it to yield a join tree with Rn−1 at position k.

Now we can compute the f(n) as n +
∑n−1

k=2 f(k − 1) ∗ (n − k) for n > 1.
Solving this recurrence gives us f(n) = 2n−1. The proof is by induction. The
case n = 1 is trivial.

3.1. QUERIES CONSIDERED 43

The induction step for n > 1 provided by Thomas Neumann goes as follows:

f(n) = n+
n−1∑

k=2

f(k − 1) ∗ (n− k)

= n+

n−3∑

k=0

f(k + 1) ∗ (n− k − 2)

= n+
n−3∑

k=0

2k ∗ (n− k − 2)

= n+
n−2∑

k=1

k2n−k−2

= n+

n−2∑

k=1

2n−k−2 +
n−2∑

k=2

(k − 1)2n−k−2

= n+
n−2∑

i=1

n−2∑

j=i

2n−j−2

= n+
n−2∑

i=1

n−i−2∑

j=0

2j

= n+
n−2∑

i=1

(2n−i−1 − 1)

= n+

n−2∑

i=1

2i − (n− 2)

= n+ (2n−1 − 2)− (n− 2)

= 2n−1

Chain Queries, Zig-Zag Join Trees, No Cartesian Product All possible
zig-zag trees can be derived from a left-deep tree by exchanging the left and
right arguments of a subset of the joins. Since for the first join these alternatives
are already considered within the set of left-deep trees, we are left with n − 2
joins. Hence, the number of zig-zag trees for n relations in a chain query is
2n−2 ∗ 2n−1 = 22n−3.

Chain Queries, Bushy Join Trees, No Cartesian Product We can com-
pute the number of bushy trees with no cross products for a chain query in the
following way. Let us denote this number by f(n). Again, let us assume that
the chain query has the form R1 – R2 – . . . – Rn−1 – Rn. For n = 0, we only
have the empty join tree. For n = 1 we have one join tree. For n = 2 we have
two join trees. For more relations, every subtree of the join tree must contain
a subchain in order to avoid cross products. Further, the subchain can occur

44 CHAPTER 3. JOIN ORDERING

as the left or right argument of the join. Hence, we can compute f(n) as

n−1∑

k=1

2 f(k) f(n− k)

This is equal to

2n−1 C(n− 1)

where C(n) are the Catalan Numbers.EX

Star Queries, No Cartesian Product The first join has to connect the
center relation R0 with any of the other relations. The other relations can
follow in any order. Since R0 can be the left or the right input of the first
join, there are 2 ∗ (n− 1)! possible left-deep join trees for Star Queries with no
Cartesian Product.

The number of zig-zag join trees is derived by exchanging the arguments
of all but the first join in any left-deep join tree. We cannot consider the first
join since we did so in counting left-deep join trees. Hence, the total number of
zig-zag join trees is 2 ∗ (n− 1)! ∗ 2n−2 = 2n−1 ∗ (n− 1)!.

Constructing bushy join trees with no Cartesian Product from a Star Query
other than zig-zag join trees is not possible.

Remarks The numbers for star queries are also upper bounds for tree queries.
For clique queries, no join tree containing a cross product is possible. Hence,
all join trees are valid join trees and the search space size is the same as the
corresponding search space for join trees with cross products.

To give the reader a feeling for the numbers, the following tables contain
the potential search space sizes for some n.

Join trees without cross products

chain query star query

left-deep zig-zag bushy left-deep zig-zag/bushy

n 2n−1 22n−3 2n−1C(n− 1) 2 ∗ (n− 1)! 2n−1(n− 1)!

1 1 1 1 1 1

2 2 2 2 2 2

3 4 8 8 4 8

4 8 32 40 12 48

5 16 128 224 48 384

6 32 512 1344 240 3840

7 64 2048 8448 1440 46080

8 128 8192 54912 10080 645120

9 256 32768 366080 80640 10321920

10 512 131072 2489344 725760 185794560

3.1. QUERIES CONSIDERED 45

With cross products/clique

left-deep zig-zag bushy

n n! 2n−2 ∗ n! n!C(n− 1)

1 1 1 1

2 2 2 2

3 6 12 12

4 24 96 120

5 120 960 1680

6 720 11520 30240

7 5040 161280 665280

8 40320 2580480 17297280

9 362880 46448640 518918400

10 3628800 928972800 17643225600

Note that in Figure 2.6 only 32 join trees are listed, whereas the number of
bushy trees for chain queries with four relations is 40. The missing eight cases
are those zig-zag trees which are symmetric (i.e. derived by applying commu-
tativity to all occurring joins) to the ones contained in the second column.

From these numbers, it becomes immediately clear why historically the
search space of query optimizers was restricted to left-deep trees and cross
products for connected query graphs were not considered.

3.1.6 Problem Complexity

The complexity of the join ordering problem depends on several parameters.
These are the shape of the query graph, the class of join trees to be considered,
whether cross products are considered or not, and whether the cost function
has the ASI property or not. Not for all the combinations complexity results
are known. What is known is summarized in the following table.

Query graph Join tree Cross products Cost function Complexity

general left-deep no ASI NP-hard
tree/star/chain left-deep no one join method (ASI) P
star left-deep no two join methods (NLJ+SMJ) NP-hard

general/tree/star left-deep yes ASI NP-hard
chain left-deep yes — open

general bushy no ASI NP-hard
tree bushy no — open
star bushy no ASI P

chain bushy no any P

general bushy yes ASI NP-hard
tree/star/chain bushy yes ASI NP-hard

Ibaraki and Kameda were the first who showed that the problem of deriving
optimal left-deep trees for cyclic queries is NP-hard for a cost function for an
n-way nested loop join implementation [438]. The proof was repeated for the
cost function Cout which has the ASI property [194, 877]. In both proofs, the

46 CHAPTER 3. JOIN ORDERING

clique problem was used for the reduction [320]. Cout was also used in the other
proofs of NP-hardness results. The next line goes back to the same paper.
Ibaraki and Kameda also described an algorithm to solve the join ordering
problem for tree queries producing optimal left-deep trees for a special cost
function for a nested-loop n-way join algorithm. Their algorithm was based on
the observation that their cost function has the ASI property. For this case,
they could derive an algorithm from an algorithm for a sequencing problem for
job scheduling designed by Monma and Sidney [627]. They, in turn, used an
earlier result by Lawler [537]. The algorithm of Ibaraki and Kameda was slightly
generalized by Krishnamurthy, Boral, and Zaniolo, who were also able to sketch
a more efficient algorithm. It improves the time bounds from O(n2 log n) to
O(n2). The disadvantage of both approaches is that with every relation, a fixed
(i.e. join-tree independent) join implementation must be associated before the
optimization starts. Hence, it only produces optimal trees if there is only one
join implementation available or one is able to guess the optimal join method
before hand. This might not be the case. The polynomial algorithm which we
term IKKBZ is described in Section 3.2.2.

For star queries, Ganguly investigated the problem of generating optimal
left-deep trees if no cross products but two different cost functions (one for
nested loop join, the other for sort merge join) are allowed. It turned out that
this problem is NP-hard [312].

The next line is due to Cluet and Moerkotte [194]. They showed by reduc-
tion from 3DM that taking into account cross products results in an NP-hard
problem even for star queries. Remember that star queries are tree queries and
general graphs.

The problem for general bushy trees follows from a result by Scheufele and
Moerkotte [768]. They showed that building optimal bushy trees for cross
products only (i.e. all selectivities equal one) is already NP-hard. This result
also explains the last two lines.

By noting that for star queries, all bushy trees that do not contain a cross
product are left-deep trees, the problem can be solved by the IKKBZ algorithm
for left-deep trees. Ono and Lohman showed that for chain queries dynamic
programming considers only a polynomial number of bushy trees if no cross
products are considered [653]. This is discussed in Section 3.2.4.

The table is rather incomplete. Many open problems exist. For example,
if we have chain queries and consider cross products: is the problem NP-hard
or in P? Some results for this problem have been presented [768], but it is
still an open problem (see Section 3.2.7). Open is also the case where we
produce optimal bushy trees with no cross products for tree queries. Yet another
example of an open problem is whether we could drop the ASI property and are
still able to derive a polynomial algorithm for a tree query. This is especially
important, since the cost function for a sort-merge algorithm does not have the
ASI property.

Good summaries of complexity results for different join ordering problems
can be found in the theses of Scheufele [766] and Hamalainen [394].

Given that join ordering is an inherently complex problem with no polyno-
mial algorithm in sight, one might wonder whether there exists good polynomial

3.2. DETERMINISTIC ALGORITHMS 47

approximation algorithms. Chances are that even this is not the case. Chatter-
ji, Evani, Ganguly, and Yemmanuru showed that three different optimization
problems — all asking for linear join trees — are not approximable [145].

3.2 Deterministic Algorithms

3.2.1 Heuristics

We now present some simple heuristic solutions to the problem of join ordering.
These heuristics only produce left-deep trees. Since left-deep trees are equiv-
alent with permutations, these heuristics order the joins according to some
criterion.

The core algorithm for the heuristics discussed here is the greedy algorithm
(for an introduction see [209]). In greedy algorithms, a weight is associated with
each entity. In our case, weights are associated with each relation. A typical
weight function is the cardinality of the relation (|R|). Given a weight function
weight, a greedy join ordering algorithm works as follows:

GreedyJoinOrdering-1({R1, . . . , Rn}, (*weight)(Relation))

Input: a set of relations to be joined and a weight function

Output: a join order

S = ϵ; // initialize S to the empty sequence

R = {R1, . . . , Rn}; // let R be the set of all relations

while(!empty(R)) {
Let k be such that: weight(Rk) = minRi∈R(weight(Ri));

R\ = Rk; // eliminate Rk from R
S◦ = Rk; // append Rk to S

}
return S

This algorithm takes cross products into account. If we are only interested
in left-deep join trees with no cross products, we have to require that Rk is
connected to some of the relations contained in S in case S ̸= ϵ. Note that a
more efficient implementation would sort the relations according to their weight.

Not all heuristics can be implemented with a greedy algorithm as simple as
above. An often-used heuristics is to take the relation next that produces the
smallest (next) intermediate result. This cannot be determined by the relation
alone. One must take into account the sequence S already processed, since on-
ly then the selectivities of all predicates connecting relations in S and the new
relation are deducible. And we must take the product of these selectivities and
the cardinality of the new relation in order to get an estimate of the intermedi-
ate result’s cardinality. As a consequence, the weights become relative to S. In
other words, the weight function now has two parameters: a sequence of rela-
tions already joined and the relation whose relative weight is to be computed.
Here is the next algorithm:

48 CHAPTER 3. JOIN ORDERING

GreedyJoinOrdering-2({R1, . . . , Rn},
(*weight)(Sequence of Relations, Relation))

Input: a set of relations to be joined and a weight function

Output: a join order

S = ϵ; // initialize S to the empty sequence

R = {R1, . . . , Rn}; // let R be the set of all relations

while(!empty(R)) {
Let k be such that: weight(S,Rk) = minRi∈R(weight(S, Ri));

R\ = Rk; // eliminate Rk from R
S◦ = Rk; // append Rk to S

}
return S

Note that for this algorithm, sorting is not possible. GreedyJoinOrdering-2

can be improved by taking every relation as the starting one.

GreedyJoinOrdering-3({R1, . . . , Rn}, (*weight)(Sequence of Relations, Relation))

Input: a set of relations to be joined and a weight function

Output: a join order

Solutions = ∅;
for (i = 1; i ≤ n; ++ i) {
S = Ri; // initialize S to a singleton sequence

R = {R1, . . . , Rn} \ {Ri}; // let R be the set of all relations

while(!empty(R)) {
Let k be such that: weight(S,Rk) = minRi∈R(weight(S, Ri));

R\ = Rk; // eliminate Rk from R
S◦ = Rk; // append Rk to S

}
Solutions += S;

}
return cheapest in Solutions

In addition to the relative weight function mentioned before, another of-
ten used relative weight function is the product of the selectivities connecting
relations in S with the new relation. This heuristics is sometimes called MinSel .

The above two algorithms generate linear join trees. Lohman and Fegaras
independently proposed heuristics (named Greedy Operator Ordering (GOO))
to generate bushy join trees [276, 277, 566]. The idea is as follows. A set
of join trees Trees is initialized such that it contains all the relations to be
joined. It then investigates all pairs of trees contained in Trees. Among all of
these, the algorithm joins the two trees that result either in the smallest cost
of performing this join (Lohman [566]) or in the smallest intermediate result
(Fegaras [276, 277]). The two trees are then eliminated from Trees and the
new join tree joining them is added to it. The algorithm then looks as follows:

3.2. DETERMINISTIC ALGORITHMS 49

GOO({R1, . . . , Rn}, (*weight)(T1,T2))
Input: a set of relations to be joined

Output: join tree

Trees := {R1, . . . , Rn}
while (|Trees| != 1) {

find Ti, Tj ∈ Trees such that i ̸= j, weight(Ti, Tj) is minimal

among all pairs of trees in Trees

Trees − = Ti;
Trees − = Tj;
Trees + = Ti B Tj;

}
return the tree contained in Trees;

Our GOO variant differs slightly from the one proposed by Fegaras. He uses
arrays, explicitly handles the forming of the join predicates, and materializes
intermediate result sizes. Hence, his algorithm is a little more elaborated, but
we assume that the reader is able to fill in the gaps. Further, Fegaras proposes
the weight function weight(T1, T2) = |TiBTj | whereas Lohman proposes to use
the weight function weight(T1, T2) = cost(Ti B Tj).

None of our algorithms so far considers different join implementations. An
explicit consideration of commutativity for non-symmetric cost functions could
also help to produce better join trees. The reader is asked to work out the details
of these extensions. In general, the heuristics do not produce the optimal plan. EX
The reader is advised to find examples where the heuristics are far off the best
possible plan. EX

3.2.2 Determining the Optimal Join Order in Polynomial Time

Since the general problem of join ordering is NP-hard, we cannot expect to
find a polynomial solution for it. However, for special cases, we can expect to
find solutions that work in polynomial time. These solutions can also be used
as heuristics for the general case, either to find a not-that-bad join tree or to
determine an upper bound for the costs that is then fed into a search procedure
to prune the search space.

The most general case for which a polynomial solution is known is charac-
tized by the following features:

• the query graph must be acyclic

• no cross products are considered

• the search space is restricted to left-deep trees

• the cost function must have the ASI property

The algorithm was presented by Ibaraki and Kameda [438]. Later Krishna-
murthy, Boral, and Zaniolo presented it again for some other cost functions
(still having the ASI property) [520]. They also observed that the upper bound
O(n2 log n) of the original algorithm could be improved to O(n2). In any case,

50 CHAPTER 3. JOIN ORDERING

the algorithm is based on an algorithm discovered by Monma and Sidney for
job scheduling [537, 627] . Let us call the (unimproved) algorithm IKKBZ-
Algorithm.

The IKKBZ-Algorithm considers only join operations that have a cost func-
tion of the form:

cost(Ri 1 Rj) = |Ri| ∗ hj(|Rj |)

where each Rj can have its own cost function hj . We denote the set of hj by
H and parameterize cost functions with it. Example instanciations are

• hj ≡ 1.2 for main memory hash-based joins

• hj ≡ id for nested-loop joins

where id is the identity function. Let us denote by ni the cardinality of the
relation Ri (ni := |Ri|). Then, the hi(ni) represent the costs per input tuple to
be joined with Ri.

The algorithm works as follows. For every relation Rk it computes the
optimal join order under the assumption that Rk is the first relation in the join
sequence. The resulting subproblems then resemble a job-scheduling problem
that can be solved by the Monma-Sidney-Algorithm [627].

In order to present this algorithm, we need the notion of a precedence graph.
A precedence graph is formed by taking a node in the (undirected) query graph
and making this node a root node of a (directed) tree where the edges point
away from the selected root node. Hence, for acyclic, connected query graphs—
those we consider in this section—a precedence graph is a tree. We construct
the precedence graph of a query graph G = (V,E) as follows:

• Make some relation Rk ∈ V the root node of the precedence graph.

• As long as not all relations are included in the precedence graph: Choose
a relation Ri ∈ V , such that (Rj , Ri) ∈ E is an edge in the query graph
and Rj is already contained in the (partial) precedence graph constructed
so far and Ri is not. Add Rj and the edge Rj → Ri to the precedence
graph.

A sequence S = v1, . . . , vk of nodes conforms to a precedence graph G = (V,E)
if the following conditions are satisfied:

1. for all i (2 ≤ i ≤ k) there exists a j (1 ≤ j < i) with (vj , vi) ∈ E and

2. there is no edge (vi, vj) ∈ E for i > j.

For non-empty sequences U and V in a precedence graph, we write U → V if,
according to the precedence graph, U must occur before V . This requires U
and V to be disjoint. More precisely, there can only be paths from nodes in U
to nodes in V and at least one such path exists.

Consider the following query graph:

3.2. DETERMINISTIC ALGORITHMS 51

R5

R6

R4R3

R1

R2

For this query graph, we can derive the following precedence graphs:

R2R1

R3R5

R4

R6

R2R1

R3R6

R4

R5

R5R3

R6R5R3

R4

R5 R6

R4R2R1

R3

R6R5

R4R1

R3

R2

R6R5

R4R2

R3

R1

The IKKBZ-Algorithm takes a single precedence graph and produces a new
one that is totally ordered. From this total order it is very easy to construct a
corresponding join graph: the following figure contains a totally ordered prece-
dence graph (left-hand side) as generated by the IKKBZ-Algorithm and the
corresponding join graph on the right-hand side.

R1 R2

R3

R4

R5

R6

B

B

B

B

B

R6

R5

R4

R3

R2

R1

52 CHAPTER 3. JOIN ORDERING

Define

R1,2,...,k := R1 1 R2 1 · · · 1 Rk

n1,2,...,k := |R1,2,...,k|
For a given precedence graph, let Ri be a relation and Ri be the set of relations
from which there exists a path to Ri. Then, in any join tree adhering to the
precedence graph, all relations in Ri and only those will be joined before Ri.
Hence, we can define si =

∏
Rj∈Ri

fi,j for i > 1. Note that for any i only one j
with fi,j ̸= 1 exists in the product. If the precedence graph is a chain, then the
following holds:

n1,2,...,k+1 = n1,2...,k ∗ sk+1 ∗ nk+1

We define s1 = 1. Then we have

n1,2 = s2 ∗ (n1 ∗ n2) = (s1 ∗ s2) ∗ (n1 ∗ n2)
and, in general,

n1,2,...,k =
k∏

i=1

(si ∗ ni).

We call the si selectivities, although they depend on the precedence graph.
The costs for a totally ordered precedence graph G can thus be computed

as follows:

CostH(G) =
n∑

i=2

[n1,2,...,i−1 ∗ hi(ni)]

=

n∑

i=2

[(

i−1∏

j=1

sj ∗ nj) ∗ hi(ni)]

If we define hi(ni) = sini, then CostH ≡ Cout. The factor sini determines by
how much the input relation to be joined with Ri changes its cardinality after
the join has been performed. If sini is less than one, we call the join decreasing,
if it is larger than one, we call the join increasing . This distinction plays an
important role in the heuristic discussed in Section 3.2.3.

The cost function can also be defined recursively.

Definition 3.2.1 Define the cost function CH as follows:

CH(ϵ) = 0

CH(Rj) = 0 if Rj is the root

CH(Rj) = hj(nj) else

CH(S1S2) = CH(S1) + T (S1) ∗ CH(S2)

where

T (ϵ) = 1

T (S) =
∏

Ri∈S
(si ∗ ni)

3.2. DETERMINISTIC ALGORITHMS 53

It is easy to prove by induction that CH is well-defined and that CH(G) =
CostH(G). EX

Definition 3.2.2 Let A and B be two sequences and V and U two non-empty
sequences. We say that a cost function C has the adjacent sequence interchange
property (ASI property) if and only if there exists a function T and a rank
function defined for sequences S as

rank(S) =
T (S)− 1

C(S)

such that for non-empty sequences S = AUV B the following holds

C(AUV B) ≤ C(AV UB) ≺≻ rank(U) ≤ rank(V) (3.1)

if AUV B and AV UB satisfy the precedence constraints imposed by a given
precedence graph.

Lemma 3.2.3 The cost function CH defined in Definition 3.2.1 has the ASI
property.

The proof is very simple. Using the definition of CH , we have

CH(AUV B) = CH(A)

+T (A)CH(U)

+T (A)T (U)CH(V)

+T (A)T (U)T (V)CH(B)

and, hence,

CH(AUV B)− CH(AV UB) = T (A)[CH(V)(T (U)− 1)− CH(U)(T (V)− 1)]

= T (A)CH(U)CH(V)[rank(U)− rank(V)]

The proposition follows. 2

Definition 3.2.4 Let M = {A1, . . . , An} be a set of node sequences in a given
precedence graph. Then, M is a called a module if for all sequences B that do
not overlap with the sequences in M one of the following conditions holds:

• B → Ai, ∀ 1 ≤ i ≤ n

• Ai → B, ∀ 1 ≤ i ≤ n

• B ̸→ Ai and Ai ̸→ B, ∀ 1 ≤ i ≤ n

Lemma 3.2.5 Let C be any cost function with the ASI property and {A,B}
a module. If A → B and additionally rank(B) ≤ rank(A), then we find an
optimal sequence among those in which B directly follows A.

54 CHAPTER 3. JOIN ORDERING

Proof Every optimal permutation must have the form (U,A, V,B,W), since
A → B. Assumption: V ̸= ϵ. If rank(V) ≤ rank(A), then we can ex-
change V and A without increasing the costs. If rank(A) ≤ rank(V), we
have rank(B) ≤ rank(V) due to the transitivity of ≤. Hence, we can exchange
B and V without increasing the costs. Both exchanges produce legal sequences
obeying the precedence graph, since {A,B} is a module. 2

If the precedence graph demands A→ B but rank(B) ≤ rank(A), we speak
of contradictory sequences A and B. Since the lemma shows that no non-empty
subsequence can occur between A and B, we will combine A and B into a new
single node replacing A and B. This node represents a compound relation
comprising all relations in A and B. Its cardinality is computed by multiplying
the cardinalities of all relations occurring in A and B, and its selectivity s is
the product of all the selectivities si of the relations Ri contained in A and B.
The continued process of this step until no more contradictory sequence exists
is called normalization. The opposite step, replacing a compound node by the
sequence of relations it was derived from, is called denormalization.

We can now present the algorithm IKKBZ.

IKKBZ(G)
Input: an acyclic query graph G for relations R1, . . . , Rn

Output: the best left-deep tree

R = ∅;
for (i = 1; i ≤ n; ++ i) {
Let Gi be the precedence graph derived from G and rooted at Ri;

T = IKKBZ-Sub(Gi);

R+ = T;
}
return best of R;

IKKBZ-Sub(Gi)

Input: a precedence graph Gi for relations R1, . . . , Rn rooted at some Ri

Output: the optimal left-deep tree under Gi

while (Gi is not a chain) {
let r be the root of a subtree in Gi whose subtrees are chains;

IKKBZ-Normalize(r);
merge the chains under r according to the rank function

in ascending order;

}
IKKBZ-Denormalize(Gi);

return Gi;

IKKBZ-Normalize(r)
Input: the root r of a subtree T of a precedence graph G = (V,E)
Output: a normalized subchain

while (∃ r′, c ∈ V , r →∗ r′, (r′, c) ∈ E: rank(r′) > rank(c)) {
replace r′ by a compound relation r′′ that represents r′c;

3.2. DETERMINISTIC ALGORITHMS 55

};

We do not give the details of IKKBZ-Denormalize, as it is trivial.

R1

R2 R3 R4

R5 R6

49
50

24
25

R7

5
6

19
20

4
5

1
2

R1

R2 R3 R4

R5 R6,7

49
50

24
25

5
6

19
20

3
5

R6,7
3
5

R1

R2 R3 R4
49
50

24
25

19
20

R5
5
6

R5
5
6

R1

R2 R3 R4,6,7
49
50

24
25

199
320

R1

10

R5

18

R2

100

R3

100

R6

10

R7

20A)

B)
E)

D)

C)
F)

R4

100

1
5

1
10

1
3

1
2

1
4

1
2

Figure 3.3: Illustrations for the IKKBZ Algorithm

Let us illustrate the algorithm IKKBZ-Sub by a simple example. We use
the cost function Cout. Figure 3.3 A) shows a query graph. The relations are
annotated with their sizes and the edges with the join selectivities. Chosing R1

as the root of the precedence graph results in B). There, the nodes are annotated
by the ranks of the relations. R4 is the root of a subtree all of whose subtrees
are chains. Hence, we normalize it. For R5, there is nothing to do. The ranks
of R6 and R7 are contradictory. We form a compound relation R6,7, calculate
its cardinality, selectivity, and rank. The latter is shown in C). Merging the
two subchains under R4 results in D). Now R1 is the root of a subtree with
only chains underneath. Normalization detects that the ranks for R4 and R5

are contradictory. E) shows the tree after introducing the compound relation
R4,5. Now R4,5 and R6,7 have contradictory ranks, and we replace them by the
compound relation R4,5,6,7 as shown in F). Merging the chains under R1 gives
G). Since this is a chain, we leave the loop and denormalize. The final result is
shown in H).

56 CHAPTER 3. JOIN ORDERING

III a)

III

IV a)

V a)

III b)

IV b)

V b)

p2,3

p1,2

p3,4

p3,4

p2,3

p1,2

R2 R3R1 R4

p3,4

p2,3

p1,2

p1,2 p3,4

p2,3

R2R1

R3

R2R1 R4R3

R4R3R2R1

R4

B

B

B

B

B B

B

B B

Figure 3.4: A query graph, its directed join graph, some spanning trees and
join trees

We can use the IKKBZ-Algorithm to derive a heuristics also for cyclic
queries, i.e. for general query graphs. In a first step, we determine a mini-
mal spanning tree of the query graph. It is then used as the input query graph
for the IKKBZ-Algorithm. Let us call this the IKKBZ-based Heuristics.

3.2.3 The Maximum-Value-Precedence Algorithm

Lee, Shih, and Chen proposed a very interesting heuristics for the join ordering
problem [539]. They use a weighted directed join graph (WDJG) to represent
queries. Within this graph, every join tree corresponds to a spanning tree.

3.2. DETERMINISTIC ALGORITHMS 57

Given a conjunctive query with join predicates P . For a join predicate p ∈ P ,
we denote by R(p) the relations whose attributes are mentioned in p.

Definition 3.2.6 The directed join graph of a conjunctive query with join pred-
icates P is a triple G = (V,Ep, Ev), where V is the set of nodes and Ep and
Ev are sets of directed edges defined as follows. For any two nodes u, v ∈ V , if
R(u) ∩ R(v) ̸= ∅ then (u, v) ∈ Ep and (v, u) ∈ Ep. If R(u) ∩ R(v) = ∅, then
(u, v) ∈ Ev and (v, u) ∈ Ev. The edges in Ep are called physical edges, those
in Ev virtual edges.

Note that in G for every two nodes u, v, there is an edge (u, v) that is either
physical or virtual. Hence, G is a clique.

Let us see how we can derive a join tree from a spanning tree of a directed
join graph. Figure 3.4 I) gives a simple query graph Q corresponding to a chain
and Part II) presents Q’s directed join graph. Physical edges are drawn by
solid arrows, virtual edges by dotted arrows. Let us first consider the spanning
tree shown in Part III a). It says that we first execute R1 Bp1,2 R2. The next
join predicate to evaluate is p2,3. Obviously, it does not make much sense to
execute R2 Bp2,3 R3, since R1 and R2 have already been joined. Hence, we
replace R2 in the second join by the result of the first join. This results in the
join tree (R1 Bp1,2 R2) Bp2,3 R3. For the same reason, we proceed by joining
this result with R4. The final join tree is shown in Part III b). Part IV a)
shows another spanning tree. The two joins R1 Bp1,2 R2 and R3 Bp3,4 R4 can
be executed independently and do not influence each other. Next, we have to
consider p2,3. Both R2 and R3 have already been joined. Hence, the last join
processes both intermediate results. The final join tree is shown in Part IV b).
The spanning tree shown in Part V a) results in the same join tree shown in
Part V b). Hence, two different spanning trees can result in the same join tree.
However, the spanning tree in Part IV a) is more specific in that it demands
R1 Bp1,2 R2 to be executed before R3Bp3,4 .

Next, take a look at Figure 3.5. Part I), II), and III a) show a query graph,
its directed join tree and a spanning tree. To build a join tree from the spanning
tree we proceed as follows. We have to execute R2 Bp2,3 R3 and R3 B R4 first.
In which way we do so is not really fixed by the spanning tree. So let us do
both in parallel. Next is p1,2. The only dependency the spanning tree gives
us is that it should be executed after p3,4. Since there is no common relation
between those two, we perform R1 Bp1,2 R2. Last is p4,5. Since we find p3,4
below it, we use the intermediate result produced by it as a replacement for R4.
The result is shown in Part III b). It has three loose ends. Additional joins are
required to tie the partial results together. Obviously, this is not what we want.
A spanning tree that avoids this problem of additional joins is called effective.
It can be shown that a spanning tree T = (V,E) is effective if it satisfies the
following conditions [539]:

1. T is a binary tree,

2. for all inner nodes v and node u with (u, v) ∈ E it holds that R∗(T (u))∩
R(v) ̸= ∅, and

58 CHAPTER 3. JOIN ORDERING

I

III b)III a)

p1,2 p2,3 p3,4

R4 R5

p3,4

R2 R3R1

II p4,5

R3

?

p1,2

p4,5

p2,3
R2

R5

R4R3 R2R1

B B

B

B

Figure 3.5: A query graph, its directed join tree, a spanning tree and its problem

3. for all nodes v, u1, u2 with u1 ̸= u2, (u1, v) ∈ E, and (u2, v) ∈ E one of
the following two conditions holds:

(a) ((R∗(T (u1)) ∩R(v)) ∩ (R∗(T (u2)) ∩R(v))) = ∅ or
(b) (R∗(T (u1)) ∩R(v) = R(v)) ∨ (R∗(T (u2)) ∩R(v) = R(v)).

Thereby, we denote by T (v) the partial tree rooted at v and by R∗(T ′) =
∪v∈T ′R(v) the set of all relations in subtree T ′.

We see that the spanning tree in Figure 3.5 III a) is ineffective since, for
example, R(p2,3) ∩ R(p4,5) = ∅. The spanning tree in Figure 3.4 IV a) is also
ineffective. During the algorithm we will take care—by checking the above
conditions—that only effective spanning trees are generated.

We now assign weights to the edges of the directed join graph. For two
nodes v, u ∈ V define u ⊓ v := R(u) ∩ R(v). For simplicity, we assume that
every predicate involves exactly two relations. Then for all u, v ∈ V , u ⊓ v
contains a single relation. Let v ∈ V be a node with R(v) = {Ri, Rj}. We
abbreviate Ri Bv Rj by Bv. Using these notations, we can attach weights to
the edges to define the weighted directed join graph.

Definition 3.2.7 Let G = (V,Ep, Ev) be a directed join graph for a conjunctive
query with join predicates P . The weighted directed join graph is derived from
G by attaching a weight to each edge as follows:

• Let (u, v) ∈ Ep be a physical edge. The weight wu,v of (u, v) is defined as

wu,v =
|Bu |
|u ⊓ v| .

• For virtual edges (u, v) ∈ Ev, we define wu,v = 1.

3.2. DETERMINISTIC ALGORITHMS 59

(Lee, Shih, and Chen actually attach two weights to each edge: one additional
weight for the size of the tuples (in bytes) [539].)

The weights of physical edges are equal to the si of the dependency graph
used in the IKKBZ-Algorithm (Section 3.2.2). To see this, assume R(u) =
{R1, R2}, R(v) = {R2, R3}. Then

wu,v =
|Bu |
|u ⊓ v|

=
|R1 Bu R2|
|R2|

=
f1,2 |R1| |R2|
|R2|

= f1,2 |R1|

Hence, if the join R1 BuR2 is executed before the join R2 Bv R3, the input size
to the latter join changes by a factor wu,v. This way, the influence of a join
on another join is captured by the weights. Since those nodes connected by a
virtual edge do not influence each other, a weight of 1 is appropriate.

Additionally, we assign weights to the nodes of the directed join graph.
The weight of a node reflects the change in cardinality to be expected when
certain other joins have been executed before. They are specified by a (partial)
spanning tree S. Given S, we denote by BS

pi,j the result of the join Bpi,j if all
joins preceding pi,j in S have been executed. Then the weight attached to node
pi,j is defined as

w(pi,j , S) =
|BS

pi,j |
|Ri Bpi,j Rj |

.

For empty sequences ϵ, we define w(pi,j , ϵ) = |Ri Bpi,j Rj |. Similarly, we define
the cost of a node pi,j depending on other joins preceding it in some given
spanning tree S. We denote this by cost(pi,j , S). The actual cost function can
be one we have introduced so far or any other one. In fact, if we have a choice
of several join implementations, we can take the minimum over all their cost
functions. This then choses the most effective join implementation.

The maximum value precedence algorithm works in two phases. In the first
phase, it searches for edges with a weight smaller than one. Among these, the
one with the biggest impact is chosen. This one is then added to the spanning
tree. In other words, in this phase, the costs of expensive joins are minimized by
making sure that (size) decreasing joins are executed first. The second phase
adds edges such that the intermediate result sizes increase as little as possible.

MVP(G)
Input: a weighted directed join graph G = (V,Ep, Ev)
Output: an effective spanning tree

Q1.insert(V); /* priority queue with largest node weights w(·) first */

Q2 = ∅; /* priority queue with smallest node weights w(·) first */

G′ = (V ′, E′) with V ′ = V and E′ = Ep; /* working graph */

60 CHAPTER 3. JOIN ORDERING

S = (VS , ES) with VS = V and ES = ∅; /* resulting effective spanning tree */

while (!Q1.empty() && |ES | < |V | − 1) { /* Phase I */

v = Q1.head();

among all (u, v) ∈ E′, wu,v < 1 such that

S′ = (V,E′S) with E′S = ES ∪ {(u, v)} is acyclic and effective

select one that maximizes cost(Bv, S) - cost(Bv, S
′);

if (no such edge exists) {
Q1.remove(v);
Q2.insert(v);
continue;

}
MvpUpdate((u, v));
recompute w(·) for v and its ancestors; /* rearranges Q1 */

}
while (!Q2.empty() && |ES | < |V | − 1) { /* Phase II */

v = Q2.head();

among all (u, v), (v, u) ∈ E′ denoted by (x, y) henceforth

such that

S′ = (V,E′S) with E′S = ES ∪ {(x, y)} is acyclic and effective

select the one that minimizes cost(Bv, S
′) - cost(Bv, S);

MvpUpdate((x, y));
recompute w(·) for y and its ancestors; /* rearranges Q2 */

}
return S;

MvpUpdate((u, v))
Input: an edge to be added to S
Output: side-effects on S, G′,
ES ∪ = {(u, v)};
E′ \ = {(u, v), (v, u)};
E′ \ = {(u,w)|(u,w) ∈ E′}; /* (1) */

E′ ∪ = {(v, w)|(u,w) ∈ Ep, (v, w) ∈ Ev}; /* (3) */

if (v has two inflowing edges in S) { /* (2) */

E′ \ = {(w, v)|(w, v) ∈ E′};
}
if (v has one outflowing edge in S) { /* (1) in paper but not needed */

E′ \ = {(v, w)|(v, w) ∈ E′};
}

Note that in order to test for the effectiveness of a spanning tree in the
algorithm, we just have to check the conditions for the node the selected edge
leads to.

MvpUpdate first adds the selected edge to the spanning tree. It then elim-
inates edges that need not to be considered for building an effective spanning
tree. Since (u, v) has been added, both (u, v) and (v, u) do not have to be
considered any longer. Also, since effective spanning trees are binary trees, (1)

3.2. DETERMINISTIC ALGORITHMS 61

every node must have only one parent node and (2) at most two child nodes.
The edges leading to a violation are eliminated by MvpUpdate in the lines com-
mented with the corresponding numbers. For the line commented (3) we have
the situation that u→ v 99K w and u→ w in G. This means that u and w have
common relations, but v and w do not. Hence, the result of performing v on
the result of u will have a common relation with w. Thus, we add a (physical)
edge v → w.

3.2.4 Dynamic Programming

Algorithms

Consider the two join trees

(((R1 BR2)BR3)BR4)BR5

and
(((R3 BR1)BR2)BR4)BR5.

If we know that ((R1BR2)BR3) is cheaper than ((R3BR1)BR2), we know that
the first join tree is cheaper than the second. Hence, we could avoid generating
the second alternative and still won’t miss the optimal join tree. The general
principle behind this is the optimality principle (see [208]). For the join ordering
problem, it can be stated as follows.1

Let T be an optimal join tree for relations R1, . . . , Rn. Then, every
subtree S of T must be an optimal join tree for the relations it
contains.

To see why this holds, assume that the optimal join tree T for relationsR1, . . . , Rn

contains a subtree S which is not optimal. That is, there exists another join
tree S′ for the relations contained in S with strictly lower costs. Denote by
T ′ the join tree derived by replacing S in T by S′. Since S′ contains the same
relations as S, T ′ is a join tree for the relations R1, . . . , Rn. The costs of the join
operators in T and T ′ that are not contained in S and S′ are the same. Then,
since the total cost of a join tree is the sum of the costs of the join operators
and S′ has lower costs than S, T ′ has lower costs than T . This contradicts the
optimality of T .

The idea of dynamic programming applied to the generation of optimal join
trees now is to generate optimal join trees for subsets of R1, . . . , Rn in a bottom-
up fashion. First, optimal join trees for subsets of size one, i.e. single relations,
are generated. From these, optimal join trees of size two, three and so on until
n are generated.

Let us first consider generating optimal left-deep trees. There, join trees for
subsets of size k are generated from subsets of size k − 1 by adding a new join
operator whose left argument is a join tree for k − 1 relations and whose right
argument is a single relation. Exchanging left and right gives us the procedure
for generating right-deep trees. If we want to generate zig-zag trees since our

1The optimality principle does not hold in the presence of properties.

62 CHAPTER 3. JOIN ORDERING

cost function is asymmetric, we have to consider both alternatives and take
the cheapest one. We capture this in a procedure CreateJoinTree that takes
two join trees as arguments and generates the above-mentioned alternatives.
In case we want to consider different implementations for the join, we have to
perform the above steps for all of them and return the cheapest alternative.
Summarizing, the pseudo-code for CreateJoinTree looks as follows:

CreateJoinTree(T1, T2)
Input: two (optimal) join trees T1 and T2.

for linear trees, we assume that T2 is a single relation

Output: an (optimal) join tree for joining T1 and T2.
BestTree = NULL;

for all implementations impl do {
if(!RightDeepOnly) {
Tree = T1 B

impl T2
if (BestTree == NULL || cost(BestTree) > cost(Tree)) {
BestTree = Tree;

}
}
if(!LeftDeepOnly) {
Tree = T2 B

impl T1
if (BestTree == NULL || cost(BestTree) > cost(Tree)) {
BestTree = Tree;

}
}

}
return BestTree;

The boolean variables RightDeepOnly and LeftDeepOnly are used to restrict
the search space to right-deep trees and left-deep trees. If both are false, zig-zag
trees are generated. However, CreateJoinTree also generates bushy trees, if
none of the input trees is a single relation.

In case of linear trees, T2 will be the single relation in all of our algorithms.
CreateJoinTree should not copy T1 or T2. Instead, the newly generated join
trees should share T1 and T2 by using pointers. Further, the join trees generated
do not really need to be generated except for the final (best) join tree: the cost
functions should be implemented such that they can be evaluated if they are
given the left and right argument of the join.

Using CreateJoinTree, we are now ready to present our first dynamic pro-
gramming algorithm in pseudo-code.

DP-Linear-1({R1, . . . , Rn})
Input: a set of relations to be joined

Output: an optimal left-deep (right-deep, zig-zag) join tree

3.2. DETERMINISTIC ALGORITHMS 63

R1
R4R3R2

R3R1 R2 R4}{

R1 R2 R4{ }

R1 R2 R3{ }

R1 R3

R1 R4{ }

R1

R2 R3

R1 R3 R4{ }

R2 R3 R4

R2

R4

R4

R2

{ }

{ }

{ }

{ }

{ }

}{R3

Figure 3.6: Search space with sharing under optimality principle

for (i = 1; i <= n; ++i) {
BestTree({Ri}) = Ri;

}
for (i = 1; i < n; ++i) {

for all S ⊆ {R1, . . . , Rn}, |S| = i do {
for all Rj ∈ {R1, . . . , Rn}, Rj ̸∈ S do {

if (NoCrossProducts && !connected({Rj}, S)) {
continue;

}
CurrTree = CreateJoinTree(BestTree(S),Rj);

S′ = S ∪ {Rj};
if (BestTree(S′) == NULL || cost(BestTree(S′)) > cost(CurrTree)) {

BestTree(S′) = CurrTree;

}
}

}
}
return BestTree({R1, . . . , Rn});
NoCrossProducts is a boolean variable indicating whether cross products should
be investigated. Of course, if the join graph is not connected, there must be

64 CHAPTER 3. JOIN ORDERING

a cross product, but for DP-Linear-1 and subsequent algorithms we assume
that it is connected. The boolean function connected returns true, if there is
a join predicate between one of the relations in its first argument and one of
the relations in its second. The variable BestTree keeps track of the best join
trees generated for every subset of the relations {R1, . . . , Rn}. How this is done
may depend on several parameters. The approaches are to use a hash table or
an array of size 2n(−1). Another issue is how to represent the sets of relations.XC search

space size
difference
problem

Typically, bitvector representations are used. Then, testing for membership,
computing a set’s complement, adding elements and unioning is cheap. Yet
another issue is the order in which join trees are generated. The procedure
DP-Linear-1 takes the approach to generate the join trees for subsets of size
1, 2, . . . , n. To do so, it must be able to access the subsets of {R1, . . . , Rn} or
their respective join trees by their size. One possibility is to chain all the join
trees for subsets of a given size k (1 ≤ k ≤ n) and to use an array of size n to
keep pointers to the start of the lists. In this case, to every join tree the set of
relations it contains is attached, in order to be able to perform the test Ri ̸∈ S.
One way to do this is to embed a bitvector into each join tree node.

Figure 3.6 illustrates how the procedure DP-Linear-1 works. In its first
loop, it initializes the bottom row of join trees of size one. Then it computes
the join trees joining exactly two relations. This is indicated by the next group
of join trees. Since the figure leaves out commutativity, only one alternative
join tree for every subset of size two is generated. This changes for subsets of
size three. There, three alternative join trees are generated. Only the best join
tree is retained. This is indicated by the ovals that encircle three join trees.
Only this best join tree of size three is used to generate the final best join tree.

The short clarification after the algorithm already adumbrated that the
order in which join trees are generated is not compulsory. The only necessary
condition is the following.

Let S be a subset of {R1, . . . , Rn}. Then, before a join tree for S
can be generated, the join trees for all relevant subsets of S must
already be available.

Note that this formulation is general enough to also capture the generation of
bushy trees. It is, however, a little vague due to its reference to “relevance”.
For the different join tree classes, this term can be given a precise semantics.EX

Let us take a look at an alternative order to join tree generation. Assume
that sets of relations are represented as bitvectors. A bitvector is nothing more
than a base two integer. Successive increments of an integer/bitvector lead to
different subsets. Further, the above condition is satisfied. We illustrate this by
a small example. Assume that we have three relations R1, R2, R3. The i-th bit
from the right in a three-bit integer indicates the presence of Ri for 1 ≤ i ≤ 3.

3.2. DETERMINISTIC ALGORITHMS 65

000 {}
001 {R1}
010 {R2}
011 {R1, R2}
100 {R3}
101 {R1, R3}
110 {R2, R3}
111 {R1, R2, R3}

This observation leads to another formulation of our dynamic programming
algorithm. For this algorithm, it is very convenient to use an array of size 2n

to represent BestTree(S) for subsets S of {R1, . . . , Rn}.

DP-Linear-2({R1, . . . , Rn})
Input: a set of relations to be joined

Output: an optimal left-deep (right-deep, zig-zag) join tree

for (i = 1; i <= n; ++i) {
BestTree(1 << i− 1) = Ri;

}
for (S = 1; S < 2n; ++S) {

if (BestTree(S) != NULL) continue;
for all i ∈ S do {
S′ = S \ {i};
CurrTree = CreateJoinTree(BestTree(S′),Ri);

if (BestTree(S) == NULL || cost(BestTree(S)) > cost(CurrTree)) {
BestTree(S) = CurrTree;

}
}

}
return BestTree(2n − 1);

DP-Linear-2 differs from DP-Linear-1 not only in the order in which join trees
are generated. Another difference is that it takes cross products into account.

From DP-Linear-2, it is easy to derive an algorithm that explores the space
of bushy trees.

DP-Bushy({R1, . . . , Rn})
Input: a set of relations to be joined

Output: an optimal bushy join tree

for (i = 1; i <= n; ++i) {
BestTree(1 << i− 1) = Ri;

}
for (S = 1; S < 2n; ++S) {

if (BestTree(S) != NULL) continue;
for all S1 ⊂ S, S1 ̸= ∅ do {

66 CHAPTER 3. JOIN ORDERING

S2 = S \ S1;
CurrTree = CreateJoinTree(BestTree(S1), BestTree(S2));
if (BestTree(S) == NULL || cost(BestTree(S)) > cost(CurrTree)) {

BestTree(S) = CurrTree;

}
}

}
return BestTree(2n − 1);

This algorithm also takes cross products into account. The critical part is the
generation of all subsets of S. Fortunately, Vance and Maier [898] provide a
code fragment with which subset bitvector representations can be generated
very efficiently. In C, this fragment looks as follows:

S1 = S & - S;

do {
/* do something with subset S1 */

S1 = S & (S1 - S);

} while (S1 != S);

S represents the input set. S1 iterates through all subsets of S where S itself and
the empty set are not considered. Analogously, all supersets an be generated
as follows:

S1 = ~S & - ~S;

/* do something with first superset S1 */

while (S1) {
S1 = ~S & (S1 - ~S)

/* do something with superset S1
}

S represents the input set. S1 iterates through all supersets of S including S
itself.

Excursion Problem: exploiting orderings devastates the optimality principle.
Example: . . .XC ToDo

Excursion Pruning . . .XC ToDo

Number of Entries to be stored in the dynamic programming table

If dynamic programming uses a static hash table, determining its size in advance
is necessary as the search space sizes differ vastly for different query graphs.
In general, for every connected subgraph of the query graph one entry must

3.2. DETERMINISTIC ALGORITHMS 67

exist. Chains require far fewer entries than cliques. It would be helpful to
have a small routine solving the following problem: given a query graph, how
many connected subgraph are there? Unfortunatly, this problem is #-P hard
as Sutner, Satyanarayana, and Suffel showed [856]. They build on results by
Valiant [896] and Lichtenstein [555]. (For a definition of #P-hard see the book
by Lewis and Papadimitriou [553] or the original paper by Valiant [895].)

However, for specific cases, these numbers can be given. If cross products
are consideres, the number of join trees stored in the dynamic programming
table is

2n − 1

which is one for each non-empty subset of relations.

If we do not consider cross products, the number of entries in the dynamic
programming table corresponds to the number of connected subgraphs of the
query graph. For connected query graphs, we denote this by #csg. For chains,
cycles, stars, and cliques with n nodes, we have

#csgchain(n) =
n(n+ 1)

2
(3.2)

#csgcycle(n) = n2 − n+ 1 (3.3)

#csgstar(n) = 2n−1 + n− 1 (3.4)

#csgclique(n) = 2n − 1 (3.5)

These equations can be derived from the following by summing over k > 1
where k gives the size of the connected subset:

#csgchain(n, k) = (n− k + 1)

#csgcycle(n, k) =

{
1 n = k
n else

#csgstar(n, k) =

{
n k = 1(
n−1
k−1
)

k > 1

#csgclique(n, k) =

(
n

k

)

Number of Join Trees Investigated

The number of join trees investigated by dynamic programming was extensively
studied by Ono and Lohman [652, 653]. In order to estimate these numbers, we
assume that CreateJoinTree produces a single join tree and hence counts as
one although it may evaluate the costs for several join alternatives. We further
do not count the initial join trees containing only a single relation.

Join Trees With Cartesian Product For the analysis of dynamic pro-
gramming variants that do consider cross products, the notion of join-pair is
helpful. Let S1 and S2 be subsets of the nodes (relations) of the query graph.
We say (S1, S2) is a join-pair, if and only if

68 CHAPTER 3. JOIN ORDERING

1. S1 and S2 are disjoint

If (S1, S2) is a join-pair, then (S2, S1) is a join pair. Further, if T1 is a join tree
for the relations in S1 and T2 is one for those in S2, then we can construct two
valid join trees T1 1 T2 and T2 1 T1 where the joins may be cross products.
Hence, the number of join-pairs coincides with the search space a dynamic pro-
gramming algorithm explores. In fact, the number of join-pairs is the minimum
number of join trees any dynamic programming algorithm that considers cross
products has to investigate.

If CreateJoinTree considers commutativity of joins, the number of calls
to it is precisely expressed by the count of non-symmetric join-pairs. In other
implementations CreateJoinTree might be called for all join-pairs and, thus,
may not consider commutativity. The two formulas below only count non-
symmetric join pairs.

The numbers of linear and bushy join trees with cartesian product is easiest
to determine. They are independent of the query graph. For linear join trees,
the number of join trees investigated by dynamic programming is equal to the
number of non-symmetric join-pairs which is

n2n−1 − n(n+ 1)

2

Dynamic programming investigates the following number of bushy trees if
cross products are considered.

(3n − 2n+1 + 1)

2

This is equal to the number of non-symmetric join-pairs.

Join Trees without Cross Products In this paragraph, we assume that the
query graph is connected. For the analysis of dynamic programming variants
that do not consider cross products, it is helpful to have the notion of a csg-
cmp-pair. Let S1 and S2 be subsets of the nodes (relations) of the query graph.
We say (S1, S2) is a csg-cmp-pair , if and only if

1. S1 induces a connected subgraph of the query graph,

2. S2 induces a connected subgraph of the query graph,

3. S1 and S2 are disjoint, and

4. there exists at least one edge connected a node in S1 to a node in S2.

If (S1, S2) is a csg-cmp-pair, then (S2, S1) is a valid csg-cmp-pair. Further, if T1
is a join tree for the relations in S1 and T2 is one for those in S2, then we can
construct two valid join trees T1 1 T2 and T2 1 T1. Hence, the number of csg-
cmp-pairs coincides with the search space a dynamic programming algorithm
explores. In fact, the number of csg-cmp-pairs is the minimum number of
join trees any dynamic programming algorithm that does not consider cross
products has to investigate.

3.2. DETERMINISTIC ALGORITHMS 69

If CreateJoinTree considers commutativity of joins, the number of calls
to it is precisely expressed by the count of non-symmetric csg-cmp-pairs. In
other implementations CreateJoinTree might be called for all csg-cmp-pairs
and, thus, may not consider commutativity.

Let us denote the number of non-symmetric csg-cmp-pairs by #ccp. Then

#ccpchain(n) =
1

6
(n3 − 3n2 + 2n)

#ccpcycle(n) = (n3 − 2n2 + n)/2

#ccpstar(n) = (n− 1)2n−2

#ccpclique(n) = (3n − 2n+1 + 1)/2

These numbers have to be multiplied by two if we want to count all csg-cmp-
pairs.

If we do not consider composite inners, that is we restrict ourselves to left-
deep join trees, then dynamic programming makes the following number of calls
to CreateJoinTree for chain queries [653]:

(n− 1)2

The following table presents some results for the above formulas.

without cross products with cross products

chain star any query graph

linear bushy linear linear bushy

n (n− 1)2 (n3 − n)/6 (n− 1)2n−2 n2n−1 − n(n+ 1)/2 (3n − 2n+1 + 1)/2

2 1 1 1 1 1

3 4 4 4 6 6

4 9 10 12 22 25

5 16 20 32 65 90

6 25 35 80 171 301

7 36 56 192 420 966

8 49 84 448 988 3025

9 64 120 1024 2259 9330

10 81 165 2304 5065 28501

Compare this table with the actual sizes of the search spaces in Section 3.1.5.
The dynamic programming algorithms can be implemented very efficiently

and often form the core of commercial plan generators. However, they have
the disadvantage that no plan is generated if they run out of time or space
since the search space they have to explore is too big. One possible remedy
goes as follows. Assume that a dynamic programming algorithm is stopped
in the middle of its way through its actual search space. Further assume that
the largest plans generated so far involve k relations. Then the cheapest of the
plans with k relations is completed by applying any heuristics (e.g. MinSel). The
completed plan is then returned. In Section 3.4.5, we will see two alternative
solutions. Another solution is presented in [488].

70 CHAPTER 3. JOIN ORDERING

DPsize

Input: a connected query graph with relations R = {R0, . . . , Rn−1}
Output: an optimal bushy join tree without cross products
for all Ri ∈ R {

BestPlan({Ri}) = Ri;
}
for all 1 < s ≤ n ascending // size of plan
for all 1 ≤ s1 ≤ s/2 { // size of left/right subplan

s2 = s− s1; // size of right/left subplan
for all S1 ⊂ R in BestPlan with |S1| = s1

S2 ⊂ R in BestPlan with |S2| = s2 {
++InnerCounter;
if (∅ ≠ S1 ∩ S2) continue;
if not (S1 connected to S2) continue;
++CsgCmpPairCounter;
p1=BestPlan(S1);
p2=BestPlan(S2);
CurrPlan = CreateJoinTree(p1, p2);
if (cost(BestPlan(S1 ∪ S2)) > cost(CurrPlan)) {

BestPlan(S1 ∪ S2) = CurrPlan;
}

}
}
OnoLohmanCounter = CsgCmpPairCounter / 2;
return BestPlan({R0, . . . , Rn−1});

Figure 3.7: Algorithm DPsize

Generating Bushy Trees without Cross Products

We now discuss dynamic programming algorithms to generate bushy trees with-
out cross products. For this section, we assume that the query graph is con-
nected. We will present three algorithms. The first algorithm (DPsize) gener-
ates its plans in increasing size of subplans and, hence, is a generalization of
DP-Linear-1. The second algorithm (DPsub) geneerates its plans by consider-
ing plans subsets as does DP-Linear-2. An analysis of these two algorithms
reveals that both are far away from the lower bound presented in the previous
sections. Thus, a third algorithm (DPccp) which reaches this lower bound is
presented. The results of this section are taken from [618, 616].

Size-based enumeration: DPsize In general, dynamic programming gen-
erates solutions for a larger problem in a bottom-up fashion by combining so-
lutions for smaller problems. Taking this description literally, we can construct
optimal plans of size n by joining plans p1 and p2 of size k and n− k. We just
have to take care that (1) the sets of relations contained in p1 and p2 do not
overlap, and (2) there is a join predicate connecting a relation p1 with a rela-
tion in p2. After this remark, we are prepared to understand the pseudocode

3.2. DETERMINISTIC ALGORITHMS 71

for algorithm DPsize (see Fig. 3.7). A table BestPlan associates with each
set of relations the best plan found so far. The algorithm starts by initializing
this table with plans of size one, i.e. single relations. After that, it constructs
plans of increasing size (loop over s). Thereby, the first size considered is two,
since plans of size one have already been constructed. Every plan joining n
relations can be constructed by joining a plan containing s1 relations with a
plan containing s2 relations. Thereby, si > 0 and s1+ s2 = n must hold. Thus,
the pseudocode loops over s1 and sets s2 accordingly. Since for every possible
size there exist many plans, two more loops are necessary in order to loop over
the plans of sizes s1 and s2. (This is best implemented by keeping list heads for
every possible plan size pointing to a first plan of this size and chaining plans
of equal size via some next-pointer.) Then, conditions (1) and (2) from above
are tested. Only if their outcome is positive, we consider joining the plans p1
and p2. The result is a plan CurrPlan. Let S be the relations contained in
CurrPlan. If BestPlan does not contain a plan for the relations in S or the
one it contains is more expensive than CurrPlan, we register CurrPlan with
BestPlan.

The algorithm DPsize can be made more efficient in case of s1 = s2. The
algorithm as stated cycles through all plans p1 joining s1 relations. For each
such plan, all plans p2 of size s2 are tested. Assume that plans of equal size are
represented as a linked list. If s1 = s2, then it is possible to iterate through the
list for retrieving all plans p1. For p2 we consider the plans succeeding p1 in
the list. Thus, the complexity can be decreased from P (s1) ∗ P (s2) to P (s1) ∗
P (s2)/2, where P (si) denotes the number of plans of size si. The following
formulas are valid only for the variant of DPsize where this optimization has
been incorporated (see [616] for details).

If the counter InnerCounter is initialized with zero at the beginning of the
algorithm DPsize, then we are able to derive analytically its value after DPsize
terminates. Since this value of the inner counter depends on the query graph,
we have to distinguish several cases. For chain, cycle, star, and clique queries,
we denote by IchainDPsize, I

cycle
DPsize, I

star
DPsize, and IcliqueDPsize the value of InnerCounter

after termination of algorithm DPsize.

For chain queries, we then have: IchainDPsize(n) =

{
1/48(5n4 + 6n3 − 14n2 − 12n) n even
1/48(5n4 + 6n3 − 14n2 − 6n+ 11) n odd

For cycle queries, we have: IcycleDPsize(n) =

{
1
4(n

4 − n3 − n2) n even
1
4(n

4 − n3 − n2 + n) n odd

For star queries, we have: IstarDPsize(n) =

{
22n−4 − 1/4

(
2(n−1)
n−1

)
+ q(n) n even

22n−4 − 1/4
(
2(n−1)
n−1

)
+ 1/4

(
n−1

(n−1)/2
)
+ q(n) n odd

72 CHAPTER 3. JOIN ORDERING

DPsub

Input: a connected query graph with relations R = {R0, . . . , Rn−1}
Output: an optimal bushy join tree
for all Ri ∈ R {

BestPlan({Ri}) = Ri;
}
for 1 ≤ i < 2n − 1 ascending {

S = {Rj ∈ R|(⌊i/2j⌋mod 2) = 1}
if not (connected S) continue; // ∗
for all S1 ⊂ S, S1 ̸= ∅ do {

++InnerCounter;
S2 = S \ S1;
if (S2 = ∅) continue;
if not (connected S1) continue;
if not (connected S2) continue;
if not (S1 connected to S2) continue;
++CsgCmpPairCounter;
p1 = BestPlan(S1);
p2 = BestPlan(S2);
CurrPlan = CreateJoinTree(p1, p2);
if (cost(BestPlan(S)) > cost(CurrPlan)) {

BestPlan(S) = CurrPlan;
}

}
}
OnoLohmanCounter = CsgCmpPairCounter / 2;
return BestPlan({R0, . . . , Rn−1});

Figure 3.8: Algorithm DPsub

with q(n) = n2n−1 − 5 ∗ 2n−3 + 1/2(n2 − 5n+ 4). For clique queries, we have:

IcliqueDPsize(n) =

{
22n−2 − 5 ∗ 2n−2 + 1/4

(
2n
n

)
− 1/4

(
n

n/2

)
+ 1 n even

22n−2 − 5 ∗ 2n−2 + 1/4
(
2n
n

)
+ 1 n odd

Note that
(
2n
n

)
is in the order of Θ(4n/

√
n).

Proofs of the above formulas as well as implementation details for the algo-
rithm DPsize can be found in [616].

Subset-Driven Enumeration: DPsub Fig. 3.8 presents the pseudocode for
the algorithm DPsub. The algorithm first initializes the table BestPlan with
all possible plans containing a single relation. Then, the main loop starts. It
iterates over all possible non-empty subsets of {R0, . . . , Rn−1} and constructs
the best possible plan for each of them. The enumeration makes use of a
bitvector representation of sets: The integer i induces the current subset S with
its binary representation. Taken as bitvectors, the integers in the range from 1

3.2. DETERMINISTIC ALGORITHMS 73

to 2n − 1 exactly represent the set of all non-empty subsets of {R0, . . . , Rn−1},
including the set itself. Further, by starting with 1 and incrementing by 1, the
enumeration order is valid for dynamic programming: for every subset, all its
subsets are generated before the subset itself.

This enumeration is very fast, since increment by one is a very fast operation.
However, the relations contained in S may not induce a connected subgraph of
the query graph. Therefore, we must test for connectedness. The goal of the
next loop over all subsets of S is to find the best plan joining all the relations
in S. Therefore, S1 ranges over all non-empty, strict subsets of S. This can be
done very efficiently by applying the code snippet of Vance and Maier [897, 898].
Then, the subset of relations contained in S but not in S1 is assigned to S2.
Clearly, S1 and S2 are disjoint. Hence, only connectedness tests have to be
performed. Since we want to avoid cross products, S1 and S2 both must induce
connected subgraphs of the query graph, and there must be a join predicate
between a relation in S1 and one in S2. If these conditions are fulfilled, we can
construct a plan CurrPlan by joining the plans associated with S1 and S2. If
BestPlan does not contain a plan for the relations in S or the one it contains
is more expensive than CurrPlan, we register CurrPlan with BestPlan.

For chain, cycle, star, and clique queries, we denote by IchainDPsub, I
cycle
DPsub,

IstarDPsub, and IcliqueDPsub the value of InnerCounter after termination of algorithm
DPsub.

For chains, we have

IchainDPsub(n) = 2n+2 − nn − 3n− 4 (3.6)

For cycles, we have

IcycleDPsub(n) = n2n + 2n − 2n2 − 2 (3.7)

For stars, we have

IstarDPsub(n) = 2 ∗ 3n−1 − 2n (3.8)

For cliques, we have

IcliqueDPsub(n) = 3n − 2n+1 + 1 (3.9)

The number of failures for the additional check can easily be calculated as
2n −#csg(n)− 1.

Sample numbers Fig. 3.9 contains tables with values produced by our for-
mulas for input query graph sizes between 2 and 20. For different kinds of query
graphs, it shows the number of csg-cmp-pairs (#ccp). and the values for the
inner counter after termination of DPsize and DPsub applied to the different
query graphs.

Looking at these numbers, we observe the following:

• For chain and cycle queries, the DPsize soon becomes much faster than
DPsub.

74 CHAPTER 3. JOIN ORDERING

Chain Cycle

n #ccp/2 DPsub DPsize #ccp/2 DPsub DPsize

2 1 2 1 1 2 1
5 20 84 73 40 140 120
10 165 3962 1135 405 11062 2225
15 560 130798 5628 1470 523836 11760
20 1330 4193840 17545 3610 22019294 37900

Star Clique

n #ccp/2 DPsub DPsize #ccp/2 DPsub DPsize

2 1 2 1 1 2 1
5 32 130 110 90 180 280
10 2304 38342 57888 28501 57002 306991
15 114688 9533170 57305929 7141686 14283372 307173877
20 4980736 2323474358 59892991338 1742343625 3484687250 309338182241

Figure 3.9: Size of the search space for different graph structures

• For star and clique queries, the DPsub soon becomes much faster than
DPsize.

• Except for clique queries, the number of csg-cmp-pairs is orders of mag-
nitude less than the value of InnerCounter for all DP-variants.

From the latter observation we can conclude that in almost all cases the tests
performed by both algorithms in their innermost loop fail. Both algorithms
are far away from the theoretical lower bound given by #ccp. This conclusion
motivates us to derive a new algorithm whose InnerCounter value is equal to
the number of csg-cmp-pairs.

Csg-cmp-pair enumeration-based algorithm: DPccp The algorithm DPsub

solves the join ordering problem for a given subset S of relations by considering
all pairs of disjoint subproblems which were already solved. Since the enumer-
ation of subsets is very fast, this is a very efficient strategy if the search space
is dense, e.g. for clique queries. However, if the search space is sparse, e.g. for
chain queries, the DPsub algorithm considers many subproblems which are not
connected and, therefore, are not relevant for the solution, i.e. the tests in the
innermost loop fail for the majority of cases. The main idea of our algorithm
DPccp is that it only considers pairs of connected subproblems. More precisely,
the algorithm considers exactly the csg-cmp-pairs of a graph.

Thus, our goal is to efficiently enumerate all csg-cmp-pairs (S1, S2). Clearly,
we want to enumerate every pair once and only once. Further, the enumera-
tion must be performed in an order valid for dynamic programming. That is,
whenever a pair (S1, S2) is generated, all non-empty subsets of S1 and S2 must
have been generated before as a component of a pair. The last requirement is
that the overhead for generating a single csg-cmp-pair must be constant or at
most linear. This condition is necessary in order to beat DPsize and DPsub.

3.2. DETERMINISTIC ALGORITHMS 75

DPccp

Input: a connected query graph with relations R = {R0, . . . , Rn−1}
Output: an optimal bushy join tree
for all Ri ∈ R) {

BestPlan({Ri}) = Ri;
}
for all csg-cmp-pairs (S1, S2), S = S1 ∪ S2 {

++InnerCounter;
++OnoLohmanCounter;
p1 = BestPlan(S1);
p2 = BestPlan(S2);
CurrPlan = CreateJoinTree(p1, p2);
if (cost(BestPlan(S)) > cost(CurrPlan)) {

BestPlan(S) = CurrPlan;
}
CurrPlan = CreateJoinTree(p2, p1);
if (cost(BestPlan(S)) > cost(CurrPlan)) {

BestPlan(S) = CurrPlan;
}

}
CsgCmpPairCounter = 2 * OnoLohmanCounter;
return BestPlan({R0, . . . , Rn−1});

Figure 3.10: Algorithm DPccp

22

10

1.Graph

32 32

...

...

7.6.5.4.3.2.

000111 1

3 32 32 3

Figure 3.11: Enumeration Example for DPccp

If we meet all these requirements, the algorithm DPccp is easily specified:
iterate over all csg-cmp-pairs (S1, S2) and consider joining the best plans as-
sociated with them. Figure 3.10 shows the pseudocode. The first steps of an
example enumeration are shown in Figure 3.11. Thick lines mark the connect-
ed subsets while thin lines mark possible join edges. Note that the algorithm
explicitly exploits join commutativity. This is due to our enumeration algo-
rithm developed below. If (S1, S2) is a csg-cmp-pair, then either (S1, S2) or
(S2, S1) will be generated, but never both of them. An alternative is to modify
CreateJoinTree to take care of commutativity.

We proceed as follows. Next we discuss an algorithm enumerating non-
empty connected subsets S1 of {R0, . . . , Rn−1}. Then, we show how to enumer-
ate the complements S2 such that (S1, S2) is a csg-cmp-pair.

76 CHAPTER 3. JOIN ORDERING

Let us start the exposition by fixing some notations. Let G = (V,E) be
an undirected graph. For a node v ∈ V define the neighborhood IN(v) of v as
IN(v) := {v′|(v, v′) ∈ E}. For a subset S ⊆ V of V we define the neighborhood of
S as IN(S) := ∪v∈SIN(v) \ S. The neighborhood of a set of nodes thus consists
of all nodes reachable by a single edge. Note that for all S, S′ ⊂ V we have
IN(S ∪ S′) = (IN(S) ∪ IN(S′)) \ (S ∪ S′). This allows for an efficient bottom-up
calculation of neighborhoods.

The following statement gives a hint on how to construct an enumeration
procedure for connected subsets. Let S be a connected subset of an undirected
graph G and S′ be any subset of IN(S). Then S ∪ S′ is connected. As a
consequence, a connected subset can be enlarged by adding any subset of its
neighborhood.

We could generate all connected subsets as follows. For every node vi ∈ V
we perform the following enumeration steps: First, we emit {vi} as a connected
subset. Then, we expand {vi} by calling a routine that extends a given connect-
ed set to bigger connected sets. Let the routine be called with some connected
set S. It then calculates the neighborhood IN(S). For every non-empty subset
N ⊆ IN(S), it emits S′ = S ∪N as a further connected subset and recursively
calls itself with S′. The problem with this routine is that it produces duplicates.

This is the point where the breadth-first numbering comes into play. Let
V = {v0, . . . , vn−1}, where the indices are consistent with a breadth-first num-
bering produced by a breadth-first search starting at node v0 [209]. The idea
is to use the numbering to define an enumeration order: In order to avoid du-
plicates, the algorithm enumerates connected subgraphs for every node vi, but
restricts them to contain no vj with j < i. Using the definition Bi = {vj |j ≤ i},
the pseudocode looks as follows:

EnumerateCsg

Input: a connected query graph G = (V,E)
Precondition: nodes in V are numbered according to a breadth-first search
Output: emits all subsets of V inducing a connected subgraph of G
for all i ∈ [n− 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G, {vi}, Bi);

}

EnumerateCsgRec(G, S, X)
N = IN(S) \X;
for all S′ ⊆ N , S′ ̸= ∅, enumerate subsets first {

emit (S ∪ S′);
}
for all S′ ⊆ N , S′ ̸= ∅, enumerate subsets first {

EnumerateCsgRec(G, (S ∪ S′), (X ∪N));
}

Let us consider an example. Figure 3.12 contains a query graph whose
nodes are numbered in a breadth-first fashion. The calls to EnumerateCsgRec

3.2. DETERMINISTIC ALGORITHMS 77

R0

R1 R2 R3

R4

Figure 3.12: Sample graph to illustrate EnumerateCsgRec

EnumerateCsgRec

S X N emit/S

{4} {0, 1, 2, 3, 4} ∅
{3} {0, 1, 2, 3} {4}

{3, 4}
{2} {0, 1, 2} {3, 4}

{2, 3}
{2, 4}
{2, 3, 4}

{1} {0, 1} {4}
{1, 4}

→ {1, 4} {0, 1, 4} {2, 3}
{1, 2, 4}
{1, 3, 4}
{1, 2, 3, 4}

{0} {0} {1, 2, 3}
{0, 1}
{0, 2}
{0, 3}
{0, 1, 2}
{0, 1, 3}
{0, 2, 3}
{0, 1, 2, 3}

→ {0, 1} {0, 1, 2, 3} {4}
{0, 1, 4}

→ {0, 2} {0, 1, 2, 3} {4}
{0, 2, 4}

Figure 3.13: Call sequence for Figure 3.12

are contained in the table in Figure 3.13. In this table, S and X are the
arguments of EnumerateCsgRec. N is the local variable after its initialization.
The column emit/S contains the connected subset emitted, which then becomes
the argument of the recursive call to EnumerateCsgRec (labelled by →). Since
listing all calls is too lengthy, only a subset of the calls is listed.

Generating the connected subsets is an important first step but clearly not

78 CHAPTER 3. JOIN ORDERING

sufficient: we have to generate all csg-cmp-pairs. The basic idea to do so is
as follows. Algorithm EnumerateCsg is used to create the first component S1
of every csg-cmp-pair. Then, for each such S1, we generate all its complement
components S2. This can be done by calling EnumerateCsgRec with the correct
parameters. Remember that we have to generate every csg-cmp-pair once and
only once.

To achieve this, we use a similar technique as for connected subsets, using
the breadth-first numbering to define an enumeration order: we consider only
sets S2 in the complement of S1 (with (S1, S2) being a csg-cmp-pair) such that
S2 contains only vj with j larger than any i with vi ∈ S1. This avoids the
generation of duplicates.

We need some definitions to state the actual algorithm. Let S1 ⊆ V be
a non-empty subset of V . Then, we define min(S1) := min({i|vi ∈ S1}).
This is used to extract the starting node from which S1 was constructed (see
Lemma ??). Let W ⊂ V be a non-empty subset of V . Then, we define
Bi(W) := {vj |vj ∈ W, j ≤ i}. Using this notation, the algorithm to construct
all S2 for a given S1 such that (S1, S2) is a csg-cmp-pair looks as follows:

EnumerateCmp

Input: a connected query graph G = (V,E), a connected subset S1
Precondition: nodes in V are numbered according to a breadth-first search
Output: emits all complements S2 for S1 such that (S1, S2) is a csg-cmp-pair
X = Bmin(S1) ∪ S1;
N = IN(S1) \X;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G, {vi}, X ∪ (Bi ∩N));

}

Algorithm EnumerateCmp considers all neighbors of S1. First, they are used to
determine those S2 that contain only a single node. Then, for each neighbor of
S1, it recursively calls EnumerateCsgRec to create those S2 that contain more
than a single node. Note that here both nodes concerning the enumeration
of S1 (Bmin(S1) ∪ S1) and nodes concerning the enumeration of S2 (N) have
to be considered in order to guarantee a correct enumeration. Otherwise the
combined algorithm would emit (commutative) duplicates.

Let us consider an example for algorithm EnumerateCmp. The underlying
graph is again the one shown in Fig. 3.12. Assume EnumerateCmp is called with
S1 = {R1}. In the first statement, the set {R0, R1} is assigned to X. Then, the
neighborhood is calculated. This results in

N = {R0, R4} \ {R0, R1} = {R4}.

Hence, {R4} is emitted and together with {R1}, it forms the csg-cmp-pair
({R1}, {R4}). Then, the recursive call to EnumerateCsgRec follows with ar-
guments G, {R4}, and {R0, R1, R4}. Subsequent EnumerateCsgRec generates
the connected sets {R2, R4}, {R3, R4}, and {R2, R3, R4}, giving three more
csg-cmp-pairs.

3.2. DETERMINISTIC ALGORITHMS 79

3.2.5 Memoization

Whereas dynamic programming constructs the join trees iteratively from small
trees to larger trees, i.e. works bottom up, memoization works recursively. For a
given set of relations S, it produces the best join tree for S by recursively calling
itself for every subset S1 of S and considering all join trees between S1 and its
complement S2. The best alternative is memoized (hence the name). The rea-
son is that two (even different) (sub-) sets of all relations may very well have the
common subsets. For example, {R1, R2, R3, R4, R5} and {R2, R3, R4, R5, R6}
have the common subset {R2, R3, R4, R5}. In order to avoid duplicate work,
memoization is essential.

In the following variant of memoization, we explore the search space of all
bushy trees and consider cross products. We split the functionality across two EX
functions. The first one initializes the BestTree data structure with single
relation join trees for Ri and then calls the second one. The second one is the
core memoization procedure which calls itself recursively.

MemoizationJoinOrdering(R)
Input: a set of relations R
Output: an optimal join tree for R
for (i = 1; i <= n; ++i) {
BestTree({Ri}) = Ri;

}
return MemoizationJoinOrderingSub(R);

MemoizationJoinOrderingSub(S)
Input: a (sub-) set of relations S
Output: an optimal join tree for S
if(NULL == BestTree(S)) {

for all S1 ⊂ S do {
S2 = S \ S1;
CurrTree = CreateJoinTree(MemoizationJoinOrderingSub(S1), MemoizationJoinOrderingSub(S2));
if (BestTree(S) == NULL || cost(BestTree(S)) > cost(CurrTree)) {
BestTree(S) = CurrTree;

}
}

}
return BestTree(S);

Again, pruning techniques can help to speed up plan generation [798]. ToDo?

3.2.6 Join Ordering by Generating Permutations

For any set of cost functions, we can directly generate permutations. Gen-
erating all permutations is clearly too expensive for more than a couple of
relations. However, we can safely neglect some of them. Consider the join

80 CHAPTER 3. JOIN ORDERING

sequence R1R2R3R4. If we know that R1R3R2 is cheaper than R1R2R3, we
do not have to consider R1R2R3R4. The idea of the following algorithm is to
construct permutations by successively adding relations. Thereby, an extended
sequence is only explored if exchanging the last two relations does not result in
a cheaper sequence.

ConstructPermutations(Query Specification)

Input: query specification for relations {R1, . . . , Rn}
Output: optimal left-deep tree

BestPermutation = NULL;

Prefix = ϵ;
Rest = {R1, . . . , Rn};
ConstructPermutationsSub(Prefix, Rest);

return BestPermutation

ConstructPermutationsSub(Prefix, Rest)

Input: a prefix of a permutation and the relations to be added (Rest)

Ouput: none, side-effect on BestPermutation

if (Rest == ∅) {
if (BestPermutation == NULL || cost(Prefix) < cost(BestPermutation)) {
BestPermutation = Prefix;

}
return

}
foreach (Ri, Rj ∈ Rest) {

if (cost(Prefix ◦ ⟨Ri, Rj⟩) ≤ cost(Prefix ◦ ⟨Rj , Ri⟩)) {
ConstructPermutationsSub(Prefix ◦ ⟨Ri⟩, Rest \ {Ri});

}
if (cost(Prefix ◦ ⟨Rj , Ri⟩) ≤ cost(Prefix ◦ ⟨Ri, Rj⟩)) {
ConstructPermutationsSub(Prefix ◦ ⟨Rj⟩, Rest \ {Rj});

}
}
return

The algorithm can be made more efficient, if the foreach loop considers only
a single relation and performs the swap test with this relation and the last
relation occurring in Prefix.

The algorithm has two main advantages over dynamic programming and
memoization. The first advantage is that it needs only linear space opposed
to exponential space for the two mentioned alternatives. The other main
advantage over dynamic programming is that it generates join trees early,
whereas with dynamic programming we only generate a plan after the whole
search space has been explored. Thus, if the query contains too many joins—
that is, the search space cannot be fully explored in reasonable time and
space—dynamic programming will not generate any plan at all. If stopped,

3.2. DETERMINISTIC ALGORITHMS 81

ConstructPermutations will not necessarily compute the best plan, but still
some plans have been investigated. This allows us to stop it after some time
limit has exceeded. The time limit itself can be fixed, like 100 ms, or variable,
like 5% of the execution time of the best plan found so far.

The predicates in the if statement can be made more efficient if a (local)
ranking function is available. Further speed-up of the algorithm can be achieved
if additionally the idea of memoization is applied (of course, this jeopardizes
the small memory footprint).

The following variant might be interesting if one is willing to go from linear
space consumption to quadratic space consumption. The original algorithm
is then started n times, once for each relation as a starting relation. The n
different instantiations then have to run interleaved. This variant reduces the
dependency on the starting relation.

Worst Case Analysis ToDo/EX

Pruning/memoization/propagation ToDo/EX

3.2.7 A Dynamic Programming based Heuristics for Chain Queries

In Section 3.1.6, we saw that the complexity of producing optimal left-deep
trees possibly containing cross products for chain queries is an open problem.
However, the case does not seem to be hopeless. In fact, Scheufele and Mo-
erkotte present two algorithms [766, 768] for this problem. For one algorithm,
it can be proven that it has polynomial runtime, for the other, it can be proven
that it produces the optimal join tree. However, for none of them both could
be proven so far.

Basic Definitions and Lemmata

An instance of the join-ordering problem for chain queries (or a chain query
for short) is fully described by the following parameters. First, n relations
R1, . . . , Rn are given. The size of relation Ri (1 ≤ i ≤ n) is denoted by |Ri| or
nRi . Second, the query graph G on the set of relations R1, . . . , Rn must be a
chain. That is, its edges are {(Ri, Ri+1) | 1 ≤ i < n}:

R1 — R2 — . . . — Rn

For every edge (Ri, Ri+1), there is an associated selectivity fi,i+1 = |Ri B

Ri+1|/|Ri × Ri+1|. We define all other selectivities fi,j = 1 for |i − j| ≠ 1.
They correspond to cross products.

In this section we consider only left-deep processing trees. However, we
allow them to contain cross products. Hence, any permutation is a valid join
tree. There is a unique correspondence not only between left-deep join trees
but also between consecutive parts of a permutation and segments of a left-
deep tree. Furthermore, if a segment of a left-deep tree does not contain cross
products, it uniquely corresponds to a consecutive part of the chain in the query
graph. In this case, we also speak of (sub)chains or connected (sub)sequences.
We say that two relations Ri and Rj are connected if they are adjacent in G;
more generally, two sequences s and t are connected if there exist relations Ri

82 CHAPTER 3. JOIN ORDERING

in s and Rj in t such that Ri and Rj are connected. A sequence of relations s
is connected if for all subsequences s1 and s2 satisfying s = s1s2 it holds that
s1 is connected to s2.

Given a chain query, we ask for a permutation s = r1 . . . rn of the n relations
(i.e. there is a permutation π such that ri = Rπ(i) for 1 ≤ i ≤ n) that produces
minimal costs under the cost function Cout.

Remember that the dynamic programming approach considers n2n−1−n(n+
1)/2 alternatives for left-deep processing trees with cross products—independently
of the query graph and the cost function. The question arises whether it is pos-
sible to lower the complexity in case of simple chain queries.

The IKKBZ algorithm solves the join ordering problem for tree queries by
decomposing the problem into polynomially many subproblems which are sub-
ject to tree-like precedence constraints. The precedence constraints ensure that
the cost functions of the subproblems now have the ASI property. The remain-
ing problem is to optimize the constrained subproblems under the simpler cost
function. Unfortunately, this approach does not work in our case, since no such
decomposition seems to exist.

Let us introduce some notions used for the algorithms. We have to gener-
alize the rank used in the IKKBZ algorithm to relativized ranks. We start by
relativizing the cost function. The costs of a sequence s relative to a sequence
u are defined as

Cu(ϵ) := 0

Cu(Ri) := 0 if u = ϵ

Cu(Ri) := (
∏

Rj<uRi
Ri

fj,i)ni if u ̸= ϵ

Cu(s1s2) := Cu(s1) + Tu(s1) ∗ Cus1(s2)

with

Tu(ϵ) := 1

Tu(s) :=
∏

Ri∈s
(
∏

Rj<usRi

fj,i) ∗ ni

Here, Ri <s Rj is true if and only if Ri appears before Rj in s. As usual, empty
products evaluate to 1. Several things should be noted. First, Cus(t) = Cu(t)
holds if there is no connection between relations in s and t. Second, Tϵ(Ri) =
|Ri| and Tϵ(s) = |s|. That is, Tu generalizes the size of a single relation or of a
sequence of relations. Third, note that Cu(ϵ) = 0 for all u but Cϵ(s) = 0 only
if s does not contain more than one relation. The special case that Cϵ(R) = 0
for a single relation R causes some problems in the homogeneity of definitions
and proofs. Hence, we abandon this case from all definitions and lemmata of
this section. This will not be repeated in every definition and lemma, but will
implicitly be assumed. Further, the two algorithms will be presented in two
versions. The first version is simpler and relies on a modified cost function C ′,

3.2. DETERMINISTIC ALGORITHMS 83

and only the second version will apply to the original cost function C. As we
will see, C ′ differs from C in exactly the problematic case in which it is defined
as C ′u(Ri) := |Ri|. Now, C ′ϵ(s) = 0 holds if and only if s = ϵ holds. Within
subsequent definitions and lemmata, C can also be replaced by C ′ without
changing their validity. Last, we abbreviate Cϵ by C for convenience.

Example 1: Consider a chain query involving the relations R1, R2, R3. The
parameters are |R1| = 1, |R2| = 100, |R3| = 10 and f1,2 = f2,3 = 0.9. The
expected size of the query result is independent of the ordering of the relations.
Hence, we have

T (R1R2R3) = · · · = T (R3R2R1) = 100 ∗ 10 ∗ 1 ∗ .9 ∗ .9 = 810.

There are 6 possible orderings of the relations with the following costs:

C(R1R2R3) = 1 ∗ 100 ∗ 0.9 + 1 ∗ 100 ∗ 10 ∗ 0.9 ∗ 0.9 = 900
C(R1R3R2) = 1 ∗ 10 + 1 ∗ 10 ∗ 100 ∗ 0.9 ∗ 0.9 = 820
C(R2R3R1) = 100 ∗ 10 ∗ 0.9 + 100 ∗ 10 ∗ 1 ∗ 0.9 ∗ 0.9 = 1710
C(R2R1R3) = C(R1R2R3)
C(R3R1R2) = C(R1R3R2)
C(R3R2R1) = C(R2R3R1)

Note that the cost function is invariant with respect to the order of the first two
relations. The minimum over all costs is 820, and the corresponding optimal
join ordering is R1R3R2.

2

Using the relativized cost function, we can define the relativized rank.

Definition 3.2.8 (rank) The rank of a sequence s relative to a non-empty
sequence u is given by

ranku(s) :=
Tu(s)− 1

Cu(s)

In the special case that s consists of a single relation Ri, the intuition behind
the rank function becomes transparent. Let fi be the product of the selectivities
between relations in u and Ri. Then ranku(Ri) = fi|Ri|−1

fi|Ri| . Hence, the rank

becomes a function of the form f(x) = x−1
x . This function is monotonously

increasing in x for x > 0. The argument to the function f(x) is (for the
computation of the size of a single relation Ri) fi|Ri|. But this is the factor by
which the next intermediate result will increase (or decrease). Since we sum up
intermediate results, this is an essential number. Furthermore, it follows from
the monotonicity of f(x) that ranku(Ri) ≤ ranku(Rj) if and only if fi|Ri| ≤
fj |Rj | where fj is the product of all selectivities between Rj and relations in u.

Example 1 (cont’d): Supposing the query given in Example 1, the optimal
sequence R1R3R2 gives rise to the following ranks.

rankR1(R2) =
TR1

(R2)−1
CR1

(R2)
= 100∗0.9−1

100∗0.9 ≈ 0.9888

rankR1(R3) =
TR1

(R3)−1
CR1

(R3)
= 10∗1.0−1

10∗1.0 = 0.9

rankR1R3(R2) =
TR1R3

(R2)−1
CR1R3

(R2)
= 100∗0.9∗0.9−1

100∗0.9∗0.9 ≈ 0.9877

84 CHAPTER 3. JOIN ORDERING

Hence, within the optimal sequence, the relation with the smallest rank (here
R3, since rankR1(R3) < rankR1(R2)) is preferred. As the next lemma will
show, this is no accident.

2

Using the rank function, the following lemma can be proved.

Lemma 3.2.9 For sequences

S = r1 · · · rk−1rkrk+1rk+2 · · · rn
S′ = r1 · · · rk−1rk+1rkrk+2 · · · rn

the following holds:

C(S) ≤ C(S′)⇔ ranku(rk) ≤ ranku(rk+1)

where u = r1 · · · rk−1. Equality only holds if it holds on both sides.

Example 1 (cont’d): Since the ranks of the relations in Example 1 are
ordered with ascending ranks, Lemma 3.2.9 states that, whenever we exchange
two adjacent relations, the costs cannot decrease. In fact, we observe that
C(R1R3R2) ≤ C(R1R2R3). 2

An analogous lemma still holds for two unconnected subchains:

Lemma 3.2.10 Let u, x and y be three subchains where x and y are not inter-
connected. Then we have:

C(uxy) ≤ C(uyx)⇔ ranku(x) ≤ ranku(y)

Equality only holds if it holds on both sides.

Next, we define the notion of a contradictory chain, which will be essential
to the algorithms. The subsequent lemmata will allow us to cut down the search
space to be explored by any optimization algorithm.

Definition 3.2.11 (contradictory pair of subchains) Let u, x, y be nonemp-
ty sequences. We call (x, y) a contradictory pair of subchains if and only if

Cu(xy) ≤ Cu(yx) ∧ ranku(x) > rankux(y)

A special case occurs when x and y are single relations. Then the above condi-
tion simplifies to

rankux(y) < ranku(x) ≤ ranku(y)

To explain the intuition behind the definition of contradictory subchains, we
need another example.

3.2. DETERMINISTIC ALGORITHMS 85

Example 2: Suppose a chain query involving R1, R2, R3 is given. The relation
sizes are |R1| = 1, |R2| = |R3| = 10 and the selectivities are f1,2 = 0.5, f2,3 =
0.2. Consider the sequences R1R2R3 and R1R3R2, which differ in the order of
the last two relations. We have

rankR1(R2) = 0.8

rankR1R2(R3) = 0.0

rankR1(R3) = 0.9

rankR1R3(R2) = 0.5

and

C(R1R2R3) = 15

C(R1R3R2) = 20

Hence,

rankR1(R2) > rankR1R2(R3)

rankR1(R3) > rankR1R3(R2)

C(R1R2R3) < C(R1R3R2)

and (R2, R3) is a contradictory pair within R1R2R3. Now the use of the term
contradictory becomes clear: the costs do not behave as could be expected from
the ranks. 2

The next (obvious) lemma states that contradictory chains are necessarily
connected.

Lemma 3.2.12 If there is no connection between two subchains x and y, then
they cannot build a contradictory pair (x, y).

Now we present the fact that between a contradictory pair of relations, there
cannot be any other relation not connected to them without increasing cost.

Lemma 3.2.13 Let S = usvtw be a sequence. If there is no connection between
relations in s and v and relations in v and t, and ranku(s) ≥ rankus(t), then
there exists a sequence S′ not having higher costs, where s immediately precedes
t.

Example 3: Consider five relations R1, . . . , R5. The relation sizes are |R1| =
1, |R2| = |R3| = |R4| = 8, and |R5| = 2. The selectivities are f1,2 = 1

2 ,
f2,3 = 1

4 , f3,4 = 1
8 , and f4,5 = 1

2 . Relation R5 is not connected to relations R2

and R3. Further, within the sequence R1R2R5R3R4 relations R2 and R3 have
contradictory ranks: rankR1(R2) =

4−1
4 = 3

4 and rankR1R2R5(R3) =
2−1
2 = 1

2 .
Hence, at least one of R1R5R2R3R4 and R1R2R3R5R4 must be of no greater
cost than R1R2R5R3R4. This is indeed the case:

C(R1R2R3R5R4) = 4 + 8 + 16 + 8 = 36
C(R1R2R5R3R4) = 4 + 8 + 16 + 8 = 36
C(R1R5R2R3R4) = 2 + 8 + 16 + 8 = 34

86 CHAPTER 3. JOIN ORDERING

2

The next lemma shows that, if there exist two sequences of single rank-sorted
relations, then their costs as well as their ranks are necessarily equal.

Lemma 3.2.14 Let S = x1 · · ·xn and S′ = y1 · · · yn be two different rank-
sorted chains containing exactly the relations R1, . . . , Rn, i.e.

rankx1···xi−1(xi) ≤ rankx1···xi(xi+1) for all 1 ≤ i ≤ n,
ranky1···yi−1(yi) ≤ ranky1···yi(yi+1) for all 1 ≤ i ≤ n,

then S and S′ have equal costs and, furthermore,

rankx1···xi−1(xi) = ranky1···yi−1(yi) for all 1 < i ≤ n
One could conjecture that the following generalization of Lemma 3.2.14 is

true, although no one has proved it so far.

Conjecture 3.2.1 Let S = x1 · · ·xn and S′ = y1 · · · ym be two different rank-
sorted chains for the relations R1 . . . , Rn where the x′is and y

′
is are subsequences

such that

rankx1···xi−1(xi) ≤ rankx1···xi(xi+1) for all 1 ≤ i < n,

ranky1···yi−1(yi) ≤ ranky1···yi(yi+1) for all 1 ≤ i < m,

and the subsequences xi and yj are all optimal (with respect to the fixed prefixes
x1 . . . xi−1 and y1 . . . yj−1), then S and S′ have equal costs.

Consider the problem of merging two optimal unconnected chains. If we
knew that the ranks of relations in an optimal chain are always sorted in as-
cending order, we could use the classical merge procedure to combine the two
chains. The resulting chain would also be rank-sorted in ascending order and,
according to Lemma 3.2.14, it would be optimal. Unfortunately, this does not
work, since there are optimal chains whose ranks are not sorted in ascending
order: those containing sequences with contradictory ranks.

Now, as shown in Lemma 3.2.13, between contradictory pairs of relations
there cannot be any other relation not connected to them. Hence, in the merging
process, we have to take care that we do not merge a contradictory pair of
relations with a relation not connected to the pair. In order to achieve this,
we apply the same trick as in the IKKBZ algorithm: we tie the relations of a
contradictory subchain together by building a compound relation. Assume that
we tie together the relations r1, . . . , rn to a new relation r1,...,n. Then we define
the size of r1,...,n as |r1,...,n| = |r1 B . . . B rn| Further, if some ri (1 ≤ i ≤ n)
does have a connection to some rk ̸∈ {r1, . . . , rn} then we define the selectivity
factor fr1,...,n,rk between rk and r1,...,n as fr1,...,n,rk = fi,k.

If we tie together contradictory pairs, the resulting chain of compound re-
lations still does not have to be rank-sorted with respect to the compound
relations. To overcome this, we iterate the process of tying contradictory pairs
of compound relations together until the sequence of compound relations is
rank-sorted, which will eventually be the case. That is, we apply the normal-
ization as used in the IKKBZ algorithm. However, we have to reformulate it
for relativized costs and ranks:

3.2. DETERMINISTIC ALGORITHMS 87

Normalize(p,s)
while (there exist subsequences u, v (u ̸= ϵ) and

compound relations x, y such that s = uxyv
and Cpu(xy) ≤ Cpu(yx)
and rankpu(x) > rankpux(y)) {

replace xy by a compound relation (x, y);
}
return (p, s);

The compound relations in the result of the procedure Normalize are called
contradictory chains. A maximal contradictory subchain is a contradictory sub-
chain that cannot be made longer by further tying steps. Resolving the tyings
introduced in the procedure normalize is called de-normalization. It works the
same way as in the IKKBZ algorithm. The cost, size and rank functions can
now be extended to sequences containing compound relations in a straightfor-
ward way. We define the cost of a sequence containing compound relations to
be identical with the cost of the corresponding de-normalized sequence. The
size and rank functions are defined analogously.

The following simple observation is central to the algorithms: every chain
can be decomposed into a sequence of adjacent maximal contradictory sub-
chains. For convenience, we often speak of chains instead of subchains and of
contradictory chains instead of maximal contradictory subchains. The mean-
ing should be clear from the context. Further, we note that the decomposi-
tion into adjacent maximal contradictory subchains is not unique. For exam-
ple, consider an optimal subchain r1r2r3 and a sequence u of preceding rela-
tions. If ranku(r1) > rankur1(r2) > rankur1r2(r3) one can easily show that
both (r1, (r2, r3)) and ((r1, r2), r3) are contradictory subchains. Nevertheless,
this ambiguity is not important since in the following we are only interest-
ed in contradictory subchains which are optimal . In this case, the condition
Cu(xy) ≤ Cu(yx) is certainly true and can therefore be neglected. One can
show that for the case of optimal subchains the indeterministically defined nor-
malization process is well-defined, that is, if S is optimal, normalize(P,S) will
always terminate with a unique “flat” decomposition of S into maximal contra-
dictory subchains (flat means that we remove all but the outermost parenthesis,
e.g. (R1R2)(((R5R4)R3)R6) becomes (R1R2)(R5R4R3R6)).

The next two lemmata and the conjecture show a possible way to overcome
the problem that if we consider cross products, we have an unconstrained or-
dering problem and the idea of Monma and Sidney as exploited in the IKKBZ
algorithm is no longer applicable. The next lemma is a direct consequence of
the normalization procedure.

Lemma 3.2.15 Let S = s1 . . . sm be an optimal chain consisting of the maxi-
mal contradictory subchains s1, . . . , sm (as determined by the function normalize).
Then

rank(s1) ≤ ranks1(s2) ≤ ranks1s2(s3)

88 CHAPTER 3. JOIN ORDERING

≤ · · · ≤ ranks1...sm−1(sm),

in other words, the (maximal) contradictory subchains in an optimal chain are
always sorted by ascending ranks.

The next result shows how to build an optimal sequence from two optimal
non-interconnected sequences.

Lemma 3.2.16 Let x and y be two optimal sequences of relations where x and
y are not interconnected. Then the sequence obtained by merging the maximal
contradictory subchains in x and y (as obtained by normalize) according to
their ascending rank is optimal.

Merging two sequences in the way described in Lemma 3.2.16 is a funda-
mental process. We henceforth refer to it by simply saying that we merge by
the ranks.

We strongly conjecture that the following generalization of Lemma 3.2.14
is true, although it is yet unproven. It uses the notion of optimal recursive
decomposable subchains defined in the next subsection.

Conjecture 3.2.2 Consider two sequences S and T containing exactly the re-
lations R1,. . . ,Rn. Let S = s1 . . . sk and T = t1 . . . tl be such that each of the
maximal contradictory subchains si, i = 1, . . . , k and tj , j = 1, . . . , l are optimal
recursively decomposable. Then S and T have equal costs.

The first algorithm

We first use a slightly modified cost function C ′, which additionally respects
the size of the first relation in the sequence, i.e. C and C ′ relate via

C ′u(s) =
{
C(s) + |nR|, if u = ϵ and s = Rs′

Cu(s), otherwise

This cost function can be treated in a more elegant way than C. The new rank
function is now defined as ranku(s) := (Tu(s) − 1)/C ′u(s). Note that the rank
function is now defined even if u = ϵ and s is a single relation. The size function
remains unchanged. At the end of this subsection, we describe how our results
can be adapted to the original cost function C.

The rank of a contradictory chain depends on the relative position of the
relations that are directly connected to it. For example, the rank of the con-
tradictory subchain (R5R3R4R2) depends on the position of the neighbouring
relations R1 and R6 relative to (R5R3R4R2). That is, whether they appear be-
fore or after the sequence (R5R3R4R2). Therefore, we introduce the following
fundamental definitions:

Definition 3.2.17 (neighbourhood) We call the set of relations that are di-
rectly connected to a subchain (with respect to the query graph G) the complete
neighbourhood of that subchain. A neighbourhood is a subset of the complete
neighbourhood. The complement of a neighbourhood u of a subchain s is defined
as v \ u, where v denotes the complete neighbourhood of s.

3.2. DETERMINISTIC ALGORITHMS 89

Note that the neighbourhood of a subchain s within a larger chain us is unique-
ly determined by the subsequence u of relations preceding it. For convenience,
we will often use sequences of preceding relations to specify neighbourhoods.
We henceforth denote a pair consisting of a connected sequence s and a neigh-
bourhood u by [s]u.

Definition 3.2.18 (contradictory subchain, extent) A contradictory sub-
chain [s]u is inductively defined as follows.

1. For a single relation s, [s]u is a contradictory subchain.

2. There is a decomposition s = vw such that (v, w) is a contradictory pair
with respect to the preceding subsequence u and both [v]u and [w]uv are
contradictory subchains themselves.

The extent of a contradictory chain [s]u is defined as the pair consisting of
the neighbourhood u and the set of relations occurring in s. Since contradicto-
ry subchains are connected, the set of occurring relations has always the form
{Ri, Ri+1, . . . , Ri+l} for some 1 ≤ i ≤ n, 0 ≤ l ≤ n − i. An optimal contra-
dictory subchain to a given extent is a contradictory subchain with lowest cost
among all contradictory subchains of the same extent.

The number of different extents of contradictory subchains for a chain query
of n relations is 2n2 − 2n + 1. Each contradictory chain can be completely
recursively decomposed into adjacent pairs of connected subchains. Subchains
with this property are defined next (similar types of decompositions occur in
[435, 799]).

Definition 3.2.19 ((optimal) recursively decomposable subchain) A re-
cursively decomposable subchain [s]u is inductively defined as follows.

1. If s is a single relation, then [s]u is recursively decomposable.

2. There is a decomposition s = vw such that v is connected to w and both
[v]u and [w]uv are recursively decomposable subchains.

The extent of a recursively decomposable chain is defined in the same way as
for contradictory chains. Note that every contradictory subchain is recursively
decomposable. Consequently, the set of all contradictory subchains for a certain
extent is a subset of all recursively decomposable subchains of the same extent.

Example 4: Consider the sequence of relations

s = R2R4R3R6R5R1.

Using parentheses to indicate the recursive decompositions, we have the follow-
ing two possibilities

(((R2(R4R3))(R6R5))R1)

((R2((R4R3)(R6R5)))R1)

90 CHAPTER 3. JOIN ORDERING

The extent of the recursively decomposable subchain
R4R3R6R5 of s is ({R2}, {R3, R4, R5, R6}). 2

The number of different recursively decomposable chains involving the rela-
tions R1, . . . , Rn is rn, where rn denotes the n-th Schröder number [799]. Hence,
the total number of recursively decomposable chains is rn + 2(n − 1)rn−1 +
4
∑n−2

i=1

(
n−2
i

)
ri. It can be shown that

rn ≈
C(2 +

√
8)n

n3/2

where C = 1/2

√
2
√
2−4
π . Using Stirling’s formula for n! it is easy to show

that limn→∞ rn
n! = 0. Thus, the probability of a random permutation to be

recursively decomposable strives to zero for large n.
An optimal recursively decomposable subchain to a given extent is a recur-

sively decomposable subchain with lowest cost among all recursively decompos-
able subchains of the same extent. There is an obvious dynamic programming
algorithm to compute optimal recursive decomposable subchains. It is not hard
to see that Bellman’s optimality principle [608, 209] holds and every optimal
recursively decomposable subchain can be decomposed into smaller optimal
recursively decomposable subchains.

Example 5: In order to compute an optimal recursively decomposable sub-
chain for the extent

({R2, R7}, {R3, R4, R5, R6})
the algorithm makes use of optimal recursively decomposable subchains for the
extents

({R2}, {R3}) ({R7, R3}, {R4, R5, R6})
({R2}, {R3, R4}) ({R7, R4}, {R5, R6})

({R2}, {R3, R4, R5}) ({R5, R7}, {R6})
({R7}, {R4, R5, R6}) ({R2, R4}, {R3})

({R7}, {R5, R6) ({R2, R5}, {R3, R4})
({R7}, {R6}) ({R2, R6}, {R3, R4, R5})

which have been computed in earlier steps2. A similar dynamic programming
algorithm can be used to determine optimal contradictory subchains. 2

Let E be the set of all possible extents. We define the following partial order
P = (E,≺) on E. For all extents e1, e2 ∈ E, we have e1 ≺ e2 if and only if
e1 can be obtained by splitting the extent e2. For example, ({R7}, {R5, R6}) ≺
({R2, R7}, {R3, R4, R5, R6}). The set of maximal extents M then corresponds
to a set of incomparable elements (antichain) in P such that for all extents e
enumerated so far, there is an extent e′ ∈M with e ≺ e′.

Now, since every optimal join sequence has a representation as a sequence of
contradictory subchains, we only have to determine this representation. Con-
sider a contradictory subchain c in an optimal join sequence s. What can we say

2The splitting of extents induces a partial order on the set of extents.

3.2. DETERMINISTIC ALGORITHMS 91

about c? Obviously, c has to be optimal with respect to the neighbourhood de-
fined by the relations preceding c in s. Unfortunately, identifying contradictory
subchains that are optimal sequences seems to be as hard as the whole problem
of optimizing chain queries. Therefore, we content ourselves with the following
weaker condition which may lead to multiple representations. Nevertheless, it
seems to be the strongest condition for which all subchains satisfying the con-
dition can be computed in polynomial time. The condition says that s should
be optimal both with respect to all contradictory chains of the same extent as s
and with respect to all recursively decomposable subchains of the same extent.
So far it is not clear whether these conditions lead to multiple representations.
Therefore, we have no choice but to enumerate all possible representations and
select the one with minimal costs. Next we describe the first algorithm.

Algorithm Chain-I’:

1. Use dynamic programming to determine all optimal contradictory sub-
chains.
This step can be made faster by keeping track of the setM of all maximal
extents (with respect to the partial order induced by splitting extents).

2. Determine all optimal recursively decomposable subchains for all extents
included in some maximal extent in M .

3. Compare the results from steps 1 and 2 and retain only matching sub-
chains.

4. Sort the contradictory subchains according to their ranks.
5. Eliminate contradictory subchains that cannot be part of a solution.
6. Use backtracking to enumerate all sequences of rank-ordered optimal con-

tradictory subchains and keep track of the sequence with lowest cost.

In step 5 of the algorithm, we eliminate contradictory subchains that do not
contribute to a solution. Note that the contradictory subchains in an optimal
sequence are characterized by the following two conditions.

1. The extents of all contradictory subchains in the representation build a
partition of the set of all relations.

2. The neighbourhoods of all contradictory subchains are consistent with the
relations occurring at earlier and later positions in the sequence.

Note that any contradictory subchain occurring in the optimal sequence (except
at the first and last positions) necessarily has matching contradictory subchains
preceding and succeeding it in the list. In fact, every contradictory subchain X
occurring in the optimal join sequence must satisfy the following two conditions.

1. For every relation R in the neighbourhood of X, there exists a contra-
dictory subchain Y at an earlier position in the list which itself meets
condition 1, such that R occurs in Y , and Y can be followed by X.

2. For every relation R in the complementary neighbourhood of X, there
exists a contradictory subchain Y at a later position in the list which
itself meets condition 2, such that R occurs in the neighbourhood of Y ,
and X can be followed by Y .

92 CHAPTER 3. JOIN ORDERING

Using these two conditions, we can eliminate “useless” contradictory chains
from the rank-ordered list by performing a reachability algorithm for each of
the DAGs defined by the conditions 1 and 2. In the last step of our algorithm,
backtracking is used to enumerate all representations. Suppose that at some
step of the algorithm we have determined an initial sequence of contradictory
subchains and have a rank-sorted list of the remaining possible contradictory
subchains. In addition to the two conditions mentioned above, another reacha-
bility algorithm can be applied to determine the set of reachable relations from
the list (with respect to the given prefix). With the use of this information, all
branches that do not lead to a complete join sequence can be pruned.

Let us analyze the worst case time complexity of the algorithm. The two
dynamic programming steps both iterate over O(n2) different extents, and each
extent gives rise to O(n) splittings. Moreover, for each extent one normalization
is necessary, which requires linear time (cost, size and rank can be computed in
constant time using recurrences). Therefore, the complexity of the two dynamic
programming steps is O(n4). Sorting O(n2) contradictory chains can be done
in time O(n2 log n). The step where all “useless” contradictory subchains are
eliminated, consists of two stages of a reachability algorithm which has com-
plexity O(n4). If conjecture 3.2.2 is true, the backtracking step requires linear
time, and the total complexity of the algorithm is O(n4). Otherwise, if con-
jecture 3.2.2 is false, the algorithm might exhibit exponential worst case time
complexity.

We now describe how to reduce the problem for our original cost function
C to the problem for the modified cost function C ′. One difficulty with the
original cost function is that the ranks are defined only for subsequences of at
least two relations. Hence, for determining the first relation in our solution
we do not have sufficient information. An obvious solution to this problem
is to try every relation as starting relation, process each of the two resulting
chain queries separately and choose the chain with minimum costs. The new
complexity will increase by about a factor of n. This first approach is not
very efficient, since the dynamic programming computations overlap consider-
ably, e.g. if we perform dynamic programming on the two overlapping chains
R1R2R3R4R5R6 and R2R3R4R5R6R7, for the intersecting chain R2R3R4R5R6

everything is computed twice. The cue is that we can perform the dynamic pro-
gramming calculations before we consider a particular starting relation. Hence,
the final algorithm can be sketched as follows:

Algorithm CHAIN-I:

1. Compute all optimal contradictory chains by dynamic programming (cor-
responds to the steps 1-4 of Algorithm I’)

2. For each starting relation Ri, perform the following steps:

(a) Let L1 be the result of applying steps 5 and 6 of Algorithm I’ to all
contradictory subchains whose extent (N,M) satisfies Ri ∈ N and
M ⊆ {R1, . . . , Ri}.

(b) Let L2 be the result of applying steps 5 and 6 of Algorithm I’ to all
contradictory subchains whose extent (N,M) satisfies Ri ∈ N and

3.2. DETERMINISTIC ALGORITHMS 93

M ⊆ {Ri, . . . , Rn}.
(c) For all (l1, l2) ∈ L1 × L2, perform the following steps:

i. Let L be the result of merging l1 and l2 according to their ranks.

ii. Use RiL to update the current-best join ordering.

Suppose that conjecture 3.2.2 is true, and we can replace the backtracking part
by a search for the first solution. Then the complexity of the step 1 is O(n4),
whereas the complexity of step 2 amounts to

∑n
i=1(O(i2)+O(n− i)2+O(n)) =

O(n3). Hence, the total complexity would be O(n4) in the worst case. Of
course, if our conjecture is false, the necessary backtracking step might lead to
an exponential worst case complexity.

The second algorithm

The second algorithm is much simpler than the first one but proves to be less
efficient in practice. Since the new algorithm is very similar to some parts of
the old one, we just point out the differences between both algorithms. The
new version of the algorithm works as follows.

Algorithm CHAIN-II’:

1. Use dynamic programming to compute an optimal recursive decomposable
chain for the whole set of relations {R1, . . . , Rn}.

2. Normalize the resulting chain.

3. Reorder the contradictory subchains according to their ranks.

4. De-normalize the sequence.

Step 1 is identical to step 2 of our first algorithm. Note that Lemma 3.2.15
cannot be applied to the sequence in Step 2, since an optimal recursive de-
composable chain is not necessarily an optimal chain. Therefore, the question
arises whether Step 3 really makes sense. One can show that the partial order
defined by the precedence relation among the contradictory subchains has the
property that all elements along paths in the partial order are sorted by rank.
By computing a greedy topological ordering (greedy with respect to the ranks),
we obtain a sequence as requested in step 3.

Let us briefly analyze the worst case time complexity of the second algo-
rithm. The first step requires time O(n4), whereas the second step requires time
O(n2). The third step has complexity O(n log n). Hence, the total complexity
is O(n4).

Algorithm II’ is based on the cost function C ′. We can now modify the
algorithm for the original cost function C as follows.

Algorithm CHAIN-II:

1. Compute all optimal recursive decomposable chains by dynamic program-
ming (corresponds to step 1 of Algorithm II’)

2. For each starting relation Ri, perform the following steps:

94 CHAPTER 3. JOIN ORDERING

(a) Let L1 be the result of applying the steps 2 and 3 of Algorithm II’ to
all optimal recursive decomposable subchains whose extent (N,M)
satisfies Ri ∈ N and M ⊆ {R1, . . . , Ri}.

(b) Let L2 be the result of applying the steps 2 and 3 of Algorithm II’ to
all optimal recursive decomposable subchains whose extent (N,M)
satisfies Ri N and M ⊆ {Ri, . . . , Rn}.

(c) Let L be the result of merging L1 and L2 according to their ranks.

(d) De-normalize L.

(e) Use RiL to update the current-best join ordering.

The complexity of Step 1 isO(n4), whereas the complexity of Step 2 amounts
to
∑n

i=1(O(i2) + O(n − i)2 + O(n)) = O(n3). Hence, the time complexity of
Algorithm II is O(n4).

Summarizing, we are now left with one algorithm that produces the optimal
result but whose worst-case runtime behavior is unknown and one algorithm
with polynomial runtime but producing a result which has not been proven to
be optimal. Due to this lack of hard facts, Moerkotte and Scheufele ran about
700,000 experiments with random queries of sizes up to 30 relations and fewer
experiments for random queries with up to 300 relations to compare the results
of our algorithms. For n ≤ 15, they additionally compared the results with a
standard dynamic programming algorithm. Their findings can be summarized
as follows.

• All algorithms yielded identical results.

• Backtracking always led to exactly one sequence of contradictory chains.

• In the overwhelming majority of cases the first algorithm proved to be
faster than the second.

Whereas the run time of the second algorithm is mainly determined by the
number of relations in the query, the run time of the first also heavily depends
on the number of existing optimal contradictory subchains. In the worst case,
the first algorithm is slightly inferior to the second. Additionally, Hamalainen
reports on an independent implementation of the second algorithm [394]. He
could not find an example where the second algorithm did not produce the
optimal result either. We encourage the reader to prove that it produces the
optimal result.EX

3.2.8 Transformation-Based Approaches

The idea of transformation-based algorithms can be described as follows. Start-
ing from an arbitrary join tree, equivalences (such as commutativity and asso-
ciativity) are applied to it to derive a set of new join trees. For each of the
join trees, the equivalences are again applied to derive even more join trees.
This procedure is repeated until no new join tree can be derived. This proce-
dure exhaustively enumerates the set of all bushy trees. Furthermore, before an

3.2. DETERMINISTIC ALGORITHMS 95

equivalence is applied, it is difficult to see whether the resulting join tree has al-
ready been produced or not (see also Figure 2.6). Thus, this procedure is highly
inefficient. Hence, it does not play any role in practice. Nevertheless, we give
the pseudo-code for it, since it forms the basis for several of the following algo-
rithms. We split the exhaustive transformation approach into two algorithms.
One that applies all equivalences to a given join tree (ApplyTransformations)
and another that does the loop (ExhaustiveTransformation). A transforma-
tion is applied in a directed way. Thus, we reformulate commutativity and
associativity as rewrite rules using ; to indicate the direction.

The following table summarizes all rules commonly used in transformation-
based and randomized join ordering algorithms. The first three are directly
derived from the commutativity and associativity laws for the join. The other
rules are shortcuts used under special circumstances. For example, left associa-
tivity may turn a left-deep tree into a bushy tree. When only left-deep trees are
to be considered, we need a replacement for left associativity. This replacement
is called left join exchange.

R1 BR2 ; R2 BR1 Commutativity
(R1 BR2)BR3 ; R1 B (R2 BR3) Right Associativity
R1 B (R2 BR3) ; (R1 BR2)BR3 Left Associativity
(R1 BR2)BR3 ; (R1 BR3)BR2 Left Join Exchange
R1 B (R2 BR3) ; R2 B (R1 BR3) Right Join Exchange

Two more rules are often used to transform left-deep trees. The first opera-
tion (swap) exchanges two arbitrary relations in a left-deep tree. The second
operation (3Cycle) performs a cyclic rotation of three arbitrary relations in a
left-deep tree. To account for different join methods, a rule called join method
exchange is introduced.

The first rule set (RS-0) we are using contains the commutativity rule and
both associativity rules. Applying associativity can lead to cross products. RS-0
If we do not want to consider cross products, we only apply any of the two
associativity rules if the resulting expression does not contain a cross product.
It is easy to extend ApplyTransformations to cover this by extending the if

conditions with

and (ConsiderCrossProducts || connected(·))

where the argument of connected is the result of applying a transformation.

ExhaustiveTransformation({R1, . . . , Rn})
Input: a set of relations

Output: an optimal join tree

Let T be an arbitrary join tree for all relations

Done = ∅; // contains all trees processed

ToDo = {T}; // contains all trees to be processed

while (!empty(ToDo)) {
Let T be an arbitrary tree in ToDo

96 CHAPTER 3. JOIN ORDERING

ToDo \ = T;
Done ∪ = T;
Trees = ApplyTransformations(T);
for all T ∈ Trees do {

if (T ̸∈ ToDo ∪ Done) {
ToDo + = T;

}
}

}
return cheapest tree found in Done;

ApplyTransformations(T)
Input: join tree

Output: all trees derivable by associativity and commutativity

Trees = ∅;
Subtrees = all subtrees of T rooted at inner nodes

for all S ∈ Subtrees do {
if (S is of the form S1 B S2) {
Trees + = S2 B S1;

}
if (S is of the form (S1 B S2)B S3) {
Trees + = S1 B (S2 B S3);

}
if (S is of the form S1 B (S2 B S3)) {
Trees + = (S1 B S2)B S3;

}
}
return Trees;

Besides the problems mentioned above, this algorithm also has the problem
that the sharing of subtrees is a non-trivial task. In fact, we assume that
ApplyTransformations produces modified copies of T . To see how ExhaustiveTransformation

works, consider again Figure 2.6. Assume that the top-left join tree is the initial
join tree. Then, from this join tree ApplyTransformations produces all trees
reachable by some edge. All of these are then added to ToDo. The next call
to ApplyTransformations with any to the produced join trees will have the
initial join tree contained in Trees. The complete set of visited join trees after
this step is determined from the initial join tree by following at most two edges.

Let us reformulate the algorithm such that it uses a data structure similar
to dynamic programming or memoization in order to avoid duplicate work. For
any subset of relations, dynamic programming remembers the best join tree.
This does not quite suffice for the transformation-based approach. Instead, we
have to keep all join trees generated so far including those differing in the order
of the arguments or a join operator. However, subtrees can be shared. This
is done by keeping pointers into the data structure (see below). So, the dif-
ference between dynamic programming and the transformation-based approach
becomes smaller. The main remaining difference is that dynamic programming

3.2. DETERMINISTIC ALGORITHMS 97

only considers these join trees while with the transformation-based approach
we have to keep the considered join trees since other join trees (more beneficial)
might be generatable from them.

The data structure used for remembering trees is often called the MEMO
structure. For every subset of relations to be joined (except the empty set), a
class exists in the MEMO structure. Each class contains all the join trees that
join exactly the relations describing the class. Here is an example for join trees
containing three relations.

{R1, R2, R3} {R1, R2}BR3, R3 B {R1, R2},
{R1, R3}BR2, R2 B {R1, R3},
{R2, R3}BR1, R1 B {R2, R3}

{R2, R3} {R2}B {R3}, {R3}B {R2}
{R1, R3} {R1}B {R3}, {R3}B {R1}
{R1, R2} {R1}B {R2}, {R2}B {R1}
{R3} R3

{R2} R2

{R1} R1

Here, we used the set notation {. . .} as an argument to a join to denote a
reference to the class of join trees joining the relations contained in it.

We reformulate our transformation-based algorithm such that it fills in and
uses the MEMO structure [683]. In a first step, the MEMO structure is ini-
tialized by creating an arbitrary join tree for the class {R1, . . . , Rn} and then
going down this join tree and creating an entry for every join encountered.
Then, we call ExploreClass on the root class comprising all relations to be
joined. ExploreClass then applies ApplyTransformations2 to every member
of the class it is called upon. ApplyTransformations2 then applies all rules to
generate alternatives.

ExhaustiveTransformation2(Query Graph G)
Input: a query specification for relations {R1, . . . , Rn}.
Output: an optimal join tree

initialize MEMO structure

ExploreClass({R1, . . . , Rn})
return best of class {R1, . . . , Rn}

ExploreClass(C)

Input: a class C ⊆ {R1, . . . , Rn}
Output: none, but has side-effect on MEMO-structure

while (not all join trees in C have been explored) {
choose an unexplored join tree T in C
ApplyTransformation2(T)
mark T as explored

98 CHAPTER 3. JOIN ORDERING

}
return

ApplyTransformations2(T)
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure

ExploreClass(left-child(T));
ExploreClass(right-child(T));
foreach transformation T and class member of child classes {

foreach T ′ resulting from applying T to T {
if T ′ not in MEMO structure {
add T ′ to class C of MEMO structure

}
}

}
return

ApplyTransformations2 uses a set of transformations to be applied. We dis-
cuss now the effect of different transformation sets on the complexity of the
algorithm. Applying ExhaustiveTransformation2 with a rule set consisting
of Commutativity and Left and Right Associativity generates 4n−3n+1+2n+2−
n − 2 duplicates for n relations. Contrast this with the number of join trees
contained in a completely filled MEMO structure3: 3n − 2n+1 + n + 1. This
clearly shows the problem.

The problem of generating the same join tree several times was considered
by Pellenkoft, Galindo-Legaria, and Kersten [683, 684, 685]. The solution lies in
parameterizing ExhaustiveTransformation2 by an appropriate set of transfor-
mations. The basic idea is to remember for every join operator which rules are
applicable to it. For example, after applying commutativity to a join operator,
we disable commutativity for it.

For acyclic queries, the following rule set guarantees that all bushy join
trees are generated, but no duplicates [685]. Thereby, cross products are not
considered. That is, a rule is only applicable if it does not result in a cross
product. This restricts the applicability of the above algorithm to connected
queries. We use Ci to denote some class of the MEMO structure. We call the
following rule set RS-1:RS-1

T1: Commutativity C1 B0 C2 ; C2 B1 C1

Disable all transformations T1, T2, and T3 for B1.

T2: Right Associativity (C1 B0 C2)B1 C3 ; C1 B2 (C2 B3 C3)
Disable transformations T2 and T3 for B2 and enable all rules for B3.

T3: Left associativity C1 B0 (C2 B1 C3) ; (C1 B2 C2)B3 C3

Disable transformations T2 and T3 for B3 and enable all rules for B2.

3The difference to the according number for dynamic programming is due to the fact that
we have to keep alternatives generated by commutativity and that join trees for single relations
are counted.

3.2. DETERMINISTIC ALGORITHMS 99

Class Initialization Transformation Step

{R1, R2, R3, R4} {R1, R2}B111 {R3, R4} {R3, R4}B000 {R1, R2} 3

R1 B100 {R2, R3, R4} 4
{R1, R2, R3}B100 R4 5
{R2, R3, R4}B000 R1 8
R4 B000 {R1, R2, R3} 10

{R2, R3, R4} R2 B111 {R3, R4} 4
{R3, R4}B000 R2 6
{R2, R3}B100 R4 6
R4 B000 {R2, R3} 7

{R1, R3, R4}
{R1, R2, R4}
{R1, R2, R3} {R1, R2}B111 R3 5

R3 B000 {R1, R2} 9
R1 B100 {R2, R3} 9
{R2, R3}B000 R1 9

{R3, R4} R3 B111 R4 R4 B000 R3 2
{R2, R4}
{R2, R3}
{R1, R4}
{R1, R3}
{R1, R2} R1 B111 R2 R2 B000 R1 1

Figure 3.14: Example of rule transformations (RS-1)

In order to be able to follow these rules, the procedure ApplyTransformations2
has to be enhanced such that it is able to keep track of the application history
of the rules for every join operator. The additional memory requirement is
neglectible, since a single bit for each rules suffices.

As an example, let us consider the chain query R1−R2−R3−R4. Figure 3.14
shows the MEMO structure. The first column gives the sets of the relations
identifying each class. We leave out the single relation classes assuming that
{Ri} has Ri as its only join tree which is marked as explored.

The second column shows the initialization with an arbitrarily chosen join
tree. The third column is the one filled by the Apply Transformation2 proce-
dure. We apply the rule set RS-1, which consists of three transformations. Each
join is annotated with three bits, where the i-th bit indicates whether Ti is appli-
cable (1) or not (0). After initializing the MEMO structure, ExhaustiveTransformation2
calls ExploreClass for {R1, R2, R3, R4}. The only (unexplored) join tree is
{R1, R2}B111{R3, R4}, which will become the argument of ApplyTransformations2.
Next, ExploreClass is called on {R1, R2} and {R3, R4}. In both cases, T1 is
the only applicable rule, and the result is shown in the third column under steps
1 and 2. Now we have to apply all transformations on {R1, R2}B111 {R3, R4}.

100 CHAPTER 3. JOIN ORDERING

Commutativity T1 gives us {R3, R4}B000 {R1, R2} (Step 3). For right associa-
tivity, we have two elements in class {R1, R2}. Substituting them and applying
T2 gives

1. (R1 BR2)B {R3, R4} ; R1 B100 (R2 B111 {R3, R4})

2. (R2 BR1)B {R3, R4} ; R2 B111 (R1 A {R3, R4})

The latter contains a cross product. This leaves us with the former as the result
of Step 4. The right argument of the top most join is R2 B111 {R3, R4}. Since
we do not find it in class {R2, R3, R4}, we add it (4).

T3 is next.

1. {R1, R2}B (R3 BR4) ; ({R1, R2}B111 R3)B100 R4

2. {R1, R2}B (R4 BR3) ; ({R1, R2}AR4)B100 R3

The latter contains a cross product. This leaves us with the former as the result
of Step 5. We also add {R1, R2}B111 R3. Now that {R1, R2}B111 {R3, R4} is
completely explored, we turn to {R3, R4}B000{R1, R2}, but all transformations
are disabled here.

R1 B100 {R2, R3, R4} is next. First, {R2, R3, R4} has to be explored. The
only entry is R2 B111 {R3, R4}. Remember that {R3, R4} is already explored.
T2 is not applicable. The other two transformations give us

T1 {R3, R4}B000 R2

T3 (R2 B000 R3)B100 R4 and (R2 AR4)B100 R3

Those join trees not exhibiting a cross product are added to the MEMO struc-
ture under 6. Applying commutativity to {R2, R4}B100R3 gives 7. Commuta-
tivity is the only rule enabled for R1 B100 {R2, R3, R4}. Its application results
in 8.

{R1, R2, R3}B100 R4 is next. It is simple to explore the class {R1, R2, R3}
with its only entry {R1, R2}B111 R3:

T1 R3 B000 {R1, R2}

T2 R1 B100 (R2 B111 R3) and R2 B100 (R1 AR3)

Commutativity can still be applied to R1B100 (R2B111R3). All the new entries
are numbered 9. Commutativity is the only rule enabled for {R1, R2, R3}B100R4

Its application results in 10.

2

The next two sets of transformations were originally intended for generating
all bushy/left-deep trees for a clique query [684]. They can, however, also be
used to generate all bushy trees when cross products are considered. The rule
set RS-2 for bushy trees is

T1: Commutativity C1 B0 C2 ; C2 B1 C1

Disable all transformations T1, T2, T3, and T4 for B1.

3.3. PROBABILISTIC ALGORITHMS 101

T2: Right Associativity (C1 B0 C2)B1 C3 ; C1 B2 (C2 B3 C3)
Disable transformations T2, T3, and T4 for B2.

T3: Left Associativity C1 B0 (C2 B1 C3) ; (C1 B2 C2)B3 C3

Disable transformations T2, T3 and T4 for B3.

T4: Exchange (C1 B0 C2)B1 (C3 B2 C4) ; (C1 B3 C3)B4 (C2 B5 C4)
Disable all transformations T1, T2, T3, and T4 for B4.

If we initialize the MEMO structure with left-deep trees, we can strip down
the above rule set to Commutativity and Left Associativity. The reason is an
observation made by Shapiro et al.: from a left-deep join tree we can generate
all bushy trees with only these two rules [798].

If we want to consider only left-deep trees, the following rule set RS-3 is
appropriate:

T1 Commutativity R1 B0 R2 ; R2 B1 R1

Here, the Ri are restricted to classes with exactly one relation. T1 is
disabled for B1.

T2 Right Join Exchange (C1 B0 C2)B1 C3 ; (C1 B2 C3)B3 C2

Disable T2 for B3.

3.3 Probabilistic Algorithms

3.3.1 Generating Random Left-Deep Join Trees with Cross Prod-
ucts

The basic idea of the algorithms in this section and the following sections is to
generate a set of randomly chosen join trees, evaluate their costs, and return
the best one. The problem with this approach lies in the random generation of
join trees: every join tree has to be generated with equal probability. Although
there are some advocates of the pure random approach [303, 304, 306, 302],
typically a random join tree or a set of random join trees is used in subsequent
algorithms like iterative improvement and simulated annealing.

Obviously, if we do not consider cross products the problem is really hard,
since the query graph plays an important role. So let us start with the simplest
case where random join trees are generated that might contain cross products
even for connected query graphs. Then, any join tree is a valid join tree.

The general idea behind all algorithms is the following. Assume that the
number of join trees in the considered search space is known to be N . Then,
instead of generating a random join tree directly, a bijective mapping from
the interval of non-negative integers [0, N [to a join tree in the search space is
established. Then, a random join tree can be generated by (1) generating a
random number in [0, N [and (2) mapping the number to the join tree. The
problem of bijectively mapping an interval of non-negative integers to elements
of a set is usually called unranking . The opposite mapping is called ranking .
Obviously, the crux in our case is the efficiency of the unranking problem.

102 CHAPTER 3. JOIN ORDERING

We start with generating random left-deep join trees for n relations. This
problem is identical to generating random permutations. That is, we look for
a fast unranking algorithm that maps the non-negative integers in [0, n![to
permutations. Let us consider permutations of the numbers {0, . . . , n − 1}.
A mapping between these numbers and relations is established easily, e.g. via
an array. The traditional approach to ranking/unranking of permutations is
to first define an ordering on the permutations and then find a ranking and
unranking algorithm relative to that ordering. For the lexicographic order, al-
gorithms require O(n2) time [556, 725]. More sophisticated algorithms separate
the ranking/unranking algorithms into two phases. For ranking, first the in-
version vector of the permutation is established. Then, ranking takes place for
the inversion vector. Unranking works in the opposite direction. The inver-
sion vector of a permutation π = π0, . . . , πn−1 is defined to be the sequence
v = v0, . . . , vn−1, where vi is equal to the number of entries πj with πj > πi
and j < i. Inversion vectors uniquely determine a permutation [876]. However,
naive algorithms of this approach again require O(n2) time. Better algorithms
require O(n log n). Using an elaborated data structure, Dietz’ algorithm re-
quires O((n log n)/(log log n)) [242]. Other orders like the Steinhaus-Johnson-
Trotter order have been exploited for ranking/unranking but do not yield any
run-time advantage over the above mentioned algorithms (see [519, 725]).

Since it is not important for our problem that any order constraints are sat-
isfied for the ranking/unranking functions, we use the fastest possible algorithm
established by Myrvold and Ruskey [636]. It runs in O(n) which is also easily
seen to be a lower bound.

The algorithm is based on the standard algorithm to generate random per-
mutations [224, 251, 630]. An array π is initialized such that π[i] = i for
0 ≤ i ≤ n− 1. Then, the loop

for (k = n− 1; k >= 0; −− k) swap(π[k], π[random(k)]);

is executed where swap exchanges two elements and random(k) generates a
random number in [0, k]. This algorithm randomly picks any of the possible
permutations. Assume the random elements produced by the algorithm are
rn−1, . . . , r0 where 0 ≤ ri ≤ i. Obviously, there are exactly n(n − 1)(n −
2) . . . 1 = n! such sequences and there is a one-to-one correspondence between
these sequences and the set of all permutations. We can thus unrank r ∈ [0, n![
by turning it into a unique sequence of values rn−1, . . . , r0. Note that after
executing the swap with rn−1, every value in [0, n[is possible at position π[n−1].
Further, π[n−1] is never touched again. Hence, we can unrank r as follows. We
first set rn−1 = r mod n and perform the swap. Then, we define r′ = ⌊r/n⌋
and iteratively unrank r′ to construct a permutation of n − 1 elements. The
following algorithm realizes this idea.

Unrank(n, r) {
Input: the number n of elements to be permuted

and the rank r of the permutation to be constructed

3.3. PROBABILISTIC ALGORITHMS 103

Output: a permutation π
for (i = 0; i < n; ++ i) π[i] = i;
Unrank-Sub(n, r, π);
return π;
}

}

Unrank-Sub(n, r, π) {
for (i = n; i > 0; −− i) {

swap(π[i− 1], π[r mod i]);
r = ⌊r/i⌋;

}
}

3.3.2 Generating Random Join Trees with Cross Products

Next, we want to randomly construct bushy plans possibly containing cross
products. This is done in several steps:

1. Generate a random number b in [0, C(n− 1)[.

2. Unrank b to obtain a bushy tree with n− 1 inner nodes.

3. Generate a random number p in [0, n![.

4. Unrank p to obtain a permutation.

5. Attach the relations in order p from left to right as leaf nodes to the binary
tree obtained in Step 2.

The only step that we still have to discuss is Step 2. It is a little involved and we
can only try to bring across the general idea. For details, the reader is referred
to the literature [556, 557, 558].

Consider Figure 3.15. It contains all 14 possible trees with four inner nodes.
The trees are ordered according to the rank we will consider. The bottom-most
number below any tree is its rank in [0, 14[. While unranking, we do not generate
the trees directly, but an encoding of the tree instead. This encoding works as
follows. Any binary tree corresponds to a word in a Dyck language with one
pair of parenthesis. The alphabet hence consists of Σ = {′(′, ′)′}. For join trees
with n inner nodes, we use Dyck words of length 2n whose parenthesization is
correct. That is, for every ′(′, we have a subsequent ′)′. From a given join tree,
we obtain the Dyck word by a preorder traversal. Whenever we encounter an
inner node, we encode this with a ′(′. All but the last leaf nodes are encoded
by a ′)′. Appending all these 2n encodings gives us a Dyck word of length 2n.
Figure 3.15 shows directly below each tree its corresponding Dyck word. In the
line below, we simply changed the representation by substituting every ′(′ by a
′1′ and every ′)′ by a ′0′. The encoding that will be generated by the unranking
algorithm is shown in the third line below each tree: we remember the places
(index in the bit-string) where we find a ′1′.

104 CHAPTER 3. JOIN ORDERING

(() (()))

11011000

1, 2, 4, 5

43

((())) ()

11100010

1, 2, 3, 7

2

((()) ())

11100100

1, 2, 3, 6

6

(() ()) ()

11010010

1, 2, 4, 7

7

(()) (())

11001100

1, 2, 5, 6

8

(()) () ()

11001010

1, 2, 5, 7

() ((()))

10111000

1, 3, 4, 5

9

() (() ())

10110100

1, 3, 4, 6

10 11

() (()) ()

10110010

1, 3, 4, 7

() () (())

10101100

1, 3, 5, 6

12

() () () ()

10101010

1, 3, 5, 7

13

1

11101000

1, 2, 3, 5

((()()))

11110000

1, 2, 3, 4

0

(((())))

1, 2, 4, 6

5

11010100

(() () ())

B

B

B

B

B

B

B

B

B B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B

B B

B

B

B B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

Figure 3.15: Encoding Trees

In order to do the unranking, we need to do some counting. Therefor, we
map Dyck words to paths in a triangular grid. For n = 4 this grid is shown in
Figure 3.16. We always start at (0, 0) which means that we have not opened a
parenthesis. When we are at (i, j), opening a parenthesis corresponds to going
to (i + 1, j + 1) and closing a parenthesis to going to (i + 1, j − 1). We have
thus established a bijective mapping between Dyck words and paths in the grid.
Thus counting Dyck words corresponds to counting paths.

3.3. PROBABILISTIC ALGORITHMS 105

1

2

3

4

87654321

1

14

9

4

1

13

5 2

[0,0]

[1,4[

[9,14[

[4,9[

Figure 3.16: Paths

The number of different paths from (0, 0) to (i, j) can be computed by

p(i, j) =
j + 1

i+ 1

(
i+ 1

1
2(i+ j) + 1

)

These numbers are called the Ballot numbers [131]. The number of paths from
(i, j) to (2n, 0) can thus be computed as (see [557, 558]):

q(i, j) = p(2n− i, j)

Note the special case q(0, 0) = p(2n, 0) = C(n). In Figure 3.16, we annotated
nodes (i, j) by p(i, j). These numbers can be used to assign (sub-) intervals to
paths (Dyck words, trees). For example, if we are at (4, 4), there exists only
a single path to (2n, 0). Hence, the path that travels the edge (4, 4) → (5, 3)
has rank 0. From (3, 3) there are four paths to (2n, 0), one of which we already
considered. This leaves us with three paths that travel the edge (3, 3)→ (4, 2).
The paths in this part as assigned ranks in the interval [1, 4[. Figure 3.16 shows
the intervals near the edges. For unranking, we can now proceed as follows.
Assume we have a rank r. We consider opening a parenthesis (go from (i, j) to
(i + 1, j + 1)) as long as the number of paths from that point does no longer
exceed our rank r. If it does, we close a parenthesis instead (go from (i, j) to
(i−1, j+1)). Assume, that we went upwards to (i, j) and then had to go down
to (i− 1, j + 1). We subtract the number of paths from (i+ 1, j + 1) from our
rank r and proceed iteratively from (i−1, j+1) by going up as long as possible
and going down again. Remembering the number of parenthesis opened and
closed along our way results in the required encoding. The following algorithm
finalizes these ideas.

UnrankTree(n, r)

Input: a number of inner nodes n and a rank r ∈ [0, C(n− 1)]

106 CHAPTER 3. JOIN ORDERING

Output: encoding of the inner leaves of a tree

lNoParOpen = 0;

lNoParClose = 0;

i = 1; // current encoding

j = 0; // current position in encoding array

while (j < n) {
k = q(lNoParOpen + lNoParClose + 1, lNoParOpen - lNoParClose + 1);

if (k ≤ r) {
r -= k;
++lNoParClose;

} else {
aTreeEncoding[j++] = i;
++lNoParOpen;

}
++i;

}

Given an array with the encoding of a tree, it is easy to construct the tree
from it. The following procedure does that.

TreeEncoding2Tree(n, aEncoding) {
Input: the number of internal nodes of the tree n
Output: root node of the result tree

root = new Node; /* root of the result tree */

curr = root; /* curr: current internal node whose subtrees are to be created */

i = 1; /* pointer to entry in encoding */

child = 0; /* 0 = left , 1 = right: next child whose subtree is to be created */

while (i < n) {
lDiff = aEncoding[i] - aEncoding[i− 1];
for (k = 1; k < lDiff; ++ k) {

if (child == 0) {
curr->addLeftLeaf();

child = 1;

} else {
curr->addRightLeaf();

while (curr->right() != 0) {
curr = curr->parent();

}
child = 1;

}
}
if (child == 0) {

curr->left(new Node(curr)); // curr becomes parent of new node

curr = curr->left();

++i;

3.3. PROBABILISTIC ALGORITHMS 107

child = 0;

} else {
curr->right(new Node(curr));

curr = curr->right();

++i;

child = 0;

}
}
while (curr != 0) {

curr->addLeftLeaf(); // addLeftLeaf adds leaf if no left-child exists

curr->addRightLeaf(); // analogous

curr = curr->parent();

}
return root;

}

3.3.3 Generating Random Join Trees without Cross Products

A general solution for randomly generating join trees without cross products is
not known. However, if we restrict ourselves to acyclic queries, we can apply
an algorithm developed by Galindo-Legaria, Pellenkoft, and Kersten [304, 303,
306]. For this algorithm to work, we have to assume that the query graph is
connected and acyclic.

For the rest of this section, we assume that G = (V,E) is the query graph
and |V | = n. That is, n relations are to be joined. No join tree contains a cross
product. With every node in a join tree, we associate a level . The root has
level 0. Its children have level 1, and so on. We further use lower-case letters
for relations.

For a given query graph G, we denote by TG the set of join trees for G.

Let T v(k)
G ⊆ TG be the subset of join trees where the leaf node (i.e. relation) v

occurs at level k. Some trivial observations follow. If the query graph consists

of a single node (n = 1), then |TG| = |T v(0)
G | = 1. If n > 1, the top node in

the join tree is a join and not a relation. Hence, |T v(0)
G | = 0. Obviously, the

maximum level that can occur in any join tree is n − 1. Hence, |T v(k)
G | = 0

if k ≥ n. Since the level at which a leaf node v occurs in some join tree is

unique, we have TG = ∪nk=0T
v(k)
G and T v(i)

G ∩ T v(j)
G = ∅ for i ̸= j. This gives us

|TG| =
∑n

k=0 |T
v(k)
G |.

The algorithm generates an unordered tree with n leaf nodes. If we wish
to have a random ordered tree, we have to pick one of the 2n−1 possibilities to
order the (n − 1) joins within the tree. We proceed as follows. We start with
some notation for lists, discuss how two lists can be merged, describe how a
specific merge can be specified, and count the number of possible merges. This
is important, since join trees will be described as lists of trees. Given a leaf
node v, we simply traverse the path from the root to v. Thereby, subtrees that
branch off can be collected into a list of trees. After these remarks, we start
developing the algorithm in several steps. First, we consider two operations

108 CHAPTER 3. JOIN ORDERING

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2

Figure 3.17: Tree-merge

with which we can construct new join trees: leaf-insertion introduces a new
leaf node into a given tree and tree-merging merges two join trees. Since we
do not want to generate cross products in this section, we have to apply these
operations carefully. Therefor, we need a description of how to generate all
valid join trees for a given query graph. The central data structure for this
purpose is the standard decomposition graph (SDG). Hence, in the second step,
we define SDGs and introduce an algorithm that derives an SDG from a given
query graph. In the third step, we start counting. The fourth and final step
consists of the unranking algorithm. We do not discuss the ranking algorithm.
It can be found in [306].

We use the Prolog notation | to separate the first element of a list from its
tail. For example, the list ⟨a|t⟩ has a as its first element and a tail t. Assume
that P is a property of elements. A list l′ is the projection of a list L on P , if
L′ contains all elements of L satisfying the property P . Thereby, the order is
retained. A list L is a merge of two disjoint lists L1 and L2 if L contains all
elements from L1 and L2 and both are projections of L.

A merge of a list L1 with a list L2 whose respective lengths are l1 and l2
can be described by an array α = [α0, . . . , αl2] of non-negative integers whose
sum is equal to l1. The non-negative integer αi−1 gives the number of elements
of L1 which precede the i-th element of L2 in the merged list. We obtain the
merged list L by first taking α0 elements from L1. Then, an element from L2

follows. Then α1 elements from L1 and the next element of L2 follow and so
on. Finally follow the last αl2 elements of L1. Figure 3.17 illustrates possible
merges.

Compare list merges to the problem of non-negative (weak) integer com-
position [?]. There, we ask for the number of compositions of a non-negative
integer n into k non-negative integers αi with

∑k
i=1 αk = n. The answer is(

n+k−1
k−1

)
[829]. Since we have to decompose l1 into l2 + 1 non-negative inte-

gers, the number of possible merges is M(l1, l2) =
(
l1+l2
l2

)
. The observation

3.3. PROBABILISTIC ALGORITHMS 109

M(l1, l2) = M(l1 − 1, l2) +M(l1, l2 − 1) allows us to construct an array of size
n ∗ n in O(n2) that materializes the values for M . This array will allow us to
rank list merges in O(l1 + l2).

The idea for establishing a bijection between [1,M(l1, l2)] and the possi-
ble αs is a general one and used for all subsequent algorithms of this section.
Assume that we want to rank the elements of some set S and S = ∪ni=0Si is
partitioned into disjoint Si. If we want to rank x ∈ Sk, we first find the local
rank of x ∈ Sk. The rank of x is then defined as

k−1∑

i=0

|Si|+ local-rank(x, Sk)

To unrank some number r ∈ [1, N], we first find k such that

k = min
j

(r ≤
j∑

i=0

|Si|)

Then, we proceed by unranking with the new local rank

r′ = r −
k−1∑

i=0

|Si|

within Sk.
Accordingly, we partition the set of all possible merges into subsets. Each

subset is determined by α0. For example, the set of possible merges of two
lists L1 and L2 with length l1 = l2 = 4 is partitioned into subsets with α0 = j
for 0 ≤ j ≤ 4. In each partition, we have M(j, l2 − 1) elements. To unrank
a number r ∈ [1,M(l1, l2)], we first determine the partition by computing k =
minj r ≤

∑j
i=0M(j, l2 − 1). Then, α0 = l1 − k. With the new rank r′ =

r −∑k
i=0M(j, l2 − 1), we start iterating all over. The following table gives

the numbers for our example and can be used to understand the unranking
algorithm. The algorithm itself can be found in Figure 3.18.

k α0 (k, l2 − 1) M(k, l2 − 1) rank intervals

0 4 (0, 3) 1 [1, 1]
1 3 (1, 3) 4 [2, 5]
2 2 (2, 3) 10 [6, 15]
3 1 (3, 3) 20 [16, 35]
4 0 (4, 3) 35 [36, 70]

We now turn to the anchored list representation of join trees.

Definition 3.3.1 Let T be a join tree and v be a leaf of T . The anchored list
representation L of T is constructed as follows:

• If T consists of the single leaf node v, then L = ⟨⟩.

• If T = (T1 B T2) and without loss of generality v occurs in T2, then
L = ⟨T1|L2⟩, where L2 is the anchored list representation of T2.

110 CHAPTER 3. JOIN ORDERING

UnrankDecomposition(r, l1, l2)
Input: a rank r, two list sizes l1 and l2
Output: a merge specification α.
for (i = 0; i ≤ l2; ++ i) {
alpha[i] = 0;

}
i = k = 0;
while (l1 > 0 && l2 > 0) {
m =M(k, l2 − 1);
if (r ≤ m) {
alpha[i++] = l1 − k;
l1 = k;
k = 0;
−− l2;

} else {
r− = m;

++ k;
}

}
alpha[i] = l1;
return alpha;

Figure 3.18: Algorithm UnrankDecomposition

w w

(T, 2)

T1

T2

v

T1

T2

v

(T, 1)

T1

T2

w

T

w

v

T1

T2

(T, 3)

Figure 3.19: Leaf-insertion

We then write T = (L, v).

Observe that if T = (L, v) ∈ TG, then T ∈ T v(k)
G ≺≻ |L| = k.

The operation leaf-insertion is illustrated in Figure 3.19. A new leaf v is
inserted into the tree at level k. Formally, it is defined as follows.

3.3. PROBABILISTIC ALGORITHMS 111

a b c d

e

e

c

b d

a

a

d

[0, 1]

[1]

[0, 1, 1]

[0, 1]

[1]

[0, 5, 5, 5, 3]

[0, 0, 2, 3]

+b

+c

+e

∗c

+c

Figure 3.20: A query graph, its tree, and its standard decomposition graph

Definition 3.3.2 Let G = (V,E) be a query graph, T a join tree of G. v ∈ V
be such that G′ = G|V \{v} is connected, (v, w) ∈ E, 1 ≤ k < n, and

T = (⟨T1, . . . , Tk−1, v, Tk+1, . . . , Tn⟩, w) (3.10)

T ′ = (⟨T1, . . . , Tk−1, Tk+1, . . . , Tn⟩, w). (3.11)

Then we call (T ′, k) an insertion pair on v and say that T is decomposed into
(or constructed from) the pair (T ′, k) on v.

Observe that leaf-insertion defines a bijective mapping between T v(k)
G and inser-

tion pairs (T ′, k) on v, where T ′ is an element of the disjoint union ∪n−2i=k−1T
w(i)
G′ .

The operation tree-merging is illustrated in Figure 3.17. Two trees R =
(LR, w) and S = (LS , w) on a common leaf w are merged by merging their
anchored list representations.

Definition 3.3.3 Let G = (V,E) be a query graph, w ∈ V , T = (L,w) a
join tree of G, V1, V2 ⊆ V such that G1 = G|V1 and G2 = G|V2 are connected,
V1 ∪ V2 = V , and V1 ∩ V2 = {w}. For i = 1, 2:

• Define the property Pi to be “every leaf of the subtree is in Vi”,

• Let Li be the projection of L on Pi.

• Ti = (Li, w).

Let α be the integer composition such that L is the result of merging L1 and L2

on α. Then we call (T1, T2, α) a merge triplet. We say that T is decomposed
into (constructed from) (T1, T2, α) on V1 and V2.

Observe that the tree-merging operation defines a bijective mapping between

T w(k)
G and merge triplets (T1, T2, α), where T1 ∈ T w(i)

G1
, T2 ∈ T w(k−i)

G2
, and α

specifies a merge of two lists of sizes i and k − i. Further, the number of these
merges (i.e. the number of possibilities for α) is

(i+(k−i)
k−i

)
=
(
k
i

)
.

A standard decomposition graph of a query graph describes the possible
constructions of join trees. It is not unique (for n > 1) but anyone can be used

112 CHAPTER 3. JOIN ORDERING

to construct all possible unordered join trees. For each of our two operations it
has one kind of inner nodes. A unary node labeled +v stands for leaf-insertion
of v. A binary node labeled ∗w stands for tree-merging its subtrees whose only
common leaf is w.

The standard decomposition graph of a query graph G = (V,E) is con-
structed in three steps:

1. pick an arbitrary node r ∈ V as its root node;

2. transform G into a tree G′ by directing all edges away from r;

3. call QG2SDG(G′, r)

with

QG2SDG(G′, r)
Input: a query tree G′ = (V,E) and its root r
Output: a standard query decomposition tree of G′

Let {w1, . . . , wn} be the children of v;
switch (n) {

case 0: label v with "v";
case 1:

label v as "+v";

QG2SDG(G′, w1);

otherwise:
label v as "∗v";
create new nodes l, r with label +v;

E \ = {(v, wi)|1 ≤ i ≤ n};
E ∪ = {(v, l), (v, r), (l, w1)} ∪ {(r, wi)|2 ≤ i ≤ n};
QG2SDG(G′, l);
QG2SDG(G′, r);

}
return G′;

Note that QG2SDG transforms the original graph G′ into its SDG by side-effects.
Thereby, the n-ary tree is transformed into a binary tree similar to the procedure
described by Knuth [504, Chap 2.3.2]. Figure 3.20 shows a query graph G, its
tree G′ rooted at e, and its standard decomposition tree.

For an efficient access to the number of join trees in some partition T v(k)
G

in the unranking algorithm, we materialize these numbers. This is done in the
count array. The semantics of a count array [c0, c1, . . . , cn] of a node u with
label ◦v (◦ ∈ {+, ∗}) of the SDG is that u can construct ci different trees in
which leaf v is at level i. Then, the total number of trees for a query can be
computed by summing up all the ci in the count array of the root node of the
decomposition tree.

To compute the count and an additional summand adornment of a node
labeled +v, we use the following lemma.

3.3. PROBABILISTIC ALGORITHMS 113

Lemma 3.3.4 Let G = (V,E) be a query graph with n nodes, v ∈ V such that
G′ = G|V \v is connected, (v, w) ∈ E, and 1 ≤ k < n. Then

|T v(k)
G | =

∑

i≥k−1
|T w(i)

G′ |

This lemma follows from the observation made after the definition of the leaf-
insertion operation.

The sets T w(i)
G′ used in the summands of Lemma 3.3.4 directly correspond

to subsets T v(k),i
G (k − 1 ≤ i ≤ n− 2) defined such that T ∈ T v(k),i

G if

1. T ∈ T v(k)
G ,

2. the insertion pair on v of T is (T ′, k), and

3. T ′ ∈ T w(i)
G′ .

Further, |T v(k),i
G | = |T w(i)

G′ |. For efficiency, we materialize the summands in an
array of arrays summands.

To compute the count and summand adornment of a node labeled ∗v, we use
the following lemma.

Lemma 3.3.5 Let G = (V,E) be a query graph, w ∈ V , T = (L,w) a join
tree of G, V1, V2 ⊆ V such that G1 = G|V1 and G2 = G|V2 are connected,
V1 ∪ V2 = V , and V1 ∩ V2 = {v}. Then

|T v(k)
G | =

∑

i

(
k

i

)
|T v(i)

G1
| |T v(k−i)

G2
|

This lemma follows from the observation made after the definition of the tree-
merge operation.

The sets T w(i)
G′ used in the summands of Lemma 3.3.5 directly correspond

to subsets T v(k),i
G (0 ≤ i ≤ k) defined such that T ∈ T v(k),i

G if

1. T ∈ T v(k)
G ,

2. the merge triplet on V1 and V2 of T is (T1, T2, α), and

3. T1 ∈ T v(i)
G1

.

Further, |T v(k),i
G | =

(
k
i

)
|T v(i)

G1
| |T v(k−i)

G2
|.

Before we come to the algorithm for computing the adornments count and
summands, let us make one observation that follows directly from the above
two lemmata. Assume a node v whose count array is [c1, . . . , cm] and whose
summands is s = [s0, . . . , sn] with si = [si0, . . . , s

i
m], then ci =

∑m
j=0 s

i
j holds.

Figure 3.21 contains the algorithm to adorn SDG’s nodes with count and
summands. It has worst-case complexity O(n3). Figure 3.20 shows the count

adornment for the SDG. Looking at the count array of the root node, we see
that the total number of join trees for our example query graph is 18.

The algorithm UnrankLocalTreeNoCross called by UnrankTreeNoCross adorns
the standard decomposition graph with insert-at and merge-using annota-
tions. These can then be used to extract the join tree.

114 CHAPTER 3. JOIN ORDERING

Adorn(v)
Input: a node v of the SDG

Output: v and nodes below are adorned by count and summands

Let {w1, . . . , wn} be the children of v;
switch (n) {

case 0: count(v) := [1]; // no summands for v
case 1:

Adorn(w1);

assume count(w1) = [c10, . . . , c
1
m1

];
count(v) = [0, c1, . . . , cm1+1] where ck =

∑m1
i=k−1 c

1
i ;

summands(v) = [s0, . . . , sm1+1] where sk = [sk0, . . . , s
k
m1+1] and

ski =

{
c1i if 0 < k and k − 1 ≤ i
0 else

case 2:
Adorn(w1);

Adorn(w2);

assume count(w1) = [c10, . . . , c
1
m1

];
assume count(w2) = [c20, . . . , c

2
m2

];
count(v) = [c0, . . . , cm1+m2] where

ck =
∑m1

i=0

(
k
i

)
c1i c

2
k−i; // c2i = 0 for i ̸∈ {0, . . . ,m2}

summands(v) = [s0, . . . , sm1+m2] where sk = [sk0, . . . , s
k
m1

] and

ski =

{ (
k
i

)
c1i c

2
k−i if 0 ≤ k − i ≤ m2

0 else

}

Figure 3.21: Algorithm Adorn

UnrankTreeNoCross(r,v)

Input: a rank r and the root v of the SDG

Output: adorned SDG

let count(v) = [x0, . . . , xm];

k := minj r ≤
∑j

i=0 xi; // efficiency: binary search on materialized sums.

r′ := r −∑k−1
i=0 xi;

UnrankLocalTreeNoCross(v, r′, k);

The following table shows the intervals associated with the partitions T e(k)
G for

the standard decomposition graph in Figure 3.20:

Partition Interval

T e(1)
G [1, 5]

T e(2)
G [6, 10]

T e(3)
G [11, 15]

T e(4)
G [16, 18]

3.3. PROBABILISTIC ALGORITHMS 115

The unranking procedure makes use of unranking decompositions and un-
ranking triples. For the latter and a given X,Y, Z, we need to assign each
member in

{(x, y, z)|1 ≤ x ≤ X, 1 ≤ y ≤ Y, 1 ≤ z ≤ Z}

a unique number in [1, XY Z] and base an unranking algorithm on this assign-
ment. We leave this as a simple exercise to the reader and call the function
UnrankTriplet(r,X, Y, Z). Here, r is the rank and X, Y , and Z are the upper
bounds for the numbers in the triplets. The code for unranking looks as follows:

UnrankingTreeNoCrossLocal(v, r, k)
Input: an SDG node v, a rank r, a number k identifying a partition

Output: adornments of the SDG as a side-effect

Let {w1, . . . , wn} be the children of v
switch (n) {

case 0:
assert(r = 1 && k = 0);
// no additional adornment for v

case 1:
let count(v) = [c0, . . . , cn];
let summands(v) = [s0, . . . , sn];
assert(k ≤ n && r ≤ ck);
k1 = minj r ≤

∑j
i=0 s

k
i ;

r1 = r −∑k1−1
i=0 ski ;

insert-at(v) = k;
UnrankingTreeNoCrossLocal(w1, r1, k1);

case 2:
let count(v) = [c0, . . . , cn];
let summands(v) = [s0, . . . , sn];
let count(w1) = [c10, . . . , c

1
n1
];

let count(w2) = [c20, . . . , c
2
n2
];

assert(k ≤ n && r ≤ ck);
k1 = minj r ≤

∑j
i=0 s

k
i ;

q = r −∑k1−1
i=0 ski ;

k2 = k − k1;
(r1, r2, a) = UnrankTriplet(q, c1k1 , c

2
k2
,
(
k
i

)
);

α = UnrankDecomposition(a);
merge-using(v) = α;
UnrankingTreeNoCrossLocal(w1, r1, k1);
UnrankingTreeNoCrossLocal(w2, r2, k2);

}

116 CHAPTER 3. JOIN ORDERING

3.3.4 Quick Pick

The QuickPick algorithm of Waas and Pellenkoft [904, 905] does not generate
random join trees in the strong sense but comes close to it and is far easier to
implement and more broadly applicable. The idea is to randomly select an edge
in the query graph and to construct a join tree corresponding to this edge.

QuickPick(Query Graph G)
Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a bushy join tree

BestTreeFound = any join tree

while stopping criterion not fulfilled {
E′ = E;
Trees = {R1, . . . , Rn};
while (|Trees| > 1) {
choose e ∈ E′;
E′− = e;
if (e connects two relations in different subtrees T1, T2 ∈ Trees) {
Trees -= T1;
Trees -= T2;
Trees += CreateJoinTree(T1, T2);

}
}
Tree = single tree contained in Trees;

if (cost(Tree) < cost(BestTreeFound)) {
BestTreeFound = Tree;

}
}
return BestTreeFound

3.3.5 Iterative Improvement

Swami and Gupta [860], Swami [859] and Ioannidis and Kang [452] applied the
idea of iterative improvement to join ordering [452]. The idea is to start from
a random plan and then to apply randomly selected transformations from a
rule set if they improve the current join tree, until not further improvement is
possible.

IterativeImprovementBase(Query Graph G)
Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a join tree

do {
JoinTree = random tree

JoinTree = IterativeImprovement(JoinTree)

3.3. PROBABILISTIC ALGORITHMS 117

if (cost(JoinTree) < cost(BestTree)) {
BestTree = JoinTree;

}
} while (time limit not exceeded)

return BestTree

IterativeImprovement(JoinTree)

Input: a join tree

Output: improved join tree

do {
JoinTree’ = randomly apply a transformation to JoinTree;

if (cost(JoinTree’) < cost(JoinTree)) {
JoinTree = JoinTree’;

}
} while (local minimum not reached)

return JoinTree

The number of variants of iterative improvements is large. The first parame-
ter is the used rule set. To restrict search to left-deep trees, a rule set consisting
of swap and 3cycle is appropriate [860]. If we consider bushy trees, a complete
set consisting of commutativity, associativity, left join exchange and right join
exchange makes sense. This rule set (proposed by Ioannidis and Kang) is ap-
propriate to explore the whole space of bushy join trees. A second parameter
is how to determine whether the local minimum has been reached. Considering
all possible neighbor states of a join tree is expensive. Therefor, a subset of size
k is sometimes considered. Then, for example, k can be limited to the number
of edges in the query graph [860].

3.3.6 Simulated Annealing

Iterative Improvement suffers from the drawback that it only applies a move
if it improves the current plan. This leads to the problem that one is often
stuck in a local minimum. Simulated annealing tries to avoid this problem by
allowing moves that result in more expensive plans [457, 452, 860]. However,
instead of considering every plan, only those whose cost increase does not exceed
a certain limit are considered. During time, this limit decreases. This general
idea is cast into the notion temperatures and probabilities of performing a
selected transformation. A generic formulation of simulated annealing could
look as follows:

SimulatedAnnealing(Query Graph G)
Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a join tree

BestTreeSoFar = random tree;

Tree = BestTreeSoFar;

118 CHAPTER 3. JOIN ORDERING

do {
do {
Tree’ = apply random transformation to Tree;

if (cost(Tree’) < cost(Tree)) {
Tree = Tree’;

} else {
with probability e−(cost(Tree′)−cost(Tree))/temperature

Tree = Tree’;

}
if (cost(Tree) < cost(BestTreeSoFar)) {

BestTreeSoFar = Tree’;

}
} while (equilibrium not reached)

reduce temperature;

} while (not frozen)

return BestTreeSoFar

Besides the rule set used, the initial temperature, the temperature reduc-
tion, and the definitions of equilibrium and frozen determine the algorithm’s
behavior. For each of them several alternatives have been proposed in the lit-
erature. The starting temperature can be calculated as follows: determine the
standard deviation σ of costs by sampling and multiply it with a constant val-
ue ([860] use 20). An alternative is to set the starting temperature twice the
cost of the first randomly selected join tree [452] or to determine the starting
temperature such that at least 40% of all possible transformations are accepted
[834].

For temperature reduction, we can apply the formula temp∗ = 0.975 [452]

or max(0.5, e−
λt
σ) [860].

The equilibrium is defined to be reached if for example the cost distribution
of the generated solutions is sufficiently stable [860], the number of iterations is
sixteen times the number of relations in the query [452], or number of iterations
is the same as the number of relations in the query [834].

We can establish frozenness if the difference between the maximum and
minimum costs among all accepted join trees at the current temperature equals
the maximum change in cost in any accepted move at the current temperature
[860], the current solution could not be improved in four outer loop iterations
and the temperature has been fallen below one [452], or the current solution
could not be improved in five outer loop iterations and less than two percent of
the generated moves were accepted [834].

Considering databases are used in mission critical applitions. Would you
bet your business on these numbers?

3.3.7 Tabu Search

Morzy, Matyasiak and Salza applied Tabu Search to join ordering [629]. The
general idea is that among all neighbors reachable via the transformations, only

3.3. PROBABILISTIC ALGORITHMS 119

the cheapest is considered even if its cost are higher than the costs of the current
join tree. In order to avoid running into cycles, a tabu set is maintained. It
contains the last join trees generated, and the algorithm is not allowed to visit
them again. This way, it can escape local minima, since eventually all nodes in
the valley of a local minimum will be in the tabu set. The stopping conditions
could be that there ws no improvement over the current best solution found
during the last given number of iterations or if the set neighbors minus the tabu
set is empty (in line (*)).

Tabu Search looks as follows:

TabuSearch(Query Graph)

Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a join tree

Tree = random join tree;

BestTreeSoFar = Tree;

TabuSet = ∅;
do {
Neighbors = all trees generated by applying a transformation to Tree;

Tree = cheapest in Neighbors \ TabuSet; (*)

if (cost(Tree) < cost(BestTreeSoFar)) {
BestTreeSoFar = Tree;

}
if(|TabuSet| > limit) remove oldest tree from TabuSet;

TabuSet += Tree;

} while (not stopping condition satisfied);

return BestTreeSoFar;

3.3.8 Genetic Algorithms

Genetic algorithms are inspired by evolution: only the fittest survives [333].
They work with a population that evolves from generation to generation. Suc-
cessors are generated by crossover and mutation. Further, a subset of the cur-
rent population (the fittest) are propagated to the next generation (selection).
The first generation is generated by a random generation process.

The problem is how to represent each individual in a population. The
following analogies are used:

• Chromosome ←→ string

• Gene ←→ character

In order to solve an optimization problem with genetic algorithms, an encoding
is needed as well as a specification for selection, crossover, and mutation.

Genetic algorithms for join ordering have been considered in [74, 834]. We
first introduce alternative encodings, then come to the selection process, and
finally discuss crossover and mutation.

120 CHAPTER 3. JOIN ORDERING

Encodings We distinguish ordered list and ordinal number encodings. Both
encodings are used for left-deep and bushy trees. In all cases we assume that
the relations R1, . . . , Rn are to be joined and use the index i to denote Ri.

1. Ordered List Encoding

(a) left-deep trees
A left-deep join tree is encoded by a permutation of 1, . . . , n. For
instance, (((R1 BR4)BR2)BR3) is encoded as “1423”.

(b) bushy trees
Bennet, Ferris, and Ioannidis proposed the following encoding scheme
[74, 75]. A bushy join-tree without cartesian products is encoded as
an ordered list of the edges in the join graph. Therefore, we num-
ber the edges in the join graph. Then the join tree is encoded in a
bottom-up, left-to-right manner. See Figure 3.22 for an example.

2. Ordinal Number Encoding

(a) left-deep trees
A join tree is encoded by using a list of relations that is short-
ened whenever a join has been encoded. We start with the list
L = ⟨R1, . . . , Rn⟩. Then within L we find the index of first rela-
tion to be joined. Let this relation be Ri. Ri is the i-th relation
in L. Hence, the first character in the chromosome string is i. We
eliminate Ri from L. For every subsequent relation joined, we again
determine its index in L, remove it from L and append the index to
the chromosome string. For instance, starting with ⟨R1, R2, R3, R4⟩,
the left-deep join tree (((R1BR4)BR2)BR3) is encoded as “1311”.

(b) bushy trees
Again, we start with the list L = ⟨R1, . . . , Rn⟩ and encode a bushy
join tree in a bottom-up, left-to-right manner. Let Ri B Rj be the
first join in the join tree under this ordering. Then we look up their
positions in L and add them to the encoding. Next we eliminate Ri

and Rj from L and push Ri,j to the front of it. We then proceed
for the other joins by again selecting the next join which now can
be between relations and/or subtrees. We determine their position
within L, add these positions to the encoding, remove them from L,
and insert a composite relation into L such that the new composite
relation directly follows those already present. For instance, starting
with the list ⟨R1, R2, R3, R4⟩, the bushy join tree ((R1BR2)B (R3B

R4)) is encoded as “12 23 12”.

The encoding is completed by adding join methods.

Crossover A crossover generates a new solution from two individuals. There-
fore, two partial solutions are combined. Obviously, its definition depends on
the encoding. Two kinds of crossovers are distinguished: the subsequence and
the subset exchange.

3.3. PROBABILISTIC ALGORITHMS 121

1

2

4

3

R2

1243B

R2R1

R4

R3 R5R4

R5

R1

R3

B

B

B

Figure 3.22: A query graph, a join tree, and its encoding

The subsequence exchange for the ordered list encoding works as follows.
Assume two individuals with chromosomes u1v1w1 and u2v2w2. From these we
generate u1v

′
1w1 and u2v

′
2w2, where v

′
i is a permutation of the relations in vi

such that the order of their appearence is the same as in u3−iv3−iw3−i. In order
to adapt the subsequence exchange operator to the ordinal number encoding,
we have to require that the vi are of equal length (|v1| = |v2|) and occur at the
same offset (|u1| = |u2|). We then simply swap the vi. That is, we generate
u1v2w1 and u2v1w2.

The subset exchange is defined only for the ordered list encoding. Within
the two chromosomes, we find two subsequences of equal length comprising the
same set of relations. These sequences are then simply exchanged.

Mutation A mutation randomly alters a character in the encoding. If du-
plicates must not occur — as in the ordered list encoding — swapping two
characters is a perfect mutation.

Selection The probability of a join tree’s survival is determined by its rank
in the population. That is, we calculate the costs of the join trees encoded
for each member of the population. Then we sort the population according
to their associated costs and assign probabilities to each individual such that
the best solution in the population has the highest probability to survive and
so on. After probabilities have been assigned, we randomly select members of
the population taking these probabilities into account. That is, the higher the
probability of a member, the higher is its chance to survive.

Algorithm The genetic algorithm then works as follows. First, we create a
random population of a given size (say 128). We apply crossover and mutation
with a given rate, for example such that 65% of all members of a population
participate in crossover, and 5% of all members of a population are subject to
random mutation. Then we apply selection until we again have a population

122 CHAPTER 3. JOIN ORDERING

of a given size. We stop after we have not seen an improvement within the
population for a fixed number of iterations (say 30).

3.4 Hybrid Algorithms

All the algorithms we have seen so far can be combined to result in new ap-
proaches to join ordering. Some of the numerous possibilities have been de-
scribed in the literature. We present them.

3.4.1 Two Phase Optimization

Two phase optimization combines Iterative Improvement with Simulated An-
nealing [452]. For a number of randomly generated initial trees, Iterative Im-
provement is used to find a local minimum. Then Simulated Annealing is start-
ed to find a better plan in the neighborhood of the local minima. The initial
temperature of Simulated Annealing can be lower as is its original variants.

3.4.2 AB-Algorithm

The AB-Algorithm was developed by Swami and Iyer [861, 862]. It builds on
the IKKBZ-Algorithm by resolving its limitations. First, if the query graph
is cyclic, a spanning tree is selected. Second, two different cost functions for
joins (join methods) are supported by the AB-Algorithm: nested loop join and
sort merge join. In order to make the sort merge join’s cost model fit the ASI
property, it is simplified. Third, join methods are assigned randomly before
IKKBZ is called. Afterwards, an iterative improvement phase follows. The
algorithm can be formulated as follows:

AB(Query Graph G)
Input: a query graph G = ({R1, . . . , Rn}, E)
Output: a left-deep join tree

while (number of iterations ≤ n2) {
if G is cyclic take spanning tree of G
randomly attach a join method to each relation

JoinTree = result of IKKBZ

while (number of iterations ≤ n2) {
apply Iterative Improvement to JoinTree

}
}
return best tree found

3.4.3 Toured Simulated Annealing

Lanzelotte, Valduriez, and Zäit introduced toured simulated annealing as a
search strategy useful in distributed databases where the search space is even

3.5. ORDERING ORDER-PRESERVING JOINS 123

larger than in centralized systems [532]. The basic idea is that simulated an-
nealing is called n times with different initial join trees, if n is the number of
relations to be joined. Each join sequence in the set Solutions produced by
GreedyJoinOrdering-3 is used to start an independent run of simulated an-
nealing. As a result, the starting temperature can be decreased to 0.1 times
the cost of the initial plan.

3.4.4 GOO-II

GOO-II appends an Iterative Improvement step to the GOO-Algorithm.

3.4.5 Iterative Dynamic Programming

Iterative Dynamic Programming combines heuristics with dynamic program-
ming in order to overcome the deficiencies of both. It comes in two variants
[515, 806]. The first variant, IDP-1 (see Figure 3.23), first creates all join trees
which contain up to k relations where k is a parameter of the algorithm. After
this step, it selects the cheapest join tree comprising k relations, replaces it by
a new compound relation and starts all over again. The iteration stops, when
only one compound relation representing a join tree for all relations remains in
the ToDo list.

The second variant, IDP-2 (see Figure 3.24), works the other way round.
It first applies a greedy heuristics to build join trees of size up to k. To the
larger subtree it applies dynamic programming to improve it. The result of
the optimized outcome of the greedy algorithm is then encapsulated in a new
compound relation which replaces its constituent relations in the ToDo list. The
algorithm then iterates until only one entry remains in the ToDo list.

Obviously, from these two basic variants several others can be derived. A
systematic investigation of the basic algorithms and their variants is given by
Kossmann and Stocker [515]. It turns out that the most promising variants
exist for IDP-1.

3.5 Ordering Order-Preserving Joins

This section covers an algorithm for ordering order-preserving joins [615]. This
is important for XQuery and other languages that require order-preservation.
XQuery specifies that the result of a query is a sequence. If no unordered or
order by instruction is given, the order of the output sequence is determined
by the order of the input sequences given in the for clauses of the query. If
there are several entries in a for clause or several for clauses, order-preserving
join operators [183] can be a natural component for the evaluation of such a
query.

The order-preserving join operator is used in several algebras in the context
of

• semi-structured data and XML (e.g. SAL [70], XAL [293]),

• OLAP [820], and

124 CHAPTER 3. JOIN ORDERING

IDP-1({R1, . . . , Rn}, k)
Input: a set of relations to be joined, maximum block size k
Output: a join tree

for (i = 1; i <= n; ++i) {
BestTree({Ri}) = Ri;

}
ToDo = {R1, . . . , Rn};
while (|ToDo| > 1) {
k = min(k, |ToDo|);
for (i = 2; i < k; ++i) {

for all S ⊆ ToDo, |S| = i do {
for all O ⊂ S do {
BestTree(S) = CreateJoinTree(BestTree(S \O), BestTree(O));

}
}

}
find V ⊂ ToDo, |V | = k
with cost(BestTree(V)) = min{cost(BestTree(W)) | W ⊂ ToDo, |W | = k};
generate new symbol T;
BestTree({T}) = BestTree(V);
ToDo = (ToDo \ V) ∪ {T};
for all O ⊂ V do delete(BestTree(O));

}
return BestTree({R1, . . . , Rn});

Figure 3.23: Pseudo code for IDP-1

• time series data [544].

We give a polynomial algorithm that produces bushy trees for a sequence of
order-preserving joins and selections. These trees may contain cross products
even if the join graph is connected. However, we apply selections as early as
possible. The algorithm then produces the optimal plan among those who push
selections down. The cost function is a parameter of the algorithm, and we do
not need to restrict ourselves to those having the ASI property. Further, we
need no restriction on the join graph, i.e. the algorithm produces the optimal
plan even if the join graph is cyclic.

Before defining the order-preserving join, we need some preliminaries. The
above algebras work on sequences of sets of variable bindings, i.e. sequences of
unordered tuples where every attribute corresponds to a variable. (See Chap-
ter 7.16 for a general discussion.) Single tuples are constructed using the stan-
dard [·] brackets. Concatenation of tuples and functions is denoted by ◦. The
set of attributes defined for an expression e is defined as A(e). The set of
free variables of an expression e is defined as F(e). For sequences e, we use

3.5. ORDERING ORDER-PRESERVING JOINS 125

IDP-2({R1, . . . , Rn}, k)
Input: a set of relations to be joined, maximum block size k
Output: a join tree

for (i = 1; i <= n; ++i) {
BestTree({Ri}) = Ri;

}
ToDo = {R1, . . . , Rn};
while (|ToDo| > 1) {
// apply greedy algorithm to select a good building block

B = ∅;
for all v ∈ ToDo, do {
B += BestTree({v});

}
do {

find L,R ∈ B
with cost(CreateJoinTree(L,R))

= min{cost(CreateJoinTree(L′,R′)) | L′, R′ ∈ B};
P = CreateJoinTree(L,R));
B = (B \ {L,R}) ∪ {P};

} while (P involves no more than k relations and |B| > 1);
// reoptimize the bigger of L and R,
// selected in the last iteration of the greedy loop

if (L involves more tables than R) {
ReOpRels = relations involved in L;

} else {
ReOpRels = relations involved in R;

}
P = DP-Bushy(ReOpRels);

generate new symbol T;
BestTree({T}) = P;
ToDo = (ToDo \ ReOpRels) ∪ {T};
for all O ⊂ V do delete(BestTree(O));

}
return BestTree({R1, . . . , Rn});

Figure 3.24: Pseudocode for IDP-2

α(e) to denote the first element of a sequence. We identify single element se-
quences with elements. The function τ retrieves the tail of a sequence, and ⊕
concatenates two sequences. We denote the empty sequence by ϵ.

We define the algebraic operators recursively on their input sequences. The
order-preserving join operator is defined as the concatenation of an order-
preserving selection and an order-preserving cross product. For unary oper-
ators, if the input sequence is empty, the output sequence is also empty. For

126 CHAPTER 3. JOIN ORDERING

binary operators, the output sequence is empty whenever the left operand rep-
resents an empty sequence.

The order-preserving join operator is based on the definition of an order-
preserving cross product operator defined as

e1×̂e2 := (α(e1)Âe2)⊕ (τ(e1)×̂e2)

where

e1Âe2 :=

{
ϵ if e2 = ϵ

(e1 ◦ α(e2))⊕ (e1Âτ(e2)) else

We are now prepared to define the join operation on ordered sequences:

e1B̂pe2 := σ̂p(e1×̂e2)

where the order-preserving selection is defined as

σ̂p(e) :=

ϵ if e = ϵ
α(e)⊕ σ̂p(τ(e)) if p(α(e))
σ̂p(τ(e)) else

As usual, selections can be reordered and pushed inside order-preserving
joins. Besides, the latter are associative. The following equivalences formalize
this.

σ̂p1(σ̂p2(e)) = σ̂p2(σ̂p1(e))

σ̂p1(e1B̂p2e2) = σ̂p1(e1)B̂p2e2 if F(p1) ⊆ A(e1)
σ̂p1(e1B̂p2e2) = e1B̂p2 σ̂p1(e2) if F(p1) ⊆ A(e2)
e1B̂p1(e2B̂p2e3) = (e1B̂p1e2)B̂p2e3 if F(pi) ⊆ A(ei) ∪ A(ei+1)

While being associative, the order-preserving join is not commutative, as the
following example illustrates. Given two tuple sequences R1 = ⟨[a : 1], [a : 2]⟩
and R2 = ⟨[b : 1], [b : 2]⟩, we have

R1B̂trueR2 = ⟨[a : 1, b : 1], [a : 1, b : 2], [a : 2, b : 1], [a : 2, b : 2]⟩
R2B̂trueR1 = ⟨[a : 1, b : 1], [a : 2, b : 1], [a : 1, b : 2], [a : 2, b : 2]⟩

Before introducing the algorithm, let us have a look at the size of the search
space. Since the order-preserving join is associative but not commutative, the
input to the algorithm must be a sequence of join operators or, likewise, a
sequence of relations to be joined. The output is then a fully parenthesized
expression. Given a sequence of n binary associative but not commutative
operators, the number of fully parenthesized expressions is (see [208])

P (n) =

{
1 if n = 1∑n−1

k=1 P (k)P (n− k) if n > 1

We have that P (n) = C(n − 1), where C(n) are the Catalan numbers defined
as C(n) = 1

n+1

(
2n
n

)
. Since C(n) = Ω(4n

n3/2), the search space is exponential in
size.

3.5. ORDERING ORDER-PRESERVING JOINS 127

applicable-predicates(R, P)

01 B = ∅
02 foreach p ∈ P
03 IF (F(p) ⊆ A(R))
04 B+ = p
05 return B

Figure 3.25: Subroutine applicable-predicates

The algorithm is inspired by the dynamic programming algorithm for finding
optimal parenthesized expressions for matrix-chain multiplication [208]. The
differences are that we have to encapsulate the cost function and deal with
selections. We give a detailed example application of the algorithm below.
This example illustrates (1) the optimization potential, (2) that cross products
can be favorable, (3) how to plug in a cost function into the algorithm, and (4)
the algorithm itself.

The algorithm itself is broken up into several subroutines. The first is
applicable-predicates (see Fig. 3.25). Given a sequence of relationsRi, . . . , Rj

and a set of predicates, it retrieves those predicates applicable to the result of
the join of the relations. Since joins and selections can be reordered freely, the
only condition for a predicate to be applicable is that all its free variables are
bound by the given relations.

The second subroutine is the most important and intrigued. It fills several
arrays with values in a bottom-up manner. The third subroutine then builds
the query evaluation plan using the data in the arrays.

The subroutine construct-bushy-tree takes as input a sequence R1, . . . , Rn

of relations to be joined and a set P of predicates to be applied. For every
possible subsequence Ri, . . . , Rj , the algorithm finds the best plan to join these
relations. Therefor, it determines some k such that the cheapest plan joins
the intermediate results for Ri, . . . , Rk and Rk+1, . . . , Rj by its topmost join.
For this it is assumed that for all k the best plans for joining Ri, . . . , Rk and
Rk+1, . . . , Rj are known. Instead of directly storing the best plan, we remember
(1) the costs of the best plan for Ri, . . . , Rj for all 1 ≤ i ≤ j ≤ n and (2) the
k where the split takes place. More specifically, the array c[i, j] contains the
costs of the best plan for joining Ri, . . . , Rj , and the array t[i, j] contains the
k such that this best plan joins Ri, . . . , Rk and Rk+1, . . . , Rj with its topmost
join. For every sequence Ri, . . . , Rj , we also remember the set of predicates
that can be applied to it, excluding those that have been applied earlier. These
applicable predicates are contained in p[i, j]. Still, we are not done. All cost
functions we know use some kind of statistics on the argument relation(s) in
order to compute the costs of some operation. Since we want to be generic with
respect to the cost function, we encapsulate the computation of statistics and
costs within functions S0, C0, S1, and C1. The function S0 retrieves statistics
for base relations. The function C0 computes the costs of retrieving (part of) a
base relation. Both functions take a set of applicable predicates as an additional

128 CHAPTER 3. JOIN ORDERING

construct-bushy-tree(R, P)

01 n = |R|
02 for i = 1 to n
03 B =applicable-predicates(Ri, P)
04 P = P \ B
05 p[i, i] = B
06 s[i, i] = S0(Ri,B)
07 c[i, i] = C0(Ri,B)
08 for l = 2 to n
09 for i = 1 to n− l + 1
10 j = i+ l − 1
11 B = applicable-predicates(Ri...j, P)
12 P = P \ B
13 p[i, j] = B
14 s[i, j] = S1(s[i, j − 1], s[j, j],B)
15 c[i, j] =∞
16 for k = i to j − 1
17 q = c[i, k] + c[k + 1, j] + C1(s[i, k], s[k + 1, j],B)
18 IF (q < c[i,j])

19 c[i, j] = q
20 t[i, j] = k

Figure 3.26: Subroutine construct-bushy-tree

extract-plan(R, t, p)

01 return extract-subplan(R, t, p, 1, |R|)

extract-subplan(R, t, p, i, j)

01 IF (j > i)
02 X = extract-subplan(R, t, p, i, t[i, j])
03 Y = extract-subplan(R, t, p, t[i, j] + 1, j)

04 return XB̂p[i,j]Y

05 else
06 return σ̂p[i,i](Ri)

Figure 3.27: Subroutine extract-plan and its subroutine

argument. The function S1 computes the statistics for intermediate relations.
Since the result of joining some relations Ri, . . . , Rj may occur in many different
plans, we compute it only once and store it in the array s. C1 computes the
costs of joining two relations and applying a set of predicates. Below, we show
how concrete (simple) cost and statistics functions can look like.

Given the above, the algorithm (see Fig. 3.26) fills the arrays in a bottom-up
manner by first computing for every base relation the applicable predicates, the

3.5. ORDERING ORDER-PRESERVING JOINS 129

statistics of the result of applying the predicates to the base relation and the
costs for computing these intermediate results, i.e. for retrieving the relevant
part of the base relation and applying the predicates (lines 02-07). Note that
this is not really trivial if there are several index structures that can be applied.
Then computing C0 involves considering different access paths. Since this is an
issue orthogonal to join ordering, we do not detail on it.

After we have the costs and statistics for sequences of length one, we com-
pute the same information for sequences of length two, three, and so on until
n (loop starting at line 08). For every length, we iterate over all subsequences
of that length (loop starting at line 09). We compute the applicable predicates
and the statistics. In order to determine the minimal costs, we have to consider
every possible split point. This is done by iterating the split point k from i to
j − 1 (line 16). For every k, we compute the cost and remember the k that
resulted in the lowest costs (lines 17-20).

The last subroutine takes the relations, the split points (t), and the applica-
ble predicates (p) as its input and extracts the plan. The whole plan is extracted
by calling extract-plan. This is done by instructing extract-subplan to re-
trieve the plan for all relations. This subroutine first determines whether the
plan for a base relation or that of an intermediate result is to be constructed.
In both cases, we did a little cheating here to keep things simple. The plan we
construct for base relations does not take the above-mentioned index structures
into account but simply applies a selection to a base relation instead. Obvi-
ously, this can easily be corrected. We also give the join operator the whole
set of predicates that can be applied. That is, we do not distinguish between
join predicates and other predicates that are better suited for a selection sub-
sequently applied to a join. Again, this can easily be corrected.

Let us have a quick look at the complexity of the algorithm. Given n rela-
tions withm attributes in total and p predicates, we can implement applicable-predicates
in O(pm) by using a bit vector representation for attributes and free variables
and computing the attributes for each sequence Ri, . . . , Rj once upfront. The
latter takes O(n2m).

The complexity of the routine construct-bushy-tree is determined by the
three nested loops. We assume that S1 and C1 can be computed in O(p), which
is quite reasonable. Then, we have O(n3p) for the innermost loop, O(n2) calls to
applicable-predicates, which amounts to O(n2pm), and O(n2p) for calls of
S1. Extracting the plan is linear in n. Hence, the total runtime of the algorithm
is O(n2(n+m)p)

In order to illustrate the algorithm, we need to fix the functions S0, S1, C0

and C1. We use the simple cost function Cout. As a consequence, the array s
simply stores cardinalities, and S0 has to extract the cardinality of a given base
relation and multiply it by the selectivities of the applicable predicates. S1 mul-
tiplies the input cardinalities with the selectivities of the applicable predicates.
We set C0 to zero and C1 to S1. The former is justified by the fact that every
relation must be accessed exactly once and hence, the access costs are equal in

130 CHAPTER 3. JOIN ORDERING

all plans. Summarizing, we define

S0(R,B) := |R|
∏

p∈B
f(p)

S1(x, y,B) := xy
∏

p∈B
f(p)

C0(R,B) := 0

C1(x, y,B) := S1(x, y,B)

where B is a set of applicable predicates and for a single predicate p, f(p)
returns its selectivity.

We illustrate the algorithm by an example consisting of four relationsR1, . . . , R4

with cardinalities |R1| = 200, |R2| = 1, |R3| = 1, |R4| = 20. Besides, we have
three predicates pi,j with F(pi,j) ⊆ A(Ri)∪A(Rj). They are p1,2, p3,4, and p1,4
with selectivities 1/2, 1/10, 1/5.

Let us first consider an example plan and its costs. The plan

((R1B̂p1,2R2)B̂trueR3)B̂p1,4∧p3,4R4

has the costs 240 = 100 + 100 + 40.

For our simple cost function, the algorithm construct-bushy-tree will fill
the array s with the initial values:

s

200

1

1

20

After initilization, the array c has 0 everywhere in its diagonal and the array p
empty sets.

For l = 2, the algorithm produces the following values:

l i j k s[i,j] q current c[i,j] current t[i,j]

2 1 2 1 100 100 100 1

2 2 3 2 1 1 1 2

2 3 4 3 2 2 2 3

For l = 3, the algorithm produces the following values:

l i j k s[i,j] q current c[i,j] current t[i,j]

3 1 3 1 200 101 101 1

3 1 3 2 200 200 101 1

3 2 4 2 2 4 4 2

3 2 4 3 2 3 3 3

For l = 4, the algorithm produces the following values:

3.6. CHARACTERIZING SEARCH SPACES 131

l i j k s[1,4] q current c[1,4] current t[1,4]

4 1 4 1 40 43 43 1

4 1 4 2 40 142 43 1

4 1 4 3 40 141 43 1

where for each k the value of q (in the following table denoted by qk) is deter-
mined as follows:

q1 = c[1, 1] + c[2, 4] + 40 = 0 + 3 + 40 = 43
q2 = c[1, 2] + c[3, 4] + 40 = 100 + 2 + 40 = 142
q3 = c[1, 3] + c[4, 4] + 40 = 101 + 0 + 40 = 141

Collecting all the above t[i, j] values leaves us with the following array as
input for extract-plan:

i \ j 1 2 3 4

1 1 1 1

2 2 3

3 3

4

The function extract-plan merely calls extract-subplan. For the latter,
we give the call hierarchy and the result produced:

000 extract-plan(. . ., 1, 4)

100 extract-plan(. . ., 1, 1)

200 extract-plan(. . ., 2, 4)

210 extract-plan(. . ., 2, 3)

211 extract-plan(. . ., 2, 2)

212 extract-plan(. . ., 3, 3)

210 return (R2B̂trueR3)
220 extract-plan(. . ., 4, 4)

200 return ((R2B̂trueR3)B̂p3,4R4)

000 return (R1B̂p1,2∧p1,4((R2B̂trueR3)B̂p3,4R4))

The total cost of this plan is c[1, 4] = 43.

3.6 Characterizing Search Spaces

3.6.1 Complexity Thresholds

The complexity results presented in Section 3.1.6 show that most classes of join
ordering problems are NP-hard. However, it is quite clear that some instances
of the join ordering problem are simpler than others. For example, consider a
query graph which is a clique in n relations R1, . . . , Rn. Further assume that
each Ri has cardinality 2i and all join selectivities are 1/2 (i.e. fi,j = 1/2 for
all 1 ≤ i, j ≤ n, i ̸= j). Obviously, this problem is easy to optimize although
the query graph is clique. In this section we present some ideas on how the

132 CHAPTER 3. JOIN ORDERING

complexity of instances of the join ordering problem is influenced by certain
parameters.

How can we judge the complexity of a single instance of a join ordering prob-
lem? Using standard complexity theory, for single problem instances we easily
derive an algorithm that works in Θ(1). Hence, we must define other complexity
measures. Consider our introductory join ordering problem. A simple greedy
algorithm that orders relations according to their cardinality produces an op-
timal solution for it. Hence, one possibility to define the problem complexity
would be how far a solution produced by typical heuristics for join ordering
differ from the optimal solution. Another possibility is to use randomized al-
gorithms like iterative improvement of simulated annealing and see how far the
plans generated by them deviate from the optimal plan. These approaches have
the problem that the results may depend on the chosen algorithm. This can
be avoided by using the following approach. For each join ordering problem
instance, we compute the fraction of good plans compared to all plans. There-
for, we need a measure of “good”. Typical examples thereof would be to say a
plan is “good” if it does not deviate more than 10% or a factor of two from the
optimal plan.

If these investigations were readily available, there are certain obvious ben-
efits [511]:

1. The designer of an optimizer can classify queries such that heuristics are
applied where they guarantee success; cases where they are bound to fail
can be avoided. Furthermore, taking into account the vastly different run
time of the different join ordering heuristics and probabilistic optimization
procedures, the designer of an optimizer can choose the method that
achieves a satisfactory result with the least effort.

2. The developer of search procedures and heuristics can use this knowl-
edge to design methods solving hard problems (as exemplified for graph
coloring problems [430]).

3. The investigator of different join ordering techniques is able to (1) con-
sciously design challenging benchmarks and (2) evaluate existing bench-
marks according to their degree of challenge.

The kind of investigation presented in this section first started in the context
of artificial intelligence where a paper by Cheeseman, Kanefsky, and Taylor
[162] spurred a whole new branch of research where the measures to judge
the complexity of problem instances was investigated for many different NP-
complete problems like satisfiability [162, 212, 326, 609], graph coloring [162],
Hamiltonian circuits [162], traveling salesman [162], and constraint satisfaction
[928].

We only present a small fraction of all possible investigations. The restric-
tions are that we do not consider all parameters that possibly influence the
problem complexity, we only consider left-deep trees, and we restrict ourselves
to the cost function Chj. The join graphs are randomly generated. Starting
with a circle, we randomly added edges until a clique is reached. The read-
er is advised to carry out his or her own experiments. Therefor, the following

3.6. CHARACTERIZING SEARCH SPACES 133

pointer into the literature might be useful. Lanzelotte and Valduriez provide an
object-oriented design for search strategies [530]. This allows easy modification
and even the exchange of the plan generator’s search strategy.

Search Space Analysis

The goal of this section is to determine the influence of the parameters on the
search space of left-deep join trees. More specifically, we are interested in how a
variation of the parameters changes the percentage of good solutions among all
solutions. The quality of a solution is measured by the factor its cost deviates
from the optimal permutation. For this, all permutations have to be gener-
ated and evaluated. The results of this experiment are shown in Figures 3.28
and 3.29. Each single curve accumulates the percentage of all permutations
deviating less than a certain factor (given as the label) from the optimum. The
accumulated percentages are given at the y-axes, the connectivity at the x-axes.
The connectivity is given by the number of edges in the join graph. The curves
within the figures are organized as follows. Figure 3.28 (3.29) shows varying
mean selectivity values (relation sizes) and variances where the mean selectivity
values (relation sizes) increase from top to bottom and the variances increase
from left to right.

Note that the more curves are visible and the lower their y-values, the harder
is the problem. We observe the following:

• all curves exhibit a minimum value at a certain connectivity

• which moves with increasing mean values to the right;

• increasing variances does not have an impact on the minimum connectiv-
ity ,

• problems become less difficult with increasing mean values.

These findings can be explained as follows. With increasing connectivity,
the join ordering problem becomes more complex up to a certain point and
then less complex again. To see this, consider the following special though
illustrative case. Assume an almost equal distribution of the costs of all al-
ternatives between the worst case and optimal costs, equal relation sizes, and
equal selectivities. Then the optimization potential worst case/optimum is 1
for connectivity 0 and cliques. In between, there exists a connectivity exhibit-
ing the maximum optimization potential. This connectivity corresponds to the
minimum connectivity of Figures 3.28 and 3.29.

There is another factor which influences the complexity of a single problem
instance. Consider joining n relations. The problem becomes less complex
if after joining i < n relations the intermediate result becomes so small that
the accumulated costs of the subsequent n− i joins are small compared to the
costs of joining the first i relations. Hence, the ordering of the remaining n− i
relations does not have a big influence on the total costs. This is the case
for very small relations, small selectivities, or high connectivities. The greater
selectivities and relation sizes are, the more relations have to be joined to reach
this critical size of the intermediate result. If the connectivity is enlarged, this

134 CHAPTER 3. JOIN ORDERING

critical size is reached earlier. Since the number of selectivities involved in the
first few joins is small regardless of the connectivity, there is a lower limit to the
number of joined relations required to arrive at the critical intermediate result
size. If the connectivity is larger, this point is reached earlier, but there exists
a lower limit on the connectivity where this point is reached. The reason for
this lower limit is that the number of selectivities involved in the joins remains
small for the first couple of relations, independent of their connectivity. These
lines of argument explain subsequent findings, too.

The reader should be aware of the fact that the number of relations joined is
quite small (10) in our experiments. Further, as observed by several researchers,
if the number of joins increases, the number of “good” plans decreases [302, 858].
That is, increasing the number of relations makes the join ordering problem
more difficult.

Figure 3.28: Impact of selectivity on the search space

Figure 3.29: Impact of relation sizes on the search space

Heuristics

For analyzing the influence of the parameters on the performance of heuristics,
we give the figures for four different heuristics. The first two are very simple.
The minSel heuristic selects those relations first of which incident join edges
exhibit the minimal selectivity. The recMinRel heuristic chooses those relations
first which result in the smallest intermediate relation.

We also analyzed the two advanced heuristics IKKBZ and RDC . The IKKBZ
heuristic [520] is based on an optimal join ordering procedure [438, 520] which
is applied to the minimal spanning tree of the join graph where the edges are
labeled by the selectivities. The family of RDC heuristics is based on the rela-
tional difference calculus as developed in [418]. Since our goal is not to bench-
mark different heuristics in order to determine the best one, we have chosen
the simplest variant of the family of RDC based heuristics. Here, the relations
are ordered according to a certain weight whose actual computation is—for
the purpose of this section—of no interest. The results of the experiments are
presented in Figure 3.30.

On a first glance, these figures look less regular than those presented so far.
This might be due to the non-stable behavior of the heuristics. Nevertheless,
we can extract the following observations. Many curves exhibit a peak at a
certain connectivity. Here, the heuristics perform worst. The peak connectivity
is dependent on the selectivity size but not as regular as in the previous curves.
Further, higher selectivities flatten the curves, that is, heuristics perform better
at higher selectivities.

Figure 3.30: Impact of parameters on the performance of heuristics

3.7. DISCUSSION 135

Probabilistic Optimization Procedures

Figure 3.31 shows four pictures corresponding to simulated annealing (SA),
iterative improvement (II), iterative improvement applied to the outcome of
the IKKBZ heuristic (IKKBZ/II) and the RDC heuristic (RDC/II) [418]. The
patterns shown in Figure 3.31 are very regular. All curves exhibit a peak
at a certain connectivity. The peak connectivities typically coincide with the
minimum connectivity of the search space analysis. Higher selectivities result
in flatter curves; the probabilistic procedures perform better. These findings
are absolutely coherent with the search space analysis. This is not surprising,
since the probabilistic procedures investigate systematically —although with
some random influence— a certain part of the search space.

Given a join ordering problem, we can describe its potential search space as
a graph. The set of nodes consists of the set of join trees. For every two join
trees a and b, we add an edge (a, b) if b can be reached from a by one of the
transformation rules used in the probabilistic procedure. Further, with every
node we can associate the cost its corresponding join tree.

Having in mind that the probabilistic algorithms are always in danger of
being stuck in a local minima, the following two properties of the search space
are of interest:

1. the cost distribution of local minima, and

2. the connection cost of low local minima.

Of course, if all local minima are of about the same cost, we do not have to
worry, otherwise we do. It would be very interesting to know the percentage of
local minima that are close to the global minima.

Concerning the second property, we first have to define the connection cost.
Let a and b be two nodes and P be the set of all paths from a to b. The
connection cost of a and b is then defined as minp∈P maxs∈p{cost(s)|s ̸= a, s ̸=
b}. Now, if the connection costs are high, we know that if we have to travel
from one local minima to another, there is at least one node we have to pass
which has high costs. Obviously, this is bad for our probabilistic procedures.
Ioannidis and Kang [453] call a search graph that is favorable with respect to
the two properties a well . Unfortunately, investigating these two properties
of real search spaces is rather difficult. However, Ioannidis and Kang, later
supported by Zhang, succeeded in characterizing cost wells in random graphs
[453, 454]. They also conclude that the search space comprising bushy trees is
better w.r.t. our two properties than the one for left-deep trees.

Figure 3.31: Impact of selectivities on probabilistic procedures

3.7 Discussion

Choose one of dynamic programming, memoization, permutations as the core
of your plan generation algorithm and extend it with the rest of book. ToDo

136 CHAPTER 3. JOIN ORDERING

3.8 Bibliography

ToDo: Oezsu, Meechan [663, 664]

Chapter 4

Database Items, Building
Blocks, and Access Paths

In this chapter we go down to the storage layer and discuss leaf nodes of query
execution plans and plan fragments. We briefly recap some notions, but reading
a book on database implementation might be helpful [403, 316]. Although
alternative storage technologies exist and are being developed [764], databases
are mostly stored on disks. Thus, we start out by introducing a simple disk
model to capture I/O costs. Then, we say some words about database buffers,
physical data organization, slotted pages and tuple identifiers (TIDs), physical
record layout, physical algebra, and the iterator concept. These are the basic
notions in order to start with the main purpose of this section: giving an
overview over the possibilities available to structure the low level parts of a
physical query evaluation plan. In order to calculate the I/O costs of these plan
fragments, a more sophisticated cost model for several kinds of disk accesses is
introduced.

4.1 Disk Drive

Figure 4.1 shows a top and a side view of a typical disk. A disk consists of
several platters that rotate around the spindle at a fixed speed. The platters
are coated with a magnetic material on at least one of their surfaces. All coated
sides are organized into the same pattern of concentric circles. One concentric
circle is called a track. All the tracks residing exactly underneath and above
each other form a cylinder. We assume that there is only one read/write head
for every coated surface.1 All tracks of a cylinder can be accessed with only
minor adjustments at the same time by their respective heads. By moving
the arm around the arm pivot, other cylinders can be accessed. Each track is
partitioned into sectors. Sectors have a disk specific (almost) fixed capacity of
512 B. The read and write granularity is a sector. Read and write accesses take
place while the sector passes under the head.

The top view of Figure 4.1 shows that the outer sectors are longer than the

1This assumption is valid for most but not all disks.

137

138CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

arm
pivot

arm

assembly

top viewb.

platter

arm head spindle

cylinder

sector track

head

arm

side viewa.

Figure 4.1: Disk drive assembly

inner sectors. The highest density (e.g. in bits per centimeter) at which bits
can be separated is fixed for a given disk. For storing 512 B, this results in a
minimum sector length which is used for the tracks of the innermost cylinder.
Thus, since sectors on outer tracks are longer, storage capacity is wasted there.
To overcome this problem, disks have a varying number of sectors per track.
(This is where the picture lies.) Therefore, the cylinders are organized into
zones. Every zone contains a fixed number of consecutive cylinders, each having
a fixed number of sectors per track. Between zones, the number of sectors per
track varies. Outer zones have more sectors per track than inner zones. Since
the platters rotate with a fixed angular speed, sectors of outer cylinders can be
read faster than sectors of inner cylinders. As a consequence, the throughput
for reading and writing outer cylinders is higher than for inner cylinders.

Assume that we sequentially read all the sectors of all tracks of some con-
secutive cylinders. After reading all sectors of some track, we must proceed to
the next track. If it is contained in the same cylinder, then we must (simply)
use another head: a head switch occurs. Due to calibration, this takes some
time. Thus, if all sectors start at the same angular position, we come too late
to read the first sector of the next track and have to wait. To avoid this, the
angular start positions of the sectors of tracks in the same cylinder are skewed
such that this track skew compensates for the head switch time. If the next
track is contained in another cylinder, the heads have to switch to the next
cylinder. Again, this takes time and we miss the first sector if all sectors of a
surface start at the same angular positions. Cylinder skew is used such that
the time needed for this switch does not make us miss to start reading the next
sector. In general, skewing works in only one direction.

A sector can be addressed by a triple containing its cylinder, head (surface),
and sector number. This triple is called the physical address of a sector. How-
ever, disks are accessed using logical addresses. These are called logical block
numbers (LBN) and are consecutive numbers starting with zero. The disk in-
ternally maps LBNs to physical addresses. This mapping is captured in the
following table:

4.1. DISK DRIVE 139

Host sends
command

Controller
decodes it

Rotational
latency

Data transfer off mechanism

Status message to host

Read service time for disk 1

Read service time for disk 2

Disk 3

Disk 2

Disk 1

SCSI bus

Seek

Data transfer to host

Time

Figure 4.2: Disk drive read request processing

cylinder track LBN number of sectors per track

0 0 0 573
1 573 573

.
5 2865 573

1 0 3438 573
.

15041 0 35841845 253
.

However, this ideal view is disturbed by the phenomenon of bad blocks. A
bad block is one with a defect and it cannot be read or written. After a block
with a certain LBN is detected to be bad, it is assigned to another sector. The
above mapping changes. In order to be able redirect LBNs, extra space on the
disk must exist. Hence, some cylinders, tracks, and sectors are reserved for this
purpose. They may be scattered all over the platters. Redirected blocks cause
hiccups during sequential read.

Building (see e.g. [646]) and modeling (see e.g. [586, 750, 811, 812, 880, 926])
disk drives is challenging. Whereas the former is not really important when
building query compiler, the latter is, as we have to attach costs to query eval-
uation plans. These costs reflect the amount of time we occupy the resource
disk. Since disks are relatively slow, they may become the bottleneck of a
database server. Modeling and minimizing disk access (time) is thus an im-
portant topic. Consider the case where we want to read a block from a SCSI
disk. Simplified, the following actions take place and take their time (see also
Fig. 4.2):

1. The host sends the SCSI command.

2. The disk controller decodes the command and calculates the physical
address.

140CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

3. During the seek the disk drive’s arm is positioned such that the accord-
ing head is correctly placed over the cylinder where the requested block
resides. This step consists of several phases.

(a) The disk controller accelerates the arm.

(b) For long seeks, the arm moves with maximum velocity (coast).

(c) The disk controller slows down the arm.

(d) The disk arm settles for the desired location. The settle times differ
for read and write requests. For reads, an aggressive strategy is used.
If, after all, it turns out that the block could not be read correctly,
we can just discard it. For writing, a more conservative strategy is
in order.

4. The disk has to wait until the sector where the requested block resides
comes under the head (rotation latency).

5. The disk reads the sector and transfers data to the host.

6. Finally, it sends a status message.

Note that the transfers for different read requests are interleaved. This is pos-
sible since the capacity of the SCSI bus is higher than the read throughput of
the disk. Also note that we did not mention the operating system delay and
congestions on the SCSI bus.

Disk drives apply several strategies to accelerate the above-mentioned round-
trip time and access patterns like sequential read. Among them are caching,
read-ahead, and command queuing. (discuss interleaving?)ToDo

The seek and rotation latency times highly depend on the head’s position
on the platter surface. Let us consider seek time. A good approximation of the
seek time where d cylinders have to be travelled is given by

seektime(d) =

{
c1 + c2

√
d d <= c0

c3 + c4d d > c0

where the constants ci are disk-specific. The constant c0 indicates the maximum
number of cylinders where no coast takes place: seeking over a distance of more
than c0 cylinders results in a phase where the disk arm moves with maximum
velocity.

For disk accesses, the database system must be able to estimate the time
they take to be executed. First of all, we need the parameters of the disk. It
is not too easy to get hold of them, but we can make use of several tools to
extract them from a given disk [243, 311, 866, 771, 938, 939]. However, then we
have a big problem: when calculating I/O costs, the query compiler has no idea
where the head will be when the query evaluation plan emits a certain read (or
write) command. Thus, we have to find another solution. In the following, we
will discuss a rather simplistic cost model that will serve us to get a feeling for
disk behavior. Later, we develop a more realistic model (Section 4.17).

The solution is rather trivial: we sum up all command sending and inter-
preting times as well the times for positioning (seek and rotation latency) which

4.1. DISK DRIVE 141

form by far the major part. Let us call the result latency time. Then, we assume
an average latency time. This, of course, may result in large errors for a single
request. However, on average, the error can be as “low” as 35% [750]. The next
parameter is the sustained read rate. The disk is assumed to be able to deliver
a certain amount of bytes per second while reading data stored consecutively.
Of course, considering multi-zone disks, we know that this is oversimplified,
but we are still in our simplistic model. Analogously, we have a sustained write
rate. For simplicity, we will assume that this is the same as the sustained read
rate. Last, the capacity is of some interest. A hypothetical disk (inspired by
disks available in 2004) then has the following parameters:

Model 2004

Parameter Value Abbreviated Name

capacity 180 GB Dcap
average latency time 5 ms Dlat
sustained read rate 100 MB/s Dsrr
sustained write rate 100 MB/s Dswr

The time a disk needs to read and transfer n bytes is then approximated by
Dlat + n/Dsrr. Again, this is overly simplistic: (1) due to head switches and
cylinder switches, long reads have lower throughput than short reads and (2)
multiple zones are not modelled correctly. However, let us use this very sim-
plistic model to get some feeling for disk costs.

Database management system developers distinguish between sequential
I/O and random I/O. For sequential I/O, there is only one positioning at the
beginning and then, we can assume that data is read with the sustained read
rate. For random I/O, one positioning for every unit of transfer—typically a
page of say 8 KB—is assumed. Let us illustrate the effect of positioning by a
small example. Assume that we want to read 100 MB of data stored consecu-
tively on a disk. Sequential read takes 5 ms plus 1 s. If we read in blocks of
8 KB where each block requires positioning then reading 100 MB takes 65 s.

Assume that we have a relation of about 100 MB in size, stored on a disk,
and we want to read it. Does it take 1 s or 65 s? If the blocks on which it is
stored are randomly scattered on disk and we access them in a random order,
65 s is a good approximation. So let us assume that it is stored on consecutive
blocks. Assume that we read in chunks of 8 KB. Then,

• other applications,

• other transactions, and

• other read operations of the same query evaluation plan

could move the head away from our reading position. (Congestion on the SCSI
bus may also be problem.) Again, we could be left with 65 s. Reading the
whole relation with one read request is a possibility but may pose problems
to the buffer manager. Fortunately, we can read in chunks much smaller than
100 MB. Consider Figure 4.3. If we read in chunks of 100 8 KB blocks we are
already pretty close to one second (within a factor of two).

142CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

 1

 2

 4

 8

 16

 32

 64

 1 4 16 64 256 1024

Figure 4.3: Time to read 100 MB from disk (depending on the number of 8 KB
blocks read at once)

4.1. DISK DRIVE 143

Note that the interleaving of actions does not necessarily mean a negative
impact. This depends on the point of view, i.e. what we want to optimize. If we
want to optimize response time for a single query, then obviously the impact of
concurrent actions is negative. If, however, we want to optimize resource (here:
disk) usage, concurrent actions might help. ToDo?

There are two important things to learn here. First, sequential read is much
faster than random read. Second, the runtime system should secure sequential
read. The latter point can be generalized: the runtime system of a database
management system has, as far as query execution is concerned, two equally
important tasks:

• allow for efficient query evaluation plans and

• allow for smooth, simple, and robust cost functions.

Typical measures on the database side are

• carefully chosen physical layout on disk
(e.g. cylinder or track-aligned extents [772, 773, 770], clustering),

• disk scheduling, multi-page requests
[228, 458, 781, 782, 789, 807, 838, 930, 937],

• (asynchronous) prefetching,

• piggy-back scans,

• buffering (e.g. multiple buffers, replacement strategy from [71] to [600]),
and last but not least

• efficient and robust algorithms for algebraic operators [347].

Let us take yet another look at it. 100 MB can be stored on 12800 8 KB
pages. Figure 4.4 shows the time to read n random pages. In our simplistic cost
model, reading 200 pages randomly costs about the same as reading 100 MB
sequentially. That is, reading 1/64th of 100 MB randomly takes as long as
reading the 100 MB sequentially. Let us denote by a the positioning time, s
the sustained read rate, p the page size, and d some amount of consecutively
stored bytes. Let us calculate the break-even point

n ∗ (a+ p/s) = a+ d/s

n = (a+ d/s)/(a+ p/s)

= (as+ d)/(as+ p)

a and s are disk parameters and, hence, fixed. For a fixed d, the break-even
point depends on the page size. This is illustrated in Figure 4.5. The x-axis is
the page size p in multiples of 1 K and the y-axis is (d/p)/n for d = 100 MB.

For sequential reads, the page size does not matter. (Be aware that our
simplistic model heavily underestimates sequential reads.) For random reads,

144CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

Figure 4.4: Time needed to read n random pages

4.1. DISK DRIVE 145

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64

Figure 4.5: Break-even point in fraction of total pages depending on page size

146CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

as long as a single page is read, it matters neither: reading a single page of 1 KB
lasts 5.0097656 ms, for an 8 KB page the number is 5.0781250 ms. From all
this, we could draw the conclusion that the larger the page the better. However,
this is only true for the disk, not, e.g., for the buffer or the SCSI bus. If we need
to access only 500 B of a page, then the larger the page the higher the fraction
that is wasted. This is not as severe as it sounds. Other queries or transactions
might need other parts of the page during a single stay in the buffer. Let us
call the fraction of the page that is read by some transaction during a stay in
the buffer by utilization. Obviously, the higher the utilization the better is our
usage of the main memory in which the buffer resides. For smaller pages, the
utilization is typically higher than for larger pages. The frequency by which
pages are used is another factor. [367, 368].

Excursion. Consider the root page of a B-tree. It is accessed quite frequently
and most of its parts will be used, no matter how large it is. Hence, utilization
is always good. Thus, the larger the root page of a B-tree the better. On the
other hand, consider a leaf page of a B-tree that is much bigger than main
memory. During a single stay of it, only a small fraction of the page will be
used. That is, smaller leaf pages are typically better. By converting everything
to money instead of time, Gray and Graefe [367] as well as Lomet [568] come
to the conclusion that a page size between 8 and 16 KB was a good choice at
the end of the last century.

For the less simplistic model of disk access costs developed in Section 4.17,
we need to describe a disk drive by a set of parameters. These parameters are
summarized in Table 4.1.

Let us close this section by giving upper bounds on seek time and rotational
latency. Qyang proved the following theorem which gives a tight upper bound
of disk seek time if several cylinders of a consecutive range of cylinders have to
be visited [705].

Theorem 4.1.1 (Qyang) If the disk arm has to travel over a region of C
cylinders, it is positioned on the first of the C cylinders and has to stop at s−1
of them, then sDseek(C/s) is an upper bound for the seek time.

The time required for s consecutive sectors in a track of zone i to pass by
the head is

Drot(s, i) = sDZscan(i) = s
Drot

DZspt(i)
(4.1)

A trivial upper bound for the rotational delay is a full rotation.

4.2 Database Buffer

The database buffer

1. is a finite piece of memory,

2. typically supports a limited number of different page sizes (mostly one or
two),

4.3. PHYSICAL DATABASE ORGANIZATION 147

Dcyl total number of cylinders
Dtrack total number of tracks
Dsector total number of sectors
Dtpc number of tracks per cylinder (= number of surfaces)

Dcmd command interpretation time
Drot time for a full rotation
Drdsettle time for settle for read
Dwrsettle time for settle for write
Dhdswitch time for head switch

DZone total number of zones
DZcyl(i) number of cylinders in zone i
DZspt(i) number of sectors per track in zone i
DZspc(i) number of sectors per cylinder in zone i (= DtpcDZspt(i))
DZscan(i) time to scan a sector in zone i (= Drot/DZspt(i))

Davgseek average seek costs
Dc0 parameter for seek cost function
Dc1 parameter for seek cost function
Dc2 parameter for seek cost function
Dc3 parameter for seek cost function
Dc4 parameter for seek cost function

Dseek(d) cost of a seek of d cylinders

Dseek(d) =

{
Dc1 +Dc2

√
d if d ≤ Dc0

Dc3 +Dc4d if d > Dc0

Drot(s, i) rotation cost for s sectors of zone i (= sDZscan(i))

Table 4.1: Disk drive parameters and elementary cost functions

3. is often fragmented into several buffer pools,

4. each having a replacement strategy (typically enhanced by hints).

Given the page identifier, the buffer frame is found by a hashtable lookup.
Accesses to the hash table and the buffer frame need to be synchronized. Before
accessing a page in the buffer, it must be fixed. These points account for the
fact that the costs of accessing a page in the buffer are, therefore, greater than
zero.

4.3 Physical Database Organization

We call everything that is stored in the database and relevant for answering
queries a database item. Let us exclude meta data. In a relational system,
a database item can be a relation, a fragment of a relation (if the relation is
horizontally or vertically fragmented), a segment, an index, a materialized view,

148CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

or an index on a materialized view. In object-oriented databases, a database
item can be the extent of a class, a named object, an index and so forth. In
XML databases, a database item can be a named document, a collection of
documents, or an index. Access operations to database items form the leaves
of query evaluation plans.

Partition

Segment

Page

contains

consists of

Record

stores

Partition

Segment

Page

contains

consists of

Record

stores

Relation

Fragment

fragmented

contains

Tuplerepresented

mapped

1

N

1

1

M

N

1

N

N 1

M

N

N

N

Figure 4.6: Physical organization of a relational database

The physical algebra implemented in the query execution engine of some
runtime systems allow to access database items. Since most database items
consist of several data items (tuples, objects, documents), these access oper-
ations produce a stream of data items. This kind of collection-valued access
operation is called a scan. Consider the simple query

select *
from Student

This query is valid only if the database item (relation) Student exists. It could

4.3. PHYSICAL DATABASE ORGANIZATION 149

be accessible via a relation scan operation rscan(Student). However, in
reality we have to consider the physical organization of the database.

Figure 4.6 gives an overview of how relations can be stored in a relational
database system. Physical database items can be found on the left-hand side,
logical database items on the right-hand side. A fraction of a physical disk is
a partition. It can be an operating system file or a raw partition. A partition
is organized into several segments. A segment consists of several pages. The
pages within a segment are typically accessible by a non-negative integer in
[0, n[, where n is the number of pages of the segment2. Iterative access to all
pages of a segment is typically possible. The access is called a scan. As there
are several types of segments (e.g. data segments, index segments), several kinds
of scans exist. Within a page, physical records are stored. Each physical record
represents a (part of a) tuple of a fragment of a relation.

Fragments are mapped to segments and relations are partitioned into frag-
ments. In the simplest and most common organization, every relation has only
one fragment with a one-to-one mapping to segments, and for every tuple there
exists exactly one record representing only this tuple. Hence, both of relation-
ships mapped and represented are one-to-one. However, this organization does
not scale well. A relation could be larger than a disk. Even if a large relation,
say 180 GB fits on a disk, scanning it takes half an hour (Model 2004). Hori-
zontal partitioning and allocation of the fragments on several disks reduces the
scan time by allowing for parallelism. Vertical partitioning is another means of
reducing I/O [206]. Here, a tuple is represented by several physical records, each
one containing a subset of the tuple’s attributes. Since the relationship mapped
is N:M, tuples from different relations can be stored in the same segment. Fur-
thermore, in distributed database systems some fragments might be stored re-
dundantly at different locations to improve access times [136, 514, 706, 665].
Some systems support clustering of tuples of different relations. For exam-
ple, department tuples can be clustered with employee tuples such that those
employees belonging to the department are close together and close to their
department tuple. Such an organization speeds up join processing.

To estimate costs, we need a model of a segment. We assume an extent-
based implementation. That is, a segment consists of several extents3. Each
extent occupies consecutive sectors on disk. For simplicity, we assume that
whole cylinders belong to a segment. Then, we can model segments as follows.
Each segment consists of a sequence of extents. Each extent is stored on con-
secutive cylinders. Cylinders are exclusively assigned to a segment. We then
describe each extent j as a pair (Fj , Lj) where Fj is the first and Lj the last
cylinder of a consecutive sequence of cylinders. A segment can then be described
by a sequence of such pairs. We assume that these pairs are sorted in ascending
order. In such a description, an extent may include a zone boundary. Since cost
functions are dependent on the zone, we break up cylinder ranges that are not
contained in a single zone. The result can be described by a sequence of triples

2This might not be true. Alternatively, the pages of a partition can be consecutively
numbered.

3Extents are not shown in Fig. 4.6. They can be included between Partitions and Segments.

150CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

827

273 827

1

273 2

Figure 4.7: Slotted pages and TIDs

(Fi, Li, zi) where Fi and Li mark a range of consecutive cylinders in a zone zi.
Although the zi’s can be inferred from the cylinder numbers, we include them
for clarity. Also of interest are the total number of sectors in a segment and the
number of cylinders Scpe(i) in an extent i. Summarizing, we describe a segment
by the parameter given in Table 4.2.

Sext number of extents in the segment

Ssec total number of sectors in the segment (=
∑Sext

i=1 Scpe(i)DZspc(Szone(i)))
Sfirst(i) first cylinder in extent i
Slast(i) last cylinder in extent i
Scpe(i) number of cylinders in extent i (= Slast(i)− Sfirst(i) + 1)
Szone(i) zone of extent i

Table 4.2: Segment parameters

4.4 Slotted Page and Tuple Identifier (TID)

Let us briefly review slotted pages and the concept of tuple identifiers (TIDs)
(see Figure 4.7) [42, 41, 569, 845]. Sometimes, record identifer or row identifier
(RID) is used in the literature. A TID consists of (at least) two parts. The
first part identifies a page, the second part a slot on a slotted page. The slot
contains—among other things, e.g. the record’s size—a (relative) pointer to the
actual record. This way, the record can be moved within the page without
invalidating its TID. When a record grows beyond the available space, it is
moved to another page and leaves a forward pointer (again consisting of a page
and a slot identifier) in its original position. This happened to the TID [273, 1]
in Figure 4.7. If the record has to be moved again, the forward pointer is
adjusted. This way, at most two page accesses are needed to retrieve a record,
given its TID. For evaluating the costs of record accesses, we will assume that

4.5. PHYSICAL RECORD LAYOUTS 151

827

273 827

1

273 2

Figure 4.8: Various physical record layouts

the fraction of moved records is known.

4.5 Physical Record Layouts

A physical record represents a tuple, object, or some other logical entity or
fraction thereof. In case it represents a tuple, it consists of several fields, each
representing the value of an attribute. These values can be integers, floating
point numbers, or strings. In case of object-oriented or object-relational sys-
tems, the values can also be of a complex type. Tuple identifiers are also possible
as attribute values [731]. This can, for example, speed up join processing.

In any case, we can distinguish between types whose values all exhibit the
same fixed length and those whose values may vary in length. In a physical
record, the values of fixed-length attributes are concatenated and the offset
from the beginning of the record to the value of some selected attribute can
be inferred from the types of the values preceding it. This differs for values
of varying length. Here, several encodings are possible. Some simple ones are
depicted in Figure 4.8. The topmost record encodes varying length values as a
sequence of pairs of the form [size, value]. This encoding has the disadvantage
that access to an attribute of varying length is linear in the number of those
preceding it. This disadvantage is avoided in the solution presented in the
middle. Instead of storing the sizes of the individual values, there is an array
containing relative offsets into the physical record. They point to the start of
the values. The length of the values can be inferred from these offsets and,
in case of the last value, from the total length of the physical record, which is
typically stored in its slot. Access to a value of varying size is now simplified to
an indirect memory access plus some length calculations. Although this might

152CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

be cheaper than the first solution, there is still a non-negligible cost associated
with an attribute access.

The third physical record layout can be used to represent compressed at-
tribute values and even compressed length information for parts of varying size.
Note that if fixed size fields are compressed, their length becomes varying. Ac-
cess to an attribute now means decompressing length/offset information and
decompressing the value itself. The former is quite cheap: it boils down to an
indirect memory access with some offset taken from an array [921]. The cost
of the latter depends on the compression scheme used. It should be clear that
accessing an attribute value now is even more expensive. To make the costs of
an attribute access explicit was the sole purpose of this small section.

Remark Westmann et al. discuss an efficient implementation of compres-
sion and evaluate its performance [921]. Yiannis and Zobel report on experi-
ments with several compression techniques used to speed up the sort operator.
For some of them, the CPU usage is twice as large [959].

4.6 Physical Algebra (Iterator Concept)

Physical algebraic operators are mostly implemented as iterators. This means
that they support the the interface operations open, next, and close. With
open, the stream of items (e.g. tuples) is initialized. With next, the next item
on the stream is fetched. When no more items are available, e.g. next returns
false, close can be called to clean up things. The iterator concept is explained
in many text books (e.g. [316, 403, 484]) and the query processing survey by
Graefe [347]. This basic iterator concept has been extended to better cope
with nested evaluation by Westmann in his thesis [919], Westmann et al. [921],
and Graefe [351]. The two main issues are separation of storage allocation and
initialization, and batched processing. The former splits open into resource
allocation, initialization of the operator, and initialization of the iterator.

4.7 Simple Scan

Let us come back to the scan operations. A logical operation for scanning rela-
tions (which could be called rscan) is rarely supported by relational database
management systems. Instead, they provide (physical) scans on segments. Since
a (data) segment is sometimes called file, the correct plan for the above query
is often denoted by fscan(Student). Several assumptions must hold: the
Student relation is not fragmented, it is stored in a single segment, the name
of this segment is the same as the relation name, and no tuples from other
relations are stored in this segment. Until otherwise stated, we will assume
that relations are not partitioned, are stored in a single segment and that the
segment can be inferred from the relation’s name. Instead of fscan(Student),
we could then simply use Student to denote leaf nodes in a query execution
plan. If we want to use a variable that is bound subsequently to each tuple in
a relation, the query

select *

4.8. SCAN AND ATTRIBUTE ACCESS 153

from Student

can be expressed as Student[s] instead of Student. In this notation, the output
stream contains tuples having a single attribute s bound to a tuple. Physically,
s will not hold the whole tuple but, for example, a pointer into the buffer where
the tuple can be found. An alternative is a pointer to a slot of a slotted page
contained in the buffer.

A simple scan is an example for a building block . In general, a building
block is something that is used as a bottommost operator in a query evaluation
plan. Hence, every leaf node of a query evaluation plan is a building block or
a part thereof. This is not really a sharp definition, but is sometimes useful
to describe the behavior of a query compiler: after their determination, it will
leave building blocks untouched even if reorderings are hypothetically possible.
Although a building block can be more than a leaf node (scan) of a query
evaluation plan, it will never include more than a single database item. As
soon as more database items are involved, we use the notion of access path, a
term which will become more precise later on when we discuss index usage.

The disk access costs for a simple scan can be derived from the considera-
tions in Section 4.1 and Section 4.17.

4.8 Scan and Attribute Access

Strictly speaking, a plan like σage>30(Student[s]) is invalid, since the tuple
stream produced by Student[s] contains tuples with a single attribute s. We
have a choice. Either we assume that attribute access takes place implicitly, or
we make it explicit. Whether this makes sense or not depends on the database
management system for which we generate plans. Let us discuss the advantages
of explicit attribute retrieval. Assume s.age retrieves the age of a student.
Then we can write σs.age>30(Student[s]), where there is some non-neglectable
cost for s.age. The expression σs.age>30∧s.age<40(Student[s]) executes s.age

twice. This is a bad idea. Instead, we would like to retrieve it once and reuse
it later.

This purpose is well-served by the map operator (χ). It adds new attributes
to a given tuple and is defined as

χa1:e1,...,an:en(e) := {t ◦ [a1 : c1, . . . , an : cn]|t ∈ e, ci = ei(t) ∀ (1 ≤ i ≤ n)}

where ◦ denotes tuple concatenation and the ai must not be in A(e). (Remem-
ber that A(e) is the set of attributes produced by e.) Every input tuple t is
extended by new attributes ai, whose values are computed by evaluating the
expression ei, in which free variables (attributes) are bound to the attributes
(variables) provided by t.

The above problem can now be solved by

σage>30∧age<40(χage:s.age(Student[s])).

154CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

In general, it is beneficial to load attributes as late as possible. The latest point
at which all attributes must be read from the page is typically just before a
pipeline breaker4.

To see why this is useful, consider the simple query

select name
from Student
where age > 30

The plan

Πn(χn:s.name(σa>30(χa:s.age(Student[s]))))

makes use of this feature, while

Πn(σa>30(χn:s.name,a:s.age(Student[s])))

does not. In the first plan the name attribute is only accessed for those students
with age over 30. Hence, it should be cheaper to evaluate. If the database
management system does not support this selective access mechanism, we often
find the scan enhanced by a list of attributes that is projected and included in
the resulting tuple stream.

In order to avoid copying attributes from their storage representation to
some main memory representation, some database management systems apply
another mechanism. They support the evaluation of some predicates directly
on the storage representation. These are boolean expressions consisting of sim-
ple predicates of the form Aθc for attributes A, comparison operators θ, and
constants c. Instead of a constant, c could also be the value of some attribute
or expression thereof given that it can be evaluated before the access to A.

Predicates evaluable on the disk representation are called SARGable where
SARG is an acronym for search argument . Note that SARGable predicates
may also be good for index lookups. Then they are called index SARGable.
In case they can not be evaluated by an index, they are called data SARGable
[784, 863, 322].

Since relation or segment scans can evaluate predicates, we have to extend
our notation for scans. Let I be a database item like a relation or segment.
Then, I[v; p] scans I, binds each item in I successively to v and returns only
those items for which p holds. I[v; p] is equivalent to σp(I[v]), but cheaper to
evaluate. If p is a conjunction of predicates, the conjuncts should be ordered
such that the attribute access cost reductions described above are reflected
(for details see Chapter ??). Syntactically, we express this by separating the
predicates by a comma as in Student[s; age > 30, name like ‘%m%′]. If we want
to make a distinction between SARGable and non-SARGable predicates, we
write I[v; ps; pr], with ps being the SARGable predicate and pr a non-SARGable
predicate. Additional extensions like a projection list are also possible.

4The page on which the physical record resides must be fixed until all attributes are loaded.
Hence, an earlier point in time might be preferable.

4.9. TEMPORAL RELATIONS 155

4.9 Temporal Relations

Scanning a temporal relation or segment also makes sense. Whenever the result
of some (partial) query evaluation plan is used more than once, it might be
worthwhile to materialize it in some temporary relation. For this purpose, a
tmp operator evaluates its argument expression and stores the result relation in
a temporary segment. Consider the following example query.

select e.name, d.name
from Emp e, Dept d
where e.age > 30 and e.age < 40 and e.dno = d.dno

It can be evaluated by

Dept[d]Bnl
e.dno=d.dno σe.age>30∧e.age<40(Emp[d]).

Since the inner (right) argument of the nested-loop join is evaluated several
times (once for each department), materialization may pay off. The plan then
looks like

Dept[d]Bnl
e.dno=d.dno Tmp(σe.age>30∧e.age<40(Emp[d])).

If we choose to factorize and materialize a common subexpression, the query
evaluation plan becomes a DAG. Alternatively, we could write a small “pro-
gram” that has some statements materializing some expressions which are then
used later on. The last expression in a program determines its result. For our
example, the program looks as follows.

1. Rtmp = σe.age>30∧e.age<40(Emp[d]);

2. Dept[d]Bnl
e.dno=d.dno Rtmp[e]

The disk costs of writing and reading temporary relations can be calculated
using the considerations of Section 4.1.

4.10 Table Functions

A table function is a function that returns a relation [576]. An example is
Primes(int from, int to), which returns all primes between from and to,
e.g. via a sieve-method. It can be used in any place where a relation name can
occur. The query

select *
from TABLE(Primes(1,100)) as p

returns all primes between 1 and 100. The attribute names of the resulting
relation are specified in the declaration of the table function. Let us assume
that for Primes a single attribute prime is specified. Note that table func-
tions may take parameters. This does not pose any problems, as long as we

156CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

know that Primes is a table function and we translate the above query into
Primes(1, 100)[p]. Although this looks exactly like a table scan, the implemen-
tation and cost calculations are different.

Consider the following query where we extract the years in which we expect
a special celebration of Anton’s birthday.

select *
from Friends f,

TABLE(Primes(
CURRENT YEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p

where f.name = ‘Anton’

The result of the table function depends on our friend Anton. Hence, a join
is no solution. Instead, we have to introduce a new kind of join, the d-join
where the d stands for dependent. It is defined as

R < S >= {t ◦ s|t ∈ T, s ∈ S(t)}.

The above query can now be evaluted as

χb:EXTRACT Y EAR(f.birthday)+100(σf.name=‘Anton′(Friends[f])) < Primes(c, b)[p] >

where we assume that some global entity c holds the value of CURRENT YEAR.
Let us do the above query for all friends. We just have to drop the where

clause. Obviously, this results in many redundant computations of primes. At
the SQL level, using the birthday of the youngest friend is beneficial:

select *
from Friends f,

TABLE(Primes(
CURRENT YEAR, (select max(birthday) from Friends) + 100)) as p

where p.prime ≥ f.birthday

At the algebraic level, this kind of optimizations will be considered in Section ??.
Things can get even more involved if table functions can consume and pro-

duce relations, i.e. arguments and results can be relations.ToDo?
Little can be said about the disk costs of table functions. They can be zero

if the function is implemented such that it does not access any disks (files stored
there), but it can also be very expensive if large files are scanned each time it is
called. One possibility is to let the database administrator specify the numbers
the query optimizer needs. However, since parameters are involved, this is
not really an easy task. Another possibility is to measure the table function’s
behavior whenever it is executed, and learn about its resource consumption.

4.11 Indexes

There exists a plethora of different index structures. In the context of relational
database management systems, the most versatile and robust index is the B-
tree or variants/improvements thereof (e.g. [?]). It is implemented in almost

4.11. INDEXES 157

Figure 4.9: Clustered vs. non-clustered index

every commercial database management system. Some support hash-indexes
(e.g. [?]). Other data models or specific applications need specialized indexes.
There exist special index structures for indexing path expressions in object-
oriented databases (e.g. [?]) and XML databases (e.g. [?]). Special purpose
indexes include join indexes (e.g. [401, 892]) multi-dimensional indexes (e.g. [?]),
variant (projection) indexes [651], small materialized aggregates [614], bitmap
indexes [?], and temporal indexes (e.g. [?]). We cannot discuss all indexes and
their exploitations for efficient query evaluation. This fills more than a single
book. Instead, we concentrate on B-tree indexes. In general, a B-tree can be
used to index several relations. We only discuss cases where B-trees index a
single relation.

The search key (or key for short) of an index is the sequence of attributes
of the indexed relation over which the index is defined. A key is a simple key if
it consists of a single attribute. Otherwise, it is a complex key . Each entry in
the B-tree’s leaf page consists of pairs containing the key values and a sequence
of tuple identifiers (typically sorted by increasing page number). Every tuple
with a TID in this list satisfies the condition that its indexed attribute’s values
are equal to the key values. If for every sequence of key values there is at most
one such tuple, we have a unique index, otherwise a non-unique index .

The leaf entries may contain values from additional (non-key) attributes.
Then we call the index attribute data added and the additional attributes data
attributes. If the index contains all attributes of the indexed relation—in its
key or data attributes—storing the relation is no longer necessary. The result is
an index-only relation. In this case, the concept of tuple identifiers is normally
no longer used since tuples can now be moved frequently, e.g. due to a leaf page
split. This has two consequences. First, the data part does not longer contain
the TID. Second, other indexes on the index-only relation cannot have tuple
identifiers in their data part either. Instead, they use the key of the index-only
relation to uniquely reference a tuple. For this to work, we must have a unique
index.

B-trees can be either clustered or non-clustered indexes. In a clustered index,
the tuple identifiers in the list of leaf pages are ordered according to their page

158CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

numbers. Otherwise, it is a non-clustered index5. Figure 4.9 illustrates this.
Range queries result in sequential access for clustered indexes and in random
access for non-clustered indexes.

4.12 Single Index Access Path

4.12.1 Simple Key, No Data Attributes

Consider the exact match query

select name
from Emp
where eno = 1077

If there exists a unique index on the key attribute eno, we can first access the
index to retrieve the TID of the employee tuple satisfying eno = 1077. Another
page access yields the tuple itself which constitutes the result of the query. Let
Empeno be the index on eno, then we can descend the B-tree, using 1077 as the
search key. A predicate that can be used to descend the B-tree or, in general,
governing search within an index structure, is called an index sargable predicate.

For the example query, the index scan, denoted as Empeno[x; eno = 1077],
retrieves a single leaf node entry with attributes eno and TID. Similar to the
regular scan, we assume x to be a variable holding a pointer to this index
entry. We use the notations x.eno and x.TID to access these attributes. To
dereference the TID, we use the map (χ) operator and a dereference function
deref (or ∗ for short). It turns a TID into a pointer in the buffer area. This of
course requires the page to be loaded, if it is not in the buffer yet. The complete
plan for the query is

Πname(χe:∗(x.TID),name:e.name(Empeno[x; eno = 1077]))

where we computed several new attributes with one χ operator. Note that
they are dependent on previously computed attributes and, hence, the order of
evaluation does matter.

We can make the dependency of the map operator more explicit by applying
a d-join. Denote by 2 an operator that returns a single empty tuple. Then

Πname(Empeno[x; eno = 1077] < χe:∗(x.TID),name:e.name(2) >)

is equivalent to the former plan. Joins and indexes will be discussed in Sec-
tion 4.14.

A range query like

select name
from Emp
where age ≥ 25 and age ≤ 35

5Of course, any degree of clusteredness may occur and has to be taken into account in cost
calculations.

4.12. SINGLE INDEX ACCESS PATH 159

specifies a range for the indexed attribute. It is evaluated by an index scan
with start and stop conditions. In our case, the start condition is age ≥ 25,
and the stop condition is age ≤ 35. The start condition is used to retrieve the
first tuple satisfying it by searching within the B-tree. In our case, 25 is used to
descend from the root to the leaf page containing the key 25. Then, all records
with keys larger than 25 within the page are searched. Since entries in B-tree
pages are sorted on key values, this is very efficient. If we are done with the
leaf page that contains 25 and the stop key has not been found yet, we proceed
to the next leaf page. This is possible since leaf pages of B-trees tend to be
chained. Then all records of the next leaf page are scanned and so on until we
find the stop key. The complete plan then is

Πname(χe:∗(x.TID),name:e.name(Empage[x; 25 ≤ age; age ≤ 35]))

If the index on age is non-clustered, this plan results in random I/O. We
can turn random I/O into sequential I/O by sorting the result of the index scan
on its TID attribute before dereferencing it6. This results in the following plan:

Πname(χe:∗(TID),name:e.name(SortTID(Empage[x; 25 ≤ age; age ≤ 35; TID])))

Here, we explicitly included the TID attribute of the index into the projection
list.

Consider a similar query which demands the output to be sorted:

select name, age
from Emp
where age ≥ 25 and age ≤ 35
order by age

Since an index scan on a B-tree outputs its result ordered on the indexed at-
tribute, the following plan produces the perfect result:

Πname,age(χe:∗(x.TID),name:e.name(Empage[x; 25 ≤ age; age ≤ 35]))

On a clustered index this is most probably the best plan. On a non-clustered
index, random I/O disturbs the picture. We avoid that by sorting the result of
the index scan on the TID attribute and, after accessing the tuples, restore the
order on age as in the following plan:

Πname,age(Sortage(χe:∗(TID),name:e.name(SortTID(Empage[x; 25 ≤ age; age ≤ 35; TID]))))

An alternative to this plan is not to sort on the original indexed attribute (age
in our example), but to introduce a new attribute that holds the rank in the
sequence derived from the index scan. This leads to the plan

Πname,age(
Sortrank(
χe:∗(TID),name:e.name(

SortTID(
χrank:counter++(

Empage[x; 25 ≤ age; age ≤ 35; TID])))))

6This might not be necessary, if Emp fits main memory. Then, preferably asynchronous I/O
should be used.

160CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

This alternative might turn out to be more efficient since sorting on an attribute
with a dense domain can be implemented efficiently. (We admit that in the
above example this is not worth considering.) There is another important
application of this technique: XQuery often demands output in document order.
If this order is destroyed during processing, it must at the latest be restored
when the output it produced [592]. Depending on the implementation (i.e. the
representation of document nodes or their identifiers), this might turn out to
be a very expensive operation.

The fact that index scans on B-trees return their result ordered on the
indexed attributes is also very useful if a merge-join on the same attributes (or
a prefix thereof, see Chapter 23 for further details) occurs. An example follows
later on.

Some predicates are not index SARGable, but can still be evaluated with
the index as in the following query

select name
from Emp
where age ≥ 25 and age ≤ 35 and age ̸= 30

The predicate age ̸= 30 is an example of a residual predicate. We can once
more extend the index scan and compile the query into

Πname(χt:x.TID,e:∗t,name:e.name(Empage[x; 25 ≤ age; age ≤ 35; age ̸= 30]))

Some index scan implementations allow exclusive bounds for start and stop
conditions. With them, the query

select name
from Emp
where age > 25 and age < 35

can be evaluated using

Πname(χt:x.TID,e:∗t,name:e.name(Empage[x; 25 < age; age < 35]))

If this is not the case, two residual predicates must be used as in

Πname(χt:x.TID,e:∗t,name:e.name(Empage[x; 25 ≤ age; age ≤ 35; age ̸= 25, age ̸= 35]))

Especially for predicates on strings, this might be expensive.
Start and stop conditions are optional. To evaluate

select name
from Emp
where age ≥ 60

we use age ≥ 60 as the start condition to find the leaf page containing the key
60. From there on, we scan all the leaf pages “to the right”.

If we have no start condition, as in

4.12. SINGLE INDEX ACCESS PATH 161

select name
from Emp
where age ≤ 20

we descend the B-tree to the “leftmost” page, i.e. the page containing the
smallest key value, and then proceed scanning leaf pages until we encounter the
key 20.

Having neither a start nor stop condition is also quite useful. The query

select count(*)
from Emp

can be evaluated by counting the entries in the leaf pages of a B-tree. Since
a B-tree typically occupies far fewer pages than the original relation, we have
a viable alternative to a relation scan. The same applies to the aggregate
functions sum and avg. The other aggregate functions min and max can be
evaluated much more efficiently by descending to the leftmost or rightmost leaf
page of a B-tree. This can be used to answer queries like

select min/max(salary)
from Emp

much more efficiently than by a relation scan. Consider the query

select name
from Emp
where salary = (select max(salary)

from Emp)

It can be evaluated by first computing the maximum salary and then retrieving
the employees earning this salary. This requires two descendants into the B-
tree, while obviously one is sufficient. Depending on the implementation of the
index (scan), we might be able to perform this optimization.

Further, the result of an index scan, whether it uses start and/or stop con-
ditions or not, is always sorted on the key. This property can be useful for
queries with no predicates. If we have neither a start nor a stop condition, the
resulting scan is called full index scan. As an example consider the query

select salary
from Emp
order by salary

which is perfectly answered by the following full index scan:

Empsalary

So far, we have only seen indexes on numerical attributes.

162CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

select name, salary
from Emp
where name ≥ ’Maaa’

gives rise to a start condition ′Maaa′ ≤ name. From the query

select name, salary
from Emp
where name like ’M%’

we can deduce the start condition ′M′ ≤ name.
To express all the different alternatives of index usage, we need a powerful

(and runtime system dependent) index scan expression. Let us first summarize
what we can specify for an index scan:

1. the name of the variable for index entries (or pointers to them),

2. the start condition,

3. the stop condition,

4. a residual predicate, and

5. a projection list.

A projection list has entries of the form a : x.b for attribute names a and b and
x being the name of the variable for the index entry. a : x.a is also allowed and
often abbreviated as a. We also often summarize start and stop conditions into
a single expression like in 25 ≤ age ≤ 35.

For a full index specification, we list all items in the subscript of the index
name separated by a semicolon. Still, we need some extensions to express the
queries with aggregation. Let a and b be attribute names, then we allow entries
of the form b : aggr(a) in the projection list and start/stop conditions of the
form min/max(a). The latter tells us to minimize/maximize the value of the
indexed attribute a. Only a complete enumeration gives us the full details. On
the other hand, extracting start and stop conditions and residual predicates
from a given boolean expression is rather simple. Hence, we often summarize
these three under a single predicate. This is especially useful when talking
about index scans in general. If we have a full index scan, we leave out the
predicate. We use a star ‘*’ as an abbreviated projection list that projects all
attributes of the index. (So far, these are the key attribute and the TID.) If
the projection list is empty, we assume that only the variable/attribute holding
the pointer to the index entry is projected.

Using this notation, we can express some plan fragments. These fragments
are complete plans for the above queries, except that the final projection is not
present. As an example, consider the following fragment:

χe:∗TID,name:e.name(Empsalary[x; TID, salary])

All the plan fragments seen so far are examples of access paths. An access
path is a plan fragment with building blocks concerning a single database item.

4.12. SINGLE INDEX ACCESS PATH 163

Hence, every building block is an access path. The above plans touch two
database items: a relation and an index on some attribute of that relation.
If we say that an index concerns the relation it indexes, such a fragment is an
access path. For relational systems, the most general case of an access path uses
several indexes to retrieve the tuples of a single relation. We will see examples
of these more complex access paths in the following section. An access to the
original relation is not always necessary. A query that can be answered solely
by accessing indexes is called an index only query .

A query with in like

select name
from Emp
where age in {28, 29, 31, 32}

can be evaluated by taking the minimum and the maximum found in the left-
hand side of in as the start and stop conditions. We further need to construct
a residual predicate. The residual predicate can be represented either as age =
28 ∨ age = 29 ∨ age = 31 ∨ age = 32 or as age ̸= 30.

An alternative is to use a d-join. Consider the example query

select name
from Emp
where salary in {1111, 11111, 111111}

Here, the numbers are far apart and separate index accesses might make sense.
Therefore, let us create a temporary relation Sal equal to {[s : 1111], [s :
11111], [s : 111111]}. When using it, the access path becomes

Sal[S] < χe:∗TID,name:e.name(Empsalary[x; salary = S.s; TID]) >

Some B-tree implementations allow efficient searches for multiple ranges and
implement gap skipping [34, 35, 170, 322, 323, 476, 545]. Gap skipping, some-
times also called zig-zag skipping , continues the search for keys in a new key
range from the latest position visited. The implementation details vary but
the main idea of it is that after one range has been completely scanned, the
current (leaf) page is checked for its highest key. If it is not smaller than the
lower bound of the next range, the search continues in the current page. If it
is smaller than the lower bound of the next range, alternative implementations
are described in the literature. The simplest is to start a new search from the
root for the lower bound. Another alternative uses parent pointers to go up a
page as long as the highest key of the current page is smaller than the lower
bound of the next range. If this is no longer the case, the search continues
downwards again.

Gap skipping gives even more opportunities for index scans and allows effi-
cient implementations of various index nested loop join strategies.

4.12.2 Complex Keys and Data Attributes

In general, an index can have a complex key comprised of the key attributes
k1, . . . , kn and the data attributes d1, . . . , dm. One possibility is to use a full

164CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

index scan on such an index. Having more attributes in the index makes it
more probable that queries are index-only.

Besides a full index scan, the index can be descended to directly search for
the desired tuple(s). Let us take a closer look at this possibility.

If the search predicate is of the form

k1 = c1 ∧ k2 = c2 ∧ . . . ∧ kj = cj

for some constants ci and some j <= n, we can generate the start and stop
condition

k1 = c1 ∧ . . . ∧ kj = cj .

This simple approach is only possible if the search predicates define values for
all search key attributes, starting from the first search key and then for all
keys up to the j-th search key with no key attribute unspecified in between.
Predicates concerning the other key attributes after the first non-specified key
attribute and the additional data attributes only allow for residual predicates.
This condition is often not necessary for multi-dimensional index structures,
whose discussion is beyond the book.

With ranges things become more complex and highly dependent on the
implementation of the facilities of the B-tree. Consider a query predicate re-
stricting key values as follows

k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3

Obviously, we can generate the start condition k1 = c1 ∧ k2 ≥ c2 and the stop
condition k1 = c1. Here, we neglected the condition on k3 which becomes a
residual predicate. However, with some care we can extend the start condition
to k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3: we only have to keep k3 = c3 as a residual
predicate, since for k2 values larger than c2, values different from c3 can occur
for k3.

If closed ranges are specified for a prefix of the key attributes as in

a1 ≤ k1 ≤ b1 ∧ . . . ∧ aj ≤ kj ≤ bj

we can generate the start key k1 = a1 ∧ . . . ∧ kj = aj , the stop key k1 =
b1 ∧ . . . ∧ kj = bj , and

a2 ≤ k2 ≤ b2 ∧ . . . ∧ aj ≤ kj ≤ bj

as the residual predicate. If for some search key attribute kj the lower bound aj
is not specified, the start condition cannot contain kj and any kj+i. If for some
search key attribute kj the upper bound bj is not specified, the stop condition
cannot contain kj and any kj+i.

Two further enhancements of the B-tree functionality possibly allow for
alternative start/stop conditions:

• The B-tree implementation allows to specify the order (ascending or de-
scending) for each key attribute individually.

4.13. MULTI INDEX ACCESS PATH 165

• The B-tree implementation implements forward and backward scans (e.g.
implemented in Rdb [34]).

So far, we are only able to exploit query predicates which specify value
ranges for a prefix of all key attributes. Consider querying a person on his/her
height and his/her hair color: haircolor = ’blond’ and height between

180 and 190. If we have an index on sex, haircolor, height, this index
cannot be used by means of the techniques described so far. However, since
there are only the two values male and female available for sex, we can rewrite
the query predicate to (sex = ’m’ and haircolor = ’blond’ and height

between 180 and 190) or (sex = ’f’ and haircolor = ’blond’ and height

between 180 and 190) and use two accesses to the index. This approach works
fine for attributes with a small domain and is described by Antoshenkov [35].
(See also the previous section for gap skipping.) Since the possible values for
key attributes may not be known to the query optimizer, Antoshenkov goes
one step further and shifts the construction of search ranges to index scan time.
Therefore, the index can be provided with a complex boolean expression which
is then refined (rewritten) as soon as search key values become known. Search
ranges are then generated dynamically, and gap skipping is applied to skip the
intervals between the qualifying ranges during the index scan.

4.13 Multi Index Access Path

We wish to buy a used digital camera and state the following query:

select *
from Camera
where megapixel > 5 and distortion < 0.05

and noise < 0.01
and zoomMin < 35 and zoomMax > 105

We assume that on every attribute used in the where clause there exists an
index. Since the predicates are conjunctively connected, we can use a technique
called index and-ing. Every index scan returns a set (list) of tuple identifiers.
These sets/lists are then intersected. This operation is also called And merge
[562]. Using index and-ing, a possible plan is

((((
Cameramegapixel[c; megapixel > 5; TID]
∩
Cameradistortion[c; distortion < 0.05; TID])
∩
Cameranoise[c; noise < 0.01; TID])
∩
CamerazoomMin[c; zoomMin < 35; TID])
∩
CamerazoomMax[c; zoomMax > 105; TID])

166CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

This results in a set of tuple identifiers that only needs to be dereferenced to
access the according Camera tuples and produce the final result.

Since the costs of the expression clearly depend on the costs of the index
scans and the size of the intermediate TID sets, two questions arise:

• In which order do we intersect the TID sets resulting from the index
scans?

• Do we really apply all indexes before dereferencing the tuple identifiers?

The answer to the latter question is clearly “no”, if the next index scan is
more expensive than accessing the records in the current TID list. It can be
shown that the indexes in the cascade of intersections are ordered on increasing
(fi − 1)/ci terms, where fi is the selectivity of the index and ci its access
cost. Further, we can stop as soon as accessing the original tuples in the baseEX
relation becomes cheaper than intersecting with another index and subsequently
accessing the base relation.

Index or-ing is used to process disjunctive predicates. Here, we take the
union of the TID sets to produce a set of TIDs containing references to all
qualifying tuples. Note that duplicates must be eliminated during the process-
ing of the union. This operation is also called Or merge [562]. Consider the
query

select *
from Emp
where yearsOfEmployment ≥ 30

or age ≥ 65

This query can be answered by constructing a TID set using the expression

EmpyearsOfEmployment[c; yearsOfEmployment ≥ 30; TID]∪Empage[c; age ≥ 65; TID]

and then dereferencing the list of tuple identifiers. Again, the index accessing
can be ordered for better performance. Given a general boolean expression
in and and or, constructing the optimal access path using index and-ing and
or-ing is a challenging task that will be discussed in Chapter ??. This task
is even more challenging, if some simple predicates occur more than once in
the complex boolean expression and factorization has to be taken into account.
This issue was first discussed by Chaudhuri, Ganesan and Saragawi [149]. We
will come back to this in Chapter ??.

The names index and-ing and or-ing become clear if bitmap indexes are
considered. Then the bitwise and and or operations can be used to efficiently
compute the intersection and union.ToDo

Excursion on bitmap indexes. 2
There are even more possibilities to work with TID sets. Consider the query

select *
from Emp
where yearsOfEmployment ̸= 10

and age ≥ 65

4.14. INDEXES AND JOINS 167

This query can be evaluated by scanning the index on age and then eliminating
all employees with yearsOfEmployment = 10:

Empage[c; age ≥ 65; TID]\EmpyearsOfEmployment[c; yearsOfEmployment ̸= 10;TID]

Let us call the application of set difference on index scan results index differ-
encing.

Some predicates might not be very restrictive in the sense that more than
half the index has to be scanned. By negating these predicates and using
index differencing, we can make sure that at most half of the index needs to be
scanned. As an example consider the query

select *
from Emp
where yearsOfEmployment ≤ 5

and age ≤ 65

Assume that most of our employees’ age is below 65. Then

EmpyearsOfEmployment[c; yearsOfEmployment ≤ 5; TID] \ Empage[c; age > 65; TID]

could be more efficient than

EmpyearsOfEmployment[c; yearsOfEmployment ≤ 5; TID] ∩ Empage[c; age ≤ 65; TID]

4.14 Indexes and Joins

There are two issues when discussing indexes and joins. The first is that indexes
can be used to speed up join processing. The second is that index accesses can
be expressed as joins. We discuss both of these issues, starting with the latter.

In our examples, we used the map operation to (implicitly) access the re-
lation by dereferencing the tuple identifiers. We can make the implicit access
explicit by exchanging the map operator by a d-join or even a join. Then, for
example,

χe:∗TID,name:e.name(Empsalary[x; 25 ≤ age ≤ 35; TID])

becomes

Empsalary[x; 25 ≤ age ≤ 35; TID] < χe:∗TID,name:e.name(2) >

where 2 returns a single empty tuple. Assume that every tuple contains an
attribute TID containing its TID. This attribute does not have to be stored
explicitly but can be derived. Then, we have the following alternative access
path for the join (ignoring projections):

Empsalary[x; 25 ≤ age ≤ 35]Bx.TID=e.TID Emp[e]

For the join operator, the pointer-based join implementation developed in the
context of object-oriented databases may be the most efficient way to evaluate

168CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

the access path [804]. Obviously, sorting the result of the index scan on the
tuple identifiers can speed up processing since it turns random into sequential
I/O. However, this destroys the order on the key which might itself be useful
later on during query processing or required by the query7. Sorting the tuple
identifiers was proposed by, e.g., Yao [957], Makinouchi, Tezuka, Kitakami, andToDo
Adachi in the context of RDB/V1 [578]. The different variants (whether or not
and where to sort, join order) can now be transparently determined by the plan
generator: no special treatment is necessary. Further, the join predicates can
not only be on the tuple identifiers but also on key attributes. This often allows
to join with other than the indexed relations (or their indexes) before accessing
the relation.

Rosenthal and Reiner proposed to use joins to represent access paths with
indexes [739]. This approach is very elegant since no special treatment for index
processing is required. However, if there are many relations and indexes, the
search space might become very large, as every index increases the number
of joins to be performed. This is why Mohan, Haderle, Wang, and Cheng
abondoned this approach and sketched a heuristics which determines an access
path in case multiple indexes on a single table exist [625].

The query

select name,age
from Person
where name like ’R%’ and age between 40 and 50

is an index only query (assuming indexes on name and age) and can be trans-
lated to

Πname,age(
Empage[a; 40 ≤ age ≤ 50; TIDa, age]

BTIDa=TIDn

Empname[n; name ≥′ R′; name ≤′ R′; TIDn, name])
Let us now discuss the former of the two issues mentioned in the section’s

introduction. The query

select *
from Emp e, Dept d
where e.name = ‘Maier’ and e.dno = d.dno

can be directly translated to

σe.name=′Maier′(Emp[e])Be.dno=d.dno Dept[d]

If there are indexes on Emp.name and Dept.dno, we can replace σe.name=′Maier′(Emp[e])
by an index scan as we have seen previously:

χe:∗(x.TID),A(Emp):e.∗(Empname[x; name = ‘Maier′])

7Restoring the order may be cheaper than typical sorting since tuples can be numbered
before the first sort on tuple identifiers, and this dense numbering leads to efficient sort
algorithms.

4.14. INDEXES AND JOINS 169

Here, A(Emp) : t.∗ abbreviates access to all Emp attributes. This especially
includes dno:t.dno. (Strictly speaking, we do not have to access the name

attribute, since its value is already known.)

As we have also seen, an alternative is to use a d-join instead:

Empname[x; name = ‘Maier′] < χt:∗(x.TID),A(e)t.∗(2) >

Let us abbreviate Empname[x; name = ‘Maier′] by Ei and χt:∗(x.TID),A(e)t.∗(2) by
Ea.

Now, for any e.dno, we can use the index on Dept.dno to access the ac-
cording department tuple:

Ei < Ea >< Deptdno[y; y.dno = dno] >

Note that the inner expression Deptdno[y; y.dno = dno] contains the free variable
dno, which is bound by Ea. Dereferencing the TID of the department results
in the following algebraic modelling which models a complete index nested loop
join:

Ei < Ea >< Deptdno[y; y.dno = dno; dTID : y.TID] >< χu:∗dTID,A(Dept)u.∗(2) >

Let us abbreviate Deptdno[y; y.dno = dno; dTID : y.TID] byDi and χu:∗dTID,A(Dept)u.∗(2)
by Da. Fully abbreviated, the expression then becomes

Ei < Ea >< Di >< Da >

Several optimizations can possibly be applied to this expression. Sorting
the outer of a d-join is useful under several circumstances since it may

• turn random I/O into sequential I/O and/or

• avoid reading the same page twice.

In our example expression,

• we can sort the result of expression Ei on TID in order to turn random
I/O into sequential I/O, if there are many employees named “Maier”.

• we can sort the result of the expression Ei < Ea > on dno for two reasons:

– If there are duplicates for dno, i.e. there are many employees named
“Maier” in each department, then this guarantees that no index page
(of the index Dept.dno) has to be read more than once.

– If additionally Dept.dno is a clustered index or Dept is an index-only
table contained in Dept.dno, then large parts of the random I/O can
be turned into sequential I/O.

– If the result of the inner is materialized (see below), then only one
result needs to be stored. Note that sorting is not necessary, but
grouping would suffice to avoid duplicate work.

170CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

• We can sort the result of the expression Ei < Ea >< Di > on dTID for
the same reasons as mentioned above for sorting the result of Ei on TID.

The reader is advised to explicitly write down the alternatives. Another exercise EX
is to give plan alternatives for the different cases of DB2’s Hybrid Join [322]
which can now be decomposed into primitives like relation scan, index scan,
d-join, sorting, TID dereferencing, and access to a unique index (see below).

Let us take a closer look at materializating the result of the inner of the d-
join. IBM’s DB2 for MVS considers temping (i.e. creating a temporary relation)
the inner if it is an index access [322]. Graefe provides a general discussion
on the subject [351]. Let us start with the above example. Typically, many
employees will work in a single department and possibly several of them are
called “Maier”. For everyone of them, we can be sure that there exists at most
one department. Let us assume that referential integrity has been specified.
Then, there exists exactly one department for every employee. We have to find
a way to rewrite the expression

Ei < Ea >< Deptdno[y; y.dno = dno; dTID : y.TID] >

such that the mapping dno−−→dTID is explicitly materialized (or, as one could
also say, cached). For this purpose, Hellerstein and Naughton introduced a
modified version of the map operator that materializes its result [414]. Let us
denote this operator by χmat. The advantage of using this operator is that it is
quite general and can be used for different purposes (see e.g. [103], Chap. ??,
Chap. ??). Since the map operator extends a given input tuple by some at-
tribute values, which must be computed by an expression, we need one to
express the access to a unique index. For our example, we write

IdxAcc
Dept
dno [y; y.dno = dno]

to express the lookup of a single (unique) entry in the index on Dept.dno. We
assume that the result is a (pointer to the) tuple containing the key attributes
and all data attributes including the TID of some tuple. Then, we have to
perform a further attribute access (dereferenciation) if we are interested in only
one of the attributes.

Now, we can rewrite the above expression to

Ei < Ea >< χmat
dTID:(IdxAccDept

dno [y;y.dno=dno]).TID
(2) >

If we further assume that the outer (Ei < Ea >) is sorted on dno, then
it suffices to remember only the TID for the latest dno. We define the map
operator χmat,1 to do exactly this. A more efficient plan could thus be

Sortdno(Ei < Ea >) < χmat,1
dTID:(IdxAccDept

dno [y;y.dno=dno]).TID
(2) >

where, strictly speaking, sorting is not necessary: grouping would suffice.

Consider a general expression of the form e1 < e2 >. The free variables
used in e2 must be a subset of the variables (attributes) produced by e1, i.e.

4.14. INDEXES AND JOINS 171

F(e2) ⊆ A(e1). Even if e1 does not contain duplicates, the projection of e1 on
F(e2) may contain duplicates. If so, materialization could pay off. However, in
general, for every binding of the variables F(e2), the expression e2 may produce
several tuples. This means that using χmat is not sufficient. Consider the query

select *
from Emp e, Wine w
where e.yearOfBirth = w.year

If we have no indexes, we can answer this query by a simple join where we only
have to decide the join method and which of the relations becomes the outer and
which the inner. Assume we have only wines from a few years. (Alternatively,
some selection could have been applied.) Then it might make sense to consider
the following alternative:

Wine[w] < σe.yearOfBirth=w.year(Emp[e]) >

However, the relation Emp is scanned once for each Wine tuple. Hence, it might
make sense to materialize the result of the inner for every year value of Wine
if we have only a few year values. In other words, if we have many duplicates
for the year attribute of Wine, materialization may pay off since then we have
to scan Emp only once for each year value of Wine. To achieve caching of the
inner, in case every binding of its free variables possibly results in many tuples,
requires a new operator. Let us call this operator memox and denote it by M
[351, 103]. For the free variables of its only argument, it remembers the set
of result tuples produced by its argument expression and does not evaluate it
again if it is already cached. Using memox, the above plan becomes

Wine[w] <M(σe.yearOfBirth=w.year(Emp[e])) >

It should be clear that for more complex inners, the memox operator can be
applied at all branches, giving rise to numerous caching strategies. Analogously
to the materializing map operator, we are able to restrict the materialization
to the results for a single binding for the free variables if the outer is sorted (or
grouped) on the free variables:

Sortw.yearOfBirth(Wine[w]) <M
1(σe.yearOfBirth=w.year(Emp[e])) >

Things can become even more efficient if there is an index on Emp.yearOfBirth:

Sortw.yearOfBirth(Wine[w])
<M1(EmpyearOfBirth[x; x.yearOfBirth = w.year] < χe:∗(x.TID),A(Emp):∗e(2) >) >

So far we have seen different operators which materialize values: Tmp, M,
and χmat. The latter in two variants. As an exercise, the reader is advised to
discuss the differences between them. EX

Assume, we have indexes on both Emp.yearOfBirth and Wine.year. Be-
sides the possibilities to use either Emp or Wine as the outer, we now also have
the possibility to perform a join on the indexes before accessing the actual Emp

172CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

and Wine tuples. Since the index scan produces its output ordered on the key
attributes, a simple merge join suffices (and we are back at the latter):

EmpyearOfBirth[x]B
merge
x.yearOfBirth=y.year Wineyear[y]

This example makes clear that the order provided by an index scan can be used
to speed up join processing. After evaluating this plan fragment, we have to
access the actual Emp and Wine tuples. We can consider zero, one, or two sorts
on their respective tuple identifiers. If the join is sufficiently selective, one ofEX
these alternatives may prove more sufficient than the ones we have considered
so far.

4.15 Remarks on Access Path Generation

A last kind of optimization we briefly want to mention is sideways information
passing . Consider a simple join between two relations: R BR.a=S.b S. If we
decide to perform a sort merge join or a hash join, we can implement it by first
sorting/partitioning R before looking at S. While doing so, we can remember
the minimum and maximum value of R.a and use these as a restriction on S
such that fewer tuples of S have to be sorted/partitioned. In case we perform a
blockwise nested loop join, after the first scan of S we know the minimum and
maximum value of S.b and can use these to restrict R.

If the number of distinct values of R.a is small, we could also decide to
remember all these values and evaluate perform a semi-join before the actual
join. Algebraically, this could be expressed as

RBR.a=S.b (S NS.b=R.a ΠR.a(R))

An alternative is to use a bitmap to represent the projection of R on a.
The semi-join technique should be well-known from distributed database

systems. In deductive database systems, this kind of optimization often carries
the attribute magic. We will more deeply discuss this issue in Chapter ??.

The following problem is not discussed in the book. Assume that we have
fully partitioned a relation vertically into a set of files which are chronologically
ordered. Then, the attribute ai of the j-th tuple can be found at the j-th
position of the i-th file. This organizion is called partitioned transposed file [56].
(Compare this with variant (projection) indexes [651] and small materialized
aggregates [614].) The problem is to find an access strategy to all the attribute
required by the query given a collection of restriction on some of the relation’s
attributes. This problem has been discussed in depth by Batory [56]. Full
vertical partitioning is also used as the organizing principle of Monet [?]. Lately,
it also gained some interest in the US [?].

4.16 Counting the Number of Accesses

4.16.1 Counting the Number of Direct Accesses

After the index scan, we have a set of (distinct) tuple identifiers for which we
have to access the original tuples. The question we would like to answer is:

4.16. COUNTING THE NUMBER OF ACCESSES 173

How many pages do we have to read?

Let R be the relation for which we have to retrieve the tuples. Then we use the
following abbreviations

N |R| number of tuples in the relation R
m ||R|| number of pages on which tuples of R are stored
B N/m number of tuples per page (blocking factor)
k number of (distinct) TIDs for which tuples have to be retrieved

We assume that the tuples are uniformly distributed among them pages. Then,
each page stores B = N/m tuples. B is called blocking factor .

Let us consider some borderline cases. If k > N −N/m or m = 1, then all
pages are accessed. If k = 1 then exactly one page is accessed. The answer to
the general question will be expressed in terms of buckets (pages in the above
case) and items contained therein (tuples in the above case). Later on, we will
also use extents, cylinders, or tracks as buckets and tracks or sectors/blocks as
items.

We assume that a bucket contains items. The total number of items will be
N and the number of requested items will be k. The above question can then
be reformulated to how many buckets contain at least one of the k requested
items, i.e. how many qualifying buckets exist. We start out by investigating
the case where the items are uniformly distributed among the buckets. Two
subcases will be distinguished:

1. k distinct items are requested

2. k non-distinct items are requested.

We then discuss the case where the items are non-uniformly distributed.

In any case, the underlying access model is random access. For example,
given a tuple identifier, we can directly access the page storing the tuple. Other
access models are possible. The one we will subsequently investigate is sequen-
tial access where the buckets have to be scanned sequentially in order to find
the requested items. After that, we are prepared to develop a model for disk
access costs.

Throughout this section, we will further assume that the probability that
we request a set with k items is 1

(Nk)
for all of the

(
N
k

)
possibilities to select

a k-set.8 We often make use of established equalities for binomial coefficients.
For convenience, the most frequently used equalities are listed in Appendix D.

Selecting k distinct items

Our first theorem was discovered independently by Waters [913] and Yao [954].
We formulate it in terms of buckets containing items. We say a bucket qualifies
if it contains at least one of the k items we are looking for.

8A k-set is a set with cardinality k.

174CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

Theorem 4.16.1 (Waters/Yao) Considerm buckets with n items each. Then
there is a total of N = nm items. If we randomly select k distinct items from
all items, then the number of qualifying buckets is

YN,m
n (k) = m ∗ YN

n (k) (4.2)

where YN
n (k) is the probability that a bucket contains at least one item. This

probability is equal to

YN
n (k) =

{
[1− p] k ≤ N − n
1 k > N − n

where p is the probability that a bucket contains none of the k items. The
following alternative expressions can be used to calculate p:

p =

(
N−n
k

)
(
N
k

) (4.3)

=
k−1∏

i=0

N − n− i
N − i (4.4)

=
n−1∏

i=0

N − k − i
N − i (4.5)

The second expression (4.4) is due to Yao, the third (4.5) is due to Waters.
Palvia and March proved both formulas to be equal [669] (see also [39]). The
fraction m = N/n may not be an integer. For these cases, it is advisable to
have a Gamma-function based implementation of binomial coeffcients at hand
(see [702] for details).

Depending on k and n, either the expression of Yao or the one of Waters is
faster to compute. After the proof of the above formulas and the discussion of
some special cases, we will give several approximations for p.

Proof The total number of possibilities to pick the k items from all N items is(
N
k

)
. The number of possibilities to pick k items from all items not contained in

a fixed single bucket is
(
N−n
k

)
. Hence, the probability p that a bucket does not

qualify is p =
(
N−n
k

)
/
(
N
k

)
. Using this result, we can do the following calculation

p =

(
N−n
k

)
(
N
k

)

=
(N − n)! k!(N − k)!
k!((N − n)− k)! N !

=

k−1∏

i=0

N − n− i
N − i

4.16. COUNTING THE NUMBER OF ACCESSES 175

which proves the second expression. The third follows from

p =

(
N−n
k

)
(
N
k

)

=
(N − n)! k!(N − k)!
k!((N − n)− k)! N !

=
(N − n)! (N − k)!
N ! ((N − k)− n)!

=
n−1∏

i=0

N − k − i
N − i

2

Let us list some special cases:

If then YN
m (k) =

n = 1 k/N
n = N 1
k = 0 0
k = 1 B/N = (N/m)N = 1/m
k = N 1

We examine a slight generalization of the first case in more detail. Let N items
be distributed over N buckets such that every bucket contains exactly one item.
Further let us be interested in a subset of m buckets (1 ≤ m ≤ N). If we pick
k items, then the number of buckets within the subset of size m that qualify is

mYN
1 (k) = m

k

N
(4.6)

In order to see that the two sides are equal, we perform the following calculation:

YN
1 (k) = (1−

(
N−1
k

)
(
N
k

))

= (1−
(N−1)!

k!((N−1)−k)!
N !

k!(N−k)!
)

= (1− (N − 1)!k!(N − k)!
N !k!((N − 1)− k)!)

= (1− N − k
N

)

= (
N

N
− N − k

N
)

=
N −N + k

N

=
k

N

176CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

Since the computation of YN
n (k) can be quite expensive, several approxima-

tions have been developed. The first one was given by Waters [912, 913]:

p ≈ (1− k/N)n

This approximation (also described elsewhere [317, 669]) turns out to be pretty
good. However, below we will see even better approximations.

For YN,m
n (k) Whang, Wiederhold, and Sagalowicz gave the following ap-

proximation for faster calculation [925]:

m ∗ [(1− (1− 1/m)k)+
(1/(m2n) ∗ k(k − 1)/2 ∗ (1− 1/m)k−1)+
(1.5/(m3n4) ∗ k(k − 1)(2k − 1)/6 ∗ (1− 1/m)k−1)]

A rough estimate is presented by Bernstein, Goodman, Wong, Reeve, and Roth-
nie [78]:

YN,m
n (k) ≈

k if k < m
2

k+m
2 if m

2 ≤ k < 2m
m if 2m ≤ k

An interesting and useful result was derived by Dihr and Saharia [241]. They
give two formulas and show that they are lower and upper bounds to Water
and Yao’s formula. The upper and lower bounds for p are

plower = (1− k

N − n−1
2

)n

pupper = ((1− k

N
) ∗ (1− k

N − n+ 1
))n/2

for n = N/m. Dihr and Saharia claim that the maximal difference resulting
from the use of the lower and the upper bound to compute the number of page
accesses is 0.224—far less than a single page access.

Selecting k non-distinct items

So far, we assumed that we retrieve k distinct items. We could ask the same
question for k non-distinct items. This question demands a different urn mod-
el. In urn model terminology, the former case is an urn model with a non-
replacement assumption, while the latter case is one with a replacement as-
sumption. (Deeper insight into urn models is given by Drmota, Gardy, and
Gittenberger [248].)

Before presenting a theorem discovered by Cheung [174], we repeat a the-
orem from basic combinatorics. We know that the number of subsets of size
k of a set with N elements is

(
N
k

)
. The following lemma gives us the number

of k-multisets9 (see, e.g. [829]). The number of k-multisets taken from a set S

with |S| elements is denoted by

((
N
k

))
.

9A k-multiset is a multiset with k elements.

4.16. COUNTING THE NUMBER OF ACCESSES 177

Lemma 4.16.2 Let S be a set with |S| = N elements. Then, the number of
multisets with cardinality k containing only elements from S is

((
N
k

))
=

(
N + k − 1

k

)

For a proof we just note that there is a bijection between the k-multisets and
the k-subsets of a N + k− 1-set. We can go from a multiset to a set by f with
f({x1 ≤ . . . ≤ xk}) = {x1+0 < x2+1 < . . . < xk+(k−1)} and from a set to a
multiset via g with g({x1 < . . . < xk}) = {x1−0 < x2−1 < . . . < xk− (k−1)}.

Theorem 4.16.3 (Cheung) Consider m buckets with n items each. Then
there is a total of N = nm items. If we randomly select k not necessarily
distinct items from all items, then the number of qualifying buckets is

Cheung
N,m
n (k) = m ∗ CheungNn (k) (4.7)

where

CheungNn (k) = [1− p̃] (4.8)

with the following equivalent expressions for p̃:

p̃ =

(
N−n+k−1

k

)
(
N+k−1

k

) (4.9)

=

k−1∏

i=0

N − n+ i

N + i
(4.10)

=
n−1∏

i=0

N − 1− i
N − 1 + k − i (4.11)

Eq. 4.9 follows from the observation that the probability that some bucket

does not contain any of the k possibly duplicate items is
(N−n+k−1

k)
(N+k−1

k)
. Eq. 4.10

follows from

p̃ =

(
N−n+k−1

k

)
(
N+k−1

k

)

=
(N − n+ k − 1)! k!((N + k − 1)− k)!
k!((N − n+ k − 1)− k)! (N + k − 1)!

=
(N − n− 1 + k)! (N − 1)!

(N − n− 1)! (N − 1 + k)!

=

k−1∏

i=0

N − n+ i

N + i

178CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

Eq. 4.11 follows from

p̃ =

(
N−n+k−1

k

)
(
N+k−1

k

)

=
(N − n+ k − 1)! k!((N + k − 1)− k)!
k!((N − n+ k − 1)− k)! (N + k − 1)!

=
(N + k − 1− n)! (N − 1)!

(N + k − 1)! (N − 1− n)!

=
n−1∏

i=0

N − n+ i

N + k − n+ i

=

n−1∏

i=0

N − 1− i
N − 1 + k − i

2

Cardenas discovered a formula that can be used to approximate p̃ [125]:

(1− n/N)k

As Cheung pointed out, we can use the theorem to derive the number of
distinct items accessed contained in a k-multiset.

Corollary 4.16.4 Let S be a k-multiset containing elements from an N -set T .
Then the number of distinct items contained in S is

D(N, k) = Nk

N + k − 1
(4.12)

if the elements in T occur with the same probability in S.

We apply the theorem for the special case where every bucket contains exactly
one item (n = 1). In this case,

∏0
i=0

N−1−i
N−1+k−i = N−1

N−1+k . And the number of

qualifying buckets is N(1− N−1
N−1+k) = N(N−1+k−N+1

N−1+k) = N k
N+k−1 . 2

Another way to achieve this formula is the following. There are
(
N
l

)
pos-

sibilities to pick l different elements out of the N elements in T . In order to
build a k-multiset with l different elements, we must additionally choose n− l
elements from the l elements. Thus, we have

(
N
l

) ((l
n− l

))
possibilities to

build a k-multiset. The total number of multisets is

((
N
l

))
. Thus we may

conclude that

D(N, k) = l

min(N,k)∑

l=1

(
N
l

) ((l
n− l

))

((
N
l

))

which can be simplified to the above.

4.16. COUNTING THE NUMBER OF ACCESSES 179

A useful application of this formula is to calculate the size of a projection
[174]. Another use is that calculating the number of distinct values contained
in a multiset allows us to shift from the model with replacement to a model
without replacement. However, there is a difference between

YN,m
n (Distinct(N, k)) ≈ Cheung

N,m
n (k)

even when computing Y with Eq. 4.5. Nonetheless, for n ≥ 5, the error is
less than two percent. One of the problems when calculating the result of the
left-hand side is that the number of distinct items is not necessarily an integer.
To solve this problem, we can implement all our formulas using the Gamma-
function. But even then a small difference remains.

The approximation given in Theorem 4.16.3 is not too accurate. A better
approximation can be calculated from the probability distribution. Denote by
p(D(N, k) = j) the probability that the number of distinct values if we randomly
select k items with replacement from N given items equals j. Then

p(D(N, k) = j) =

(
N

j

) ∑

l=0

j(−1)k
(
j

l

)
((j − l)/N)k

and thus

D(N, k) =
min(N,k)∑

j=1

j

(
N

j

) ∑

l=0

j(−1)k
(
j

l

)
((j − l)/N)k

This formula is quite intense to calculate. We can derive a very good approx-
imation by the following reasoning. We draw k elements from the set T with
|T | = N elements. Every element from T can be drawn at most k times. We
produce N buckets, one for each element of T . In each bucket, we insert k
copies of the according element from t. Then, a sequence of draws from T
with duplicates can be represented by a sequence of draws without duplicate
by mapping them to different copies. Thus, the first occurrence is mapped to
the first element in the according bucket, the second one to the second copy
and so on. Then, we can apply formula by Waters and Yao to calculate the
number of buckets (and hence elements of T) hit:

D(N, k) = YNk,k
N (k)

Since the approximation is quite accurate and we already know how to efficiently
calculate this formula, this is our method of choice.

Non-Uniform Distribution of Items

In the previous sections, we assumed that

1. every page contains the same number of records, and

2. every record is accessed with the same probability.

180CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

We now turn to relax the first assumption. Christodoulakis models the distri-
bution by m numbers ni (for 1 ≤ i ≤ m) if there are m buckets. Each ni equals
the number of records in some bucket i [177]. Luk proposes Zipfian record
distribution [571]. However, Ijbema and Blanken say that Water and Yao’s
formula is still better, as Luk’s formula results in too low values [440]. They all
come up with the same general formula presented below. Vander Zander, Tay-
lor, and Bitton [968] discuss the problem of correlated attributes which results
in some clusteredness. Zahorjan, Bell, and Sevcik discuss the problem where
every item is assigned its own access probability [967]. That is, they relax the
second assumption. We will come back to these issues in Section ??.

We still assume that every item is accessed with the same probability.
However, we relax the first assumption. The following formula derived by
Christodoulakis [177], Luk [571], and Ijbema and Blanken [440] is a simple
application of Waters’s and Yao’s formula to a more general case.

Theorem 4.16.5 (Yao/Waters/Christodoulakis) Assume a set ofm buck-
ets. Each bucket contains nj > 0 items (1 ≤ j ≤ m). The total number of items
is N =

∑m
j=1 nj. If we look up k distinct items, then the probability that bucket

j qualifies is

WN
nj
(k, j) = [1−

(N−nj

k

)
(
N
k

)] (= YN
nj
(k)) (4.13)

and the expected number of qualifying buckets is

WN,m
nj

(k) :=
m∑

j=1

WN
nj
(k, j) (4.14)

Note that the product formulation in Eq. 4.5 of Theorem 4.16.1 results in a
more efficient computation. We make a note of this in the following corollary.

Corollary 4.16.6 Assume a set of m buckets. Each bucket contains nj > 0
items (1 ≤ j ≤ m). The total number of items is N =

∑m
j=1 nj. If we look up

k distinct items, then the expected number of qualifying buckets is

WN,m
nj

(k) =
m∑

j=1

(1− pj) (4.15)

with

pj =

{ ∏nj−1
i=0

N−k−i
N−i k ≤ nj

0 N − nj < k ≤ N (4.16)

If we compute the pj after we have sorted the nj in ascending order, we can use
the fact that

pj+1 = pj ∗
nj+1−1∏

i=nj

N − k − i
N − i .

We can also use the theorem to calculate the number of qualifying buckets
in case the distribution is given by a histogram.

4.16. COUNTING THE NUMBER OF ACCESSES 181

Corollary 4.16.7 For 1 ≤ i ≤ L let there be li buckets containing ni items.
Then the total number of buckets is m =

∑L
i=1 li, and the total number of items

in all buckets is N =
∑L

i=1 lini. For k randomly selected items, the number of
qualifying buckets is

WN,m
nj

(k) =

L∑

i=1

liYN
nj
(k) (4.17)

Last in this section, let us calculate the probability distribution for the
number of qualifying items within a bucket. The probability that x ≤ nj items
in a bucket j qualify can be calculated as follows. The number of possibilities
to select x items in bucket nj is

(
nj
x

)
. The number of possibilites to draw the

remaining k − x items from the other buckets is
(N−nj

k−x
)
. The total number

of possibilities to distribute k items over the buckets is
(
N
k

)
. This shows the

following:

Theorem 4.16.8 Assume a set of m buckets. Each bucket contains nj > 0
items (1 ≤ j ≤ m). The total number of items is N =

∑m
j=1 nj. If we look up

k distinct items, the probability that x items in bucket j qualify is

XN
nj
(k, x) =

(
nj
x

) (N−nj

k−x
)

(
N
k

) (4.18)

Further, the expected number of qualifying items in bucket j is

XN,m
nj

(k) =

min(k,nj)∑

x=0

xXN
nj
(k, x) (4.19)

In standard statistics books the probability distribution XN
nj
(k, x) is called hy-

pergeometric distribution.

Let us consider the case where all nj are equal to n. Then we can calculate
the average number of qualifying items in a bucket. With y := min(k, n) we

182CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

have

XN,m
nj

(k) =

min(k,n)∑

x=0

xXN
n (k, x)

=

min(k,n)∑

x=1

xXN
n (k, x)

=
1(
N
k

)
y∑

x=1

x

(
n

x

)(
N − n
k − x

)

=
1(
N
k

)
y∑

x=1

(
x

1

)(
n

x

)(
N − n
k − x

)

=
1(
N
k

)
y∑

x=1

(
n

1

)(
n− 1

x− 1

)(
N − n
k − x

)

=

(
n
1

)
(
N
k

)
y−1∑

x=0

(
n− 1

0 + x

)(
N − n

(k − 1)− x

)

=

(
n
1

)
(
N
k

)
(
n− 1 +N − n

0 + k − 1

)

=

(
n
1

)
(
N
k

)
(
N − 1

k − 1

)

= n
k

N
=

k

m

Let us consider the even more special case where every bucket contains a
single item. That is, N = m and ni = 1. The probability that a bucket contains
a qualifying item reduces to

XN
1 (k, x) =

(
1
x

) (
N−1
k−1
)

(
N
k

)

=

(
N−1
k−1
)

(
N
k

)

=
k

N
(=

k

m
)

Since x can then only be zero or one, the average number of qualifying items a
bucket contains is also k

N .
The formulas presented in this section can be used to estimate the number

of block/page accesses in case of random direct accesses. As we will see next,
other kinds of accesses occur and need different estimates.

4.16.2 Counting the Number of Sequential Accesses

Vector of Bits

When estimating seek costs, we need to calculate the probability distribution
for the distance between two subsequent qualifying cylinders. We model the

4.16. COUNTING THE NUMBER OF ACCESSES 183

situation as a bitvector of length B with b bits set to 1. Then B corresponds
to the number of cylinders and a 1 indicates that a cylinder qualifies.

Theorem 4.16.9 Assume a bitvector of length B. Within it b ones are uni-
formly distributed. The remaining B − b bits are zero. Then the probability
distribution of the number j of zeros

1. between two consecutive ones,

2. before the first one, and

3. after the last one

is given by

BBb (j) =
(
B−j−1
b−1

)
(
B
b

) (4.20)

A more general theorem (see Theorem 4.16.13) was first presented by Yao [955].
The above formulation is due to Christodoulakis [180].

To see why the formula holds, consider the total number of bitvectors having
a one in position i followed by j zeros followed by a one. This number is

(
B−j−2
b−2

)
.

We can chose B − j − 1 positions for i. The total number of bitvectors is
(
B
b

)

and each bitvector has b − 1 sequences of the form that a one is followed by a
sequence of zeros is followed by a one. Hence,

BBb (j) =
(B − j − 1)

(
B−j−2
b−2

)

(b− 1)
(
B
b

)

=

(
B−j−1
b−1

)
(
B
b

)

Part 1. of the theorem follows. To prove part 2., we count the number of
bitvectors that start with j zeros before the first one. There are B − j − 1
positions left for the remaining b−1 ones. Hence, the number of these bitvectors
is
(
B−j−1
b−1

)
and part 2 follows. Part 3 follows by symmetry.

We can derive a less expensive way to evaluate the formula for BBb (j) as

184CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

follows. For j = 0, we have BBb (0) = b
B . If j > 0, then

BBb (j) =

(
B−j−1
b−1

)
(
B
b

)

=

(B−j−1)!
(b−1)!((B−j−1)−(b−1))!

B!
b!(B−b)!

=
(B − j − 1)! b!(B − b)!

(b− 1)!((B − j − 1)− (b− 1))! B!

= b
(B − j − 1)! (B − b)!

((B − j − 1)− (b− 1))! B!

= b
(B − j − 1)! (B − b)!

(B − j − b)! B!

=
b

B − j
(B − j)! (B − b)!
(B − b− j)! B!

=
b

B − j

j−1∏

i=0

(1− b

B − i)

This formula is useful when BBb (j) occurs in sums over j because we can compute
the product incrementally.

Corollary 4.16.10 Using the terminology of Theorem 4.16.9, the expected val-
ue for the number of zeros

1. before the first one,

2. between two successive ones, and

3. after the last one

is

BBb =

B−b∑

j=0

jBBb (j) =
B − b
b+ 1

(4.21)

4.16. COUNTING THE NUMBER OF ACCESSES 185

Let us calculate:

B−b∑

j=0

j

(
B − j − 1

b− 1

)
=

B−b∑

j=0

(B − (B − j))
(
B − j − 1

b− 1

)

= B

B−b∑

j=0

(
B − j − 1

b− 1

)
−

B−b∑

j=0

(B − j)
(
B − j − 1

b− 1

)

= B

B−b∑

j=0

(
b− 1 + j

b− 1

)
− b

B−b∑

j=0

(
B − j
b

)

= B

B−b∑

j=0

(
b− 1 + j

j

)
− b

B−b∑

j=0

(
b+ j

b

)

= B

(
(b− 1) + (B − b) + 1

(b− 1) + 1

)
− b
(
b+ (B − b) + 1

b+ 1

)

= B

(
B

b

)
− b
(
B + 1

b+ 1

)

= (B − bB + 1

b+ 1
)

(
B

b

)

With

B − bB + 1

b+ 1
=

B(b+ 1)− (Bb+ b)

b+ 1

=
B − b
b+ 1

the claim follows.

Corollary 4.16.11 Using the terminology of Theorem 4.16.9, the expected to-
tal number of bits from the first bit to the last one, both included, is

Btot(B, b) =
Bb+ b

b+ 1
(4.22)

To see this, we subtract from B the average expected number of zeros between
the last one and the last bit:

B − B − b
b+ 1

=
B(b+ 1)

b+ 1
− B − b
b+ 1

=
Bb+B −B + b

b+ 1

=
Bb+ b

b+ 1

An early approximation of this formula was discovered by Kollias [507].

186CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

Corollary 4.16.12 Using the terminology of Theorem 4.16.9, the number of
bits from the first one and the last one, both included, is

B1-span(B, b) =
Bb−B + 2b

b+ 1
(4.23)

We have two possibilities to argue here. The first subtracts from B the number
of zeros at the beginning and the end:

B1-span(B, b) = B − 2
B − b
b+ 1

=
Bb+B − 2B + 2b

b+ 1

=
Bb−B + 2b

b+ 1

The other possibility is to add the number of zeros between the first and the
last one and the number of ones:

B1-span(B, b) = (b− 1)BBb + b

= (b− 1)
B − b
b+ 1

+
b(b+ 1

b+ 1

=
Bb− b2 −B + b+ b2 + b

b+ 1

=
Bb−B + 2b

b+ 1

The number of bits from the first bit to the last one including both . . . The
distance between the first and the last one . . .EX or Cor?

Let us have a look at some possible applications of these formulas. If we
look up one record in an array of B records and we search sequentially, how
many array entries do we have to examine on average if the search is successful?

In [584] we find these formulas used for the following scenario. Let a file
consist of B consecutive cylinders. We search for k different keys, all of which
occur in the file. These k keys are distributed over b different cylinders. Of
course, we can stop as soon as we have found the last key. What is the expected
total distance the disk head has to travel if it is placed on the first cylinder of
the file at the beginning of the search?

Another interpretation of these formulas can be found in [429, 585]. Assume
we have an array consisting of B different entries. We sequentially go through
all entries of the array until we have found all the records for b different keys.
We assume that the B entries in the array and the b keys are sorted. Further,
all b keys occur in the array. On the average, how many comparisons do we
need to find all keys?

Vector of Buckets

A more general scenario is as follows. Consider a sequence of m buckets con-
taining ni items each. Yao [955] developed the following theorem.

4.16. COUNTING THE NUMBER OF ACCESSES 187

Theorem 4.16.13 (Yao) Consider a sequence of m buckets. For 1 ≤ i ≤ m,
let ni be the number of items in a bucket i. Then there is a total of N =

∑m
i=1 ni

items. Let ti =
∑i

l=0 ni be the number of items in the first i buckets. If the
buckets are searched sequentially, then the number of buckets that have to be
examined until k distinct items have been found is

CN,m
ni

(k, j) =

(tj
k

)
−
(tj−1

k

)
(
N
k

) (4.24)

Thus, the expected number of buckets that need to be examined in order to
retrieve k distinct items is

CN,m
ni

(k) =
m∑

j=1

jCN,m
ni

(k, j) = m−
∑m

j=1

(tj−1

k

)
(
N
k

) (4.25)

Applications of this formula can be found in [177, 180, 584, 586, 880]. Manolopou-
los and Kollias describe the analogue for the replacement model [584].

Lang, Driscoll, and Jou discovered a general theorem which allows us to
estimate the expected number of block accesses for sequential search.

Theorem 4.16.14 (Lang/Driscoll/Jou) Consider a sequence of N items.
For a batched search of k items, the expected number of accessed items is

A(N, k) = N −
N−1∑

i=1

Prob[Y ≤ i] (4.26)

where Y is a random variable for the last item in the sequence that occurs among
the k items searched.

proof? ?

With the help of this theorem, it is quite easy to derive many average
sequential accesses for different models. Cor or EX?

4.16.3 Pointers into the Literature

Segments containing records can be organized differently. Records can be placed
randomly in the segment, they can be ordered according to some key, or the
segment is organized as a tree. Accordingly, the segment is called random,
sequential, or tree-structure. From a segment, records are to be retrieved for
a given bag of k keys. The general question then is: how many pages do we
have to access? The answer depends on whether we assume the replacement
or non-replacement model. Six cases occur. For sequential and tree-structured
segments, it also makes sense to distinguish between successful, partially (un-)
successful, and (totally) unsuccessfull searches. These notions capture the dif-
ferent possibilities where for all, some, none of the k keys records are found.
The following table provides some entry points into the literature. It is rough-
ly organized around the above categories. (Remember that we discussed the
random file organization at length in Section 4.16.1.)

188CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

non-replacement replacement

random [174, 177, 571, 687, 925, 954] [125, 177, 669, 687]
sequential [63, 177, 527, 586, 669, 668, 810, 955] [177, 527, 586, 810]
tree-structured [527, 526, 586, 668, 692] [527, 526, 586, 810]

4.17 Disk Drive Costs for N Uniform Accesses

The goal of this section is to derive estimates for the costs (time) for retrieving
N cache-missed sectors of a segment S from disk. We assume that the N sectors
are read in their physical order on disk. This can be enforced by the DBMS,
by the operating system’s disk scheduling policy (SCAN policy), or by the disk
drive controller.

Remembering the description of disk drives, the total costs can be described
as

Cdisk = Ccmd + Cseek + Csettle + Crot + Cheadswitch (4.27)

For brevity, we omitted the parameter N and the parameters describing the
segment and the disk drive on which the segment resides. Subsequently, we
devote a (sometimes tiny) section to each summand. Before that, we have to
calculate the number of qualifying cylinders, tracks, and sectors. These numbers
will be used later on.

4.17.1 Number of Qualifying Cylinders, Tracks, and Sectors

If N sectors are to be retrieved, we have to find the number of cylinders qual-
ifying in an extent i. Let Ssec denote the total number of sectors our segment
contains and Scpe(i) = Li−Fi+1 be the number of cylinders of the extent. If the
N sectors we want to retrieve are uniformly distributed among the Ssec sectors
of the segment, the number of cylinders that qualifies in (Fi, Li, zi) is Scpe(i)
times 1 minus the probability that a cylinder does not qualify. The probability
that a cylinder does not qualify can be computed by deviding the total num-
ber of possibilities to chose the N sectors from sectors outside the cylinder by
the total number of possibilities to chose N sectors from all Ssec sectors of the
segment. Hence, the number of qualifying cylinders in the considered extent is:

Qc(i) = Scpe(i)YSsec

DZspc(i)
(N) = Scpe(i)(1−

(Ssec−DZspc(i)
N

)
(
Ssec

N

)) (4.28)

We could also have used Theorem 4.16.13.
Let us also calculate the number of qualifying tracks in a partion i. It

can be calculated by Scpe(i)Dtpc(1 − Prob(a track does not qualify)). The
probability that a track does not qualify can be computed by dividing the
number of ways to pick N sectors from sectors not belonging to a track divided
by the number of possible ways to pick N sectors from all sectors.

Qt(i) = Scpe(i)DtpcYSsec

DZspt(i)
(N) = Scpe(i)Dtpc(1−

(Ssec−DZspt(i)
N

)
(
Ssec

N

)) (4.29)

4.17. DISK DRIVE COSTS FOR N UNIFORM ACCESSES 189

Just for fun, we calculate the number of qualifying sectors of an extent in
zone i. It can be approximated by

Qs(i) = Scpe(i)DZspc(i)
N

Ssec
(4.30)

Since all Scpe(i) cylinders are in the same zone, they have the same number of
sectors per track, and we could also use Waters/Yao to approximate the number
of qualifying cylinders by

Qc(i) = YScpe(i)DZspc(Szone(i)),Scpe(i)

DZspc(Szone(i))
(Qs(i)) (4.31)

This is a good approximation, as long as Qs(i) is not too small (e.g. > 4).

4.17.2 Command Costs

The command costs Ccmd are easy to compute. Every read of a sector requires
the execution of a command. Hence

Ccmd = NDcmd

estimates the total command costs.

4.17.3 Seek Costs

We give different alternative possibilities to estimate seek costs. We start with
an upper bound by exploring Theorem 4.1.1. The first cylinder we have to visit
requires a random seek with cost Davgseek. (Well this does not really give us an
upper bound. For a true upper bound we should use Dseek(Dcyl − 1).) After
that, we have to visit the remaining Qc(i)−1 qualifying cylinders. The segment
spans a total of Slast(Sext)−Sfirst(1)+ 1 cylinders. Let us assume that the first
qualifying cylinder is the first cylinder and the last qualifying cylinder is the
last cylinder of the segment. Then applying Theorem 4.1.1 gives us the upper
bound

Cseek(i) ≤ (Qc(i)− 1)Dseek(
Slast(Sext)− Sfirst(1) + 1

Qc(i)− 1
)

after we have found the first qualifying cylinder.
We can be a little more precise by splitting the seek costs into two com-

ponents. The first component Cseekgap expresses the costs of finding the first
qualifying cylinder and jumping from the last qualifying cylinder of extent i to
the first qualifying cylinder of extent i + 1. The second component Cseekext(i)
calculates the seek costs within an extent i. Figure 4.10 illustrates the situation.
The total seek costs then are

Cseek(i) = Cseekgap +
Sext∑

i=1

Cseekext(i)

Since there is no estimate in the literature for Cseekgap, we have to calculate it
ourselves. After we have done so, we present several alternatives to calculate
Cseekext(i).

190CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

...

...
seek

...

︸︷︷︸
Ξ

︸︷︷︸
Ξ

︸︷︷︸
Ξ

︸ ︷︷ ︸
Scpe

︸ ︷︷ ︸
Scpe

︸ ︷︷ ︸
Scpe

∆gap

The upper path illustrates Cseekgap, the lower braces indicate those parts for
which Cseekext is responsible.

Figure 4.10: Illustration of seek cost estimate

The average seek cost for reaching the first qualifying cylinder is Davgseek.
How far are we now within the first extent? We use Corollary 4.16.10 to derive
that the number of non-qualifying cylinders preceding the first qualifying one
in some extent i is

BScpe(i)
Qc(i)

=
Scpe(i)−Qc(i)

Qc(i) + 1
.

The same is found for the number of non-qualifying cylinders following the
last qualifying cylinder. Hence, for every gap between the last and the first
qualifying cylinder of two extents i and i + 1, the disk arm has to travel the
distance

∆gap(i) := BScpe(i)
Qc(i)

+ Sfirst(i+ 1)− Slast(i)− 1 + BScpe(i+1)
Qc(i+1)

Using this, we get

Cseekgap = Davgseek +

Sext−1∑

i=1

Dseek(∆gap(i))

Let us turn to Cseekext(i). We first need the number of cylinders between
the first and the last qualifying cylinder, both included, in extent i. It can be
calculated using Corollary 4.16.12:

Ξext(i) = B1-span(Scpe(i), Qc(i))

Hence, Ξ(i) is the minimal span of an extent that contains all qualifying cylin-
ders.

Using Ξ(i) and Theorem 4.1.1, we can derive an upper bound for Cseekext(i):

Cseekext(i) ≤ (Qc(i)− 1)Dseek(
Ξ(i)

Qc(i)− 1
) (4.32)

4.17. DISK DRIVE COSTS FOR N UNIFORM ACCESSES 191

Alternatively, we could formulate this as

Cseekext(i) ≤ (Qc(i)− 1)Dseek(BScpe(i)
Qc(i)

) (4.33)

by applying Corollary 4.16.10.
A seemingly more precise estimate for the expected seek cost within the

qualifying cylinders of an extent is derived by using Theorem 4.16.9:

Cseekext(i) = Qc(i)

Scpe(i)−Qc(i)∑

j=0

Dseek(j + 1)BScpe(i)
Qc(i)

(j) (4.34)

There are many more estimates for seek times. Older ones rely on a linear
disk model but also consider different disk scan policies. A good entry point is
the work by Theorey and Pinkerton [871, 872].

4.17.4 Settle Costs

The average settle cost is easy to calculate. For every qualifying cylinder, one
head settlement takes place:

Csettle(i) = Qc(i)Drdsettle (4.35)

4.17.5 Rotational Delay Costs

Let us turn to the rotational delay. For some given track in zone i, we want to
read the Qt(i) qualifying sectors contained in it. On average, we would expect
that the read head is ready to start reading in the middle of some sector of a
track. If so, we have to wait for 1

2DZscan(Szone(i)) before the first whole sector
occurs under the read head. However, due to track and cylinder skew, this
event does not occur after a head switch or a cylinder switch. Instead of being
overly precise here, we ignore this half sector pass by time and assume that we EX
are always at the beginning of a sector. This is also justified by the fact that
we model the head switch time explicitly.

Assume that the head is ready to read at the beginning of some sector
of some track. Then, in front of us is a — cyclic, which does not matter —
bitvector of qualifying and non-qualifying sectors. We can use Corollary 4.16.11
to estimate the total number of qualifying and non-qualifying sectors that have
to pass under the head until all qualifying sectors have been seen. The total
rotational delay for the tracks of zone i is

Crot(i) = Qt(i) DZscan(Szone(i)) Btot(DZspt(Szone(i)), Qspt(i)) (4.36)

where Qspt(i) = WSsec,DZspt(Szone(i))
1 (N) = DZspt(Szone(i))

N
Ssec

is the expected
number of qualifying sectors per track in extent i. In case Qspt(i) < 1, we set
Qspt(i) := 1.

A more precise model is derived as follows. We sum up for all j the product
of (1) the probability that j sectors in a track qualify and (2) the average number
of sectors that have to be read if j sectors qualify. This gives us the number of

192CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

sectors that have to pass the head in order to read all qualifying sectors. We
only need to multiply this number by the time to scan a single sector and the
number of qualifying tracks. We can estimate (1) using Theorem 4.16.8. For
(2) we again use Corollary 4.16.11.

Crot(i) = Scpe(i) Dtpc DZscan(Szone(i))

·
min(N,DZspt(Szone(i)))∑

j=1

X Ssec

DZspt(Szone(i))
(N, j) Btot(DZspt(Szone(i)), j)(4.37)

Another approach is taken by Triantafillou, Christodoulakis, and Georgiadis
[880]. They split the total rotational delay into two components. The first
component (Crotpass) measures the time needed to skip unqualifying sectors and
the second (Crotread) that for (scanning and transferring) the qualifying sectors
to the host.

Let us deal with the first component. Assume that j sectors of a track in
extent i qualify. The expected position on a track where the head is ready to
read is the middle between two qualifying sectors. Since the expected number of
sectors between two qualifying sectors isDZspt(Szone(i))/j, the expected number
of sectors scanned before the first qualifying sector comes under the head is
DZspt(Szone(i))

2j . The expected positions of j qualifying sectors on the same track
is such that the number of non-qualifying sectors between two successively
qualifying sectors is the same. Hence, after having read a qualifying sector,
DZspt(Szone(i))

j unqualifying sectors must pass by until the next qualifying sector
shows up. The total number of unqualifying sectors to be passed if j sectors
qualify in a track of zone i is

Ns(j, i) =
DZspt(Szone(i))

2j
+ (j − 1)

DZspt(Szone(i))− j
j

(4.38)

Using again Theorem 4.16.8, the expected rotational delay for the unquali-
fying sectors then is

Crotpass(i) = Scpe(i) Dtpc DZscan(Szone(i))

·
min(N,DZspt(Szone(i)))∑

j=1

X Ssec

DZspt(Szone(i))
(N, j)Ns(j, i) (4.39)

We have to sum up this number for all extents and then add the time needed
to scan the N sectors. Hence

Crot =
Sext∑

i=1

Crotpass(i) + Crotread(i)

where the total transfer cost for the qualifying sectors of an extent can be
estimated as

Crotread(i) = Qs(i) DZscan(Szone(i))

4.17. DISK DRIVE COSTS FOR N UNIFORM ACCESSES 193

4.17.6 Head Switch Costs

The average head switch cost is equal to the average number of head switches
that occur times the average head switch cost. The average number of head
switch is equal to the number of tracks that qualify minus the number of cylin-
ders that qualify since a head switch does not occur for the first track of each
cylinder. Summarizing

Cheadswitch =

Sext∑

i=1

(Qt(i)−Qc(i)) Dhdswitch (4.40)

where Qt is the average number of tracks qualifying in an extent.

4.17.7 Discussion

The disk drive cost model derived depends on many parameters. The first bunch
of parameters concerns the disk drive itself. These parameters can (and must
be) extracted from disk drives by using (micro-) benchmarking techniques [311,
866, 605, 771]. The second bunch of parameters concerns the layout of a segment
on disk. The database system is responsible for providing these parameters.
The closer it is to the disk, the easier these parameters are extracted. Building
a runtime system atop the operating system’s file system is obviously a bad
idea from the cost model perspective. If instead the storage manager of the
runtime system implements cylinder aligned extents (or at least track aligned
extents) using a raw I/O interface, the cost model will be easier to develop and
much more precise. Again, providing reliable cost models is one of the most
important tasks of the runtime system.

We have neglected many problems in our disk access model: partially filled
cylinders, pages larger than a block, disk drive’s cache, remapping of bad blocks,
non-uniformly distributed accesses, clusteredness, and so on. Whereas the first
two items are easy to fix, the rest is not so easy. In general, database systems
ignore the disk drive cache. The justifying argument is that the database buffer
is much larger than the disk drive’s cache and, hence, it is very unlikely that we
read a page that is not in the database buffer but in the disk cache. However,
this argument falls short for non-random accesses. Nevertheless, we will ignore
the issue in this book. The interested reader is referred to Shriver’s thesis for
disk cache modeling [811].

Remapping of bad sectors to other sectors really prevents the development
of a precise cost model for disk accesses. Modelling disk drives becomes already
a nightmare since a nice partitioning of the disk into zones is no longer possible
since some sectors, tracks and even cylinders are reserved for the remapping. So
even if no remapping takes place (which is very unlikely), having homogeneous
zones of hundreds of cylinders is a dream that will never come true. The
result is that we do not have dozens of homogeneous zones but hundreds (if
not thousands) of zones of medium homogeneity. These should be reduced to
a model of dozens of homogeneous zones such that the error does not become
too large. The remaining issues will be discussed later in the book. EX

194CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

There is even more to say about our cost model. A very practical issue
arises if the number of qualifying cylinders is small. Then for some extent i,
the expected number of qualifying cylinders could be Qc(i) = 0.38. For some
of our formulas this is a big problem. As a consequence, special cases for small
N , small Qc, small Qt have to be developed and implemented.EX

Another issue is the performance of the cost model itself. The query com-
piler might evaluate the cost model’s formulas thousands or millions of times.
Hence, they should be fast to evaluate.

So far, we can adequately model the costs ofN disk accesses. Some questions
remain. For example, how do we derive the number N of pages we have to
access? Do we really need to fetch all N pages from disk or will we find some
of them in the buffer? If yes, how many? Further, CPU costs are also an
important issue. Deriving a cost model for CPU costs is even more tedious
than modelling disk drive costs. The only choice available is to benchmark all
parts of a system and then derive a cost model using the extracted parameters.
To give examples of parameters to be extracted: we need the CPU costs for
accessing a page present in the buffer, for accessing a page absent in the buffer,
for a next call of an algebraic operator, for executing an integer addition, and
so on. Again, this cannot be done without tools [47, 244, 412, 463, 686].

The bottom line is that a cost model does not have to be accurate, but must
lead to correct decisions. In that sense, it must be accurate at the break even
points between plan alternatives. Let us illustrate this point by means of our
motivating example. If we know that the index returns a single tuple, it is quite
likely that the sequential scan is much more expensive. The same might be true
for 2, 3, 4, and 5 tuples. Hence, an accurate model for small N is not really
necessary. However, as we come close to the costs of a sequential scan, both the
cost model for the sequential scan and the one for the index-based access must
be correct since the product of their errors is the factor a bad choice is off the
best choice. This is a crucial point, since it is easy to underestimate sequential
access costs by a factor of 2-3 and overestimate random access cost by a factor
of 2-5.

4.18 Concluding Remarks

Learned:

Open Cost: I/O costs: non-uniform stuff, CPU costs: nothing done

Wrong cardinality estimates: Open, leads to dynamic qo

4.19 Bibliography

ToDo:

• CPU Costs for B-tree search within inner and leaf pages [523]

• Index/Relations: only joins between building blocks [739]

4.19. BIBLIOGRAPHY 195

• RDB/V1: predicate push down (views), 2 phase optimization (local: tra-
ditional, global: sharing of tables), five categories for predicates, nested
loops evaluation for nested correlated subqueries, use of transitivity of
equality, conjunctive normal form, use of min/max value of join column
to reduce join cardinality by adding another selection to the other relation
(min(a) <= b <= max(a)) for join predicate a=b.

• K accesses to unique index: how many page faults if buffer has size b?
[752]

• buffer mgmt: [257]

• buffer mgmt: [809]

• buffer mgmt: [528]

• buffer mgmt: [753, 754]

• buffer mgmt: [109]

• buffer mgmt: [176]

• structured, semi-structured, unstructured data: [337] cited in Dono76

• B-trees and their improvements [213]

• Vertical partitioning: [261, 587, 56]

• Horizontal and vertical partitioning: [135]

• set oriented disk access to large complex objects [918, 917], assembly
operator: [483],

• large objects: [89, 126, 542]

196CHAPTER 4. DATABASE ITEMS, BUILDING BLOCKS, AND ACCESS PATHS

Part II

Foundations

197

Chapter 5

Logic, Null, and Boolean
Expressions

5.1 Two-Valued Logic

The Boolean algebra with its operations not (¬), and (∧), and or (∨) is well-
known. The truth tables for these operations is given in Figure 5.1. Figure 5.2
summarizes well-known laws for two-valued logic.

5.2 Null Values

Many database management systems (in particular all SQL-based relational
systems but also object-oriented databases) support a special NULL value. It
is used to express semantic concepts like undefined, unknown or not applicable.
Although there exist proposals for supporting different NULL values for these
different semantic concepts [?, ?], database management systems only support
one NULL value.

This NULL value is a special value, distinguishable from all other values in
a domain. That is, all the domains are extended by this very special value. This
necessitates the definition of operations, functions, and comparison operators
in case some argument is NULL.

5.2.1 Functions and Operators

If any of the arguments of a function or an operator is NULL, the result of the
operator is typically also NULL. For example, in SQL every arithmetic operator

¬ true false

false true
∨ true false

true true true
false true false

∧ true false

true true false
false false false

Figure 5.1: Truth tables for two-valued logic

199

200 CHAPTER 5. LOGIC, NULL, AND BOOLEAN EXPRESSIONS

Commutativity

p1 ∨ p2 ≡ p2 ∨ p1 p1 ∧ p2 ≡ p2 ∧ p1
∃e1 ∃e2 p ≡ ∃e2 ∃e1 p ∀e1 ∀e2 p ≡ ∀e2 ∀e1 p

Associativity

(p1 ∨ p2) ∨ p3 ≡ p1 ∨ (p2 ∨ p3) (p1 ∧ p2) ∧ p3 ≡ p1 ∧ (p2 ∧ p3)

Distributivity

p1 ∨ (p2 ∧ p3) ≡ (p1 ∨ p2) ∧ (p1 ∨ p3) p1 ∧ (p2 ∨ p3) ≡ (p1 ∧ p2) ∨ (p1 ∧ p3)
∃e (p1 ∨ p2) ≡ (∃e p1) ∨ (∃ p2) ∀e (p1 ∧ p2) ≡ (∀e p1) ∧ (∀e p2)

Idempotency

p ∨ p ≡ p p ∧ p ≡ p
p ∨ ¬p ≡ true (∗) p ∧ ¬p ≡ false (∗)
p1 ∨ (p1 ∧ p2) ≡ p1 p1 ∧ (p1 ∨ p2) ≡ p1
p ∨ false ≡ p p ∧ true ≡ p
p ∨ true ≡ true p ∧ false ≡ false

De Morgan

¬(p1 ∨ p2) ≡ ¬(p1) ∧ ¬(p2) ¬(p1 ∧ p2) ≡ ¬(p1) ∨ ¬(p2)

Negation of Quantifiers

¬(∀e p) ≡ ∃e(¬p) ¬(∃e p) ≡ ∀e (¬p)

Elimination of Negation

¬(¬(p)) ≡ p ¬t1θt2 ≡ t1θt2

Conditioned Distributivity(F(p1) ∩ A(e) = ∅)

p1 ∨ (∀e p2) ≡ ∀e (p1 ∨ p2) p1 ∧ (∃e p2) ≡ ∃e (p1 ∧ p2)

p1 ∨ (∃e p2) ≡
[
∃e(p1 ∨ p2) if e ̸= {}
p1 if e = {}

p1 ∧ (∀e p2) ≡
[
∀e(p1 ∧ p2) if e ̸= {}
p1 if e = {}

Figure 5.2: Laws for two-valued logic

and function is defined that way. Thus, we have for example 0 ∗ NULL =
NULL, although 0 could also be reasonable.

5.2. NULL VALUES 201

x = y x
.
= y

x is null x not null

y is null ⊥ ⊥
y not null ⊥ x = y

x is null x not null

y is null true false
y not null false x = y

Figure 5.3: Comparison functions in the presence of NULL values

5.2.2 Comparison Operators

NULL values stored directly in base tables thus typically propagate up through
operators and function calls. Thus, comparison operators must deal with NULL
values as input. Without NULL values as input, all comparison operators yield
either true or false as output. In the presence of NULL values, a third value
called unknown (⊥) is possible. How these unknown values are handled by
standard logical operators is the topic of the next section. Here, we concentrate
on the definition of comparison operators. Since there will be many of them
with different semantics, we need some specific notation. First, we assume that
=v is the standard value-based comparison operator for a given domain (e.g.,
integer or varchar) that cannot have NULL values as argument. The standard
comparison operator =v can be extended in two ways to handle NULL values
as input. The first is denoted by = and has the same semantics as the equality
in SQL. It returns any of true, false, ⊥. It is defined in Figure 5.3. Note that
it always evaluates to ⊥, if at least one of its arguments is NULL. If none of
the arguments are NULL, it behaves like a regular value comparison operator
=v. The second operator is

.
=. It is also defined in Figure 5.3. If both inputs

are NULL, it returns true. If only one input is NULL, it returns false. If no
input is NULL, it returns the result of the regular value comparison operator.
Note, that

.
= never returns ⊥. In SQL predicates,

.
= is called is not distinct

from. Also in SQL,
.
= is used for grouping and duplicate elimination.

Using ¬, we can define abbreviations for inequality:

x ̸= y := ¬(a = b)

x ̸ .= y := ¬(a .
= b)

For other comparison operators θ ∈ {≤,≥, <,>}, we treat their negation by
defining an operator θ that converts θ into it’s negated counterpart:

≤ := >

≥ := <

< := ≥
> := ≤

Their semantics is defined analogously to that of equality, i.e., if at least one
of their arguments is NULL, they return ⊥, otherwise they return the result of
their regular value comparison counterparts.

202 CHAPTER 5. LOGIC, NULL, AND BOOLEAN EXPRESSIONS

¬ true false ⊥
false true ⊥

∨ true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥

∧ true false ⊥
true true false ⊥
false false false false
⊥ ⊥ false ⊥

Figure 5.4: Truth tables for three-valued logic

5.3 Three-Valued Logic

As we have seen, comparison operators can have three possible outcomes (true,
false, and ⊥). A logic dealing with these three values is called three-valued logic.
In this section, we review the operators of three-valued logic and give some use-
ful laws. Figure 5.4 shows the extended truth-tables for the standard operators
¬, ∧, and ∨. For completeness, we also define implication and exclusive or :

a =⇒ b := ¬a ∨ b
a
·∨ b := (a ∨ b) ∧ ¬(a ∧ b)

While three-valued logic correctly captures the uncertainty caused by NULL
values, and a result of ⊥ can be reported back to the user as a boolean NULL,
it is often necessary to convert a three-valued result into a two-valued one.
Obviously, this can be done by converting ⊥ to either true or false. This is
called true-interpreted or false-interpreted ⊥. Two operators ⌈·⌉⊥ and ⌊·⌋⊥
perform this conversion:

x ⌈x⌉⊥ ⌊x⌋⊥
true true true
false false false
⊥ true false

An example for false-interpreted ⊥ values are where clauses in SQL: a given
tuple only qualifies, if the predicate evaluates to true. An example for true-
interpreted ⊥ values are SQL check conditions: a constraint violation only
occurs if the predicate in the check condition returns false.

In the following, we need to say that two expressions in three-valued logic
are equivalent (≡). This is defined to be true if and only if for all assignments of
variables found on the left-hand side and the right-hand side to constants/null-
values/truth values including ⊥, the evaluation of the right-hand side yields the
same value (true, false, ⊥) as the evaluation of the left-hand side.

Any database management system has a choice. Either

• work all the way with NULL values and three-valued logic or

• convert expressions in three-valued logic to two-valued logic.

For the former see the exercises. For the latter, we need to push down ⌊·⌋⊥
and ⌈·⌉⊥ and prepare at the bottom of our expressions. Pushing ⌊·⌋⊥ and ⌈·⌉⊥

5.3. THREE-VALUED LOGIC 203

x ¬x ⌊x⌋⊥ ¬⌊x⌋⊥ ⌊¬x⌋⊥ ¬⌊¬x⌋⊥ ⌈x⌉⊥ ¬⌈x⌉⊥ ⌈¬x⌉⊥ ¬⌈¬x⌉⊥
true false true false false true true false false true
false true false true true false false true true false
⊥ ⊥ false true false true true false true false

Figure 5.5: True-/false-interpretation and Negation

down ∧ and ∨ is rather easy:

⌈p1 ∧ p2⌉⊥ ≡ ⌈p1⌉⊥ ∧ ⌈p1⌉⊥ (5.1)

⌊p1 ∧ p2⌋⊥ ≡ ⌊p1⌋⊥ ∧ ⌊p1⌋⊥ (5.2)

⌈p1 ∨ p2⌉⊥ ≡ ⌈p1⌉⊥ ∨ ⌈p1⌉⊥ (5.3)

⌊p1 ∨ p2⌋⊥ ≡ ⌊p1⌋⊥ ∨ ⌊p1⌋⊥ (5.4)

However, we must be very careful with negation. A complete account of the
situation is given in Fig. 5.5. From there, we see that

⌈¬x⌉⊥ ≡ ¬⌊x⌋⊥ (5.5)

⌊¬x⌋⊥ ≡ ¬⌈x⌉⊥ (5.6)

⌈x⌉⊥ ≡ ¬⌊¬x⌋⊥ (5.7)

⌊x⌋⊥ ≡ ¬⌈¬x⌉⊥ (5.8)

Using these equivalences, we can push down ⌊·⌋⊥ and ⌈·⌉⊥ until we meet
some built-in predicate or boolean function. For built-in comparison operators,
we can combine the false/true-interpretation with the operator yielding two
additional comparison operators. As an example let us consider the equality
operator. For it, we define two new equality operators, each combining = with
one possible interpretation of unknown:

e1 =
− e2 := ⌊e1 = e2⌋⊥

e1 =
+ e2 := ⌈e1 = e2⌉⊥

Analogously, we define for any comparison operator θ ∈ {≤,≥, <,>, ̸=} two
operators θ− and θ+. For operators that do not yield unknown, we can elim-
inate the interpretation. These operators include for example exists, match,
is distinct from, and is null. Thus, if we have an expression b that is
guaranteed to evaluate only in true and false (and not ⊥), then we have

⌈b⌉⊥ = b

⌊b⌋⊥ = b

If we take a careful look at Figure 5.2, we see that all equivalences except those
marked by ’*’ hold for three-valued logic.

Exercise 1. Find a 2-bit encoding of the values true, false, ⊥ which requires
only one machine instruction to implement each of ∧, ∨, and ¬.

204 CHAPTER 5. LOGIC, NULL, AND BOOLEAN EXPRESSIONS

Exercise 2. Manually build a truth table for x1 =⇒ x2 and x1
·∨ x2 in

three-valued logic. Then check, whether the right-hand side of their definitions
is equivalent with your truth table.

Exercise 3. Look for ways to move ⌈·⌉⊥ and ⌊·⌋⊥ down x1 =⇒ x2 and

x1
·∨ x2.

5.4 Preparation of Boolean Expressions

Before any further optimization can take place, boolean expressions need to be
preprocessed. The most important steps that are required to take place are
pushnot and pushunk. Before we come to these steps, let us consider another
trick that is commonly found. It is partial evaluation:

pareval If one term of a conjunction yields false then the other (not yet) eval-
uated terms are not evaluated. This is typically represented by cascading
select operators, which can then be pushed down independently. Partial
evaluation can also be applied to disjunctions if one factor evaluates to
true.

Now consider ¬(a∧ b). Due to the negation, we cannot apply pareval without
any precaution. Further, as we saw previously, negation swaps ⌊·⌋⊥ and ⌈·⌉⊥.
Thus, if not handled very carefully, negation leads to all kinds of problems.
Thus, the first step in the preparation of a predicate is to push negation down.
After this step, we can push ⌊·⌋⊥ and ⌈·⌉⊥ down to convert three-valued logic
expressions to two-valued logic expressions. Thus, we perform in this order:

pushnot push negation down

pushunk push ⌊·⌋⊥ and ⌈·⌉⊥ down

More on simple rewrites can be found in Chapter ??.

5.5 Equivalence Classes based on Equality

The traditional equality operator =v is reflexive, symmetric, and transitive.
Hence, it induces equivalence classes of expressions which, in the context of
predicate evaluations must evaluate to the same value. It is good practice in
database systems, to collect equivalence classes. As a prerequisite, we need the
notion of some expression e′ occurring conjunctively in some predicate (boolean
expression) e. A substitution is a partial mapping from subexpressions of some
expression e to other expressions. Here, we are interested in ground substitions
where expressions are mapped to constants. A substitution is denoted by

[e1/e
′
1, . . . , ek/e

′
k]

where each ei is mapped to e′i. A substitution can be applied to some other
expression and replaces each occurrence of ei by e

′
i. If p is some boolean expres-

sion, then application of a substitution to p is denoted by p[e1/e
′
1, . . . , ek/e

′
k].

5.5. EQUIVALENCE CLASSES BASED ON EQUALITY 205

We define that e occurs conjunctively in p if and only if p[e/false] is equivalent
to false. This can be checked by applying the simplification rules (under idem-
potency in Fig. 5.2). If p[e/false] simplifies to false, e occurs conjunctively in
p. Now we can build equivalence classes induced by p by finding all expres-
sions of the form e1 = e2 which occur conjunctively in p. Then, if for example
two attributes A and B are in the same equivalence class, we can replace an
occurence of A by B.

To see an example, why this procedure might be very helpful consider two
relations R(A,B) and S(C) and assume that we have to evaluate the following
algebraic expression:

RBA=C∨B=C S

In this case, any efficient implementation of the join operator, like hash joins,
does not work. In order to avoid a nested-loop evaluation of this expression,
we rewrite it as follows:

(RBA=C S) ∪ (RBB=C∧A ̸=C S)

Note that the two arguments of the union operator are disjoint. Thus, we do
not have a problem with duplicates. Now, we can apply a hash-join on either
side. However, we have to evaluate A ̸= B as a residual predicate after the join.
Noting that B = C occurs conjunctively in B = C ∧ A ̸= C, we can replace C
by B in A ̸= C. Then, we have

B = C ∧A ̸= C ≡ B = C ∧A ̸= B (5.9)

Applying this equivalence to the above algebraic expression yields

(RBA=C S) ∪ (RBB=C∧A ̸=B S)

Now, A ̸= B is a selection predicate (sometimes called restriction, as it involves
two attributes from the same relation) and we can rewrite our expression to

(RBA=C S) ∪ (σA ̸=B(R)BB=C S),

which is more efficient since we eliminate the R tuples before the join.
Now let us see what happens in the presence of NULL values and three-

valued logic. At the core of our reasoning was Equivalence 5.9. For illustrating
purposes, we assume that each of the attributes A, B, and C can have values
3, 7, and NULL. The following table contains all cases, where it does not hold.
(The other cases are left to the reader.)

A B C LHS RHS

3 3 NULL ⊥ false
7 7 NULL ⊥ false

NULL 3 3 false ⊥
NULL 7 7 false ⊥

Thus, the equivalence, valid in two-valued logic does not hold in the presence
of NULL values and three-valued logic. Predicates are typically true- or false-
interpreted. If the predicate is true-interpreted, than the left-hand side and the

206 CHAPTER 5. LOGIC, NULL, AND BOOLEAN EXPRESSIONS

right-hand side of 5.9 clearly differ. However, if the predicate is false-interpreted
we have that

⌊B = C ∧A ̸= C⌋⊥ ≡ ⌊B = C ∧A ̸= B⌋⊥ (5.10)

or, after pushing ⌊·⌋⊥ down:

B =− C ∧A ̸=− C ≡ B =− C ∧A ̸=− B (5.11)

To perform this kind of optimizations, we must be able to build equivalence
classes in the presence of NULL values. First note, that = is neither symmetric,
reflexive nor transitive, as it might return ⊥. Thus, the only way to produce
equivalence classes is by exploiting conjunctively occurring =− expressions. We
define that an expressions e occurs conjunctively in p if

1. p[e/false] ≡ false and

2. p[e/⊥] ≡ false

Then, we can collect all conjunctively occuring expressions in =− and build
equivalence classes based on them. Note that this requires that we pushed
down ⌈·⌉⊥ and ⌊·⌋⊥ operations as otherwise there are no =− expressions.

5.6 Nullability Inference

5.7 Bibliography

NULL-values: [90, 546, 547, 747, 748]

Chapter 6

Functional Dependencies

In many query results attribute values are not independent of each other but
have certain dependencies. Keeping track of these dependencies is very useful
for many optimizations, for example in the following query

select c.id, n.name
from customers c, nations n
where c.nid=n.id
order byc.id, n.name

the order by clause can be simplified to c.id without affecting the result:
c.id is the key of customers, and thus determines c.nid. c.nid is joined with
n.id, which is the key of nations and determines n.name, thus transitively c.id
determines n.name.

These functional dependencies between attributes have been studied primar-
ily in the context of database design, but many optimization steps like order
optimization (Chapter 23) and query unnesting (Chapter 14) profit greatly from
known functional dependencies. In the following we first study functional de-
pendencies when all attributes are not NULL, then extend this to attributes
with NULL values, and finally discuss how functional dependencies are effected
by relational operators.

6.1 Functional Dependencies

As illustrated by the previous example, a functional dependency describes how
attribute values depend on other attribute values. More formally, a relation R
(with A1, A2 ⊆ A(R)) satisfies a functional dependency

f : A1 → A2

if and only if the following condition holds:

∀t1, t2([t1 ∈ R ∧ t2 ∈ R ∧ t1.A1 = t2.A1]⇒ [t1.A2 = t2.A2]).

For base relations functional dependencies can be derived from the schema,
in particular key constraints and check conditions [680]. For intermediate results

207

208 CHAPTER 6. FUNCTIONAL DEPENDENCIES

additional function dependencies can be induced by algebraic operators, as we
will see below.

Once some functional dependencies are known to hold, further function-
al dependencies can be derived by using Armstrong’s axioms [?] (assuming
A1, A2, A3 ⊆ A(R)):

1. A2 ⊆ A1 ⇒ A1 → A2

2. A1 → A2 ⇒ (A1 ∪A3)→ (A2 ∪A3)
3. A1 → A2 ∧A2 → A3 ⇒ A1 → A3

The Armstrong axioms are sound and complete, i.e., it is possible to derive
all valid functional dependencies by applying these three axioms. For practical
purposes it is often convenient to include three additional rules which can be
derived from the original axioms:

4. A1 → A2 ∧A1 → A3 ⇒ A1 → (A2 ∪A3)
5. A1 → (A2 ∪A3) ⇒ A1 → A2 ∧A1 → A3

6. A1 → A2 ∧ (A2 ∪A4)→ A3 ⇒ (A1 ∪A4)→ A3

Given a set of functional dependencies F , we denote with F+ the closure
of F , i.e., the set of all functional dependencies that can be derived from F by
using the inference rules shown above.

Closely related to the concept of functional dependencies is the concept of
keys: Given a relation R and an attribute set A ⊆ A(R), A is a super key of
R if A → A(R) holds in R. Further A is a key of R if the following condition
holds:

∀A(A′ ⊂ A⇒ ¬(A′ → A(R))).

6.2 Functional Dependencies in the presence of NULL
values

In the presence of NULL values, a relation R (with A1, A2 ⊆ A(R)) satisfies a
functional dependency

f : A1 → A2

if and only if the following condition holds:

∀t1, t2([t1 ∈ R ∧ t2 ∈ R ∧ t1.A1

.
= t2.A1]⇒ [t1.A2

.
= t2.A2]).

XXX explain why, discuss lax dependencies

6.3 Deriving Functional Dependencies over algebra-
ic operators

XXX dependency graphs

6.4 Bibliography

Chapter 7

An Algebra for Sets, Bags,
and Sequences

This section summarizes a logical algebra that is sufficent to express queries
written in SQL, OQL and XPath/XQuery. The algebra is based upon substan-
tial work by many people [68, 70, 189, 191, 196, 487, 488, 544, 820]. The most
prominent features of the algebra are:

• All operators are polymorphic and can deal with (almost) any kind of
complex arguments.

• The operators take arbitrary complex expressions as subscripts. This in-
cludes algebraic expressions. The advantage is that nested queries can
directly be expressed as nested algebraic expressions and unnesting pos-
sibilities can be represented at the algebraic level, which allows rigorous
correctness proofs.

• The algebra is redundant, since some special cases of the operators can
be implemented more efficiently.

This chapter is organized as follows. First, we preprare some background ma-
terial by discussing sets, bags, and sequences, as well as aggregation functions.
Then we are ready to present the algebraic operators. This is done in two steps.
First, we introduce their signatures and then their semantics. ToDo

7.1 Sets, Bags, and Sequences

7.1.1 Sets

A set contains elements drawn from some domain D. In our case, the domain
will often be tuples and we only consider finite sets. The set operations we are
interested in are union (∪s), intersection (∩s), and difference (\s). If the domain
consists of tuples, we assume that both arguments have the same schema. That
is, the attributes and their domains are the same in both arguments. Other-
wise, the expression is not well-typed. In any case, set union and intersection
are commutative and associative. Set difference is neither of them. Expressions

209

210 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

X ∪s ∅ = X
X ∪s X = X (idempotency)
X ∪s Y = Y ∪s X (commutativity)
(X ∪s Y) ∪s Z = X ∪s (Y ∪s Z) (associativity)
X ∩s ∅ = ∅
X ∩s X = X (idempotency)
X ∩s Y = Y ∩s X (commutativity)
(X ∩s Y) ∩s Z = X ∩s (Y ∩s Z) (associativity)
X \s ∅ = X
∅ \s X = ∅
X \s X = ∅
X \s Y ̸= Y \s X (wrong)
(X \s Y) \s Z ̸= X \s (Y \s Z) (wrong)
X ∩s Y = X \s (X \s Y)
X ∪s (Y ∩s Z) = (X ∪s Y) ∩s (X ∪s Z) (distributivity)
X ∩s (Y ∪s Z) = (X ∩s Y) ∪s (X ∩s Z) (distributivity)
(X ∪s Y) \s Z = (X \s Z) ∪s (Y \s Z) (distributivity)
(X ∩s Y) \s Z = (X \s Z) ∩s (Y \s Z) (distributivity)
(X \s (Y ∪s Z) = (X \s Y) ∩s (X \s Z)
(X \s (Y ∩s Z) = (X \s Y) ∪s (X \s Z)

Figure 7.1: Laws for Set Operations

containing the empty set can be simplified. Last but not least, some distribu-
tivity laws hold. These and other laws for set operation (see Fig. 7.1) should
be well-known.

A set of elements from a domain D can be seen as a function from D to
{0, 1}. For a given set S, this function is called the characteristic function of

S. It can be defined as χS(s) =

{
0 if s ̸∈ S
1 if s ∈ S . Obviously, there is a bijection

between characteristic functions and sets. That is, sets can be characterized by
their characteristic functions, and the set operations can be expressed in terms
of operations on characteristic functions.EXC

In the presence of null values, we have to be a little careful to evaluate an
expression like x ∈ S. Assume x is null and S contains some element y which
is also null. Then, we would like to have that x ∈ S and x is equal to y. Thus,
we must use ‘

.
=’. Set equality can be expressed as equality of characteristic

functions. The subset relationship A ⊆ B can be expressed as χA(x) ≤ χB(x)
for all x. The cardinality |S| for a set S is defined as

∑
x χS(x). Because we

deal with finite sets only, cardinality is well-defined. A singleton set is a set
containing only one element, i.e., a set whose cardinality equals 1.

As we have seen in Chapter 2, algebraic equivalences that reorder algebraic
operators form the fundamental basis for query optimization. One could discuss
the reorderability of each pair of operators resulting in n2 investigations if the
number of operators in the algebra is n. In order to simplify this tedious task,
we introduce a general argument covering most of the cases. The observation

7.1. SETS, BAGS, AND SEQUENCES 211

will be that set-linearity of set operators implies their reorderability easily.
A unary function f from sets to sets is called set-linear (or homomorph), if

and only if the following two conditions hold for all sets X and Y :

f(∅) = ∅,
f(X ∪s Y) = f(X) ∪s f(Y).

An n-ary mapping from sets to a set is called set-linear in its i-th argument , if
and only if for all sets X1, . . . , Xn and X ′i the following conditions hold:

f(X1, . . . , Xi−1, ∅, Xi+1, . . . , Xn) = ∅,
f(X1, . . . , Xi−1, Xi ∪X ′i, Xi+1, . . . , Xn) = f(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)

∪sf(X1, . . . , Xi−1, X ′i, Xi+1, . . . , Xn).

It is called set-linear , if it is set-linear in all its arguments. For a binary function
or operator where we can distinguish between the left and the right argument,
we call it left (right) set-linear if it is set-linear in its first (second) argument.
Note that if an equivalence with linear mappings on both sides has to be proven,
it suffices to proof it for singleton sets, i.e. sets with one element only.

Using the commutativity of set union and set intersection as well as the
observations above, we see that for a non-empty set X

(∅ ∪s X) ̸= ∅,
(∅ ∩s X) = ∅,
(∅ \s X) = ∅,
(X \s ∅) ̸= ∅,

and for arbitrary sets X, Y , and Z

(X ∪s Y) ∪s Z = (X ∪s Z) ∪s (Y ∪s Z),
(X ∪s Y) ∩s Z = (X ∩s Z) ∪s (Y ∩s Z),
(X ∪s Y) \s Z = (X \s Z) ∪s (Y \s Z),
X \s (Y ∪s Z) ̸= (X \s Y) ∪s (X \s Z).

We can conclude that set union is neither left nor right set-linear, set intersection
is set-linear, and set difference is left set-linear but not right set-linear.

7.1.2 Duplicate Data: Bags

A bag or multiset can contain every element more than once. It cannot contain
an element less than zero times. A typical bag is {a, b, b}b, for which we also
write {a1, b2}b. Another example is {a, b}b. The latter bag does not contain
any duplicates. Hence, it could also be considered a set. We will only consider
finite bags.

For a given bag B, the characteristic function for bags maps every element
of a domain D to the set of non-negative integers IN0. The characteristic func-
tion gives the number of occurrences of each element in the bag. The number

212 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

X ∪b ∅b = X
X ∪b X ̸= X (wrong)
X ∪b Y = Y ∪b X (commutativity)
(X ∪b Y) ∪b Z = X ∪b (Y ∪b Z) (associativity)
X ∩b ∅b = ∅b
X ∩b X = X (idempotency)
X ∩b Y = Y ∩b X (commutativity)
(X ∩b Y) ∩b Z = X ∩b (Y ∩b Z) (associativity)
X \b ∅b = X
∅b \b X = ∅b
X \b X = ∅b
X \b Y ̸= Y \b X (wrong)
(X \b Y) \b Z ̸= X \b (Y \b Z) (wrong)
X ∩b Y = X \b (X \b Y)
X ∪b (Y ∩b Z) = (X ∪b Y) ∩b (X ∪b Z) (distributivity)
X ∩b (Y ∪b Z) ̸= (X ∩b Y) ∪b (X ∩b Z) (wrong)
(X ∪b Y) \b Z ̸= (X \b Z) ∪b (Y \b Z) (wrong)
(X ∩b Y) \b Z = (X \b Z) ∩b (Y \b Z) (distributivity)
X \b (Y ∪b Z) ̸= (X \b Y) ∩b (X \b Z) (wrong)
X \b (Y ∩b Z) ̸= (X \b Y) ∪b (X \b Z) (wrong)

Figure 7.2: Laws for Bag Operations

of occurrences of some element x in a bag B is χB(x), and we call this the
multiplicity of x. We often denote the multiplicity of an element by a super-
script as in {x77}b, where the element x has multiplicity 77. Again, there is
a bijection between bags and their characteristic functions. We use ∈ to de-
note bag membership. Given a bag B and its characteristic function χB, we
have x ∈ B ≺≻ χB(x) > 0. If we use ∈ within a bag constructor, as in
{x|x ∈ B}b, x iterates over all elements in B. This means, that if some element
has multiplicity m, then x iterates over m duplicates of this element. In order
to determine it for a given bag, we must have an equality defined on the items
in the bag. Here, we have to use

.
=, which reflects the semantics of SQL. Thus,

in {null, null, null}b the multiplicity of null is 3. It would be bad to have three
nulls with multiplicity 1 each.

Equality on bags is defined as equality of their characteristic functions. Sub-
bag relationships can be defined using the characteristic function. For example,
A ⊆ B can be defined as χA(x) ≤ χB(x) for all x. The cardinality |B| for a bag
B is defined as

∑
x χB(x). Because we deal with finite bags only, cardinality

is well-defined. A bag B containing a single element is one whose characteris-
tic function equals 0 for all but one element x. A singleton bag is one whose
cardinality equals 1.

The bag union X ∪b Y of two bags is defined such that the number of
occurrences of some element in the union is the sum of its occurrences in X and
Y . The number of occurrences of some element in the bag intersection X ∩b Y

7.1. SETS, BAGS, AND SEQUENCES 213

is the minimum of the number of its occurrences in X and Y . In the bag
difference X \b Y , the number of occurrences of some element is the difference
(−̇) of its occurrences in X and Y , where a−̇b is defined as max(0, a−b). Using
characteristic functions, we can define

χX∪bY (z) = χX(z) + χY (z)

χX∩bY (z) = min(χX(z), χY (z))

χX\bY (z) = χX(z)−̇χY (z)

The laws for sets do not necessarily hold for bags (see Figure 7.2). We have
that bag union and bag intersection are both commutative and associative. Bag
difference is neither of them. Let us take a closer look at the different distribu-
tivity laws. Therefore, denote by LHS the left-hand side of an equivalence and
by RHS its right-hand side. Let us first prove

X ∪b (Y ∩b Z) = (X ∪b Y) ∩b (X ∪b Z).

Since for all x we have

χLHS(x) = χX(x) + min(χY (x), χZ(x))

= min(χX(x) + χY (x), χX(x) + χZ(x))

= χRHS(x),

the claim follows.
For the bags X = {15}b, Y = {13}b, and Z = {13}b, we get

X ∩b (Y ∪b Z) = {15}b ∩b {16}b = {15}b,

but
(X ∩b Y) ∪b (X ∩b Z) = {13}b ∪b {13}b = {16}b.

For the bags X = {15}b, Y = {13}b, and Z = {12}b, we calculate

(X ∪b Y) \b Z = {18}b \b {12}b = {16}b,

but
(X \b Z) ∪b (Y \b Z) = {13}b ∪b {11}b = {14}b.

Consider
(X ∩b Y) \b Z = (X \b Z) ∩b (Y \b Z).

This holds, since

χLHS(x) = min(χX(x), χY (x))−̇χZ(x)

= min(χX(x)−̇χZ(x), χY (x)−̇χZ(x))

= χRHS(x).

For the bags X = {12}b, Y = {11}b, and Z = {11}b, we calculate

X \b (Y ∪b Z) = {12}b \b {12}b = ∅b,

214 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

but
(X \b Y) ∩b (X \b Z) = {11}b ∩b {11}b = {11}b,

and
X \b (Y ∩b Z) = {12}b \b {11}b = {11}b,

but
(X \b Y) ∪b (X \b Z) = {11}b ∪b {11}b = {12}b.

Remark. Our definition of bag union is not the usual definition. The
standard set theoretic definition of the bag union operator ∪max is defined such
that

χX∪maxY (x) = max(χX(x), χY (x))

holds [21, 221]. With this definition, the laws for sets carry over to bags. We
decided to use the non-standard definition, since this is the semantics of bag
union in SQL and other query languages. Dayal, Goodman, and Katz [221] and
Albert [21] also investigate the non-standard bag union in their papers, although
under a different name. For example, Albert calls it bag concatenation. As a side
remark, it is interesting to note that Albert showed that bag concatenation can
not be expressed using ∪max, ∩b, \b [21]. Thus, any query language featuring ∪b
is strictly more expressive, since ∪max can be expressed using \b and ∪b because
the equivalence

X ∪max Y ≡ (X \b Y) ∪b Y
holds. Two other laws involving ∪max are

X ∪max Y ≡ (X ∪b Y) \b (X ∩b Y),

X ∩b Y ≡ (X ∪b Y) \b (X ∪max Y).

We introduce linearity for bags in Sec. 7.4.

7.1.3 Explicit Duplicate Control

Having every operation twice, once for bags and once for sets is quite inconve-
nient. Fortunately, for some operations we only need the one for bags. We can
get rid of some set operations as follows. Every set can be seen as a bag whose
characteristic function never exceeds one. Let Ī(S) turn a set S into a bag with
identical characteristic function. The partial function Ī−1(B) turns a bag into
a set if the bag’s characteristic function does not exceed one. Otherwise let Ī−1

be undefined. Let X and Y be two sets. For the intersection function, we then
have

Ī−1(Ī(X) ∩b Ī(Y)) = X ∩s Y.
That is, for any two sets X and Y bag intersection and set intersection are the
same. Thus, we only need one intersection operation, which is defined on bags
and which we will denote by ∩.

The above observation gives rise to the notion of set-faithfulness. We call a
unary function on sets f set-faithful if and only if

Ī−1(f(Ī(X))) = f(X)

7.1. SETS, BAGS, AND SEQUENCES 215

holds for all sets X. Analogously, we call binary functions g set-faithful if and
only if

Ī−1(g(Ī(X), Ī(Y))) = g(X,Y)

holds for all sets X and Y .
\b and ∩b are set-faithful. Hence, we can (and often will) simply use \ and

∩ to denote bag difference and intersection. If the arguments happen to be sets,
the resulting bag will not contain any duplicates, i.e., it is a set.

Note that ∪b is not set-faithful. One possibility is to carefully distinguish
between ∪b and ∪s. However, this does not solve our problem for query process-
ing. A relation can be a set (e.g. if a primary key is defined) or a bag. Assume
we have two relations (or intermediate results) R1, which is a set, and R2, which
is a bag. Obviously, R1 ∪s R2 is not valid since R2 is a bag. By treating sets
as special bags, R1 ∪bR2 is valid. However, we cannot control duplicates in the
result as demanded by SQL, where there is a fundamental difference between
union all and union distinct. We could thus use two different union oper-
ators. Both take bags as input but one preserves duplicates, as does the bag
union, and the other eliminates duplicates. Let us denote the former by ∪ and
the latter by ∪d.

To go from a bag to a set, we have to eliminate duplicates. Let us denote
by ΠD the duplicate elimination operation. For a given bag B, we then have
χΠD(B)(z) = min(1, χB(z)). Using ΠD, we can define ∪d as

R1 ∪d R2 := ΠD(R1 ∪R2).

However, the right-hand side is our preferred way to take care of duplicate
handling: we will always use the bag operator, denoted by ∪ and then, if
necessary, eliminate duplicates explicitly.

Summarizing, instead of working with sets and bags, we can work with bags
only by identifying every set S with the bag Ī(S). To keep track of (possible)
duplicates, we can annotate all bags with a property indicating whether it
contains duplicates or not. If at some place a set is required and we cannot
infer that the bag in that place is duplicate free, we can use ΠD as an enforcer
of the set property. Note that for every set S we have ΠD(S) = S. Hence, ΠD

does not do any harm except for the resources it takes. The reasoning whether
a given expression produces duplicates or not is very important. Below, we will
indicate on the fly how reasoning about duplicates can be performed.

7.1.4 Ordered Data: Sequences

A sequence is ordered and may contain duplicates. An example sequence is
⟨a, b, b, c, b⟩. The length of the sequence is the number of elements it contains.
For any sequence S, the length of the sequence is denoted by |S|. The above
sequence has length five. The empty sequence (ϵ) contains zero elements and
has length zero.

As we consider only finite sequences, a sequence of length n ≥ 0 has a
characteristic function χ from an interval [0, n[to a domain D. Outside [0, n[,
χ is undefined (⊥). Let S be a sequence. Then α(S) gives us the first element of

216 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

the sequence, i.e., α(S) = χS(0). For our example sequence, α(⟨a, b, b, c, b⟩) = a.
The rest or tail of a sequence S of length n is denoted by τ(S) and contains
all but the first element in the sequence. That is χτ(S)(i) = χS(i+ 1). For our
example sequence, τ(⟨a, b, b, c, b⟩) = ⟨b, b, c, b⟩.

Concatenation of two sequences is denoted by ⊕. The characteristic function
of the concatenation of two sequences S and T is

χS⊕T (i) =
{
χS(i) if i < |S|,
χT (i− |S|) if i ≥ |S|.

As an example, ⟨a, b, b, c, b⟩ ⊕ ⟨a, b, c⟩ = ⟨a, b, b, c, b, a, b, c⟩.
We can easily go from a sequence to a bag by just forgetting the order. To

convert a bag into a sequence, we typically have to apply a Sort operator. In
reality, however, bags are often represented as (ordered) streams, i.e., they are
sequences. This is due to the fact that most physical algebras are implemented
using the iterator concept introduced in Section 4.6.

Analogously to set and bag linearity, we can introduce sequence linearity
of unary and n-ary functions on sequences. In the definition, we only have to
exchange the set union operator by concatentation. A unary function f from
sequences to sequences is called sequence-linear , if and only if the following two
conditions hold for all sequences X and Y :

f(ϵ) = ϵ,

f(X ⊕ Y) = f(X)⊕ f(Y).

An n-ary mapping from sequences to a sequence is called sequence-linear in its
i-th argument if and only if for all sequences X1, . . . , Xn and X ′i the following
conditions hold:

f(X1, . . . , Xi−1, ϵ,Xi+1, . . . , Xn) = ϵ

f(X1, . . . , Xi−1, Xi ⊕X ′i, Xi+1, . . . , Xn) = f(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)

⊕f(X1, . . . , Xi−1, X ′i, Xi+1, . . . , Xn)

It is called sequence-linear , if it is sequence-linear in all its arguments. For a
binary function or operator where we can distinguish between the left and the
right argument, we call it left (right) sequence-linear if it is sequence-linear in
its first (second) argument. Note that if an equivalence with linear mappings
on both sides has to be proven, it suffices to proof it for singleton sequences,
i.e. sequences with one element only.

7.2 Aggregation Functions

SQL and other query languages support at least five aggregation functions.
These are min, max, count, sum, and avg. In addition, SQL allows to qualify
whether duplicates are removed before computing the aggregate or whether they
are also considered by the aggregation function. For example, we may specify
sum(distinct a) or sum(all a) for some attribute a. The term sum(a) is

7.2. AGGREGATION FUNCTIONS 217

equivalent to sum(all a). From this follows that aggregation functions can be
applied to sets or bags. Other query languages (OQL and XQuery) also allow
lists as arguments to aggregation functions. Additionally, OQL allows arrays.
Hence, aggregation functions should be defined for any bulk type.

Most query languages provide a special null value. In SQL it is called NULL.
Initially, OQL did not have a special null value. Fortunately, it was introduced
in version 3.0. There, the null value is called UNKNOWN. So far, XQuery has
no null value. Instead, the inventors of XQuery tried hard to let the empty
sequence play a dual role: that of an empty sequence and that of a null value.
Of course, this leads to awkward complications. We will use ’-’, ⊥, or NULL to
represent a null value. From this variance, the reader can already imagine its
importance.

Typically, aggregation functions can safely ignore null values. The only ex-
ception is count(*), where all input elements are counted. If for some attribute
a, we want to count only values of a with a ̸= ⊥, then we often use countNN(a)
to emphasize this fact. The corresponding SQL function is count(a).

Let x be a single value and {x} a bag containing x only once. Since

min({x}) = x,

max({x}) = x,

sum({x}) = x,

avg({x}) = x,

these aggregation functions behave like identity if we identify single elements
with singleton bags.

If we identify a single value with a bag containing this single value once, we
see that

min(min(X)) = min(X),

max(max(X)) = max(X),

sum(sum(X)) = sum(X),

avg(avg(X)) = avg(X),

that is, these aggregation functions are idempotent.

Let N denote either a numeral data type (e.g. integer or float) or a tuple
[a1 : τ1, . . . , an : τn] where each type τn is a numeral data type. Further, let N
contain the null value.

A scalar aggregation function agg is a function with signature

agg : {τ}b → N .

A scalar aggregation function agg : {τ}b → N is called decomposable if there
exist functions

1
agg : {τ}b → N ′ ,
2

agg : {N ′}b → N ,

218 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

with

agg(Z) =
2

agg({ 1
agg(X),

1
agg(Y)}b)

for all X and Y (not empty) with Z = X ∪ Y . This condition assures that
agg(Z) can be computed on arbitrary subsets (-lists, -bags) of Z independently
and the (partial) results can be aggregated to yield the correct total result. If
the condition holds, we say that agg is decomposable with inner agg1 and outer
agg2.

A decomposable scalar aggregation function agg : {τ}b → N is called re-
versible if for aggO there exists a function (aggO)−1 : N ′,N ′ → N ′ with

agg(X) = γ((
O
agg)−1(

I
agg(Z),

I
agg(Y)))

for all X, Y , and Z with Z = X ∪ Y . This condition assures that we can
compute agg(X) for a subset (-list, -bag)X of Z by “subtracting” its aggregated
complement Y from the “total” aggO(aggI(Z)) by using (aggO)−1.

The fact that scalar aggregation functions can be decomposable and re-
versible is the basic observation upon which builds the efficient evaluation of
aggregation functions.

As an example, consider the scalar aggregation avg : {[a : float]}b → float
averaging the values of the attributes a of a bag of tuples with a single attribute
a. It is reversible with

I
agg : {[a : float]} → [sum : float, count : float],

O
agg : [sum : float, count : float], [sum : float, count : float] → [sum : float, count : float],

(
O
agg)−1 : [sum : float, count : float], [sum : float, count : float] → [sum : float, count : float],

γ : [sum : float, count : float] → float,

where

I
agg(X) = [sum : sum(X.a), count : |X|],

O
agg([sum : s1, count : c1], [sum : s2, count : c2]) = [sum : s1 + s2, count : c1 + c2],

(
O
agg)−1([sum : s1, count : c1], [sum : s2, count : c2]) = [sum : s1 − s2, count : c1 − c2],

γ([sum : s, count : c]) = s/c.

Here, sum(X.a) denotes the sum of all values of attribute a of the tuples in X,
and |X| denotes the cardinality of X. Note that aggI(∅) = [sum : 0, count : 0],
and γ([sum : 0, count : 0]) is undefined as is avg(∅).

In statistics, the variance of a bag of numbers is often calculated. For a bag
B, it is defined as s2 = 1

n−1
∑

x∈B(x− x)2, where x is the average of the values

in B, i.e., x = 1
n

∑
x∈B x. As an exercise, the reader should show that variance

is decomposable and reversible.

Not all aggregation functions are decomposable and reversible. For instance,
min and max are decomposable but not reversible. If an aggregation function
is applied to a bag that has to be converted to a set, then decomposabili-
ty is jeopardized for sum and count. That is, in SQL sum(distinct) and
count(distinct) are not decomposable.

7.2. AGGREGATION FUNCTIONS 219

Let us look at the decomposition of our five aggregation functions. We can
decompose them as follows:

min(X ∪ Y) = min(min(X),min(Y)),

max(X ∪ Y) = max(max(X),max(Y)),

count(X ∪ Y) = sum(count(X), count(Y)),

sum(X ∪ Y) = sum(sum(X), sum(Y)).

The treatment of avg is slightly more complicated, as we have already seen
above. In the presence of null values, avg is defined as avg(X) = sum(X)/ countNN(X).
Hence, we can decompose it on the basis of

avg(X ∪ Y) = sum(sum(X), sum(Y))/(
NN

count(X) +
NN

count(Y))

In a typical query compiler, every occurrence of avg(e) is replaced by sum(e)/ countNN(e)
during the NFST phase. Thus, during subsequent phases of the query compiler,
we can safely ignore the intricacies of average1.

Table 7.3 summarizes these findings.

agg agg1 agg2

min min min
max max max

count(∗) count(∗) sum
count(a) count(a) sum
sum sum sum
avg sum, countNN sum, sum

Figure 7.3: Decomposition of aggregate functions

We now extend the notion of decomposability to aggregation vectors. An
aggregation vector is an expression of the form

(b1 : agg
1
(a1), . . . , bk : agg

k
(ak)),

where the ai and bi are attribute names and the aggi are aggregation functions.
Often, we will leave out the enclosing parenthesis and simply write

b1 : agg
1
(a1), . . . , bk : agg

k
(ak).

We use ◦ to denote the concatenation of two aggregation vectors.
Let F = (b1 : agg1(a1), . . . , bk : aggk(ak)) be an aggregation vector and all

aggregates aggi be decomposable into agg1i and agg2i . Then, we say that F is
decomposable into F 1 and F 2 where

F 1 := (b′1 :
1

agg
1
(a1), . . . , b

′
k :

1
agg
k
(ak)),

F 2 := (b1 :
2

agg
1
(b′1), . . . , bk :

2
agg
k
(b′k)).

1These are nicely described in a book by Savage [762]

220 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

Note that in all cases, we have that if F is decomposable into F 1 and F 2,
then F 1 is decomposable into F 1,1 and F 1,2, and F 2 is decomposable into F 2,1

and F 2,2. Further, we have

F 1,1 = F 1,

F 1,2 = F 2,

F 2,1 = F 2,

F 2,1 = F 2.

Let e1 and e2 be arbitrary expressions. We say that an aggregation vector
F is splittable into F1 and F2 with respect to e1 and e2 if F = F1 ◦F2, F(F1)∩
A(e2) = ∅ and F(F2) ∩ A(e1) = ∅. Assume that F contains an aggregation
function aggi applied to some attribute ai. If a ∈ A(e1), then clearly aggi(ai)
belongs to F1, if a ∈ A(e2) then aggi(ai) belongs to F2. There are other cases
where F is splittable. Consider, for example, sum(a1+a2) for ai ∈ A(ei). Since
sum(a1+a2) = sum(a1)+sum(a2), this does not hinder splittability. The same
holds for subtraction.

The correct handling of duplicates, i.e., bags, is essential for the correctness
of the query compiler and requires some care. We will therefore classify our ag-
gregation functions into those which are sensitive to duplicates and those which
are not. An aggregation function is called duplicate agnostic if the multiplicity
of the elements in the bag does not influence its result. It is called duplicate
sensitive otherwise. For our aggregation functions we have

• min, max, sum(distinct), count(distinct), avg(distinct) are duplicate ag-
nostic and

• sum, count, avg are duplicate sensitive.

Yan and Larson used the term Class C aggregation function for duplicate sensi-
tive aggregation functions and Class D for duplicate agnostic aggregation func-
tions [946].

Finally, note that for all aggregate functions except count(∗), we have
agg({a}) = a for arbitrary elements a. Thus, if we are sure that we deal
with only one tuple, we can apply the following rewrite. Let ai and bi be at-
tributes. Then, if F = (b1 : agg1(a1), . . . , bm : aggm(am)), we define F̂ = (b1 :
a1, . . . , bm : am).

7.3 Operators

The bag operators as well as other typical operators like selection and join are
well-known. As we will see, the only difference in the definitions used here
is that they are extended to express nested queries. In order to enable this,
we allow the subscripts (predicates, expressions) of these operators to contain
algebraic expressions.

In this section, we define all our operators on bags. Besides duplicate elim-
ination, only projection will have explicit control over duplicates.

7.3. OPERATORS 221

Sometimes, the left outerjoin needs some additional tuning. The standard
definition of the left outerjoin demands that if some tuple from its left argument
does not have a join partner in its right argument, the attributes from the right
argument are given null values. We extend the left outerjoin such that values
other than null can be given to attributes of the right hand side. Similarily,
the full outerjoin will be extended to carry two superscripts for this kind of
defaults.

The d-join operation is used for performing a join between two bag valued
items, where the second one is dependent on the first one. One use is to express
queries with table functions (see Sec. 4.10). Another is to access index structures
(see Sec. 4.14). The d-join can also be used to unnest nested queries. It is often
equivalent to a join between two bags with a membership predicate [803]. In
some cases, it corresponds to an unnest operation.

The map operator χ ([487]) is well-known from the functional programming
language context. A special case of it, where it adds derived information in
form of an added attribute with an according value (e.g. by object-base lookup
or by method calls) to each tuple of a bag has been proposed in [486, 487].
Later, this special case was given the name materialization operator [94].

The unnest operator is known from NF2 [765, 746]. It will come in two dif-
ferent flavors allowing us to perform unnesting not only on nested relations but
also on attributes whose value is a bag of elements which are not tuples. The
reverse operator is the nest operator, which can be generalized to a grouping
operator. In our algebra, there exist two grouping operators: one unary group-
ing operator and one binary grouping operator (called groupjoin). The unary
grouping operator groups one bag of tuples according to a grouping condition.
Further, it can apply an arbitrary expression to the newly formed group. The
groupjoin adds a group to each element in the first argument bag. This group
is formed from the second argument. The groupjoin will exploit the fact that
in the object-oriented context objects can have bag-valued attributes. As we
will see, this is useful for both, unnesting nested queries and producing nested
results. We will even use nesting a a useful tool for processing SQL queries.

7.3.1 Preliminaries

As already mentioned, our algebraic operators not only deal with standard
relations but are polymorphic in the general sense. In order to fix the domain
of the operators, we need some technical abbreviations and notations. Let us
introduce these first.

Since our operators are polymorphic, we need variables for types. We use τ
possibly with a subscript to denote types. To express that a certain expression
is of type e, we write e :: τ . Starting from concrete names for types and
type variables, we can build type expressions the standard way by using type
constructors to build tuple types ([·]), set types {·}s, bag types {·}b and sequence
types < · >. Having two type expressions t1 and t2, we denote by t1 ≤ t2 that
t1 is a subtype of t2. It is important to note that this subtype relationship is not
based on the sub-/superclass hierarchy found in most object-oriented models.
Instead, it simply denotes substitutability. That is, type t1 provides at least all

222 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

the attributes and member functions that t2 provides [124].

Most of our algebraic operators are tuned to work on bags of tuples. The
most important information here is the set of attributes A(e) it provides or
produces. For some expression e, the function A(e) is defined as follows. A(e) =
{a1, . . . , an} if e :: {[a1 : τ1, . . . , an : τn]}s, e :: {[a1 : τ1, . . . , an : τn]}b, e :: ⟨[a1 :
τ1, . . . , an : τn]⟩, or e :: [a1 : τ1, . . . , an : τn]. Given a set of attributes A, we are
sometimes interested in the attributes provided by an expression e which are
not in A. For this complement we use the notation A(e), which is defined as
A(e) \A.

Often, we are not only interested in the set of attributes an expression
provides, but also in the set of free variables occurring in an expression e. We
use F(e) to denote the set of all free variables (attributes) of e.

Since the subscripts of our algebraic operators can contain arbitrary ex-
pressions, they may contain variables or even free variables. Then there is a
need to get bindings for these variables before the subscript expression can be
evaluated. These bindings are taken from the argument(s) of the operator. In
order to do so, we need a specified binding mechanism. The λ-notation is such
a mechanism and can be used, e.g., in case of ambiguities. For our purpose, it
suffices if we stick to the following convention.

• For an expression e with free variables F(e) = {a1, . . . , an} and a tuple t
with F(e) ⊆ A(t) we define e(t) := e[a1 ← t.a1, . . . , an ← t.an].

2 Similar-
ily, we define e(t1, . . . , tn) for more than a single tuple. This way, we can
use an expressions as a function. Note that the attribute names of the ti
have to be distinct to avoid name conflicts.

• For an expression e with only one free variable x, we define e(t) = e[x← t].

The mechanism is very much like the standard binding for the relational algebra.
Consider for example a select operation σa=3(R). Then we assume that a, the
free variable of the subscript expression a = 3, is bound to the value of the
attribute a of the tuples of the relation R. To express this binding explicitly,
we would write for a tuple t ∈ R (a = 3)(t). Since a is an attribute of R and
hence of t, by our convention a is replaced by t.a, the value of attribute a of
tuple t. Since we want to avoid name conflicts right away, we assume that all
variable/attribute names used in a query are distinct. This can be achieved in
a renaming step. Typically, renaming takes place during the NFST phase.

Application of a function f to arguments ei is denoted by either regular
(e.g., f(e1, . . . , en)) or dot (e.g., e1.f(e2, . . . , en)) notation. The dot notation is
used for type-associated methods occurring in the object-oriented context.

Last, we introduce the heavily overloaded symbol ◦. It denotes function
concatenation and (as a special case) tuple concatenation as well as the con-
catenation of tuple types to yield a tuple type containing the union of the
attributes of the two argument tuple types.

2e[v1 ← e1, . . . , vn ← en] denotes a substitution of the variables vi by the expressions ei
within an expression e.

7.3. OPERATORS 223

Sometimes it is useful to be able to produce a bag containing only a single
tuple with no attributes. This is done by the singleton scan operator denoted
by 2. Thus, 2 ≡ {[]}b.

Very often, we are given some database item which is a bag of other items.
Binding these to variables or, equivalently, embedding the items into a tuple,
we use the notation e[x] for an expression e and a variable/attribute name x.
For bag-valued expressions e, e[x] is defined as e[x] = {[x : y]|y ∈ e}. For
sequence-valued expressions e, we define e[a] = ϵ if e is empty and e[a] = ⟨[a :
α(e)]⟩ ⊕ τ(e)[a] otherwise.

By id we denote the identity function.

7.3.2 Signatures

We are now ready to define the signatures of the operators of our algebra.
Their semantics is defined in a subsequent step. Remember that we consider all
operators as being polymorphic. Hence, their signatures are polymorphic and
contain type variables, denoted by τ , often with an index. As mentioned before,
we define all operators on bags. Let us start by typing our bag operators

∪ : {τ}b, {τ}b → {τ}b,
∩ : {τ}b, {τ}b → {τ}b,
\ : {τ}b, {τ}b → {τ}b,

ΠD : {τ}b → {τ}b.

The unary operators we use have the following signatures, where B denotes

224 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

the type boolean:

ΠA : {τ}b → {τ ′}b
if τ ≤ τ ′ = [a1 : τ1, . . . , an : τn], A = {a1, . . . , an},

ΠD
A : {τ}b → {τ ′}b

if τ ≤ τ ′ = [a1 : τ1, . . . , an : τn], A = {a1, . . . , an},
σp : {τ}b → {τ}b

if p : τ → B,
χf : {τ1}b → {τ2}b

if f : τ1 → τ2,

χa:f : {τ1}b → {τ1 ◦ [a : τ2]}b
if f : τ1 → τ2,

ΓθG;g:f : {τ1 ◦ τ2}b → {τ1 ◦ [g : τ ′]}b
if τi ≤ [], f : {τ2}b → τ ′, G = A(τ1),

νG;g : {τ1 ◦ τ2}b → {τ1 ◦ [g : {τ2}b]}b
if τi ≤ [], G = A(τ1),

µg : {τ}b → {τ ′}b
if τ = [a1 : τ1, . . . , an : τn, g : {τ0}b],
τ0 ≤ [],

τ ′ = [a1 : τ1, . . . , an : τn] ◦ τ0,
µg;c : {τ}b → {τ ′}b

if τ = [a1 : τ1, . . . , an : τn, g : {τ0}b],
τ ′ = [a1 : τ1, . . . , an : τn] ◦ [c : τ0].

One special operator is needed to translate OQL, which exhibits an explicit
flatten operator to unnest bags of bags. An according algebraic operator is
defined easily:

flatten : {{τ}b}b → {τ}b.

7.3. OPERATORS 225

The following is a list of signatures of some binary operators.

A : {τ1}b, {τ2}b → {τ1 ◦ τ2}b,
Bq : {τ1}b, {τ2}b → {τ1 ◦ τ2}b

if τi ≤ [], q : τ1, τ2 → B,
Nq : {τ1}b, {τ2}b → {τ1}b

if τi ≤ [], q : τ1, τ2 → B,
Tq : {τ1}b, {τ2}b → {τ1}b

if τi ≤ [], q : τ1, τ2 → B,
Eq : {τ1}b, {τ2}b → {τ+1 ◦ τ2}b

if τi < [], q : τ1, τ2 → B,
Kq : {τ1}b, {τ2}b → {τ+1 ◦ τ+2 }b

if τi < [], q : τ1, τ2 → B,
C : {τ1}b, {τ2}b → {τ1 ◦ τ2}b

if τi ≤ [],

ZA1θA2;g:f : {τ1}b, {τ2}b → {τ1 ◦ [g : τ ′]}b
if τ1 ≤ [], f : {τ2}b → τ ′, Ai ⊆ A(τi) for i = 1, 2.

Using some special min/max operators to retrieve the element(s) whose
value becomes minimal/maximal often results in more efficient plans:

maxg;m;f : {τ}b → [m : τa, g : τf]

if τ ≤ [a : τa], f : {τa}b → τf .

7.3.3 Projection

Let A {a1, . . . , an} be a set of attributes. We define the two projection operators

ΠA(e) := {[a1 : x.a1, . . . , an : x.an]|x ∈ e}b,
ΠD

A (e) := ΠD(ΠA(e)).

The result of ΠD is always duplicate-free. In concordance with the characteristic
function of bags, we use

.
= to determine whether two elements are equal or

not. Thus, ΠD
A is defined such that the characteristic function of ΠD

A (e) yields
max(1, χΠA(e)(x)) for all x ∈ ΠA(e).

Thus, it is set-faithful. Typically, the result of ΠA is not duplicate-free, even
if its input is duplicate-free. Thus, we need explicit duplicate control here. One
exception occurs in the presence of functional dependencies. If A → A(e) and
e is duplicate-free, then ΠA(e) is duplicate-free.

Sometimes, we want to eliminate a single attribute or a set of attributes.
This is denoted by

ΠA(e) := ΠA(e)\A(e)

ΠD
A
(e) := ΠD

A(e)\A(e)

226 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

e1 := R1

a1
1
2
3

e2 := R2

a2 b

1 2
1 3
2 4
2 5

e3 := Γa2;g:id(e2)

a2 g

1 {[a2 : 1, b2 : 2], [a2 : 1, b2 : 3]}b
2 {[a2 : 2, b2 : 4], [a2 : 2, b2 : 5]}b

e4 := χg:σa1=a2 (e2)
(e1)

a1 g

1 {[a2 : 1, b2 : 2], [a2 : 1, b2 : 3]}b
2 {[a2 : 2, b2 : 4], [a2 : 2, b2 : 5]}b
3 ∅b

e5 := e1 Za1=a2;g:id e2
a1 g

1 {[a2 : 1, b2 : 2], [a2 : 1, b2 : 3]}b
2 {[a2 : 2, b2 : 4], [a2 : 2, b2 : 5]}b
3 ∅b

e6 := e1 Ea1=a2 e3
a1 a2 g

1 1 {[a2 : 1, b2 : 2], [a2 : 1, b2 : 3]}b
2 2 {[a2 : 2, b2 : 4], [a2 : 2, b2 : 5]}b
3 - -

Figure 7.4: Example for map and group operators

7.3.4 Selection

Note that in the following definition there is no restriction on the selection
predicate. It may contain path expressions, method calls, nested algebraic
operators, etc.:

σp(e) := {x|x ∈ e, p(x)}b.

The output of the selection is duplicate-free if its input is duplicate-free. As
selection is set-faithful, we do not need any additional set-selection. An example
of a selection together with a map operator (discussed next) can be found in
Fig. 7.4.

7.3.5 Map

The map operator is of fundamental importance to the algebra. It comes in two
flavors. The first one extends a given input tuple by an attribute and assigns
a value to this new attribute. This variant is also called materialize operator
[486, 94]. The second one produces for each input element an output element
by applying a function to it. This corresponds to the standard map as defined
in, e.g., [487]. The latter is able to express the former. The two variants of the
map operator are defined as follows:

χa:e2(e1) := {y ◦ [a : e2(y)]|y ∈ e1}b,
χe2(e1) := {e2(x)|x ∈ e1}b.

We can generalize the last variant to calculate values for many attributes. Given
an attribute assignment vector a1 : e1, . . . , ak : ek, we define

χa1:e1,...,ak:ek(e) := χak:ek(. . . χa1:e1(e) . . .).

7.3. OPERATORS 227

If we demand that ai ̸∈ A(e), then the ai are new attributes. Then, the ma-
terialize operator and its special single-attribute case χa:e are called extending,
because it extends a given input tuple with new attributes while it does not
modify the values of the input attributes. Many equivalences only hold for this
specialization of the map operator, which, at the same time, is the predominant
variant used. In fact, it is sufficient for SQL. An example of an extending map
operator can be found in Fig. 7.4.

Note that the map operator for the object-oriented and object-relational
context obviates the need of a relational projection. Sometimes the map oper-
ator is equivalent to a renaming. In this case, we will use ρ instead of χ. Let
A = {a1, . . . , an} and B = {b1, . . . , bn} be two sets with n attributes each. We
then define

ρA←B(e) := ΠA(χb1:a1,...,bn:an(e))

The result of the extending variant of the map operator is duplicate-free if
and only if its input is. Thus, the extending map operator is set-faithful.

7.3.6 Unary Grouping

Two grouping operators are contained in our algebra. The first one, discussed
here and called (unary) grouping , is defined on a bag and its subscript indicates
the (i) grouping criterions and (ii) a new attribute name as well as a function
which is used to calculate its value.

ΓθG;g:f (e) := {y ◦ [g : x] | y ∈ ΠD
G(e), x = f({z|z ∈ e, z.G θ y.G}b)}s

for some set of attributes G, an attribute g and a function f . The comparison
operator θ must be a null-extended comparison operator like ‘

.
=’. Note that the

result is a set, but f is applied to a bag. An example for the grouping operator
can be found in Fig. 7.4.

The grouping criterion may be defined on several attributes. Then, G and
θ represent sequences of attributes and comparators. In case all θ equal ’

.
=’, we

abbreviate Γ .=G;g:f by ΓG;g:f .

We can extend the above definition to calculate several new attribute values
by defining

ΓθG;b1:f1,...,bk:fk(e) := {y◦[b1 : x1, . . . , bk : xk] | y ∈ ΠD
G(e), xi = fi({z|z ∈ e, z.G θ y.G}b)}s.

We also introduce two variants of the grouping operator, which can be used
to abbreviate small expressions. Let F = b1 : e1, . . . , bk : ek and F(ei) = {g}
for all i = 1, . . . , k. Then we define

ΓG;F (e) := Πg(χF (ΓG;g:id(e))).

Here, the free attribute g is implicit. If we wish to make it explicit, we write
ΓG;g;F instead of simply ΓG;F . Note that g plays the same role as partition
in OQL ([133, p. 114]).

228 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

Let us also introduce a SQL-notation based variant. Let F be an aggregation
vector of the form

F = b1 : agg
1
(a1), . . . , bk : agg

k
(ak)

for attributes ai. Then we define Fg as

Fg = b1 : agg
1
(g.a1), . . . , bk : agg

k
(g.ak)

and introduce the following abbreviation:

ΓG;F (e) := ΓG;g;Fg(e).

This is the version we have to use for SQL.
The traditional nest operator ν [765], which nests a relation R given a set

of attributes G ⊂ A(e), can be defined as an abbreviation of the grouping
operator:

νG;g(e) := ΓG;g:ΠG
(e),

where G abbreviates A(e) \G.
The results of Γ and ν are always duplicate-free. Thus, these operators are

set-faithful.

7.3.7 Unnest Operators

The unnest operator comes in two different flavors. The first one is responsible
for unnesting a set of tuples on an attribute being a set/bag/sequence of tuples
itself. The second one unnests sets of tuples on an attribute not being a bulk of
tuples but a set of something else, e.g., integers. The according definitions are

µg(e) := {y.[A(y) \ {g}] ◦ x|y ∈ e, x ∈ y.g}b,
µa:g(e) := {y.[A(y) \ {g}] ◦ [a : x]|y ∈ e, x ∈ y.g}b.

If the bag-valued attribute is not stored explicitly but derived by the evaluation
of an expression, we use the unnest map operator to unnest it:

Υe2(e1) := Πg(µg(χg:e2(e1))),

Υa:e2(e1) := Πg(µa:g(χg:e2(e1))).

The motivation for the unnest map operator is that it saves the explicit mate-
rialization of the result of the evaluation of the expression e2.

The results of µg(e) and µa:g are duplicate-free, if and only if the following
two conditions hold.

1. The input e is duplicate-free.

2. For each tuple t ∈ e we have that t.g is duplicate-free.

Hence, explicit duplicate control for the unnest operator is in order. The same
holds for the unnest map operator.

7.3. OPERATORS 229

7.3.8 Flatten Operator

The flatten operator flattens a bag of bags by unioning the elements of the bags
contained in the outer bag.

flatten(e) = {y|x ∈ e, y ∈ x}b

The flatten operator’s result is duplicate-free if and only if the bags it contains
are duplicate-free and they have a pairwise empty intersection. Thus, explicit
duplicate control is very much in order.

7.3.9 Join Operators

The algebra features many different join operators. The first five, namely join,
semijoin, antijoin, left outerjoin, and full outerjoin – are rather standard:

e1 A e2 := {y ◦ x|y ∈ e1, x ∈ e2}b,
e1 Bp e2 := {y ◦ x|y ∈ e1, x ∈ e2, p(y, x)}b,
e1 Np e2 := {y|y ∈ e1, ∃x ∈ e2, p(y, x)}b,
e1 Tp e2 := {y|y ∈ e1,¬∃x ∈ e2 p(y, x)}b,
e1 Ep e2 := (e1 Bp e2) ∪ ((e1 Tp e2)A {⊥A(e2)}),
e1 Kp e2 := (e1 Bp e2)

∪((e1 Tp e2)A {⊥A(e2)})
∪({⊥A(e1)}A (e2 Tp e1)).

An example for the left outerjoin can be found in Fig. 7.4. More examples for
join, left outerjoin, and full outerjoin can be found in Fig. 7.6 for the predicate
qij := (bi = bj) and in Fig. 7.7 for the predicate q′ij := (bi

.
= bj) .

Regular joins were already present in Codd’s original proposal of a relational
algebra [196]. Outerjoins were invented by Lacroix and Pirotte [524].

The next join operator to come is called dependency join, or d-join, and is
denoted by C. It is a join between two bags, where the evaluation of the second
bag may depend on the first bag. The filled triangle thus shows the direction
into which information has to flow in order to evaluate the d-join. It is used to
translate from clauses containing table functions with parameters (see Sec. 4.10
for an example) and lateral derived tables into the algebra. Whenever possible,
d-joins will be rewritten into standard joins. The definition of the d-join is

e1 C e2 := {y ◦ x|y ∈ e1, x ∈ e2(y)}b.

The result of a d-join is duplicate-free if e1 is duplicate-free and if for each
t1 ∈ e1 we have that e2(t1) is duplicate-free. Example applications of the d-join
can be found in Sec. 4.10 and Sec. 4.14.

For the left outerjoin and the full outerjoin, we need a variant which allows
us to set some attribute values to constants other than null for tuples with no

230 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

join partner. Let Di = di1 : ci1, . . . , d
i
k : cik (i = 1, 2) be two vectors assigning

constants cij to attributes dij . We then define

e1 E
D2

p e2 := (e1 Bp e2)

∪((e1 Tp e2)A {⊥A(e2)\A(D2) ◦ [D2]},
e1 K

D1;D2

p e2 := (e1 Bp e2)

∪((e1 Tp e2)A {⊥A(e2)\A(D2) ◦ [D2]}),
∪((e2 Tp e1)A {⊥A(e1)\A(D1) ◦ [D1]}),

If one of D1 or D2 is empty, we use − to denote this.

As can already be seen from the definitions, this set of join operators is
highly redundant. As is well-known, the (regular) join can be expressed as a
sequence of selection and cross product:

e1 Bq e2 ≡ σq(e1 A e2).

For an expression e2 and a predicate q, define the predicate p as p = (σq(e2) ̸=
∅). Therewith, the semijoin can be be expressed as a selection:

e1 Nq e2 ≡ σp(e1).

If we define p as p = (σq(e2) = ∅), then the antijoin can be expressed as

e1 Tq e2 ≡ σq(e1).

The outerjoins were already defined using these three operators, which in turn
can be expressed using only selection and cross product.

We observe that:

• The results of cross product, (regular) join, left outerjoin and full outerjoin
are duplicate-free if and only if both of their inputs are duplicate-free.

• The results of a semi- and an antijoin are duplicate-free if and only if their
left-input is duplicate-free.

Thus, it follows that these operators are set-faithful.

7.3.10 Groupjoin

The second grouping operator — called groupjoin or binary grouping — is de-
fined on two input bags. It is more than 20 years old, but there is still no
common name for it. It was first introduced by von Bültzingsloewen [901, 902]
under the name of outer aggregation. Nakano calls the same operator gen-
eral aggregate formation [637], since unary grouping is called aggregate for-
mation by Klug [502]. Steenhagen, Apers, Blanken, and de By call a vari-
ant of the groupjoin nest-join [831]. The groupjoin is quite versatile and we
strongly believe that no DBMS can do without it. For example, it has been

7.3. OPERATORS 231

successfully applied to the problem of unnesting nested queries in the con-
text of SQL [92, 104, 105, 637, 901, 902], OQL [189, 190, 191], and XQuery
[597]. Chatziantoniou, Akinde, Johnson, and Kim apply the groupjoin to effi-
ciently evaluate data warehouse queries which feature a cube-by or group-by
grouping sets clause [146]. They call the groupjoin MD-Join.

The groupjoin is defined as follows:

e1 ZA1θA2;g:f e2 := {y ◦ [g : G]|y ∈ e1, G = f({x|x ∈ e2, y.A1θx.A2}b)}b.

Thus, each tuple t1 in e1 is extended by a new attribute g, whose value is the
result of applying a function f to a bag. This bag contains all tuples from e2
which join on A1θA2 with e1. An example for the groupjoin can be found in
Fig. 7.4. In fact, we do not have to rely on a comparison-based predicate. We
can generalize the groupjoin to any join predicate:

e1 Zq;g:f e2 := {y ◦ [g : G]|y ∈ e1, G = f({x|x ∈ e2, q(x, y)}b)}b.

Similar to unary grouping, we will use Zq;g;F to abbreviate Πg(χF (e1 Zq;g:id

e2)), and Zq;F to abbreviate ZA;g;F . In both cases, F must be an aggregation
vector with F(F) = {g}. An SQL notation variant of the groupjoin is defined
as e1 Zq;F e2 := e1 Zq;Fg e2, where the requirements for F and Fg are the same
as for unary grouping.

Since the reader is most likely not familiar with groupjoin, let us give some
remarks and pointers on its implementation. Obviously, implementation tech-
niques for the equijoin and the nest operator can be used if θ stands for equality.
For the other cases, implementations based on sorting seem promising. One
could also consider implementation techniques for non-equi joins, e.g., those
developed for the band-width join [239]. An alternative is to use θ-tables,
which were developed for efficient aggregate processing [192]. Implementation
techniques for groupjoin have also been discussed in [146, 598].

Note that the groupjoin produces a duplicate-free result if and only if its
left input is duplicate-free. It is thus set-faithful.

7.3.11 Min/Max Operators

The max operator has a very specific use that will be explained in the sequel.
The following definition is a generalization of the Max operator as defined in
[189]. Defining a min operator is left to the reader.

Maxm;g;a;f (e) := [m : max({x.a|x ∈ e}b), g : f({x|x ∈ e, x.a = m}b)]

The max operator successively performs three tasks. First, it calculates the
maximum (m) of all elements contained in e.a for some attribute a ∈ A(e).
Second, it uses this maximum (m) to select exactly those elements t from e such
that t.a = m, i.e., their a value is maximal. Third, these maximizing elements
t from e are collected into a bag and the result of applying the function f to it
is stored as the value for the attribute g. In a real implementation, at least the
first two phases will be merged. Thus, max requires only a single scan over e.

232 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

The sole purpose of these two operators is to efficiently evaluate expressions
which demand to select a maximizing or minimizing element:

f(σa=agg(χa(e2))(e1)) ≡ aggm;g;a;f (e1).g (7.1)

if Πa(e1) = ρb←a(Πb(e2)),

χg:f(σa=m(e2))(χm:agg(e1)(e)) ≡ χaggm;g;a;f (e1)
(e) (7.2)

if Πa(e1) = ρb←a(Πb(e2)),

where agg can stand for min or max. Clearly, in case e1 = e2 the conditions
are fulfilled.

This can be very useful also in the nested case.ToDo

7.3.12 Other Dependent Operators

Similar to the d-join, we can introduce a d-semijoin, d-antijoin, and so forth.
Before we introduce them, let us first make an important observation on the
d-join. Therefore, let e1 and e2 be two expressions and let J = F(e2) ∩ A(e1).
Then

e1 C e2 ≡ e1 B (ρJ←J ′(ΠD
J (e1)C e2)). (7.3)

Thus, we can evaluate the d-join by first evaluating it for all distinct attribute
combinations contained in ΠD

J (e1) and then joining the result with e1. This
saves redundant evaluations of expression e2 for the same attribute combination.
The motivation for the memox operator (M) followed exactly this reasoning (see
Sec. 4.14). The expression (ρJ←J ′(ΠD

J (e1)C e2)) will be used quite frequently.
Thus, we abbreviate it by ê2(e1) and even by ê2 if e1 is clear from the context.
So far, the d-join had no selection predicate. We can simply add one, by defining

e1 Cq e2 := e1 C σq(e2).

Now, we can give alternative expressions for the d-join:

e1 Cq e2 ≡ e1 C σq(e2),

e1 Cq e2 ≡ e1 BJ=J ′ σ̂q(e2),

e1 Cq e2 ≡ e1 BJ=J ′ (ρJ←J ′(ΠD
J (e1)Cq e2)),

e1 Cq e2 ≡ e1 BJ=J ′∧q ê2,

e1 Cq e2 ≡ e1 Bq̂ ê2,

where J = F(e2) ∩ A(e1) and q̂ = ((J = J ′) ∧ q).
As for the d-join, the filled triangle points into the direction of the informa-

tion flow for all subsequently defined dependent operators. Let us start with
the d-semijoin and d-antijoin. They can be defined using the selection:

e1 Oq e2 := σσq(e2) ̸=∅(e1),

e1 Uq e2 := σσq(e2)=∅(e1).

We observe that

e1 Oq e2 ≡ e1 Nq̂ ê2,

e1 Uq e2 ≡ e1 Tq̂ ê2,

7.4. LINEARITY OF ALGEBRAIC OPERATORS 233

where J = F(e2) ∩A(e1) and q̂ = ((J = J ′) ∧ q). The results of the d-semijoin
and d-antijoin are duplicate-free if and only if their left argument is.

We define the left outer d-join analogously to the left outerjoin:

e1 Fq e2 := (e1 Cq e2) ∪ ((e1 Uq e2)A {⊥A(e2)}).

Let us expand this definition. With E⊥2 = {⊥A(e2)}, J = F(e2) ∩ A(e1), and
q̂ = ((J = J ′) ∧ q), we then have

e1 Fq e2 ≡ (e1 Cq e2) ∪ ((e1 Uq e2)A E⊥2)

≡ (e1 Bq̂ ê2) ∪ ((e1 Tq̂ ê2)A E⊥2)

≡ e1 Eq̂ ê2.

The result of a left outer d-join is duplicate-free if its left input and ê2 are.

Defining a full outer d-join does not make much sense. The third part of
the expression

(e1 Cq e2) ∪ ((e1 Uq e2)A {⊥A(e2)} ∪ ((e2 Tq e1)A {⊥A(e1)})

is not even evaluable, since e2 can only be evaluated in the context of bindings
derived from e1. One might be tempted to use ê2 such that the problematic
part becomes

(ê2 Tq e1)A {⊥A(e1)}).
However, we abandon this possibility.

The situation is less complicated for the dependent groupjoin. We can define
it as

e1 [q;g:f e2 := e1 Zq̂;g:f ê2. (7.4)

We leave it as an exercise to the reader to show that

e1 [q;g:f e2 ≡ e1 Eg:f(∅)
J=J ′ Γq;g:f (ê2), (7.5)

where J = F(e2)∩A(e1). The result of a dependent groupjoin is duplicate-free
if and only if its left input is duplicate-free.

7.4 Linearity of Algebraic Operators

7.4.1 Linearity of Algebraic Operators

The notion of linearity was first used by von Bültzingsloewen to simplify proofs
of algebraic equivalences [903]. Since it saves a lot of work, we loosely follow
his approach. Let us carry over the definition of linearity as defined for sets to
bags. A unary function f from bags to bags is called strongly linear if and only
if the following two conditions hold for all bags X and Y :

f(∅b) = ∅b,
f(X ∪b Y) = f(X) ∪b f(Y).

234 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

An n-ary mapping from bags to a bag is called strongly linear in its i-th ar-
gument if and only if for all bags X1, . . . , Xn and X ′i the following conditions
hold:

f(X1, . . . , Xi−1, ∅b, Xi+1, . . . , Xn) = ∅b
f(X1, . . . , Xi−1, Xi ∪b X ′i, Xi+1, . . . , Xn) = f(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)

∪bf(X1, . . . , Xi−1, X ′i, Xi+1, . . . , Xn)

It is called strongly linear if it is strongly linear in all its arguments. For a
binary function or operator where we can distinguish between the left and the
right argument, we call it strongly left (right) linear if it is strongly linear in its
first (second) argument.

Using the commutativity of bag union and bag intersection as well as the
observations that in general

(∅b ∪b X) ̸= ∅b,
(∅b ∩b X) = ∅b,
(∅b \b X) = ∅b,
(X \b ∅b) ̸= ∅b

and

(X ∪b Y) ∪b Z ̸= (X ∪b Z) ∪b (Y ∪b Z),
(X ∪b Y) ∩b Z ̸= (X ∩b Z) ∪b (Y ∩b Z),
(X ∪b Y) \b Z ̸= (X \b Z) ∪b (Y \b Z),
X \b (Y ∪b Z) ̸= (X \b Y) ∪b (X \b Z),

we can conclude that bag union is neither strongly left nor strongly right linear,
bag intersection is neither strongly left nor strongly right bag-linear, and bag
difference is neither strongly left nor strongly right linear.

We can relax the definition of strongly linear by the additional assumption
that the intersection of the two unioned bags is empty. A unary function f from
bags to bags is called weakly linear if and only if the following two conditions
hold for all bags X and Y with X ∩b Y = ∅b:

f(∅b) = ∅b,
f(X ∪b Y) = f(X) ∪b f(Y).

An n-ary mapping from bags to a bag is called weakly linear in its i-th argument
if and only if for all bags X1, . . . , Xn and X ′i with Xi ∩b X ′i = ∅b the following
conditions hold:

f(X1, . . . , Xi−1, ∅b, Xi+1, . . . , Xn) = ∅b,
f(X1, . . . , Xi−1, Xi ∪b X ′i, Xi+1, . . . , Xn) = f(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)

∪bf(X1, . . . , Xi−1, X ′i, Xi+1, . . . , Xn).

It is called weakly linear , if it is weakly linear in all its arguments. For a binary
function or operator where we can distinguish between the left and the right

7.4. LINEARITY OF ALGEBRAIC OPERATORS 235

unary binary

operator linear operator left lin. right lin.
ΠD ◦ ∪ - -
ΠA + ∩ ◦ ◦
ΠD

A ◦ \ ◦ -
σp + A + +
χa:e + Bp + +
χf + Np + -

ΓθG;F - Tp + -
νG;g - Ep + -
µg + Kp - -
µa:g + Zp;F + -
Υf + C + does not apply
Υa:f +

flatten +

Table 7.1: Linearity of algebraic operators

argument, we call it weakly left (right) linear if it is weakly linear in its first
(second) argument.

Using the commutativity of bag union and bag intersection as well as the
observations that in general

(∅b ∪b X) ̸= ∅b,
(∅b ∩b X) = ∅b,
(∅b \b X) = ∅b,
(X \b ∅b) ̸= ∅b

and

(X ∪b Y) ∪b Z ̸= (X ∪b Z) ∪b (Y ∪b Z),
(X ∪b Y) ∩b Z = (X ∩b Z) ∪b (Y ∩b Z),
(X ∪b Y) \b Z = (X \b Z) ∪b (Y \b Z),
Z \b (X ∪b Y) ̸= (Z \b X) ∪b (Z \b Y)

forX∩bY = ∅b, we can conclude that bag union is neither weakly left nor weakly
right linear, bag intersection is weakly linear, and bag difference is weakly left
but not weakly right linear.

For the whole algebra, Table 7.1 summarizes the linearity properties for all
of our algebraic operators. Thereby, a ’+’ denotes strong linearity, ’◦’ denotes
weak linearity, and ’-’ denotes neither of them.

Let us take a closer look at the gap between weak and strong linearity. For
some bag B, define the unary function f on bags such that

χf(B)(x) =

{
3 if x ∈ B,
0 if x ̸∈ B

236 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

holds. Then, f is weakly linear but not strongly linear. The problem is that
f manipulates the multiplicity of the elements. We can make the difference
between weakly and strongly linear explicit. Therefore, we remember that
the only difference in the definition was the disjointness we required for weak
linearity. Consequently, we consider now the special case of bags containing
a single element multiple times. We say that a unary function f is duplicate
faithful if and only if for all x

f({xm}b) = ∪mi=1f({x}b)
holds. Then, a unary function is strongly bag linear if and only if it is weakly
bag linear and duplicate faithful. The same holds for n-ary functions if we
extend the property duplicate faithful to multiple arguments.

To see that the left semijoin is not even weakly right linear, consider the
following example:

{[a : 1]}b = {[a : 1]}b Na=b {[b : 1, c : 1], [b : 1, c : 2]}b
= {[a : 1]}b Na=b ({[b : 1, c : 1]}b ∪ {[b : 1, c : 2]}b)
̸= ({[a : 1]}b Na=b {[b : 1, c : 1]}b) ∪ ({[a : 1]}b Na=b {[b : 1, c : 2]}b)
= {[a : 1]2}b.

This is the reason why some equivalences valid for sets do not hold for bags
anymore. For example, ΠA(e1)(e1Bq12 e2) ≡ e1Nq12 e2 holds for sets but not for
bags. If we eliminate duplicates explicitly, we still have

ΠD
A(e1)(e1 Bq12 e2) ≡ ΠD

A(e1)(e1 Nq12 e2). (7.6)

Similiarily, we have

ΠD
A(e1)(e1 Eq12 e2) ≡ ΠD

A(e1)(e1), (7.7)

ΠD
A(e1)(e1 Kq12 e2) ≡ ΠD

A(e1)(e1). (7.8)

Let us now present some sample proofs of linearity. All proofs are by induc-
tion on the number of distinct elements contained in the argument bags.

χf is strongly linear.

χf (∅b) = ∅b
χf ({xm}b) = ∪mi=1f({x}b)
χf (e1 ∪ e2) = {f(x)|x ∈ e1 ∪ e2}b

= {f(x)|x ∈ e1}b ∪ {f(x)|x ∈ e2}b
= χf (e1) ∪ χf (e2)

E is strongly left linear.

∅b Eq e2 = ∅b
{xm}b Eq e2 = ∪mi=1({x}b Eq e2)

(e′1 ∪ e′′1)Eq e2 = ((e′1 ∪ e′′1)Bq e2) ∪ (((e′1 ∪ e′′1) Tq e2)A {⊥A(e2)}b)
= (e′1 Bq e2) ∪ (e′′1 Bq e2) ∪ ((e′1 Tq e2)A {⊥A(e2)}b) ∪ ((e′′1 Tq e2)A {⊥A(e2)}b)
= (e1 Eq e) ∪ (e2 Eq e)

7.4. LINEARITY OF ALGEBRAIC OPERATORS 237

Here, we exploited the linearity of join and antijoin. Since e1 Eq ∅b = ∅b
if and only if e1 = ∅b, E is not even weakly right linear.

C is strongly left linear.

∅b C e2 = ∅b
{xm}b C e2 = ∪mi=1({x}b C e2)

(e′1 ∪ e′′1)C e2 = {y ◦ x|y ∈ e′1 ∪ e′′1, x ∈ e2(y)}b
= {y ◦ x|y ∈ e′1, x ∈ e2(y)}b ∪ {y ◦ x|y ∈ e′′1, x ∈ e2(y)}b
= (e′1 C e2) ∪ (e′′1 C e2)

Note that the notion of linearity cannot be applied to the second (inner)
argument of the d-join, since, in general, it cannot be evaluated indepen-
dently of the first argument.

ΓG;:f is not linear.
Consider the following counterexample:

Γa;g:id({[a : 1, b : 1], [a : 1, b : 2]}b)
= {[a : 1, g : {[a : 1, b : 1], [a : 1, b : 2]}b]}b
̸= {[a : 1, g : {[a : 1, b : 1]}b]}b ∪ {[a : 1, g : {[a : 1, b : 2]}]}b
= Γa;g:id({[a : 1, b : 1]}b) ∪ Γa;g:id({[a : 1, b : 2]}b).

µg is strongly linear.

µg(∅b) = ∅b
µg({xm}b) = ∪mi=1(µg({x}b)
µg(e1 ∪ e2) = {x.[g] ◦ y|x ∈ e1 ∪ e2, y ∈ x.g}b

= {x.[g] ◦ y|x ∈ e1, y ∈ x.g}b ∪ {x.[g] ◦ y|x ∈ e2, y ∈ x.g}b
= µg(e1) ∪ µg(e2)

µa:g is also linear. This is shown analogously to the linearity of µg.

flatten is strongly linear.

flatten(∅b) = ∅b
flatten({xm}b) = ∪mi=1(flatten(x))

flatten(e1 ∪ e2) = {x|y ∈ e1 ∪ e2, x ∈ y}b
= {x|y ∈ e1, x ∈ y}b ∪ {x|y ∈ e2, x ∈ y}b
= flatten(e1) ∪ flatten(e2)

Note that the notion of linearity does not apply to the max operator, since it
does not return a bag.

238 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

7.4.2 Exploiting Linearity

The concatenation of two weakly (strongly) linear mappings is again a weakly
(strongly) linear mapping. Assume f and g to be weakly (strongly) linear
mappings. Then

f(g(∅b)) = ∅b,
f(g({xm}b)) = ∪mi=1f(g({x}b)),
f(g(X ∪ Y)) = f(g(X) ∪ g(Y))

= f(g(X)) ∪ f(g(Y)),

where the second line only applies for strongly linear mappings, and the bags
X and Y are disjoint in case of weakly linear mappings.

From the linearity considerations of the previous subsection, it is easy to
derive reorderability laws.

Let f : {τ f1 } → {τ f2 } and g : {τ g1 } → {τ g2 } be two strongly linear mappings.
If f(g({x}b)) = g(f({x}b)) for all bags {x}b containing a single element, then

f(g(e)) = g(f(e)) (7.9)

This is proven by induction on the number of distinct elements contained in a
bag e. If e is empty, the statement follows directly from the linearity of f and
g. For the induction, let e = e1 ∪ e2. Then

f(g(e)) = f(g(e1 ∪ e2))
= f(g(e1)) ∪ f(g(e2))

=I.H. g(f(e1)) ∪ g(f(e2))
= g(f(e1 ∪ e2))
= g(f(e)).

2

For strongly linear algebraic operators working on bags of tuples, we can
replace the semantic condition f(g({x}b)) = g(f({x}b)) by a syntactic criterion.
The main issue here is to formalize that two operations do not interfere in their
consumer/producer/modifier relationship on attributes. Let us first get rid
of modifications. There are only a few algebraic operators which are capable
of modifying an attribute’s value. One of them is the map operator. By a
proper renaming of attributes, we can assume without loss of generality that
no operator modifes an existing attribute value. For the map operator (say
χa:e2(e1)), it would mean that it only introduces new attributes (thus a ̸∈
A(e1)). This renaming step is an essential part of the NFST phase.

This leaves us with checking the consumer/producer relationships. Consid-
er, for example, the algebraic equivalence

σp(e1 Bq12 e2) ≡ (σp(e1))Bq12 e2.

It is well-typed if and only if the predicate p does not access any attributes
from e2, i.e., F(p) ∩ A(e2) = ∅.

Now, for most of our operators we can be sure that f(g(e)) = g(f(e)) for
singleton bags e. This holds if and only if the following two conditions hold:

7.5. REPRESENTATIONS 239

unary binary

operator produced deleted operator produced deleted
ΠD ∅ ∅ ∪ ∅ ∅
ΠA ∅ A ∩ ∅ ∅
ΠD

A ∅ A \ ∅ A(e2)
σp ∅ ∅ A ∅ ∅
χa:e {a} ∅ Bq ∅ ∅
ΓθG;F A(F) G Nq ∅ A(e2)
νG;g {g} G Tq ∅ A(e2)
µg A(g) {g} Eq A(e2) ∅
µa:g {a} {g} Kq A(e1) ∪ A(e2) ∅
Υa:f {a} ∅ Zq;g:F {g} ∅

Table 7.2: Produced and deleted attributes of algebraic operators

1. g does not access attributes produced by f , and

2. f does not access attributes produced by g.

We can formalize this as follows. We denote by P the set of produced attributes
and by D the set of destroyed attributes (e.g., projected away). Given a unary
operator f and an expression e, and a binary operator ◦ and expressions e1 and
e2, we can define

P(f) := A(f(e)) \ A(e),
D(f) := A(e) \ A(f(e)),
P(◦) := A(e1 ◦ e2) \ (A(e1) ∪ A(e2)),
D(◦) :=∗ (A(e1) ∪ A(e2)) \ A(e1 ◦ e2).

A special case concerns the produced attributes of outerjoins. Since attribute
values are assigned in case of null-padding a tuple with no join partner, we have
to add the attributes of the preserved side(s) to the set of produced attributes.
Table 7.2 shows the sets of produced and deleted attributes for some selected
algebraic operators.

Using this notation, the condition f(g({x}b)) = g(f({x}b)) is satisfied if the
two conditions

F(f) ∩ P(g) = P(f) ∩ F(g) = ∅b,
F(f) ∩ D(g) = D(f) ∩ F(g) = ∅b

hold and if f and g are any of our unary operators. This statement is valid
because we excluded attribute modifications.

7.5 Representations

7.5.1 Three Different Representations

In this section, we discuss different representations for sets, bags, and sequences.
Let us start with bags. Fig. 7.5 shows three different representations for bags.

240 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

R

A B

1 1
1 1
2 2

R

A B m

1 1 2
2 2 1

R

A B i

1 1 1
1 1 2
2 2 3

Figure 7.5: Three possible representations of a bag

The first representation (left) is the usual representation. Thus, we call it
standard representation. Here, duplicates are represented by duplicating tu-
ples. The order of appearance of the tuples in a bag is immaterial. Thus, the
tuples could be represented in any order and still yield the same bag. The
second representation (middle) contains every tuple only once, and the multi-
plicity of a tuple is given explicitly in the special attribute m. Hence, we call
it multiplicity-based representation. Again, the order of tuples is immaterial.
The third representation (right) adds a surrogate or tuple identifier i to each
tuple. Again, the attribute i is special and not visible to the user. Klausner
and Goodman say that i is a hidden attribute [497, 498]. In the example, it is a
non-negative integer. We call this representation tid-based. The order of tuples
is again immaterial if we use this representation for bags. The only property
we need is the uniqueness of the TID-attribute i.

Observe that although the bag represented contains duplicates, the multiplicity-
based and the tid-based representations are duplicate-free, i.e., they are sets.
For a bag e in a multiplicity-based representation, we even assume that Πm(e)
is duplicate-free. This assumption will be relaxed later on. Note that if there
are a lot of duplicates, then the multiplicity-based representation requires far
less storage than the other representations. Otherwise, the storage overhead for
the multiplicity-based and tid-based representations is negligible if the original
tuples are not too small.

For a set, all three representations are valid. Further, all of them are sets.
Note that in the multiplicity-based representation m = 1 for all tuples.

Sequences are a little trickier. Here, the order is important. We must thus
assume that all representations imply some implicit order. This implicit order
can be caused, for example, by a certain storage order, a list representation, or
a tuple stream. For the rest of this section, we assume that all representations
of bulk types are based on streams of tuples. Thus, they have an implicit
order, which in case of sets or bags might not be relevant. A typical example
of a relevant implicit order is a document scan in XQuery, where the resulting
nodes in the stream are in document order.

Consider now the tid-based representation. We require that i reflects the
order of tuples in the sequence. For any two tuples t1 and t2, we must have
that t1 occurs before t2 in the sequence if and only if t1.i < t2.i. Consider the
sequence

⟨[a : 1], [a : 2], [a : 1]⟩.

Clearly, the multiplicity-based representation ⟨[a : 1, m : 2], [a : 2, m : 1]⟩ looses

7.5. REPRESENTATIONS 241

the order. One way to remedy this situation is to keep not only the multiplicity
of an element but its positions. This results in

⟨[a : 1]1,3, [a : 2]2⟩

or in

⟨[a : 1, p : {1, 3}s], [a : 2, p : {2}s]⟩
if we represent the set of positions at which a tuple occurs in an extra attribute
p. We call this a position-based representation. It is duplicate free and in case
of multiple duplicates in the original sequence, it saves some memory.

7.5.2 Conversion between Representations

Assume that the bag e is given in standard representation, and we wish to
convert it to a multiplicity-based representation. Then ΓA(e);p;m:|p|(e) does the
job. To go into the other direction, we need a special unnest operator, which,
for a given attribute m in non-negative integers, produces m copies of a tuple.
Since it looks like a special unnest operator, we use µm to denote it. It is defined
as

µm(e) := Πm({tm|t ∈ e}b)
for attributes m in non-negative integers. Then, µm(e) converts a bag e from
multiplicity-based to standard representation.

To go from a standard representation of a bag to a tid-based representation,
we apply a special tid-operator TIDi, which produces distinct TIDs (numbers)
for every input tuple and stores this number in the attribute i. Assume some
global variable c is initialized with 0, then TIDi(e) could be defined as χi:++c(e),
mixing algebra and C++ code. The reverse direction is easily specified by Π

i
.

Let us now turn to sets. Converting a set e in standard notation to a
multiplicity-based representation is performed by χm:1(e). Converting a set e
in multiplicity-based representation to one in standard representation can be
simplified to Πm(e). The other conversions for sets are the same as for bags.

Given a sequence e in standard representation with implicit ordering, we
can apply the above TID-operator to convert e into a tid-based representation
with TIDi(e). The reverse conversion is not simply Π

i
(e), except if we are sure

that e is already sorted on i. Otherwise, since sorting on i will restore the order,
we can convert a sequence e in tid-based representation with Π

i
(Sorti(e)), where

we again must assume an implicit ordering.

We can construct a position-based representation of a sequence given in a
tid-based representation with ΓA(e)\{i};g:Πi

(e). The opposite direction is spec-

ified by Sorti(µg(e)). As an exercise, the reader should design an algorithm
which allows to calculate the combination Sorti ◦ µg efficiently. EXC

7.5.3 Conversion between Bulk Types

Given a set e in some representation, the same representation is a valid bag
representation. Hence, this conversion is a no-op.

242 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

The opposite direction is also simple. Given a bag e in standard repre-
sentation, ΠD produces a set in standard representation. This is expensive.
Given a bag e in tid-based representation, ΠD

A(e)\{i}(e) produces a set in stan-

dard representation. This is expensive, too. Given a bag e in multiplicity-based
representation, Πm(e) produces a set in standard representation. This is cheap.

Going from a sequence to a bag is simple. If the sequence is given in standard
representation with implicit order or in tid-based representation, the conversion
to a bag is the identity function. If a sequence e is given in the position-based
representation with attribute p containing the set of positions, then Πp(χm:|p|(e))
converts it to a bag in multiplicity-based representation. From there, we can go
anywhere. Obviously, going from a bag to a sequence requires explicit sorting.

7.5.4 Adjusting the Algebra

Implicitly, we have defined our algebra on the standard representation. This is
not coercive. Consider two bags e1 and e2 in a multiplicity-based representation.
We can define a special counting cross product by

e1 A
m12:m1∗m2 e2 := Πm1,m2({t1 ◦ t2 ◦ [m : t1.m1 ∗ t2.m2]|ti ∈ ei})

Doing the same exercise with the regular join operator results in the so-called
counting join [944].

Luckily, it is not necessary to introduce a special counting cross product, as
can be seen from

e1 A
m12:m1∗m2 e2 ≡ Πm1,m2(χm12:m1∗m2(e1 A e2),

which can be generalized to

Π{mi}(χm:
∏

i mi
(e1 A . . .A en))

if we want to take the counting cross product of n bags ei.
Similarily, we can handle a cross product of sequences in a position-based

representation, which is left as an exercise to the reader.EXC
Let us turn to projection. Consider the bag

{[a : 1, b : 2, m : 3], [a : 2, b : 3, m : 4], [a : 1, b : 4, m : 2]}b

in the multiplicity-based representation. Applying Πa carelessly results in

{[a : 1, m : 3], [a : 2, m : 4], [a : 1, m : 2]}b,

which is no longer a multiplicity-based representation, as it is not a set anymore.
More specifically, Πa of the above bag contains duplicates. We use this repre-
sentation as an alternative fourth representation. We call it multiplicity-based
representation with duplicates. First, note that in terms of conversions and al-
gebraic operators like join, the duplicates do not imply problems. We just loose
some compression of the data. Second, observe that performing a Γa;m:sum(m)

fixes this problem, i.e., it turns a bag in multiplicity-based representation with
duplicates into the regular, duplicate-free multiplicity-based representation.

7.6. A NOTE ON EQUIVALENCES 243

7.5.5 Partial Preaggregation

To illustrate partial preaggregation (or partial pregrouping) we use a hash-based
implementation of the grouping operator as an example. Assume that it has
limited buffer space and can keep k groups. If the buffer overflows, some group
is ejected from the buffer to produce new free space for a new group. We denote
such a special implementation of the grouping operator by Γpre(k) and call it
partial preaggregation or partial pregrouping.

We illustrate it by applying it in the form of Γ
pre(1)
a;g;m:|g| to the following bag

B := {[a : 1], [a : 1], [a : 2], [a : 1], [a : 1]}b.

The result is

Bpre := {[a : 1, m : 2], [a : 2, m : 1], [a : 1, m : 2]}b,

where we assumed that the implicit order in which the pregrouping operator
sees the tuples is from left to right. Calculating Γa;g;m:sum(m) gives with

Bm := {[a : 1, m : 4], [a : 2, m : 1]}b

the regular duplicate-free multiplicity-based representation. This observation
also holds for sets of attributes, as in

ΓG;m:count(∗)(e) ≡ ΓG;m:sum(m′)(Γ
pre(k)
G;m′:count(∗)(e) (7.10)

for any k ≥ 0, where we used the SQL-notation based variant of grouping.
Recall that aggregation functions and vectors can be decomposable. Then

it is easy to generalize the above equivalence. Let F be an aggregation vector
decomposable into F 1 and F 2. Then

ΓG;F (e) ≡ ΓG;F 2(Γ
pre(k)
G;F 1 (e) (7.11)

holds. If the grouping operator is pushed into a join or any other binary op-
erator and still some outer grouping is present (see Sec. 7.11), then the inner
grouping can be replaced by a pregrouping. General partial pregrouping or
preaggregation is discussed in several papers [425, 534]. They also discuss the
expected resulting number of tuples of partial pregrouping.

7.6 A Note on Equivalences

We have already seen expressions like E1 ≡ E2, where the expressions Ei contain
algebraic operators and other symbols. Typically, they contain variables ei to
denote base tables or other database items or even algebraic expressions. They
also contain p or q for predicates. These are essentially variables for predicates.
Also attributes names a or b can be contained in the Ei. Again, these are
essentially place holders for ‘real’ attribute names. Sometimes constants c are
used. Let us collectively call all these underspecified symbols variables. We
will then say that E1 ≡ E2 if and only if the following condition holds: For all

244 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

bindings for all variables in E1 and E2, if E
′
1 and E

′
2, which result from applying

these bindings to them, are well-typed, then the evaluation of E′1 and E′2 yields
the same result.

Equivalence of relational expressions is discussed, e.g., by Aho, Saviv, and
Ullman [17, 18]. In fact, they discuss weak and strong equivalence. We use
strong equivalence. Weak equivalence is defined on universal relations and is
not sufficent for our purpose.

7.7 Simple Reorderability

7.7.1 Unary Operators

The simplest property we are interested in is the idempotency of unary op-
erators. A unary operator f is called idempotent, if f(f(x)) = f(x) for all
x. Since ΠD(x) = ΠD(ΠD(x)), ΠA(x) = ΠA(ΠA(x)), Π

D
A (x) = ΠD

A (Π
D
A (x)),

and σp(x) = σp(σp(x)), these operators are idempotent. Our other operators
are not. For projections, we also have some generalized idempotency. Let
A and B be two attribute sets with A ⊆ B. Then ΠA(x) = ΠA(ΠB(x)),
ΠD

A (x) = ΠD
A (Π

D
B (x)), and ΠD

A (x) = ΠD
A (ΠB(x)).

As can be seen from the definition of the grouping operator, it is a gen-
eralization of duplicate elimination. If we apply a grouping with an empty
aggregation vector, then it is equivalent to a duplicate elimination. In other
words,

ΠD
A (e) ≡ ΓA;()(e) (7.12)

holds for any set of attributes A with A ⊆ A(e). As a consequence, we have
to ask ourselves whether there exists a property generalizing idempotency that
holds for grouping. Indeed there is one. Let F be an aggregation vector which is
decomposable into F 1 and F 2, and G and G+ be two sets of grouping attributes
with G ⊆ G+. Then

ΓG;F (e) ≡ ΓG;F 2(ΓG+;F 1(e)) (7.13)

holds, since we can first group at a finer granularity and then combine finer
groups to the groups derived from the grouping by G. We can even go a
step further in the presence of functional dependencies. Assume the functional
dependency G→ G′ holds for two sets of grouping attributes G and G′. Then,
the equivalence

ΓG;F (e) ≡ ΠG∪A(F)(ΓG∪G′;F (e)) (7.14)

holds, since the groups and their contents are the same in both cases. This
equivalence can also be found under the name simplify group-by in a paper by
Tsois and Sellis [882]. A slightly more general version for any function f also
holds:

ΓG;g:f (e) ≡ ΠG∪{g}(ΓG∪G′;g:f (e)). (7.15)

Eqv. 7.14 can be simplified if, in addition to G→ G′, G ⊆ G′ holds:

ΓG;F (e) ≡ ΠG∪A(F)(ΓG′;F (e)). (7.16)

7.7. SIMPLE REORDERABILITY 245

ΠD ΠA ΠD
A σ χ Γ ν µ Υ

ΠD + - - + + - - (-) (-)
ΠA - - - + + - - + +
ΠD

A - - - + + - - (-) (-)
σ + + + + + ◦ + + +
χ + + + + + - - + +
Γ - - - ◦ - - - - -
ν - - - + - - - - -
µ (-) + (-) + + - - + +
Υ (-) + (-) + + - - + +

Table 7.3: Reorderability of unary operators

While introducing linearity, we have already discussed the usefulness of
linearity for reordering unary operators. Table 7.3 shows a ’+’ sign if f(g(x)) ≡
g(f(x)) for two unary operators f and g. If this does not hold, the according
entry contains a ‘-’. Thereby, we have to take care that the consumer/producer
relationship is not disturbed. For example, χa:e and σp can only be reordered
if a ̸∈ F(p). Since this should be clear by now, we will not always mention it
explicitly anymore.

The cases marked by ‘(-)’ involve the unnest or unnest map operator, and
they need an additional condition to be reorderable. If we want to reorder
µg with a duplicate eliminating projection on some input e, we must require
that t.g is duplicate-free for all t ∈ e. For Υf , we must require that f(t) is
duplicate-free for all t ∈ e.

In general, reordering a selection with a grouping ΓθG;g:f is wrong. If, how-
ever, all comparison operators are based on equality, we can reorder it with a
selection σp as in

σp(ΓG;g:f (e) ≡ ΓG;g:f (σp(e)). (7.17)

Of course, this requires that g ̸∈ F(p) and (F(p) ∩ A(e)) ⊆ G.
A real annoyance is the fact that we cannot reorder a map with a grouping

operator. But this situation can be remedied. Then, the map as well as the
selection will become reorderable with all operators needed in the context of
SQL. Consider the expression χa:e2(ΓG;g;F (e1)). It is valid only if F(e2) ⊆
G ∪ A(F). If F(e2) ∩ A(F) ̸= ∅, there is no hope to change the order of the
map and grouping operators. Thus, assume that F(e2) ⊆ G. The expression
ΓG;g;F (χa:e2(e1)) typically does not contain attribute a. However, since F(e2) ⊆
G, we observe that G→ a if e2 contains only deterministic functions, which we
assume. Thus, we have

χa:e2(ΓG;g;F (e1)) = ΓG∪{a};g;F (χa:e2(e1)), (7.18)

and
χa:e2(ΓG;F (e1)) = ΓG∪{a};F (χa:e2(e1)) (7.19)

if F(e2) ⊆ G. Whereas the expression e2 is evaluated once per group on the
left-hand side, it is evaluated once per item in e1 on the right-hand side. This

246 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

∪ ∩ \ A B N T C E K Z

ΠD ◦/◦ +/+ +/◦ ◦/◦ ◦/◦ +/- +/- ◦/- ◦/- ◦/◦ +/-
ΠA -/- -/- -/- -/- -/- +/- +/- -/- -/- -/- -/-
ΠD

A -/- -/- -/- -/- -/- +/- +/- -/- -/- -/- -/-
σ -/- +/+ +/- +/+ +/+ +/- +/- +/+ +/- -/- +/-
χ -/- -/- -/- +/+ +/+ +/- +/- +/+ +/◦ ◦/◦ +/-
Γ -/- -/- -/- -/- -/- +/- +/- -/- -/- -/- -/-
ν -/- -/- -/- -/- -/- +/- +/- -/- -/- -/- -/-
µ -/- -/- -/- +/+ +/+ +/- +/- +/+ +/- -/- +/-
Υ -/- -/- -/- +/+ +/◦ +/- +/- +/+ +/- -/- +/-

Table 7.4: Left/right push-down

is unfortunate if we want to apply the equation from left to right. Remember
that A(g) = A(e1) in ΓG;g;F (e1). Thus, A(e2) ⊆ G ⊆ A(g), and we can add
the calculation of e2 to F . Therefore, we need the function pick, which picks
an arbitrary element out of a bag. This is deterministic, since all tuples in a
group g have the same values for all attributes contained in G. Then, we have

χa:e2(ΓG;g;F (e1)) = ΓG;g;F◦(a:(e2(pick(g))))(e1) (7.20)

if F(e2) ⊆ G. In our SQL-notation variant of Γ, this reads like

χa:e2(ΓG;F (e1)) = ΓG;g;F◦(a:e2(pick(g)))(e1) (7.21)

if F(e2) ⊆ G.

7.7.2 Push-Down/Pull-Up of Unary into/from Binary Opera-
tors

In this section, we consider pushing down (pulling up) unary operators into
(from) the arguments of binary operators. Thus, we are interested in equiva-
lences of the form f(e1 ◦ e2) ≡ f(e1) ◦ e2 and f(e1 ◦ e2) ≡ e1 ◦ f(e2). First,
let us see how linearity helps in this context. Let f be a unary, strongly linear
mapping and ◦ a binary mapping that is strongly linear in its left argument.
If for all expressions e1 and e2 and for all xi ∈ ei we have f({x1}b ◦ {x2}b) =
(f({x1}b) ◦ {x2}b), then

f(e1 ◦ e2) ≡ f(e1) ◦ e2.

If e1 is empty, f(e1 ◦ e2) and f(e1) ◦ e2 are also empty. If e1 is a singleton bag,
the claim follows from the prerequisite. For the induction step, we observe that

f(e1 ◦ e2) = f((e′1 ◦ e2) ∪ (e′′1 ◦ e2))
= f(e′1 ◦ e2) ∪ f(e′′1 ◦ e2)

=I.H. (f(e′1) ◦ e2) ∪ (f(e′′1) ◦ e2)
= f(e1) ◦ e2

7.7. SIMPLE REORDERABILITY 247

if e1 = e′1 ∪ e′′1. Our prerequisite required f({x1}b ◦ {x2}b) = (f({x1}b) ◦ {x2}b).
If instead the stronger f({xm1 }b ◦ {xn2}b) = (f({xm1 }b) ◦ {xn2}b) holds and ◦ is
weakly left linear, then it suffices to push f down into the left argument of ◦.
This follows from the above prove and the additional condition e′1 ∩ e′′1 = ∅.
The induction is on the number of distinct elements in e1.

Table 7.4 summarizes the validity of pushing a unary operator down into
the left or right argument of a binary operator. Again, some restrictions apply.
First, we restrict ourselves to the map operator in its extending form χa:e.
Other critical cases are marked by ◦. They include duplicate elimination and
outerjoins. We open our discussion with duplicate elimination. Since duplicate
elimination is weakly but not strongly linear, it is not surprising that we need
additional conditions to push it down a binary operator. We have

ΠD(e1 ∪ e2) ≡ ΠD(e1) ∪ e2 if dupfree(e2) ∧ (e1 ∩ e2) = ∅b,
ΠD(e1 A e2) ≡ ΠD(e1)A e2 if dupfree(e2),

ΠD(e1 Bq12 e2) ≡ ΠD(e1)Bq12 e2 if dupfree(e2),
ΠD(e1 C e2) ≡ ΠD(e1)C e2 if ∀t1 ∈ e1 dupfree(e2(t1)),

ΠD(e1 Eq12 e2) ≡ ΠD(e1)Eq12 e2 if dupfree(e2),
ΠD(e1 Kq12 e2) ≡ ΠD(e1)Kq12 e2 if dupfree(e2),

where dupfree(e) denotes the fact that e is duplicate-free.
Let us now take a closer look at the case where we try to push down a map

operator into the right-hand side of a left outerjoin. Consider the expression
χa2:f2(e1 Eq12 e2), where F(f2) ∩ A(e1) = ∅. The question is to which value
f(⊥A(e2)) evaluates. If it evaluates to null, then we do not have any problem,
since outerjoins append nulls. It if does not, the value for a will differ in
e1 Eq12 χa2:f2(e2). We thus say that an expression or function f rejects null
values on a set of attributes A if f(A) = null. With conditions attached, the
equivalences read as follows:

χa2:f2(e1 Eq12 e2) ≡ e1 Eq12 χa2:f2(e2)

if f2 rejects null values on A(e2),
χa1:f1(e1 Kq12 e2) ≡ χa1:f1(e1)Kq12 e2

if f1 rejects null values on A(e1),
χa2:f2(e1 Kq12 e2) ≡ e1 Kq12 χa2:f2(e2)

if f2 rejects null values on A(e2).
The reorderability properties of the grouping operator and its special case,

the nest operator, are of some concern because they are not linear. However,
reordering is not hopeless. Let us consider the semijoin first. Let p be a selection
predicate and G be a set of grouping attributes. If for some expression e the
condition F(p) ∩ A(e) ⊆ G holds, we know that we can exchange the order of
grouping and selection: ΓG;F (σp(e)) ≡ σp(ΓG;F (e)). From the definition of the
semijoin and the above equivalence with p = (σq(e2) ̸= ∅) it follows that

ΓG;F (e1 Nq e2) ≡ ΓG;F (σσq(e2)̸=∅(e1)) (7.22)

≡ σσq(e2)̸=∅(ΓG;F (e1))

≡ ΓG;F (e1)Nq e2

248 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

ΠD ΠA ΠD
A σ χ Γ ν µ Υ

∪ - + - + + - - + +
∩ + - - + + - - + +
\ + - - + + - - + +

Table 7.5: Simultaneous push-down

if (F(q) ∩ A(e1)) ⊆ G. Analogously, we can derive

ΓG;F (e1 Tq e2) ≡ ΓG;F (e1) Tq e2 (7.23)

if (F(q)∩A(e1)) ⊆ G. Pushing down a grouping into one of the arguments of a
join, outerjoin, d-join, or groupjoin is a little more complex. Thus, we devoted
a whole section to this problem (see Sec. 7.11).

Since the bag operators ∪, ∩, \ require the same schema for both arguments,
it is quite natural to ask for a simultaneous push-down into both arguments.
Thus, we are interested in equivalences of the form f(e1 ◦ e2) ≡ f(e1) ◦ f(e2)
for the bag operators above. Table 7.5 summarizes the valid instances of this
equivalence pattern. Again, we must restrict the map operator to its extending
form χa:e.

And again, problems occur for duplicate eliminination and grouping as well
as its special case nest. Consider duplicate elimination first. Evaluating the
expression ΠD(e1 ∪ e2) will never result in any duplicates. ΠD(e1) ∪ ΠD(e2),
however, might contain duplicates, e.g., if e1 = e2 = {[a : 1]}b, the result is
{[a : 1]2}b. Since this is the only problem, we immediately conclude that

ΠD(e1 ∪ e2) ≡ ΠD(ΠD(e1) ∪ΠD(e2)), (7.24)

ΠD
A (e1 ∪ e2) ≡ ΠD

A (Π
D
A (e1) ∪ΠD

A (e2)). (7.25)

We now turn our attention to the grouping operator. Let e1 and e2 be two
expressions with A(e1) = A(e2). Further, let G ⊆ A(e1) be a set of grouping
attributes and F an aggregation vector. If (ΠG(e1) ∩ΠG(e2)) = ∅, then

ΓG;F (e1 ∪ e2) ≡ ΓG;F (e1) ∪ ΓG;F (e2). (7.26)

If (ΠG(e1) ∩ΠG(e2)) ̸= ∅, and F is decomposable into F 1 and F 2, then

ΓG;F (e1 ∪ e2) ≡ ΓG;F 2(ΓG;F 1(e1) ∪ ΓG;F 1(e2)). (7.27)

Of course, this equivalence also holds if (ΠG(e1) ∩ΠG(e2)) = ∅.
The cases of pushing grouping down an intersection or difference are dis-

cussed in Sec. 7.11.8.

7.7.3 Binary Operators

Reordering binary operators is the core operation of any plan generator. We
have already devoted a whole chapter to the problem of finding the optimal
join order (Chap. 3). The search space for join ordering is huge since the join
is commutative and associative. Thus, there was no restriction on the valid

7.7. SIMPLE REORDERABILITY 249

join trees besides syntactic constraints resulting from the consumer/producer
relationship. In this section, we investigate the commutativity and associativity
of our binary operators.

Commutativity is the easiest. It is obvious that ∪, ∩, A, B, and K are
commutative while the other binary operators are not. Let us denote the fact
that a binary operator ◦ is commutative by comm(◦).

In traditional mathematics, a binary operator ◦ is called associative if (a ◦
b) ◦ c = a ◦ (b ◦ c). Since we have to reorder many different operators, which
possibly contain subscripts, we consider equivalences of the form

(e1 ◦a12 e2) ◦b23 e3 ≡ e1 ◦a12 (e2 ◦b23 e3)

for not necessarily distinct operators ◦a and ◦b. The subscripts in this equiv-
alence have the following meaning. For operators not carrying a predicate or
other expressions, it is immaterial and can be ignored. If an operator has an
expression e as a subscript, then ij (for 1 ≤ i, j ≤ 3, i ̸= j) indicates that
F(e) ∩ ek = ∅ for 1 ≤ k ≤ 3 and k ̸∈ {i, j}. This ensures that the equivalence
is correctly typed on both sides of the equivalence sign. If for two operators ◦a
and ◦b the above equivalence holds, then we denote this by assoc(◦a, ◦b). As
we will see, assoc is not symmetric. Thus, we have to be very careful about the
order of the operators, which is tight to the syntactic pattern of the equivalence
above. In order not to make a mistake, one has to remember two things. First,
the operators appear in assoc in the same order as on the left-hand side of the
equivalence. Second, the equivalence has left associatiation on its left-hand side
and, consequently, right association on its right-hand side.

If both operators are commutative, then the assoc property is symmetric,
i.e.,

assoc(◦a, ◦b), comm(◦a), comm(◦b) ≻ assoc(◦b, ◦a),
assoc(◦b, ◦a), comm(◦a), comm(◦b) ≻ assoc(◦a, ◦b)

as can be seen from

(e1 ◦a12 e2) ◦b23 e3 ≡ e1 ◦a12 (e2 ◦b23 e3) assoc(◦a, ◦b)
≡ (e2 ◦b23 e3) ◦a12 e1 comm(◦a)
≡ (e3 ◦b23 e2) ◦a12 e1 comm(◦b)
≡ e3 ◦b23 (e2 ◦a12 e1) assoc(◦b, ◦a)
≡ (e2 ◦a12 e1) ◦b23 e3 comm(◦b)
≡ (e1 ◦a12 e2) ◦b23 e3 comm(◦a).

Assume we wish to prove associativity for two binary operators ◦a and ◦b,
where ◦a is strongly right linear and ◦b is strongly left linear. Further assume
that for all elements t1 ∈ e1, t2 ∈ e2, and t3 ∈ e3

{t1}b ◦a12 ({t2}b ◦b23 {t3}b) = ({t1}b ◦a12 {t2}b) ◦b23 {t3}b

holds, where the subscript ij in ◦ij indicates that any subscript in ◦ij does
not access attributes from ek if k ̸= i and k ̸= j. Then, we can easily prove

250 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

∪ ∩ \ A B N T C E K Z

∪ + - - - - - - - - - -
∩ - + - - - + + - - - -
\ - - - - - - - - - - -
A - - - + + + + + + - +
B - - - + + + + + + - +
N - - - - - - - - - - -
T - - - - - - - - - - -
C - - - + + + + + + - +
E - - - - - - - - ◦ - -
K - - - - - - - - ◦ ◦ -
Z - - - - - - - - - - -

Table 7.6: The assoc-property for binary operators

associativity by induction on the number of elements in the bag e2. If e2 is
empty, then (e1 ◦a12 e2) ◦b23 e3 and e1 ◦a12 (e2 ◦b23 e3) are also empty. For singleton
bags, we apply the prerequisite above, and for e2 = e′2 ∪ e′′2,

(e1 ◦a12 e2) ◦b23 e3) ≡ (e1 ◦a12 (e′2 ∪ e′′2)) ◦b23 e3
≡ ((e1 ◦a12 e′2) ∪ (e1 ◦a12 e′′2)) ◦b23 e3)
≡ ((e1 ◦a12 e′2) ◦b23 e3) ∪ ((e1 ◦a12 e′′2) ◦b23 e3)
≡I.H. (e1 ◦a12 (e′2 ◦b23 e3)) ∪ (e1 ◦a12 (e′′2 ◦b23 e3))
≡ (e1 ◦a12 ((e′2 ◦b23 e3) ∪ (e′′2 ◦b23 e3))
≡ e1 ◦a12 (e2 ◦b23 e3)

provides the induction step.
Table 7.6 summarizes the associativities that hold. Be careful to determine

assoc(◦a, ◦b) from this table by looking up the row with ◦a and the column
with ◦b. Almost all ’+’ entries’ proofs benefit from the strong linearity of both
operators. Some of the exceptions benefit from the fact that semi- and antijoin
can be expressed as selections and we already know how to push down/pull
up selections. The final set of exceptions deals with outerjoins. Here, we also
find most of the asymmetries. Since the reader might not be familiar with the
d-join, reordering the d-join is discussed in Sec. 7.9. Since reordering outerjoins
is complicated, the discussion is deferred to Sec. 7.10.

Now, imagine the operators ◦a and ◦b access other attributes than in the
associativity pattern above. For example, let ◦b possibly access e1 and e3 but
not e2. Then, the associativity pattern becomes

(e1 ◦a12 e2) ◦b13 e3 ≡ e1 ◦a12 (e2 ◦b13 e3).

Obviously, the right-hand side is ill-typed. However, we could rewrite the pat-
tern to

(e1 ◦a12 e2) ◦b13 e3 ≡ (e1 ◦b13 e3) ◦a12 e2
because then both sides are well-typed. Let us call instances of this pattern
left asscom property and denote by l-asscom(◦a, ◦b) the fact that the accord-

7.7. SIMPLE REORDERABILITY 251

ing equivalence holds. Analogously, we can define a right asscom property (r-
asscom):

e1 ◦a13 (e2 ◦b23 e3) ≡ e2 ◦b23 (e1 ◦a13 e3).
First note that l-asscom and r-asscom are symmetric properties, i.e.,

l-asscom(◦a, ◦b) ≺≻ l-asscom(◦b, ◦a),
r-asscom(◦a, ◦b) ≺≻ r-asscom(◦b, ◦a).

Then, the calculation

(e1 ◦a12 e2) ◦b23 e3 ≡ (e2 ◦a12 e1) ◦b23 e3 if comm(◦a12)
≡ (e2 ◦b23 e3) ◦a12 e1 if l-asscom(◦a12, ◦b23)
≡ e1 ◦a12 (e2 ◦b23 e3) if comm(◦a12)
≡ (e1 ◦a12 e2) ◦b23 e3 if assoc(◦a12, ◦b23)

implies that

comm(◦a12), assoc(◦a12, ◦b23) ≻ l-asscom(◦a12, ◦b23),
comm(◦a12), l-asscom(◦a12, ◦b23) ≻ assoc(◦a12, ◦b23).

Thus, the l-asscom property is implied by associativity and commutativity,
which explains its name. We leave it to the reader to show that

comm(◦b23), assoc(◦a12, ◦b23) ≻ r-asscom(◦a12, ◦b23),
comm(◦b23), r-asscom(◦a12, ◦b23) ≻ assoc(◦a12, ◦b23).

The important question is whether there are instances of l/r-asscom which do
not follow from the commutativity and associativity properties. The answer is
yes, as the following investigation shows. Assume e ◦a e′ can be expressed as a
selection σp(◦a,e′)(e), then

(e1 ◦a12 e2) ◦b13 e3 ≡ σp(◦a12,e2)(e1) ◦
b
13 e3 assumption

≡ σp(◦a12,e2)(e1 ◦
b
13 e3) l-pushable(σ, ◦b13)

≡ (e1 ◦b13 e3) ◦a12 e2 assumption

Thus,

isLikeSelection(◦a), l-pushable(◦a, ◦b) ≻ l-asscom(◦a, ◦b).

We leave the symmetric case for r-asscom to the reader.

Another important exception is l-asscom(E, Z), which follows from the
fact that both operators are strongly left linear. Assume that

({t1}b ◦a12 {t2}b) ◦b13 {t3}b ≡ ({t1}b ◦b13 {t3}b) ◦a12 {t2}b

for all ti and that ◦a and ◦b are strongly left linear. Then l-asscom(◦a, ◦b)
holds. The proof is by induction on the number of elements contained in e1.
First observe that if e1 is empty, then (e1 ◦a12 e2) ◦b13 e3 and (e1 ◦b13 e3) ◦a12 e2 are

252 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

∪ ∩ \ A B N T C E K Z

∪ +/+ -/- -/- -/- -/- -/- -/- -/- -/- -/- -/-
∩ -/- +/+ -/- -/- -/- +/- +/- -/- -/- -/- -/-
\ -/- -/- -/- -/- -/- +/- +/- -/- -/- -/- -/-
A -/- -/- -/- +/+ +/+ +/- +/- +/+ +/- -/- +/-
B -/- -/- -/- +/+ +/+ +/- +/- +/+ +/- -/- +/-
N -/- +/- +/- +/- +/- +/- +/- +/- +/- -/- +/-
T -/- +/- +/- +/- +/- +/- +/- +/- +/- -/- +/-
C -/- -/- -/- +/+ +/+ +/- +/- +/+ +/- -/- +/-
E -/- -/- -/- +/- +/- +/- +/- +/- +/- ◦/- +/-
K -/- -/- -/- -/- -/- -/- -/- -/- ◦/- ◦/◦ -/-
Z -/- -/- -/- +/- +/- +/- +/- +/- +/- -/- +/-

Table 7.7: The l-/r-asscom property for binary operators

∪ ∩ \ A B N T C E K Z

∪ -/- -/- -/- +/+ +/+ -/+ -/+ +/+ -/+ -/- -/+
∩ +/+ +/+ -/+ +/+ +/+ -/+ -/+ +/+ -/+ -/- -/+
\ -/- -/- -/- +/+ +/+ -/+ -/+ +/+ -/+ -/- -/+

Table 7.8: The l-/r-dist property for binary operators

also empty. Let e′1 and e′′1 be two bags such that e1 = e′1 ∪ e′′1. The induction
step looks like this:

(e1 ◦a12 e2) ◦b13 e3 ≡ ((e′1 ∪ e′′1) ◦a12 e2) ◦b13 e3
≡ ((e′1 ◦a12 e2) ∪ (e′′1 ◦a12 e2)) ◦b13 e3
≡ ((e′1 ◦a12 e2) ◦b13 e3) ∪ ((e′′1 ◦a12 e2) ◦b13 e3)
≡I.H. ((e′1 ◦b13 e3) ◦a12 e2) ∪ ((e′′1 ◦b13 e3) ◦a12 e2)
≡ ((e′1 ◦b13 e3) ∪ (e′′1 ◦b13 e3)) ◦a12 e2
≡ ((e′1 ∪ e′′1) ◦b13 e3) ◦a12 e2
≡ (e1 ◦b13 e3) ◦a12 e2.

Table 7.7 summarizes the l-/r-asscom properties for all pairs of operators.
Most of the entries follow from the abovementioned. Some equivalences for
the d-join and the groupjoin, especially in conjunction with outerjoins, need
dedicated proofs. This is a good sign, since, thanks to l-/r-asscom, reorderings
become possible which were not possible with commutativity and associativity
alone.

Distributivity laws play a minor role in query compilers, but are very useful
to prove equivalences. We consider right and left distributivity (l/r-dist):

e1 ◦b (e2 ◦a e3) ≡ (e1 ◦b e2) ◦a (e1 ◦b e3) l-dist,

(e1 ◦a e2) ◦b e3 ≡ (e1 ◦b e3) ◦a (e2 ◦b e3) r-dist.

7.8. PREDICATE DETACHMENT AND ATTACHMENT 253

With these definitions, it is easy to show that

comm(◦b), r-dist(◦a, ◦b) ≻ l-dist(◦a, ◦b),
comm(◦b), l-dist(◦a, ◦b) ≻ r-dist(◦a, ◦b).

Table 7.8 summarizes the distributivity laws for ◦a ∈ {∪,∩, \}.

7.8 Predicate Detachment and Attachment

In most cases, an operator with a conjunctive selection predicate allows to
move a part of it to a newly introduced selection operator. We call this process
predicate detachment. Predicate attachment denotes the opposite rewrite.

Let q, qi be join predicates and p and pi be selection predicates. Further, we
require that F(pi) ∩ A(e3−i) = ∅ for i = 1, 2. Then, the following equivalences
hold

σq∧p(e) ≡ σq(σp(e)), (7.28)

e1 Bq∧p1 e2 ≡ σp1(e1)Bq e2, (7.29)

e1 Bq∧p2 e2 ≡ e1 Bq σp2(e2), (7.30)

e1 Nq∧p1 e2 ≡ σp1(e1)Nq e2, (7.31)

e1 Nq∧p2 e2 ≡ e1 Nq σp2(e2), (7.32)

e1 Tq∧p2 e2 ≡ e1 Tq σ¬p2(e2), (7.33)

e1 Eq∧p2 e2 ≡ e1 Eq σp2(e2), (7.34)

e1 Zq∧p2;g:f e2 ≡ e1 Zq;g:f σp2(e2). (7.35)

There is no possibility to move a part of a conjunctive predicate, which only
accesses attributes from one side, into or out of a full outerjoin.

In case of a disjunction, we have a nice equivalence for the antijoin.

e1 Tq1∨q2 e2 ≡ (e1 Tq1 e2) Tq2 e2 (7.36)

and the equivalence

e1 Tq∨p1 e2 ≡ σ¬p1(e1) Tq e2 (7.37)

holds if e2 ̸= ∅.
Assume that the whole predicate of a binary operator references only at-

tributes from its left or its right argument. Then, some simplifications/rewrites

254 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

are possible:

e1 Bp1 e2 ≡ σp1(e1)A e2, (7.38)

e1 Np1 e2 ≡ σp1(e1)Ntrue e2 ≡ σe2 ̸=∅(σp1(e1)), (7.39)

e1 Np2 e2 ≡ e1 Ntrue σp2(e2) ≡ σσp2 (e2)̸=∅(e1), (7.40)

e1 Tp1 e2 ≡ σ(e2=∅)∨(¬p1)(e1), (7.41)

e1 Tp2 e2 ≡ e1 Ttrue σp2(e2) ≡ σσp2 (e2)=∅(e1), (7.42)

e1 Ep1 e2 ≡ (σp1(e1)A e2) ∪ ((σ(e2=∅)∨(¬p1)(e1))A {⊥A(e2)}), (7.43)
e1 Ep2 e2 ≡ e1 Etrue σp2(e2) (7.44)

≡ (e1 A σp2(e2)) ∪ ((σσp2 (e2)=∅(e1))A {⊥A(e2)}) (7.45)

e1 Kp1 e2 ≡ (σp1(e1)A e2) ∪ (σe2=∅∨¬p1(e1)A {⊥A(e2)}) (7.46)

∪(σσp1 (e1)=∅(e1)A {⊥A(e1)}) (7.47)

e1 Zp1;g:f e2 ≡ e1 [true;g:f σp1(e2) (7.48)

e1 Zp2;g:f e2 ≡ e1 Ztrue;g:f◦σp2
e2

≡ e1 Ztrue;g:f σp2e2

≡ χg:f(σp2 (e2)
(e1)

≡ e1 A {[g : f(σp2(e2))]}, (7.49)

where we left out symmetric cases, which are possible due to commutativity.
Let us consider the semijoin. If F(p1) ∩ A(e2) = ∅, then

e1 Np1 e2 =

{
σp1(e1) if e2 ̸= ∅,
∅ if e2 = ∅,

which can be summarized to σe2 ̸=∅(σp1(e1)). If F(p2) ∩ A(e1) = ∅, then

e1 Np2 e2 =

{
e1 if σp2(e2) ̸= ∅,
∅ if σp2(e2) = ∅,

which can be summarized to σσp2 (e2)̸=∅(e1).
Let us consider the antijoin. If F(p1) ∩ A(e2) = ∅, then

e1 Tp1 e2 =

{
e1 if e2 = ∅,
σ¬p1(e1) if e2 ̸= ∅,

which can be summarized to σe2=∅∨¬p1(e1). If F(p2) ∩ A(e1) = ∅, then

e1 Tp2 e2 =

{
e1 if σp2(e2) = ∅
∅ if σp2(e2) ̸= ∅,

which can be summarized to σσp2 (e2)=∅(e1).
For the semi- and the antijoin, we have the expression e2 in the subscript

of some operator on the left-hand side of the equivalences. This could mean
nested-loop evaluation. However, since the evaluation of e2 is independent of
e1, we can easily apply unnesting techniques, and evaluate e2 only once and
only as far as necessary to evaluate the expressions for the semi- and antijoin.

7.9. BASIC EQUIVALENCES FOR D-JOIN 255

To consider the different cases for the left and full outerjoin, it is convenient
to define E⊥i = {⊥A(ei)} for i = 1, 2 and given expressions ei. If F(p1)∩A(e2) =
∅, we can reason as follows for the left outerjoin:

e1 Ep1 e2 ≡ (e1 Bp1 e2) ∪ ((e1 Tp1 e2)A E⊥2)

≡ (σp1(e1)A e2) ∪ ((σ(e2=∅)∨(¬p1)(e1))A E⊥2).

If F(p2) ∩ A(e1) = ∅, we have

e1 Ep2 e2 ≡ (e1 Bp2 e2) ∪ ((e1 Tp2 e2)A E⊥2)

≡ (e1 A σp2(e2)) ∪ ((e1 Ttrue σp2(e2))A E⊥2)

≡ (e1 Etrue σp2(e2))

or, alternatively,

e1 Ep2 e2 ≡ (e1 Bp2 e2) ∪ ((e1 Tp2 e2)A E⊥2)

≡ (e1 A σp2(e2)) ∪ ((σσp2 (e2)=∅(e1))A E⊥2).

Next, we consider the full outerjoin. Assume F(p1) ∩ A(e2) = ∅, then
e1 Kp1 e2 ≡ (e1 Bp1 e2) ∪ ((e1 Tp1 e2)A E⊥2) ∪ ((e2 Tp1 e1)A E⊥1)

≡ (σp1(e1)A e2) ∪ (σ(e2=∅)∨(¬p1)(e1)A E⊥2) ∪ ((σσp1 (e1)=∅(e2))A E⊥1).

Finally, let us consider groupjoin. If F(q) ∩ A(e2) = ∅, there is not much
we can do. If F(q) ∩ A(e1) = ∅, the expression can be considerably simplified.
This is due to the fact that now every item in e1 has the same members of e1
in its group. In other words, in the result of e1 Ztrue;g:id e2 all tuples have the
same value for g.

7.9 Basic Equivalences for D-Join

From the definition of the d-join follows that

e1 C e2 ≡ ∪t1∈e1({t1}b A e2(t1)). (7.50)

Assume e2 depends on some attributes provided by a tuple t1. Then

e2(t1)C e3 ≡ (e2 C e3)(t1). (7.51)

That is, it is immaterial where we feed in the bindings contained in t1. Of
course, this only holds as long as F(e3) ∩ A(t1) = ∅.

Let us prove that C is associative:

(e1 C e2)C e3 ≡ (∪t1∈e1({t1}b A e2(t1)))C e3

≡ ∪t1∈e1(({t1}b A e2(t1))C e3)

≡ ∪t1∈e1({t1}b A (e2(t1)C e3))

≡ ∪t1∈e1({t1}b A (e2 C e3)(t1))

≡ e1 C (e2 C e3)

256 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

In a sense, the d-join is strongly right linear. If for all t1 ∈ e1 e2(t1) = ∅,
then e1 C e2 = ∅. Assume e2 has the form e′2 ∪ e′′2. Then

e1 C e2 = e1 C (e′2 ∪ e′′2)
= e1 BJ=J ′ (ê′2 ∪ ê′′2)
= (e1 BJ=J ′ ê′2) ∪ (e1 BJ=J ê′′2)

= (e1 C e′2) ∪ (e1 C e′′2)

for J = A(e1) ∩ F(e2)).
The d-join and the unnest operators are closely related:

e1 C e2 ≡ µg(χg:e2(e1)). (7.52)

Between flatten and the d-join, there also exists a correspondence:

flatten(χe2(e1)) ≡ ΠA(e2)(e1 C e2). (7.53)

Sometimes a d-join can be expressed as a cross product or a join:

e1 C e2 ≡ e1 × e2 (7.54)

if F(e2) ∩ A(e1) = ∅,
e1 C σq(e2) ≡ e1 Bq e2 (7.55)

if F(e2) ∩ A(e1) = ∅.

Denote by e ↓ the fact that some expression e is defined, i.e., returns a valid
result. Then, we call a function f extending, if and only if

∀x, y : (f(x) ◦ y) ↓=⇒ f(x ◦ y) = f(x) ◦ y

and we call it restricting, if and only if

∀x, y : f(x) ↓, (x ◦ y) ↓=⇒ f(x ◦ y) = f(x)

Let us give an example of a function that is neither extending nor restricting.
It returns a tuple with a single attribute c, whose value is bound to the number
of attributes of its input tuple.

Unnesting of operations buried in the d-join can be performed by applying
the following equivalence:

eC f(σA=A′(ρA←A′(e))) ≡ µg(ΓA;g:f (e)) (7.56)

if A ⊆ A(e),
e1 C (e2 B e3) ≡ (e1 C e2)B e3 (7.57)

if F(e3) ∩ A(e1) = ∅,
e1 C χf (e2) ≡ χf (e1 C e2) (7.58)

if f extending,

ΠA(e1 C χf (e2)) ≡ ΠA(χf (e1 C e2)) (7.59)

if A ⊆ A(χf (e2)), and f restricting.

7.10. EQUIVALENCES FOR OUTERJOINS 257

e1 := R1

a1 b1
1 1
2 4
3 5
4 -

e2 := R2

a2 b2
1 2
2 4
3 6
4 -

e3 := R3

a3 b3
1 3
2 5
3 6
4 -

ej12 := e1 Bq12 e2
a1 b1 a2 b2
2 4 2 4

ej13 := e1 Bq13 e3
a1 b1 a3 b3
3 5 2 5

ej23 := e2 Bq23 e3
a2 b2 a3 b3
3 6 3 6

elo12 := e1 Eq12 e2
a1 b1 a2 b2
1 1 - -
2 4 2 4
3 5 - -
4 - - -

elo13 := e1 Eq13 e3
a1 b1 a3 b3
1 1 - -
2 4 - -
3 5 2 5
4 - - -

elo23 := e2 Eq23 e3
a2 b2 a3 b3
1 2 - -
2 4 - -
3 6 3 6
4 - - -

efo12 := e1 Kq12 e2
a1 b1 a2 b2
1 1 - -
2 4 2 4
3 5 - -
4 - - -
- - 1 2
- - 3 6
- - 4 -

efo13 := e1 Kq13 e3
a1 b1 a3 b3
1 1 - -
2 4 - -
3 5 2 5
4 - - -
- - 1 3
- - 3 6
- - 4 -

efo23 := e2 Kq23 e3
a2 b2 a3 b3
1 2 - -
2 4 - -
3 6 3 6
4 - - -
- - 1 3
- - 2 5
- - 4 -

Figure 7.6: Example for outerjoin reorderability (for strict q)

We have to be careful if we exchange a d-join with a join. The dependency
can move. In the following equivalences we provide the dependencies explicitly
in parenthesis.

e1 C p12(e2(e1)Bp23 e3(e1)) ≡ (e1 C p12e2(e1)) C p23e3(e1) (7.60)

e1 C p12(e2 Bp23 e3(e1)) ≡ (e1 Bp12 e2) C p23e3(e1) (7.61)

In the first equivalence, the join between e2 and e3 on the left-hand side must be
turned into a dependent join on the right-hand side. In the second equivalence,
the first dependent join between e1 and e2 becomes a regular join between e1
and e2 on the right-hand side and the regular join between e2 and e3 on the
left-hand side becomes a dependent join on the right-hand side.

7.10 Equivalences for Outerjoins

Outerjoins are a little brittle. Long papers have already been written on this
subject. In this section, we summarize the most important findings, which are
useful in the context of query optimization. For a full account on outerjoins
the reader is referred to the literature [736, 298, 308]. The occurrence of an

258 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

e1 := R1

a1 b1
1 1
2 4
3 5
4 -

e2 := R2

a2 b2
1 2
2 4
3 6
4 -

e3 := R3

a3 b3
1 3
2 5
3 6
4 -

ej
′
12 := e1 Bq′12

e2
a1 b1 a2 b2
2 4 2 4
4 - 4 -

ej
′
13 := e1 Bq′13

e3
a1 b1 a3 b3
3 5 2 5
4 - 4 -

ej
′
23 := e2 Bq′23

e3
a2 b2 a3 b3
3 6 3 6
4 - 4 -

elo
′

12 := e1 Eq′12
e2

a1 b1 a2 b2
1 1 - -
2 4 2 4
3 5 - -
4 - 4 -

elo
′

13 := e1 Eq′13
e3

a1 b1 a3 b3
1 1 - -
2 4 - -
3 5 2 5
4 - 4 -

elo
′

23 := e2 Eq′23
e3

a2 b2 a3 b3
1 2 - -
2 4 - -
3 6 3 6
4 - 4 -

efo
′

12 := e1 Kq′12
e2

a1 b1 a2 b2
1 1 - -
2 4 2 4
3 5 - -
4 - 4 -
- - 1 2
- - 3 6

efo
′

13 := e1 Kq′13
e3

a1 b1 a3 b3
1 1 - -
2 4 - -
3 5 2 5
4 - 4 -
- - 1 3
- - 3 6

efo
′

23 := e2 Kq′23
e3

a2 b2 a3 b3
1 2 - -
2 4 - -
3 6 3 6
4 - 4 -
- - 1 3
- - 2 5

Figure 7.7: Example for outerjoin reorderability (for non-strict q′)

efo2
′

12 := e1 Kq12′ e2
a1 b1 a2 b2
1 1 4 -
2 4 2 4
2 4 4 -
3 5 4 -
4 - 4 -
- - 1 2
- - 3 6

elo2
′

23 := e2 Eq2′3 e3
a2 b2 a3 b3
1 2 - -
2 4 - -
3 6 3 6
4 - 1 3
4 - 2 5
4 - 3 6
4 - 4 -

efo2
′

23 := e2 Kq2′3 e3
a2 b2 a3 b3
1 2 - -
2 4 - -
3 6 3 6
4 - 1 3
4 - 2 5
4 - 3 6
4 - 4 -

Figure 7.8: Example for outerjoin reorderability (for partially non-strict q′)

outerjoin can have several reasons. First, outerjoins are part of the SQL 2
specification. Second, outerjoins can be introduced during query rewrite. For
example, unnesting nested queries or hierarchical views may result in outerjoins.
Sometimes, it is also possible to rewrite universal quantifiers to outerjoins [886,
219].

Before reading any further, the reader should get acquainted to outerjoins by
checking whether there is a mistake in Figs. 7.6, 7.7, or 7.8. There, we calculated

7.10. EQUIVALENCES FOR OUTERJOINS 259

elo12 Bq23 e3
a1 b1 a2 b2 a3 b3

e1 Eq12 e
j
23

a1 b1 a2 b2 a3 b3
1 1 - - - -
2 4 - - - -
3 5 - - - -
4 - - - - -

efo12 Bq23 e3
a1 b1 a2 b2 a3 b3
- - 3 6 3 6

e1 Kq12 e
j
23

a1 b1 a2 b2 a3 b3
1 1 - - - -
2 4 - - - -
3 5 - - - -
4 - - - - -
- - 3 6 3 6

ej12 Kq23 e3
a1 b1 a2 b2 a3 b3
2 4 2 4 - -
- - - - 1 3
- - - - 2 5
- - - - 3 6
- - - - 4 -

e1 Bq12 e
fo
23

a1 b1 a2 b2 a3 b3
2 4 2 4 - -

elo12 Kq23 e3
a1 b1 a2 b2 a3 b3
1 1 - - - -
2 4 2 4 - -
3 5 - - - -
4 - - - - -
- - - - 1 3
- - - - 2 5
- - - - 3 6
- - - - 4 -

e1 Eq12 e
fo
23

a1 b1 a2 b2 a3 b3
1 1 - - - -
2 4 2 4 - -
3 5 - - - -
4 - - - - -

Figure 7.9: Example for outerjoin associativity for strict q

for three relations Ri their joins, left outerjoins, and full outerjoins for three
different sets of predicates. The first set of predicates does not apply any special
comparisons with respect to null values. All predicates in this set are denoted
by qij (1 ≤ i, j ≤ 3) and defined as qij := (bi = bj). The second set of predicates
uses the special comparison ‘

.
=’. Remember that this dotted equality returns

true in the additional case that both arguments are null. The predicates of the
second set are denoted by q′ij and defined as q′ij := (bi

.
= bj). The third set of

predicates consists of q12′ := b1 = b2 ∨ b2 .
= null and q2′3 := b2 = b3 ∨ b2 .

= null.
Note that in Fig. 7.8 there is no difference between e2Eq2′,3 e3 and e2Kq2′,3 e3.
Why?

The main purpose of this section is to derive equivalences among expressions
containing outerjoins. Let us start with the observation that the full outerjoin
is commutative, but the left outerjoin is not. Less simple is the next item on

260 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

e100 := elo12 Eq′23
e3

a1 b1 a2 b2 a3 b3
1 1 - - 4 -
2 4 2 4 - -
3 5 - - 4 -
4 - - - 4 -

e100 := e1 Eq12 e
lo′
23

a1 b1 a2 b2 a3 b3
1 1 - - - -
2 4 2 4 - -
3 5 - - - -
4 - - - - -

e100 := efo12 Eq′23
e3

a1 b1 a2 b2 a3 b3
1 1 - - 4 -
2 4 2 4 - -
3 5 - - 4 -
4 - - - 4 -
- - 1 2 - -
- - 3 6 3 6
- - 4 - 4 -

e100 := e1 Kq12 e
lo′
23

a1 b1 a2 b2 a3 b3
1 1 - - - -
2 4 2 4 - -
3 5 - - - -
4 - - - - -
- - 1 2 - -
- - 3 6 3 6
- - 4 - 4 -

e100 := efo12 Kq′23
e3

a1 b1 a2 b2 a3 b3
1 1 - - 4 -
2 4 2 4 - -
3 5 - - 4 -
4 - - - 4 -
- - 1 2 - -
- - 3 6 3 6
- - 4 - 4 -
- - - - 1 3
- - - - 2 5

e100 := e1 Kq12 e
fo′
23

a1 b1 a2 b2 a3 b3
1 1 - - - -
2 4 2 4 - -
3 5 - - - -
4 - - - - -
- - 1 2 - -
- - 3 6 3 6
- - 4 - 4 -
- - - - 1 3
- - - - 2 5

Figure 7.10: Example for outerjoin associativity for non-strict q′

e100 := efo12 Bq13 e3
a1 b1 a2 b2 a3 b3
3 5 - - 2 5

e100 := ej13 Kq12 e2
a1 b1 a2 b2 a3 b3
3 5 - - 2 5
- - 1 2 - -
- - 2 4 - -
- - 3 6 - -
- - 4 - - -

Figure 7.11: Example for outerjoin l-asscom for strict q

our list: associativity. As a simple start, consider

(e1 Eq12 e2)Bq23 e3 ̸≡ e1 Eq12 (e2 Bq23 e3)

If we let e2 and e3 be empty bags, then the right-hand side evaluates to the
empty bag but the left-hand side simplifies to e1 A {⊥A(e2)∪A(e3)}. Thus,
¬assoc(E, B). By taking a look at

(e1 Kq12 e2)Bq23 e3 ̸≡ e1 Kq12 (e2 Bq23 e3),

7.10. EQUIVALENCES FOR OUTERJOINS 261

with e2 and e3 yielding the empty bag, we see that ¬assoc(K, B). Imagine e1
and e2 yield empty bags. The left-hand side of

(e1 Bq12 e2)Kq23 e3 ̸≡ e1 Bq12 (e2 Kq23 e3)

then evaluates to {⊥A(e1)∪A(e2)}Ae3. Since the right-hand side gives the empty
bag, we have ¬assoc(B,K). Last in this sequence, we consider

(e1 Eq12 e2)Kq23 e3 ̸≡ e1 Eq12 (e2 Kq23 e3).

Assume again, that e1 and e2 evaluate to the empty bag. Then, the right-
hand side does the same, whereas the left-hand side results in the familiar
{⊥A(e1)∪A(e2)} A e3. Consequently, ¬assoc(E,K). Summarizing, we have
¬assoc(E, B), ¬assoc(K, B), ¬assoc(B,K), and ¬assoc(E,K). These neg-
ative results are also comfirmed by our example (see Fig. 7.9). This leaves us
to check each of assoc(E, E), assoc(B,E), assoc(K,E), and assoc(K, K),
apart from the already known assoc(B,B). Fig. 7.9 shows that for this partic-
ular example all four properties hold.

Let us start with assoc(E, E). To illustrate one problem which occurs in
the context of associativity, consider the following three relations:

e1 := R1

a

a

e2 := R2

b c

b -

e3 := R3

d

d

The results of different left outerjoin applications are

e1 Ea=b e2
a b c

a – –

e2 Ec=d∨c .=null e3
b c d

b – c

(e1 Ea=b e2)Ec=d∨c .=null e3
a b c d

a – – c

e1 Ea=b (e2 Ec=d∨c .=null e3)

a b c d

a – – –

Hence, in general (e1 Eq12 e2) Eq23 e3 ̸= e1 Eq12 (e2 Eq23 e3). The problem is
that the predicate q23 does not reject null values, where a predicate rejects null
values for a set of attributes A if it evaluates to false or undefined on every
tuple in which all attributes in A are null. That is, q rejects null values if and
only if q(⊥A) ̸= true. We also say that a predicate is strict or strong if it rejects
null values. For our example predicates, the following holds. All qij reject null
values on any A(ei). The predicates q12′ and q2′3 do not reject null values on
A(e2) but on A(e1) or A(e3), respectively. The predicates q′ij neither reject null
values on A(ei) nor on A(ej).

In order to understand why this is the core of the problem, let us investigate
this more thoroughly. Define E⊥i := {⊥A(ei)} for i = 1, 2, 3 and E⊥ij

:=
{⊥A(ei)∪A(ej)} for i, j = 1, 2, 3. Further, let q12 and q23 be join predicates such

262 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

that F(q12) ∩ A(e3) = ∅ and F(q23) ∩ A(e1) = ∅. For the left-hand side of
associativity, we have

(e1 Eq12 e2)Eq23 e3 ≡ ((e1 Bq12 e2) ∪ ((e1 Tq12 e2)A E⊥2))Eq23 e3

≡ (((e1 Bq12 e2) ∪ ((e1 Tq12 e2)A E⊥2))Bq23 e3)

∪(((((e1 Bq12 e2) ∪ ((e1 Tq12 e2)A E⊥2)) Tq23 e3))A E⊥3)

≡ ((e1 Bq12 e2)Bq23 e3)

∪(((e1 Tq12 e2)A E⊥2)Bq23 e3)

∪(((e1 Bq12 e2) Tq23 e3)A E⊥3)

∪((((e1 Tq12 e2)A E⊥2) Tq23 e3)A E⊥3)

≡ (e1 Bq12 (e2 Bq23 e3))

∪((e1 Tq12 e2)A (E⊥2 Bq23 e3))

∪(e1 Bq12 ((e2 Tq23 e3)A E⊥3))

∪((e1 Tq12 e2)A (E⊥2 Tq23 e3)A E⊥3)

≡ (e1 Bq12 ((e2 Bq23 e3) ∪ ((e2 Tq23 e3)A E⊥3))

∪((e1 Tq12 e2)A ((E⊥2 Bq23 e3)) ∪ (E⊥2 Tq23 e3)A E⊥3)

≡ (e1 Bq12 (e2 Eq23 e3))

∪((e1 Tq12 e2)A (E⊥2 Eq23 e3)).

The right part of the cross product on the right-hand side of the union, (E⊥2Eq23

e3), does look suspicious. Note that if q23 rejects nulls on A(e2), this part sim-
plifies to E⊥23. To confirm our suspicion, we take a look at the other side of
associativity:

e1 Eq12 (e2 Eq23 e3) ≡ (e1 Bq12 (e2 Eq23 e3)

∪ ((e1 Tq12 (e2 Eq23 e3))A E⊥23
≡ (e1 Bq12 (e2 Eq23 e3)

∪ ((e1 Tq12 e2)A E⊥23).

The last step is true, since e2Eq23 e3 preserves e2 and F(q12)∩A(e3) = ∅. Thus,
the left outerjoin is associative if and only if

((e1 Tq12 e2)A (E⊥2 Eq23 e3)) ≡ (e1 Tq12 e2)A E⊥23.

But this holds if q23 rejects nulls on A(e2). Thus, without any effort we have
just proven the second of the following equivalences:

(e1 Bq12 e2)Eq23 e3 ≡ e1 Bq12 (e2 Eq23 e3), (7.62)

(e1 Eq12 e2)Eq23 e3 ≡ e1 Eq12 (e2 Eq23 e3) (7.63)

if q23 rejects nulls on A(e2),
(e1 Kq12 e2)Eq23 e3 ≡ e1 Kq12 (e2 Eq23 e3) (7.64)

if q23 rejects nulls on A(e2),
(e1 Kq12 e2)Kq23 e3 ≡ e1 Kq12 (e2 Kq23 e3) (7.65)

if q12 and q23 reject nulls on A(e2).

7.10. EQUIVALENCES FOR OUTERJOINS 263

As an exercise, the reader should prove the remaining equivalences. This is
necessary since the proofs of Galindo-Legaria [297] are valid for sets only.

Let us now come to l-asscom. Fig. 7.11 shows that for our example l-asscom(K,B)
does not hold. Bearing the symmetry of l-asscom in mind, the equivalences

(e1 Eq12 e2)Bq13 e3 ≡ (e1 Bq13 e3)Eq12 e2, (7.66)

(e1 Eq12 e2)Eq13 e3 ≡ (e1 Eq13 e3)Eq12 e2, (7.67)

(e1 Eq12 e2)Kq13 e3 ≡ (e1 Kq13 e3)Eq12 e2 (7.68)

if q12 rejects nulls on A(e1),
(e1 Kq12 e2)Kq13 e3 ≡ (e1 Kq13 e3)Kq12 e2 (7.69)

if q12 and q13 reject nulls on A(e1)

cover all combinations of B, E, and K except the well-known case for regu-
lar joins. Since comm(B) and assoc(B,E) hold without restrictions, Eqv. 7.66
holds without restrictions. SinceE is strongly left linear and the consumer/producer
relationship is not disturbed because q12 does not access attributes from e3 and
q13 does not access attributes from e2, Eqv. 7.67 holds without restrictions.
From Eqv. 7.64 and the fact that the full outerjoin is commutative, Eqv. 7.68
follows. Some care is just needed to see how the necessary restriction for asso-
ciativity carries over to the l-asscom equivalence. Similarily, Eqv. 7.69 follows
from Eqv.7.65. In all cases, the necessity of the restrictions is due to the fact
that commutativity and l-asscom imply associativity.

The r-asscom property is handled quickly. The only valid equivalence we
have is

e1 Kq13 (e2 Kq23 e3) ≡ e2 Kq23 (e1 Kq13 e3), (7.70)

which follows directly from comm(K) and assoc(K,K) if q13 and q23 are both
strict on A(e3).

7.10.1 Outerjoin Simplification

Sometimes, a left or full outerjoin can be turned into a regular or one-sided
outerjoin if it is followed a unary or binary algebraic operator with a strict
predicate. These simplifications are important and should be applied before
plan generation.

In [308, 297], we find the the first two of the following equivalences.

e1 Bp (e2 Eq e3) ≡ e1 Bp (e2 Bq e3) (7.71)

e1 Np (e2 Eq e3) ≡ e1 Np (e2 Bq e3) (7.72)

e1 Tp (e2 Eq e3) ≡ e1 Tp (e2 Bq e3) (7.73)

e1 Ep (e2 Eq e3) ≡ e1 Ep (e2 Bq e3) (7.74)

e1 Zp (e2 Eq e3) ≡ e1 Zp (e2 Bq e3) (7.75)

These equivalences hold under the condition that p rejects nulls on A(e3). They
can be prove to use the semijoin reducer equivalences 7.197-7.201. Similarly,

264 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

the equivalences

e1 Bp (e2 Kq e3) ≡ e1 Bp (e2 Eq e3) (7.76)

e1 Np (e2 Kq e3) ≡ e1 Np (e2 Eq e3) (7.77)

e1 Tp (e2 Kq e3) ≡ e1 Tp (e2 Eq e3) (7.78)

e1 Ep (e2 Kq e3) ≡ e1 Ep (e2 Eq e3) (7.79)

e1 Zp (e2 Kq e3) ≡ e1 Zp (e2 Eq e3) (7.80)

hold if p rejects nulls on A(e2). Commutatitvity of the full outerjoin gives
symmetric equivalences if p rejects nulls on A(e3).

Further, we can rewrite an outerjoin to a regular join whenever null-padded
tuples are eliminated by some selection predicate. Equivalences that allow to
do so and some further ones are given next.

σp1(e1 Eq e2) ≡ σp1(e1)Eq e2 (7.81)

e1 Eq∧p2 e2 ≡ e1 Eq σp2(e2), (7.82)

σp(e1 Eq e2) ≡ σp(e1 Bq e2) if p rejects nulls on A(e2), (7.83)

σp(e1 Kq e2) ≡ σp(e1 Eq e2) if p rejects nulls on A(e1), (7.84)

σp(e1 Kq e2) ≡ σp(e1 Hq e2) if p rejects nulls on A(e2). (7.85)

We can extend the last two equivalences to outerjoins with default values:

σp(e1 E
D2
q e2) ≡ σp(e1 Bq e2) if ¬p(D2), (7.86)

σp(e1 K
D1,D2
q e2) ≡ σp(e1 Eq e2) if ¬p(D1), (7.87)

σp(e1 K
D1,D2
q e2) ≡ σp(e1 Hq e2) if ¬p(D2). (7.88)

7.10.2 Generalized Outerjoin

As pointed out by Galindo-Legaria and Rosenthal [736, 298, 308], the different
outerjoins can be defined using the outer union operator, which in turn was
introduced by Codd [200]. Let e1 and e2 be two relations and A1 and A2 their
corresponding attributes. The outer union is then defined by padding the union
of the relations with null values to the schema A1 ∪A2:

e1
+∪ e2 := (e1 A {⊥A2\A1

}) ∪ (e2 A {⊥A1\A2
}). (7.89)

Given this definition of the outer union operator, we can define the outerjoin
operations as follows:

e1 Eq e2 := e1 Bq e2
+∪ (e1 \ΠA1(e1 Bq e2)), (7.90)

e1 Kq e2 := e1 Bq e2
+∪ (e1 \ΠA1(e1 Bq e2))

+∪ (e2 \ΠA2(e1 Bq e2)).(7.91)

The expression e1Eq12 (e2Bq23 e3) cannot be reordered given the equivalences so
far. In order to allow reorderability of this expression, the generalized outerjoin
was introduced by Dayal [220]. Here, we follow Rosenthal and Galindo-Legaria

7.10. EQUIVALENCES FOR OUTERJOINS 265

[736]. The generalized left outerjoin preserves attributes for a subset A ⊆ A(e1)
only. It is defined as

e1 E
A
q e2 := (e1 Bq e2)

+∪ (ΠA(e1) \ΠA(e1 Bq e2)). (7.92)

However, we prefer a slightly different definition based on the antijoin:

e1 E
A
q e2 := (e1 Bq e2) ∪ (ΠA(e1 Tq e2)A {⊥A∪A(e2)}b). (7.93)

This definition is equivalent to the one above.

The generalized left outerjoin allows us to reorder left outerjoins and joins as
well as full outerjoins and joins, but only in the context of sets. The equivalences

e1 Eq12 (e2 Bq23 e3) ≡ (e1 Eq12 e2)E
A(e1)
q23 e3 (7.94)

if q23 rejects nulls on A(e2),
e1 Kq12 (e2 Bq23 e3) ≡ (e1 Kq12 e2)E

A(e1)
q23 e3 (7.95)

if q23 rejects nulls on A(e2).

only hold for sets.

The following is a counterexample for bags. Define R1 := {[a1 : 1, b1 : 1]}b,
R2 := {[a2 : 1, b2 : 1], [a2 : 2, b2 : 1]}b, and R3 := ∅b with schema {[a3 : int, b3 :
int]}b. Evaluating

R1 Eb1=b2 (R2 Bb2=b3 R3)

then yields

{[a1 : 1, b1 : 1, a2 : −, b2 : −, a3 : −, b3 : −]}b.

Evaluating

(R1 Eb1=b2 R2)

yields

{[a1 : 1, b1 : 1, a2 : 1, b2 : 1], [a1 : 1, b1 : 1, a2 : 2, b2 : 1]}b.

Thus,

(R1 Eq12 R2)E
A(R1)
q23 R3

evaluates to

{[a1 : 1, b1 : 1, a2 : −, b2 : −, a3 : −, b3 : −]2}b.

We only discussed the basic equivalences for reordering algebraic expressions
containing outerjoins. General frameworks for dealing with these expressions
in toto are presented in [85, 86, 297, 298, 308]. Especially, the generalized left
outerjoin can be generalized to preserve disjoint sets of attributes in order to
derive more equivalences [297, 308], which also only hold in the context of sets.
Bhargava, Goel, and Iyer propose the modified generalized outer join (MGOJ),
a variant of the generalized outerjoin which correctly deals with bags [85]. ToDo

266 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

7.11 Equivalences for Unary Grouping

7.11.1 An Elementary Fact about Grouping

Let us first resume the discussion of properties of the grouping operator, which
we started in Sec. 7.7.1. Assume that the functional dependencies H → G and
G → H hold. Then, it should not make any difference whether we group by
H or G. The only problem we have to solve is that H might not contain all
attributes ofG (or vice versa). However, sinceH → G, any attribute g ∈ (G\H)
has only one possible value per group if we group by H. Thus, we can simply
copy this value. We do so by adding a new aggregation function cpf(g), which
copies the value g of the first tuple seen for a group. This is deterministic, since
all tuples in a group have the same value for g (as H → G). Thus, to make
sure that all values of G are extracted if we group according to H, we extend a
given aggregation vector F as follows. Assume (G \H) = {g1, . . . , gk}. Then,
we define F ◦ (G \H) as

F ◦ (g1 : cpf(g1), . . . , gk : cpf(gk)).

Using this definition, we can state the equivalence

ΓG;F (e) ≡ ΠC(ΓH;F◦(G\H)(e)), (7.96)

which holds if H → G and C = G∪A(F). This equivalence allows to determine
some set H with H → G such that grouping on H might become cheaper
compared to grouping on G. Especially, it allows to minimize the number of
grouping attributes. This trick can be applied to all equivalences in this section.

Let G be a set of grouping attributes and assume that G→ TID(e). Then,
every group consists of only one tuple, i.e., ΠD

G(e) = ΠG(e), and we can replace
a grouping by a map:

ΓG;F (e) ≡ ΠC(χF̂ (e)) (7.97)

if F = (b1 : agg1(a1), . . . , bm : aggm(am)), F̂ = (b1 : a1, . . . , bm : am), and
C = G ∪ A(F). Note that using F instead of F̂ also works. Tsois and Sellis
call this equivalence remove-group-by [882].

7.11.2 Join

Let us now come to some more complex cases concerning the reorganization
of expressions containing grouping and join. Traditionally, the grouping oper-
ator, if specified in some SQL query, is performed after the evaluation of all
join operations. However, pushing down grouping can substantially reduce the
input size of the joins and, thus, can be highly beneficial. Before we give some
equivalences, let us look at some example relations, their joins and the result of
applying some grouping operators. Fig 7.12 presents two relations R1 and R2

and the result of their join (e3) in the top row. The next row shows the result
of applying a grouping operator to each of these items (e4 to e6). The last row
contains the results of joining a grouped result with one original relation and

7.11. EQUIVALENCES FOR UNARY GROUPING 267

the result of joining the two grouped results given in e4 and e5. Let us assume
that our original expression

Γg1,g2;c:count(∗),b1:sum(a1),b2:sum(a2)(e1 Bj1=j2 R2)

is equivalent to the original query we have to evaluate. The result of this
expression is given in expression e6 of Fig 7.12. The question is whether any of
e7, e8, or e9 can be used to provide the same result. Let us start with e7. We
have sum(c1) = 4 and sum(b′1) = 16, which is perfect. However, sum(a2) = 14,
but according to e6 we should have 22. How can we fix that? Note that the
difference is 8, which is exactly the value we see in the last row of e7. Further,
the count in c1 is 2. It indicates that for g1 = 1 and j1 = 2 two tuples where
grouped. Each of these tuples joins with the tuple (1, 2, 8) of R2. This is what
we missed. This point is illustrated in the example in Fig. 7.13, where we added
one more tuple to e2, which is marked by a ∗. All tuples to which this tuple
contributes are also marked by a ∗ later on. The reader should carefully follow
the stars.

Let us return to e7 in Fig. 7.12. We have to apply some correction for
the fact that (1, 2, 8) of R2 has two (= c1) join partners. Thus, we calculate
sum(c1 ∗ a2) in e7 instead of the plain sum(a2) and get the correct result 22.
Let us turn to e8 in Fig. 7.12. There, we calculate sum(a1) = 16, sum(b′2) = 22,
and sum(c2) = 4, which are all correct results. However, in e8 of Fig. 7.13,
the tuples (1, 2, 4) and (1, 2, 8) of R1 now find two join partners in R2, since
we added the tuple marked by the asterisk. We should expect problems! And
there are some, since sum(a1) in e8 gives 14 but should result in 28, according
to e6. Again, c2 holds the number of join partners the R1 tuples find in R2.
Thus calculating sum(a2 ∗ c2) = 28 solves the problem.

Turning our attention to e9 of Fig. 7.12, we see that sum(b′1 ∗ c2) = 16 and
sum(b′2 ∗ c1) = 22 give the correct results (compare these values to b1 and b2 of
e6). However, sum(c1) = sum(c2) = 3 but c of e6 indicates that 4 is the correct
result. The reader might guess that we have to take sum(c1 ∗ c2) = 4, which
indeed is what has to be calculated.

These observations give rise to the following definition. Let F = (b1 :
agg1(a1), . . . , bm : aggm(am)) be an aggregation vector. We define F ⊗ c for
some attribute c, which will typically contain the result of some count(∗), as
F ⊗ c = (b1 : agg

′
1(e1), . . . , bm : agg′m(em)) with

′
agg
i
(ei) =

aggi(ei) if aggi is duplicate agnostic,
aggi(ei ∗ c) if aggi is the duplicate sensitive sum,
sum(c) if aggi(ei) = count(∗),
sum(ei = NULL? 0 : c) if aggi(ei) = count(ei), ei ̸= ’*’.

The goal now is to exploit the decomposability of aggregation functions and
this definition to push a grouping down a join.

Let us start with an equivalence, which Rosenthal, Rich, and Scholl [742,
729] used to speed up join processing. They noted that an ordinary join can
be calculated by unnesting the result of a join of two nested relations. Let q

268 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

e1 := R1

g1 j1 a1
1 1 2
1 2 4
1 2 8

e2 := R2

g2 j2 a2
1 1 2
1 1 4
1 2 8

e3 := R1 1j1=j2 R2

g1 j1 a1 g2 j2 a2
1 1 2 1 1 2
1 1 2 1 1 4
1 2 4 1 2 8
1 2 8 1 2 8

e4 := Γg1,j1;F1(e1)

g1 j1 c1 b′1
1 1 1 2
1 2 2 12

e5 := Γg2,j2;F2(e2)

g2 j2 c2 b′2
1 1 2 6
1 2 1 8

e6 := Γg1,g2;F (e3)

g1 c b1 b2
1 4 16 22

e7 := e4 1j1=j2 e2
g1 j1 c1 b′1 g2 j2 a2
1 1 1 2 1 1 2
1 1 1 2 1 1 4
1 2 2 12 1 2 8

e8 := e1 1j1=j2 e5
g1 j1 a1 g2 j2 c2 b′2
1 1 2 1 1 2 6
1 2 4 1 2 1 8
1 2 8 1 2 1 8

e9 := e4 1j1=j2 e5
g1 j1 c1 b′1 g2 j2 c2 b′2
1 1 1 2 1 1 2 6
1 2 2 12 1 2 1 8

where

F = c : count(∗), b1 : sum(a1), b2 : sum(a2)

F1 = c1 : count(∗), b′1 : sum(a1)

F2 = c2 : count(∗), b′2 : sum(a2)

Figure 7.12: Example for grouping and join

be a join predicate and e1 and e2 be two expressions to be joined. Denote by
Ji = F(q) ∩ A(ei) the join attributes from ei for i = 1, 2. Then

e1 Bq e2 ≡ µg2(µg1(ΓJ1;g1:ΠA(e1)\J1
(e1)Bq ΓJ2;g2:ΠA(e2)\J2

(e2))). (7.98)

We need the projections ΠA(ei)\Ji to prevent the duplication of attributes in
the result.

J1 and J2 are the minimal sets of grouping attributes we can use, but
nothing hinders us from using larger grouping sets. Let G+

1 and G+
2 be two sets

of attributes with Ji ⊆ G+
i for i = 1, 2. Then

e1 Bq e2 ≡ µg2(µg1(ΓG+
1 ;g1:ΠA(e1)\J1

(e1)Bq ΓG+
2 ;g2:ΠA(e2)\J2

(e2))) (7.99)

holds. Unnesting two nested attributes g1 and g2 in a row, as done in the above
equivalences, is like generating the cross product of the items contained in g1
and g2. Under the above assumptions, we can thus state the following two

7.11. EQUIVALENCES FOR UNARY GROUPING 269

e1 := R1

g1 j1 a1
1 1 2
1 2 4
1 2 8

e2 := R2

g2 j2 a2
1 1 2
1 1 4
1 2 8
1 2 16 ∗

e3 := e1 1j1=j2 e2
g1 j1 a1 g2 j2 a2
1 1 2 1 1 2
1 1 2 1 1 4
1 2 4 1 2 8
1 2 4 1 2 16 ∗
1 2 8 1 2 8
1 2 8 1 2 16 ∗

e4 := Γg1,j1;F1(e1)

g1 j1 c1 b′1
1 1 1 2
1 2 2 12

e5 := Γg2,j2;F2(e2)

g2 j2 c2 b′2
1 1 2 6
1 2 2 24 ∗

e6 := Γg1,g2;F (e3)

g1 c b1 b2
1 6 28 54 ∗

e7 := e4 1j1=j2 e2
g1 j1 c1 b′1 g2 j2 a2
1 1 1 2 1 1 2
1 1 1 2 1 1 4
1 2 2 12 1 2 8
1 2 2 12 1 2 16 ∗

e8 := e1 1j1=j2 e5
g1 j1 a1 g2 j2 c2 b′2
1 1 2 1 1 2 6
1 2 4 1 2 2 24 ∗
1 2 8 1 2 2 24 ∗

e9 := e4 1j1=j2 e5
g1 j1 c1 b′1 g2 j2 c2 b′2
1 1 1 2 1 1 2 6
1 2 2 12 1 2 2 24 ∗
where

F = c : count(∗), b1 : sum(a1), b2 : sum(a2)

F1 = c1 : count(∗), b′1 : sum(a1)

F2 = c2 : count(∗), b′2 : sum(a2)

Figure 7.13: Extended example for grouping and join

equivalences

e1 Bq e2 ≡ Πg1,g2(µg(χg:g1Ag2((7.100)

ΓJ1;g1:ΠA(e1)\J1
(e1)Bq ΓJ2;g2:ΠA(e2)\J2

(e2)))),

e1 Bq e2 ≡ Πg1,g2(µg(χg:g1Ag2((7.101)

ΓG+
1 ;g1:ΠA(e1)\G+

1

(e1)Bq ΓG+
2 ;g2:ΠA(e2)\G+

2

(e2)))).

In the next step, we want to get rid of g. Assume we apply some aggregation
function agg(g.ai) to g of the latter equivalence, where ai is an attribute of g1,
i.e., ai ∈ A(g1) or, by definition, ai ∈ A(e1) \G+

1 . It should be clear that

agg(g.ai) =

sum(g1.ai) ∗ |g2| if agg = sum,
count(g1.ai) ∗ |g2| if agg = count,
min(g1.ai) if agg = min,
max(g1.ai) if agg = max,

270 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

and |g| = |g1| ∗ |g2|. Analogously, we can exchange 1 and 2 in case ai ∈ A(g2).
Now, we are prepared to add an additional grouping operator ΓG+;g;F to

both sides of Eqv. 7.101. Therefore, we assume that J1 ⊆ G+ and J2 ⊆ G+.
Further, we define G+

i as G+ ∩ A(ei) for i = 1, 2. This results in

ΓG+;g;F (e1 Bq e2) ≡ ΓG+;g;F (Πg1,g2(µg(χg:g1Ag2(

ΓG+
1 ;g1:ΠA(e1)\G+

1

(e1)Bq ΓG+
2 ;g2:ΠA(e2)\G+

2

(e2))))).

We know that g, g1, and g2 cannot be part of the left-hand side. This means
that they cannot occur in G or A(F). Thus, we can eliminate the projection,
which gives us

ΓG+;g;F (e1Bqe2) ≡ ΓG+;g;F (µg(χg:g1Ag2(ΓG+
1 ;g1:ΠA(e1)\G+

1

(e1)BqΓG+
2 ;g2:ΠA(e2)\G+

2

(e2))))

Now, note that the outer grouping on the right-hand side undoes the unnesting
which immediately proceeds it. We could be tempted to rewrite the right-hand
side to something like

χF (χg:g1Ag2(ΓG+
1 ;g1:ΠA(e1)\G+

1

(e1)Bq ΓG+
2 ;g2:ΠA(e2)\G+

2

(e2))).

In order to verify this, we have to take a close look at

E := (ΓG+
1 ;g1:ΠA(e1)\G+

1

(e1)Bq ΓG+
2 ;g2:ΠA(e2)\G+

2

(e2)).

Wemust make sure that E produces only a single tuple for each group construct-
ed by ΓG+;g;F . From the definition of Γ, we see that neither ΠG+

1
(ΓG+

1 ;g1:ΠA(e1)\G+
1

(e1))

nor ΠG+
2
(ΓG+

2 ;g2:ΠA(e2)\G+
2

(e2)) contain duplicates. Since G+ = G+
1 ∪ G+

2 , the

claim follows.

In the next step, we eliminate χg:g1Ag2 . As we have seen, we might need the
cardinalities of g1 and g2 if we have to deal with duplicate sensitive aggregation
functions. We can calculate them using a map operator. Let us further assume
that F can be split into F1 and F2 such that F = F1 ◦ F2 and the only free
variable of Fi is gi. Then we can rewrite the equivalence to

ΓG+;g;F (e1 Bq e2) ≡ χF2⊗c1(

χF1⊗c2(

χc1:|g1|(

χc2:|g2|(

ΓG+
1 ;g1:ΠA(e1)\G+

1

(e1)Bq ΓG+
2 ;g2:ΠA(e2)\G+

2

(e2))))).

Next, we should start moving the different map operators inwards. The only
problem occurs since F1 ⊗ c2 and F2 ⊗ c1 need elements of both parts of the
join. Let F1 be decomposable into F 1

1 and F 2
1 and F2 be decomposable into F 1

2

7.11. EQUIVALENCES FOR UNARY GROUPING 271

and F 2
2 . Then, we have

ΓG+;g;F (e1 Bq e2) ≡ χF 2
2⊗c1(

χF 2
1⊗c2(

χF 1
1
(

χF 1
2
(

χc1:|g1|(

χc2:|g2|(

ΓG+
1 ;g1:ΠA(e1)\G+

1

(e1)Bq ΓG+
2 ;g2:ΠA(e2)\G+

2

(e2))))))).

Pushing down the last four χ operators yields

ΓG+;g;F (e1 Bq e2) ≡ χF 2
2⊗c1(

χF 2
1⊗c2(

χF 1
1
(χc1:|g1|(ΓG+

1 ;g1:ΠA(e1)\G+
1

(e1)))

Bq

χF 1
2
(χc2:|g2|(ΓG+

2 ;g2:ΠA(e2)\G+
2

(e2))))),

which can now easily be rewritten to the following equivalence by observing
that g1 and g2 are not needed outside the join:

ΓG+;g;F (e1 Bq e2) ≡ χF 2
1⊗c2,F 2

2⊗c1((7.102)

ΓG+
1 ;g1;F 1

1 ◦(c1:|g1|)(e1)Bq ΓG+
2 ;g2;F 1

2 ◦(c2:|g2|)(e2)).

In our SQL-notation based variant of Γ, this equivalence reads

ΓG+;F (e1 Bq e2) ≡ χF 2
1⊗c2,F 2

2⊗c1((7.103)

ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)Bq ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2))

and it holds if F is splittable into F1 and F2 such that F(Fi) ⊆ A(ei) and
F = F1 ◦ F2, and Fi is splittable and decomposable into F 1

i and F 2
i .

Consider the expression ΓG;g;F (e1Bqe2). We denote the set of join attributes
of q from ei as Ji = F(q) ∩ A(ei) for i = 1, 2, and the set of all join attributes
by J = J1 ∪ J2. If J ⊆ G, we have the above case. Assume J ̸⊆ G. Define
G+ = G ∪ J , Gi = G ∩ A(ei) and G+

i = Gi ∪ JI for i = 1, 2. Let F be
an aggregation vector splittable into F1 and F2 such that F(Fi) ⊆ A(ei) and
F = F1 ◦F2. Further, let Fi be decomposable into F 1

i and F 2
i . Then Eqvs. 7.13

and 7.103, together with the properties of aggregation functions and vectors
discussed in Sec. 7.2, give us the following

ΓG;F (e1 Bq e2) ≡ ΓG;F 2
1 ,F

2
2
(ΓG+;F 1

1 ,F
1
2
(e1 Bq e2)),

≡ ΓG;F 2
1 ,F

2
2
(χ

F 1,2
1 ⊗c2,F

1,2
2 ⊗c1

(

Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1)Bq ΓG+
2 ;F 1,1

2 ◦(c2:count(∗))
(e2))),

≡ ΓG;F 2
1⊗c2,F 2

2⊗c1(

ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)Bq ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)),

272 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

where C = G ∪ A(F). It should be obvious that the expression on the right-
hand side can be cleaned up in case it contains several count(∗), or no count(∗)
is needed because all aggregation functions in some Fi are duplicate agnostic.

By now, the reader should be prepared to understand and prove the equiva-
lences provided by Yan and Larson, which we present next. Let e1 and e2 be two
expressions and q a join predicate for them. Define for i = 1, 2 the following sets
of join attributes Ji = F(q) ∩ A(ei). Let F1 = (b1 : agg1(a1), . . . , bk : aggk(ak))
and F2 = (bk+1 : aggk+1(ak+1), . . . , bm : aggm(am)) be two aggregation vectors.
Define A1 = {a1, . . . , ak}, A2 = {ak+1, . . . , am}, F = F1 ◦F2, A = A1 ∪A2, and
B = {b1, . . . , bm}. Let G be a set of grouping attributes and define Gi ∩A(ei).
We denote by G+

i the union of the grouping and join attributes of ei, that is,
G+

i = Gi ∪ Ji.

Eager/Lazy Groupby-Count

The following equivalence corresponds to the main theorem of Yan and Larson
[947]. It states that

ΓG;F (e1 Bq e2) ≡ ΓG;(F2⊗c1)◦F 2
1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1)Bq e2) (7.104)

holds if F is splittable and F1 is decomposable into F 1
1 and F 2

1 . The proof of it
can be found in [947].

From Eqv. 7.104 several other equivalences can be derived easily. First,
since the join is commutative,

ΓG;F (e1 Bq e2) ≡ ΓG;(F1⊗c2)◦F 2
2
(e1 Bq ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2)) (7.105)

holds if F is splittable and F2 is decomposable into F 1
2 and F 2

2 .

Eager/Lazy Group-by

If F2 is empty, that is F2 = (), then Eqv. 7.104 simplifies to

ΓG;F (e1 Bq e2) ≡ ΓG;F 2
1
(ΓG+

1 ;F 1
1
(e1)Bq e2). (7.106)

This equivalence holds if F1 is decomposable into F 1
1 and F 2

1 .
If F1 is empty, then Eqv. 7.105 simplifies to

ΓG;F (e1 Bq e2) ≡ ΓG;F 2
2
(e1 Bq ΓG+

2 ;F 1
2
(e2)). (7.107)

This equivalence holds if F2 is decomposable into F 1
2 and F 2

2 .

Eager/Lazy Count

If F1 = (), then Eqv. 7.104 simplifies to

ΓG;F (e1 Bq e2) ≡ ΓG;(F2⊗c1)(ΓG+
1 ;c1:count(∗)(e1)Bq e2). (7.108)

If F2 = (), then Eqv. 7.105 simplifies to

ΓG;F (e1 Bq e2) ≡ ΓG;(F1⊗c2)(e1 Bq ΓG+
2 ;c2:count(∗)(e2)). (7.109)

7.11. EQUIVALENCES FOR UNARY GROUPING 273

Double Eager/Lazy

For the next equivalence, assume F2 = (). Then

ΓG;F (e1 Bq e2) ≡Eqv.7.106 ΓG;F 2
1
(ΓG+

1 ;F 1
1
(e1)Bq e2)

≡Eqv.7.109 ΓG;(F 2
1⊗c2)(ΓG+

1 ;F 1
1
(e1)Bq ΓG+

2 ;c2:count(∗)(e2)).

Thus,

ΓG;F (e1 Bq e2) ≡ ΓG;(F 2
1⊗c2)(ΓG+

1 ;F 1
1
(e1)Bq ΓG+

2 ;c2:count(∗)(e2)) (7.110)

if F1 is decomposable into F 1
1 and F 2

1 .
If F1 is empty, then, due to the commutativity of the join, the equivalence

ΓG;F (e1 Bq e2) ≡ ΓG;(F 2
2⊗c1)(ΓG+

1 ;c1:count(∗)(e1)Bq ΓG+
2 ;F 1

2
(e2)) (7.111)

holds if F2 is decomposable into F 1
2 and F 2

2 .

Eager/Lazy Split

Applying Eqv. 7.104 and then Eqv. 7.105 results in the equivalence

ΓG;F (e1 Bq e2) ≡ ΓG;(F 2
1⊗c2)◦(F 2

2⊗c1)((7.112)

ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)Bq ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)),

which holds if F is splittable into F1 and F2, F1 is decomposable into F 1
1 and

F 2
1 , and F2 is decomposable into F 1

2 and F 2
2 .

Eliminating the top grouping

Historically, the first equivalence that reordered grouping and join was derived
by Yan and Larson [946]. Opposed to the equivalences above, it has no final
grouping on the right-hand side. Grouping is simply pushed down into the
right path. Before we present the equivalence, we need some specialization of
our notation. Let G be a set of grouping attributes, F = (b1 : agg1(a1), . . . , bk :
aggk(ak)) an aggregation vector, A = {a1, . . . , ak} the set of aggregated at-
tributes, B = {b1, . . . , bk} the set of attributes containing the results of the
aggregations, G = G1 ∪ G2 the grouping attributes, Gi = G ∩ A(ei), q a join
predicate, Ji = F(q) ∩ A(ei), and G+

1 = G1 ∪ J1. The following equivalence
demands that aggregation functions are only applied to the attributes of e1.
That is, A ∩ F(e2) = ∅. The equivalence

ΓG;F (e1 Bq e2) ≡ ΠG,B(ΓG+
1 ;F (e1)Bq ΠG+

2
(e2)) (7.113)

holds if and only if the following two functional dependencies hold in e1 Bq e2:

FD 1 (G1, G2)→ G+
1 and

FD 2 (G+
1 , G2)→ TID(e2).

274 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

R1

g1 j1 a1
1 1 2
1 2 4
1 2 8

Rgood
2

g2 j2
1 1
2 2

Rbad
2

g2 j2
1 1
1 2

Rugly
2

g2 j2 k2
1 1 1
2 1 2
2 1 3

eg12 := R1 1j1=j2 R
good
2

g1 j1 a1 g2 j2
1 1 2 1 1
1 2 4 2 2
1 2 8 2 2

Eg
1 := Γg1,g2;F (e

g
12)

g1 g2 c1 b1
1 1 1 2
1 2 2 12

eb12 := R1 1j1=j2 R
bad
2

g1 j1 a1 g2 j2
1 1 2 1 1
1 2 4 1 2
1 2 8 1 2

Eb
1 := Γg1,g2;F (e

b
12)

g1 g2 c1 b1
1 1 3 14

eu12 := R1 1j1=j2 R
ugly
2

g1 j1 a1 g2 j2 k2
1 1 2 1 1 1
1 1 2 2 1 2
1 1 2 2 1 3

Eu
1 := Γg1,g2;F (e

u
12)

g1 g2 c1 b1
1 1 1 2
1 2 2 4

G1 := Γg1,j1;F (R1)

g1 j1 c1 b1
1 1 1 2
1 2 2 12

Eg
2 := G1 1j1=j2 R

good
2

g1 j1 c1 b1 g2 j2
1 1 1 2 1 1
1 2 2 12 2 2

G1 := Γg1,j1;F (R1)

g1 j1 c1 b1
1 1 1 2
1 2 2 12

Eb
2 := G1 1j1=j2 R

bad
2

g1 j1 c1 b1 g2 j2
1 1 1 2 1 1
1 2 2 12 1 2

G1 := Γg1,j1;F (R1)

g1 j1 c1 b1
1 1 1 2
1 2 2 12

Eu
2 := G1 1j1=j2 R

ugly
2

g1 j1 c1 b1 g2 j2 k2
1 1 1 2 1 1 1
1 1 1 2 2 1 2
1 1 1 2 2 1 3

where F = [c1 : count(∗), b1 : sum(a1)].

Figure 7.14: Example for Eqv. 7.113

For FD 2, we use an artificial attribute TID for expression e2. It can be present
explicitly or just in the mind of the query compiler. Its purpose is to uniquely
identify a tuple in e2. A consequence of FD 2 is that e2 cannot contain duplicates
(without the TID attribute!). This point is illustrated in the example below.
Further, since it does not contain duplicates (again, if TID is ignored), we
might assume that e2 has a key (either an artificially generated one using the
tid operator or, in case it is a base relation, a user-specified primary key). Then,
we can replace the TID on the right-hand side by the key.

Further note that the functional dependencies can be simplified. We did

7.11. EQUIVALENCES FOR UNARY GROUPING 275

not do so since we wanted to state them in the same way as Yan and Larson
did. As an exercise, the reader should perform the simplification.

The purpose of the functional dependencies can be sketched as follows. FD 1
ensures that each group on the left-hand side corresponds to one group on the
right-hand side. That is, the grouping by G+

1 is not finer grained than the
grouping by G. FD 2 ensures that each row in the left argument of the join
on the right-hand side contributes at most one row to the overall result of the
right-hand side. This is illustrated by the following examples.

Fig 7.14 contains a relation R1, which we use for expression e1, and three
relations Rgood

2 , Rbad
2 , and Rugly

2 , which we use for expression e2. All of them are
depicted in the top row of Fig. 7.14. The next three rows contain the evaluations
of the left-hand side of Eqv. 7.113, divided into two steps. The first step (left
column) calculates the join between R1 and each of the possibilities for e2. The
second step groups the result of the join (right column). The last three columns
evaluate the right-hand side of Eqv. 7.113. Again, the calculation is separated
into two steps. The first step does the grouping, the second step the join. We
leave the execution of the final projection to the reader.

For this example, the functional dependencies read as follows:

FD 1 (g1, g2)→ g1, j1 and

FD 2 (g1, j1, g2)→ tid(e2).

In case of Rgood
2 , we observe that both functional dependencies hold. We further

observe that the left-hand side and the right-hand side of Eqv. 7.113 give the
same result. In case of Rbad

2 , we observe that FD 1 is violated and FD 2 is
satisfied. The results of the left-hand side and the right-hand side of Eqv. 7.113
differ. In case of Rugly

2 , we added an explicit key column (k2), which can serve
as its TID. We observe that FD 1 is satisfied, but FD 2 is violated. Again, the
results of the left-hand side and the right-hand side of Eqv. 7.113 differ. As an
exercise, the reader should apply Eqvs. 7.104 to 7.110 to the examples.

Yan and Larson [946] also give two extended equivalences, which allow an
additional projection, either duplicate preserving or eliminating on top of the
right-hand side of Eqv. 7.113. Obviously, this transformation is valid for all
equivalences. With C ⊆ G ∪ A(F), we therefore get

ΠC(ΓG;F (e1 Bq e2)) ≡ ΠC(ΓG+
1 ;F (e1)Bq e2), (7.114)

ΠD
C (ΓG;F (e1 Bq e2)) ≡ ΠD

C (ΓG+
1 ;F (e1)Bq e2), (7.115)

which hold if FD 1 and FD 2 hold.

After having seen the problems which can occur if we skip the top-level
grouping, let us now prove the following equivalences, which result from Eqvs. 7.104
to 7.112 by eliminating the top-level grouping. Let C = G∪A(F). Without the
necessary conditions, which will be discussed afterwards, we have the following

276 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

equivalences:

ΓG;F (e1 Bq e2) ≡ ΠC(χ ̂(F2⊗c1)◦F̂ 2
1

(ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)Bq e2)), (7.116)

ΓG;F (e1 Bq e2) ≡ ΠC(χ ̂(F1⊗c2)◦F̂ 2
2

(e1 Bq ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2))), (7.117)

ΓG;F (e1 Bq e2) ≡ ΠC(ΓG+
1 ;F (e1)Bq e2) (7.118)

ΓG;F (e1 Bq e2) ≡ ΠC(e1 Bq ΓG+
2 ;F (e2)) (7.119)

ΓG;F (e1 Bq e2) ≡ ΠC(χF̂2⊗c1(ΓG+
1 ;c1:count(∗)(e1)Bq e2)), (7.120)

ΓG;F (e1 Bq e2) ≡ ΠC(χF̂1⊗c2(e1 Bq ΓG+
2 ;c2:count(∗)(e2))), (7.121)

ΓG;F (e1 Bq e2) ≡ ΠC(χ
F̂ 2
1⊗c2

(ΓG+
1 ;F 1

1
(e1)Bq ΓG+

2 ;c2:count(∗)(e2))), (7.122)

ΓG;F (e1 Bq e2) ≡ ΠC(χ
F̂ 2
2⊗c1

(ΓG+
1 ;c1:count(∗)(e1)Bq ΓG+

2 ;F 1
2
(e2))), (7.123)

ΓG;F (e1 Bq e2) ≡ ΠC(χ
F̂ 2
1⊗c2◦F̂ 2

2⊗c1
(

ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)Bq ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2))).(7.124)

We can prove Eqv. 7.117 by eliminating the top-most grouping operator on
the right-hand side of Eqv. 7.105 via an application of Eqv. 7.16 followed by an
application of remove-group-by (Eqv. 7.97):

ΓG;F (e1 Bq e2)

≡7.105 ΓG;(F1⊗c2)◦F 2
2
(e1 Bq ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2))

≡7.16 ΠC(ΓG1,G
+
2 ;(F1⊗c2)◦F 2

2
(e1 Bq ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2)))

≡7.97 ΠC(χ ̂(F1⊗c2)◦F 2
2

(

e1 Bq ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)))

Let us now come to the conditions attached to the equivalences. For our dis-
cussion, we denote by I the join with its (grouped) arguments, i.e.,

I = e1 Bq ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)).

The precondition of Eqv. 7.16 requires G→ G1, G
+
2 to hold. Thus, a grouping

by G1, G
+
2 is not finer grained than a grouping by G. We still have to make

sure that the precondition required by Eqv. 7.97 holds. In our context, the
precondition is that G1, G

+
2 → TID(I) holds in I, or, equivalently, ΠG1,G

+
2
(I) is

duplicate-free. Clearly, ΠG+
2
(ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2)) is duplicate-free. It follows

that ΠG1,G
+
2
(I) is duplicate-free if G1, G

+
2 → TID(e1) holds in I. Summarizing,

Eqv. 7.117 holds if G→ G+ and G1, G
+
2 → TID(e1) both hold in I.

Eqv. 7.117 can be further simplified. If F1 is empty, some simplification
yields Eqv.7.119:

ΓG;F (e1 Bq e2)

≡7.117 ΠC(χ ̂(F1⊗c2)◦F 2
2

(e1 Bq ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)))

≡ ΠC(e1 Bq ΓG+
2 ;F (e2)).

7.11. EQUIVALENCES FOR UNARY GROUPING 277

By symmetry, Eqvs. 7.116 and 7.118 hold. Since Eqvs. 7.120 and 7.121 are
also simplifications of Eqvs. 7.116 and 7.117, they can be proven similarily.

Let us turn to Eqv. 7.124. Since

ΠG+
1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1))

and
ΠG+

2
(ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2))

are duplicate-free, Eqv. 7.124 holds if G → G+. Eqvs. 7.122 and 7.123 follow
by simplifications from Eqv.7.124, if F1 or F2 is empty.

7.11.3 Left Outerjoin

Consider a left outerjoin followed by a grouping operator. The goal is to push
down the grouping operator into the arguments of the outerjoin. In order to
do so, we will first mirror (and apply) Eqv. 7.104. The definition of the left
outerjoin gives us

ΓG;F (e1 Eq e2) ≡ ΓG;F ((e1 Bq e2) ∪ ((e1 Tq e2)A {⊥A(e2)})).

As before, we define Ji = F(q)∩A(ei), J = J1∪J2, Gi = G∩A(ei), G+
i = Gi∪Ji,

G+ = G ∪ J . We further demand that F is a splittable and decomposable
aggregation vector. Define C = G ∪ A(F). We also define abbreviations for
some subexpressions:

Ej = (e1 Bq e2),

Ea = ((e1 Tq e2)A {⊥A(e2)}),
E⊥ = {⊥A(e2)}.

We could consider two cases to push down the grouping operator into the ar-
guments of the outerjoin. Case 1 requires ΠG(Ej) ∩ ΠG(Ea) = ∅, and case 2
requires ΠG(Ej)∩ΠG(Ea) ̸= ∅. The former condition is fulfilled, e.g., if G→ J1.
Then, we can apply Eqv. 7.26 in case 1 and Eqv. 7.27 in case 2. Since Eqv. 7.27
also holds if ΠG(Ej) ∩ ΠG(Ea) = ∅, it suffices to apply it. As an exercise, the
reader should consider case 1 explicitly.

Eqv. 7.27 gives us

ΓG;F1,F2((e1 Bq e2) ∪ ((e1 Tq e2)A E⊥))
≡ ΓG;F 2

1 ,F
2
2
(ΓG;F 1

1 ,F
1
2
(e1 Bq e2) ∪ ΓG;F 1

1 ,F
1
2
((e1 Tq e2)A E⊥))

where we expanded F to F1, F2. Applying Eqv. 7.104 to the left branch of the
union gives us

ΓG;F 1
1 ,F

1
2
(e1 Bq e2) ≡ ΠC(ΓG;(F 1

2⊗c1)◦F
1,2
1

(Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1)Bq e2))

Applying Eqv. 7.104 and then Eqv. 7.23 to the right branch of the union gives
us:

ΓG;F 1
1 ,F

1
2
((e1 Tq e2)A E⊥)

≡ ΠC(ΓG;(F 1
2⊗c1)◦F

1,2
1

(Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1 Tq e2)A E⊥))

≡ ΠC(ΓG;(F 1
2⊗c1)◦F

1,2
1

((Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1) Tq e2)A E⊥))

278 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

Putting these two things together yields

ΓG;F (e1 Eq e2)
≡ ΓG;F 2

1 ,F
2
2
(

Γ
G;(F 1

2⊗c1)◦F
1,2
1

(Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1)Bq e2)

∪
Γ
G;(F 1

2⊗c1)◦F
1,2
1

((Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1) Tq e2)A E⊥))

≡ ΓG;(F2⊗c1)◦F 2
1
(

(Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1)Bq e2)

∪
((Γ

G+
1 ;F 1,1

1 ◦(c1:count(∗))
(e1) Tq e2)A E⊥))

≡ ΓG;(F2⊗c1)◦F 2
1
(Γ

G+
1 ;F 1,1

1 ◦(c1:count(∗))
(e1)Eq e2)

where in the first step we could omit the ΠC due to the subsequent grouping.
The second step pulls the two Γ

G;(F 1
2⊗c1)◦F

1,2
1

operators out of the two union

branches and merges them with the outer ΓG;F 2
1 ,F

2
2
. This is possible due to the

properties of the aggregation vectors involved and the fact that both group on
the same set G of grouping attributes.

Eager/Lazy Groupby-Count

Summarizing, we have the equivalence

ΓG;F (e1 Eq e2) ≡ ΓG;(F2⊗c1)◦F 2
1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1)Eq e2), (7.125)

which holds if F is splittable into F1 and F2 with respect to e1 and e2, and Fi

is decomposable into F 1
i and F 2

i .
The companion of Eqv. 7.105 is

ΓG;F (e1 Eq e2) ≡ ΓG;(F1⊗c2)◦F 2
2
(e1 E

F 1
2 (∅),c2:1

q ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)). (7.126)

To prove it, we start with

ΓG;F (e1 Eq e2) ≡ ΓG;F ((e1 Bq e2) ∪ ((e1 Tq e2)A E⊥))

≡ ΓG;F 2
1 ,F

2
2
(ΓG;F 1

1 ,F
1
2
(e1 Bq e2) ∪ ΓG;F 1

1 ,F
1
2
((e1 Tq e2)A E⊥)),

where E⊥ = {⊥A(e2)}. Applying Eqv. 7.105 to the left argument of the union
results in

ΓG;F 1
1 ,F

1
2
(e1 Bq e2) ≡ ΓG;(F 1

1⊗c2)◦F 2
2
(e1 Bq ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2)).

Applying Eqv. 7.105 to the right argument of the union yields

ΓG;F 1
1 ,F

1
2
((e1 Tq e2)A E⊥)) ≡ ΓG;(F 1

1⊗c2)◦F 2
2
((e1 Tq e2)A ΓG+

2 ;F 1
2 ◦(c2:count(∗))(E⊥))

≡ ΓG;(F 1
1⊗c2)◦F 2

2
((e1 Tq ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2))

AΓG+
2 ;F 1

2 ◦(c2:count(∗))(E⊥))

≡ ΓG;(F 1
1⊗c2)◦F 2

2
((e1 Tq ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2))

AΠG+
2 ∪A(F)∪{c2}(χF 1

2 (∅),c2:1(E⊥))),

and the claim follows.

7.11. EQUIVALENCES FOR UNARY GROUPING 279

Eager/Lazy Group-by

If F2 = (), Eqv. 7.125 simplifies to

ΓG;F (e1 Eq e2) ≡ ΓG;F 2
1
(ΓG+

1 ;F 1
1
(e1)Eq e2) (7.127)

This equivalence holds if F1 is decomposable into F 1
1 and F 2

1 .

If F1 = (), Eqv. 7.126 simplifies to

ΓG;F (e1 Eq e2) ≡ ΓG;F 2
2
(e1 E

F 1
2 (∅)

q ΓG+
2 ;F 1

2
(e2)), (7.128)

which holds if F2 is decomposable.

Eager/Lazy Count

If F1 = (), Eqv. 7.125 simplifies to

ΓG;F (e1 Eq e2) ≡ ΓG;(F2⊗c1)(ΓG+
1 ;(c1:count(∗))(e1)Eq e2). (7.129)

This equivalence holds if F2 is decomposable into F 1
2 and F 2

2 .

If F2 = (), Eqv. 7.126 simplifies to

ΓG;F (e1 Eq e2) ≡ ΓG;(F1⊗c2)(e1 E
c2:1
q ΓG+

2 ;c2:count(∗)(e2)). (7.130)

Double Eager/Lazy

For the next equivalence assume F2 = (). We would like to derive an equivalence
similar to Eqv. 7.110. Here it is:

ΓG;F (e1 Eq e2) ≡ ΓG;(F 2
1⊗c2)(ΓG+

1 ;F 1
1
(e1)E

c2:1
q ΓG+

2 ;c2:count(∗)(e2)), (7.131)

which holds if F1 is decomposable into F 1
1 and F 2

1 .

If F1 = () and F2 is decomposable into F 1
2 and F 2

2 , the equivalence

ΓG;F (e1 Eq e2) ≡ ΓG;(F 2
2⊗c1)(ΓG+

1 ;c1:count(∗)(e1)E
F 1
2 (∅)

q ΓG+
2 ;F 1

2
(e2)) (7.132)

holds.

Eager/Lazy Split

The companion of Eqv. 7.112 for the left outerjoin is

ΓG;F (e1 Eq e2) ≡ ΓG;(F 2
1⊗c2)◦(F 2

2⊗c1)((7.133)

ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)E
F 1
2 (∅),c2:1

q ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)),

which holds if F1 is decomposable into F 1
1 and F 2

1 , and F2 is decomposable into
F 1
2 and F 2

2 .

280 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

Eliminating the top grouping

We can eliminate the top grouping in the above equivalences for the outerjoin
by the same arguments as for the join. The resulting equivalences are

ΓG;F (e1 Eq e2) ≡ ΠC(χ ̂(F2⊗c1)◦F̂ 2
1

(ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)Eq e2)), (7.134)

ΓG;F (e1 Eq e2) ≡ ΠC(χ ̂(F1⊗c2)◦F̂ 2
2

(e1 E
F 1
2 (∅),c2:1

q ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2))),(7.135)

ΓG;F (e1 Eq e2) ≡ ΠC(ΓG+
1 ;F (e1)Eq e2), (7.136)

ΓG;F (e1 Eq e2) ≡ ΠC(e1 E
F (∅)
q ΓG+

2 ;F (e2)), (7.137)

ΓG;F (e1 Eq e2) ≡ ΠC(χF̂2⊗c1(ΓG+
1 ;(c1:count(∗))(e1)Eq e2)), (7.138)

ΓG;F (e1 Eq e2) ≡ ΠC(χF̂1⊗c2(e1 E
c2:1
q ΓG+

2 ;c2:count(∗)(e2))), (7.139)

ΓG;F (e1 Eq e2) ≡ ΠC(χ
F̂ 2
1⊗c2

(ΓG+
1 ;F 1

1
(e1)E

c2:1
q ΓG+

2 ;c2:count(∗)(e2))), (7.140)

ΓG;F (e1 Eq e2) ≡ ΠC(χ
F̂ 2
2⊗c1

(ΓG+
1 ;c1:count(∗)(e1)E

F 1
2 (∅)

q ΓG+
2 ;F 1

2
(e2)), (7.141)

ΓG;F (e1 Eq e2) ≡ ΠC(χ
G;F̂ 2

1⊗c2◦F̂ 2
2⊗c1

(

ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)E
F 1
2 (∅),c2:1

q ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2))).(7.142)

These equivalences hold if in addition to the according conditions concerning
splittability, decomposability, and emptyness, the following functional depen-
dencies hold:

Eqv. 7.134 G→ G1, G
+
2 , G1, G

+
2 → TID(e1),

Eqv. 7.135 G→ G1, G
+
2 , G1, G

+
2 → TID(e1),

Eqv. 7.136 G→ G1, G
+
2 , G1, G

+
2 → TID(e1),

Eqv. 7.137 G→ G1, G
+
2 , G1, G

+
2 → TID(e1),

Eqv. 7.138 G→ G1, G
+
2 , G1, G

+
2 → TID(e1),

Eqv. 7.139 G→ G1, G
+
2 , G1, G

+
2 → TID(e1),

Eqv. 7.140 G→ G1, G
+
2 ,

Eqv. 7.141 G→ G1, G
+
2 ,

Eqv. 7.142 G→ G1, G
+
2 .

7.11.4 Left Outerjoin with Default

Main Equivalences

Let us next consider the outerjoin with default. For a set of attributes {d1, . . . , dl} ⊆
A(e2) of e2, constants c1, . . . , cl and a vector

D = d1 : c1, . . . dl : cl,

we now consider the expression

ΓG;F (e1 E
D
q e2).

If we take a close look at the proof of Eqv. 7.125 and think of E⊥ as being
defined as

E⊥ := (⊥A(e2)\A(D) A {D}),

7.11. EQUIVALENCES FOR UNARY GROUPING 281

we see that the proof remains valid. Thus, we have the following equivalences:

ΓG;F (e1 E
D
q e2) ≡ ΓG;(F2⊗c1)◦F 2

1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1)Eq e2), (7.143)

ΓG;F (e1 E
D
q e2) ≡ ΓG;(F1⊗c2)◦F 2

2
(e1 E

D,F 1
2 (∅),c2:1

q ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)), (7.144)

ΓG;F (e1 E
D
q e2) ≡ ΓG;F 2

1
(ΓG+

1 ;F 1
1
(e1 E

D
q e2)) (7.145)

if F2 is empty,

ΓG;F (e1 E
D
q e2) ≡ ΓG;F 2

2
(e1 E

D,F 1
2 (∅)

q ΓG+
2 ;F 1

2
(e2)) (7.146)

if F1 is empty,

ΓG;F (e1 E
D
q e2) ≡ ΓG;(F2⊗c1)(ΓG+

1 ;(c1:count(∗))(e1)E
D
q e2) (7.147)

if F1 is empty,

ΓG;F (e1 E
D
q e2) ≡ ΓG;(F1⊗c2)(e1 E

D,c2:1
q ΓG+

2 ;c2:count(∗)(e2)) (7.148)

if F2 is empty,

ΓG;F (e1 E
D
q e2) ≡ ΓG;(F1⊗c2)(ΓG+

1 ;F 1
1
(e1)E

D,c2:1
q ΓG+

2 ;c2:count(∗)(e2)) (7.149)

if F2 is empty,

ΓG;F (e1 E
D
q e2) ≡ ΓG;(F 2

2⊗c1)(ΓG+
1 ;c1:count(∗)(e1)E

D,F 1
2 (∅)

q ΓG+
2 ;F 1

2
(e2)) (7.150)

if F1 is empty,

ΓG;F (e1 E
D
q e2) ≡ ΓG;(F1⊗c2)◦(F2⊗c1)((7.151)

ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)E
D,F 1

2 (∅),c2:1
q ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2)).

These equivalences hold under the same conditions as their corresponding equiv-
alences for the outerjoin with no default.

Eliminating the top grouping

This can be performed analogously to the left outerjoin without default.

7.11.5 Full Outerjoin

The next expression we consider is

ΓG;F (e1 Kq e2).

In order to deal with this expression, we will need the full outerjoin with defaults
for both sides. Define E1⊥ = {⊥A(e1)} and let us start by observing

ΓG;F (e1 Kq e2) ≡ ΓG;F ((e1 Eq e2) ∪ ((e2 Tq e1)A E1⊥))

≡ ΓG;F 2(ΓG;F 1(e1 Eq e2) ∪ ΓG;F 1((e2 Tq e1)A E1⊥)).

Applying Eqv. 7.125 to the left-hand side of the union results in

ΓG;F 1(e1 Eq e2) ≡ Γ
G;(F 1

2⊗c1)◦F
1,2
1

(Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1)Eq e2)

≡ Γ
G;(F 1

1⊗c2)◦F
1,2
2

(e1 E
F 1,1
2 (∅),c2:1

q Γ
G+

2 ;F 1,1
2 ◦(c2:count(∗))

(e2)).

282 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

Applying Eqvs. 7.104 and 7.23 to the right-hand side of the union yields

ΓG;F 1((e2 Tq e1)A E1⊥) ≡ Γ
G;(F 1

1⊗c2)◦F
1,2
2

(Γ
G+

2 ;F 1,1
2 ◦(c2:count(∗))

(e2 Tq e1)A E1⊥)

≡ Γ
G;(F 1

1⊗c2)◦F
1,2
2

((Γ
G+

2 ;F 1,1
2 ◦(c2:count(∗))

(e2) Tq e1)A E1⊥).

Putting these things together, we have

ΓG;F (e1 Kq e2)

≡ ΓG;F 2(

Γ
G;(F 1

1⊗c2)◦F
1,2
2

(e1 E
F 1,1
2 (∅),c2:1

q Γ
G+

2 ;F 1,1
2 ◦(c2:count(∗))

(e2))

∪
(Γ

G;(F 1
1⊗c2)◦F

1,2
2

((Γ
G+

2 ;F 1,1
2 ◦(c2:count(∗))

(e2) Tq e1)A E1⊥)))

≡ ΓG;(F1⊗c2)◦F 2
2
(

(e1 E
F 1,1
2 (∅),c2:1

q Γ
G+

2 ;F 1,1
2 ◦(c2:count(∗))

(e2))

∪
((Γ

G+
2 ;F 1,1

2 ◦(c2:count(∗))
(e2) Tq e1)A E1⊥))

≡ ΓG;(F1⊗c2)◦F 2
2
(e1 K

−;F 1,1
2 (∅),c2:1

q Γ
G+

2 ;F 1,1
2 ◦(c2:count(∗))

(e2)).

Eager/Lazy Groupby-Count

Due to the commutativity of the full outerjoin, we thus have

ΓG;F (e1Kq e2) ≡ ΓG;(F2⊗c1)◦F 2
1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1)K

F 1
1 (∅),c1:1;−

q e2) (7.152)

if F is splittable and F1 is decomposable into F 1
1 and F 2

1 .
If F is splittable and F2 is decomposable into F 1

2 and F 2
2 ,

ΓG;F (e1Kq e2) ≡ ΓG;(F1⊗c2)◦F 2
2
(e1K

−;F 1
2 (∅),c2:1

q ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)) (7.153)

holds.

Eager/Lazy Group-by

If F2 is empty, then Eqv. 7.152 simplifies to

ΓG;F (e1 Kq e2) ≡ ΓG;F 2
1
(ΓG+

1 ;F 1
1
(e1)K

F 1
1 (∅);−

q e2). (7.154)

This equivalence holds if F1 is decomposable into F 1
1 and F 2

1 . If F1 is empty,
then Eqv. 7.153 simplifies to

ΓG;F (e1 Kq e2) ≡ ΓG;F 2
2
(e1 K

−;F 1
2 (∅)

q ΓG+
2 ;F 1

2
(e2)). (7.155)

This equivalence holds if F2 is decomposable into F 1
2 and F 2

2 .

7.11. EQUIVALENCES FOR UNARY GROUPING 283

Eager/Lazy Count

If F1 is empty, then Eqv. 7.152 simplifies to

ΓG;F (e1 Kq e2) ≡ ΓG;(F2⊗c1)(ΓG+
1 ;(c1:count(∗))(e1)K

c1:1;−
q e2). (7.156)

If F2 is empty, then Eqv. 7.153 simplifies to

ΓG;F (e1 Kq e2) ≡ ΓG;(F1⊗c2)(e1 K
−;c2:1
q ΓG+

2 ;(c2:count(∗))(e2)). (7.157)

Double Eager/Lazy

If F2 is empty, the equivalence

ΓG;F (e1 Kq e2) ≡ ΓG;(F 2
1⊗c2)(ΓG+

1 ;F 1
1
(e1)K

F 1
1 (∅);c2:1

q ΓG+
2 ;(c2:count(∗))(e2))

(7.158)
holds if F1 is decomposable into F 1

1 and F 2
1 . If F1 is empty, the equivalence

ΓG;F (e1 Kq e2) ≡ ΓG;(F 2
2⊗c1)(ΓG+

1 ;(c1:count(∗))(e1)K
c1:1;F 1

2 (∅)
q ΓG+

2 ;F 1
2
(e2))

(7.159)
holds if F2 is decomposable into F 1

2 and F 2
2 .

Proof: If F2 is empty, then

ΓG;F (e1 Kq e2) ≡Eqv. 7.154 ΓG;F 2
1
(ΓG+

1 ;F 1
1
(e1)K

F 1
1 (∅);−

q e2)

≡Eqv. 7.157 ΓG;(F 2
1⊗c2)(ΓG+

1 ;F 1
1
(e1)K

F 1
1 (∅);c2:1

q ΓG+
2 ;(c2:count(∗))(e2)).

If F1 is empty, then

ΓG;F (e1 Kq e2) ≡Eqv. 7.155 ΓG;F 2
2
(e1 K

−;F 1
2 (∅)

q ΓG+
2 ;F 1

2
(e2))

≡Eqv. 7.156 ΓG;(F 2
2⊗c1)(ΓG+

1 ;(c1:count(∗))(e1)K
c1:1;F 1

2 (∅)
q ΓG+

2 ;F 1
2
(e2)).

2

Eager/Lazy Split

If F is splittable and decomposable, then

ΓG;F (e1 Kq e2) ≡ ΓG;(F 2
1⊗c2)◦(F 2

2⊗c1)((7.160)

Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1)K
F 1,1
1 (∅),c1:1;F 1,1

2 (∅),c2:1
q Γ

G+
2 ;F 1,1

2 ◦(c2:count(∗))
(e2)).

Proof:

ΓG;F (e1 Kq e2)

≡Eqv. 7.152 ΓG;(F2⊗c1)◦F 2
1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1)K

F 1
1 (∅),c1:1;−

q e2))

≡Eqv. 7.153 ΓG;(F 2
1⊗c2)◦(F 2

2⊗c1)(ΓG+
1 ;F 1,1

1 ◦(c1:count(∗))
(e1)K

F 1
1 (∅),c1:1;F 1

2 (∅),c2:1
q Γ

G+
2 ;F 1,1

2 ◦(c2:count(∗))
(e2))

2

284 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

Eliminating the top grouping

Under the same conditions under which their counterparts are valid, the fol-
lowing equivalences hold for the full outerjoin:

ΓG;F (e1 Kq e2) ≡ ΠC(χ ̂(F2⊗c1)◦F̂ 2
1

(ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)K
F 1
1 (∅),c1:1;−

q e2)),(7.161)

ΓG;F (e1 Kq e2) ≡ ΠC(χ ̂(F1⊗c2)◦F̂ 2
2

(e1 K
−;F 1

2 (∅),c2:1
q ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2))),(7.162)

ΓG;F (e1 Kq e2) ≡ ΠC(ΓG+
1 ;F (e1)K

F (∅);−
q e2), (7.163)

ΓG;F (e1 Kq e2) ≡ ΠC(e1 K
−;F (∅)
q ΓG+

2 ;F (e2)), (7.164)

ΓG;F (e1 Kq e2) ≡ ΠC(χG;F̂2⊗c1(ΓG+
1 ;(c1:count(∗))(e1)K

c1:1;−
q e2)), (7.165)

ΓG;F (e1 Kq e2) ≡ ΠC(χF̂1⊗c2(e1 K
−;c2:1
q ΓG+

2 ;(c2:count(∗))(e2))), (7.166)

ΓG;F (e1 Kq e2) ≡ ΠC(χ
F̂ 2
1⊗c2

(ΓG+
1 ;F 1

1
(e1)K

F 1
1 (∅);c2:1

q ΓG+
2 ;(c2:count(∗))(e2))),(7.167)

ΓG;F (e1 Kq e2) ≡ ΠC(χ
G;F̂ 2

2⊗c1
(ΓG+

1 ;(c1:count(∗))(e1)K
c1:1;F 1

2 (∅)
q ΓG+

2 ;F 1
2
(e2))),(7.168)

ΓG;F (e1 Kq e2) ≡ ΠC(χ
G;F̂ 2

1⊗c2◦F̂ 2
2⊗c1

(

Γ
G+

1 ;F 1,1
1 ◦(c1:count(∗))

(e1)

K
F 1,1
1 (∅),c1:1;F 1,1

2 (∅),c2:1
q Γ

G+
2 ;F 1,1

2 ◦(c2:count(∗))
(e2))). (7.169)

7.11.6 D-Join

Next, let us turn to the d-join. The outline of this subsection mirrors the one
for regular joins. Indeed, all equivalences that hold for regular joins will also
hold for d-joins.

Eager/Lazy Groupby-Count

The equivalence

ΓG;F (e1 Cq e2) ≡ ΓG;(F2⊗c1)◦F 2
1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1)Cq e2) (7.170)

holds if F1 is splittable into F1 and F2, and F1 is decomposable into F 1
1 and

F 2
1 .
The equivalence

ΓG;F (e1 Cq e2) ≡ ΓG;(F1⊗c2)◦F 2
2
(e1 Cq ΓG+

2 ;F 1
2 ◦(c2:count(∗))(e2)) (7.171)

holds if F2 is splittable into F1 and F2, and F2 is decomposable into F 1
2 and

F 2
2 .

Eager/Lazy Group-by

If F2 is empty, that is F2 = (), Eqv. 7.170 simplifies to

ΓG;F (e1 Cq e2) ≡ ΓG;F 2
1
(ΓG+

1 ;F 1
1
(e1)Cq e2). (7.172)

7.11. EQUIVALENCES FOR UNARY GROUPING 285

This equivalence holds if F1 is splittable and decomposable into F 1
1 and F 2

1 .

If F1 is empty, Eqv. 7.171 simplifies to

ΓG;F (e1 Cq e2) ≡ ΓG;F 2
2
(e1 Cq ΓG+

2 ;F 1
2
(e2)). (7.173)

This equivalence holds if F2 is splittable and decomposable into F 1
2 and F 2

2 .

Eager/Lazy Count

If F1 is empty, Eqv. 7.170 simplifies to

ΓG;F (e1 Cq e2) ≡ ΓG;(F2⊗c1)(ΓG+
1 ;c1:count(∗)(e1)Cq e2). (7.174)

If F2 is empty, then Eqv. 7.171 simplifies to

ΓG;F (e1 Cq e2) ≡ ΓG;(F1⊗c2)(e1 Cq ΓG+
2 ;c2:count(∗)(e2)). (7.175)

Double Eager/Lazy

If F2 is empty

ΓG;F (e1 Cq e2) ≡ ΓG;(F 2
1⊗c2)(ΓG+

1 ;F 1
1
(e1)Cq ΓG+

2 ;c2:count(∗)(e2)), (7.176)

if F1 is splittable and decomposable into F 1
1 and F 2

1 .

If F1 is empty

ΓG;F (e1 Cq e2) ≡ ΓG;(F 2
2⊗c1)(ΓG+

1 ;c1:count(∗)(e1)Cq ΓG+
2 ;F 1

2
(e2)) (7.177)

holds if F2 is splittable decomposable into F 1
2 and F 2

2 .

Eager/Lazy Split

Applying Eqv. 7.170 and then Eqv. 7.171 results in the equivalence

ΓG;F (e1 Cq e2) ≡ ΓG;(F 2
1⊗c2)◦(F 2

2⊗c1)((7.178)

ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1)Cq ΓG+
2 ;F 1

2 ◦(c2:count(∗))(e2)),

which holds if F is splittable into F1 and F2, F1 is decomposable into F 1
1 and

F 2
1 , and F2 is decomposable into F 1

2 and F 2
2 .

Eliminating the top grouping

The top grouping can be eliminated under the conditions for the regular joins.

286 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

7.11.7 Groupjoin

Simple Facts about the Groupjoin

Last in this section, we consider the groupjoin and thus the expressions of the
form

ΓG;F (e1 Zq;F̂ e2).

Before we start, we discuss some equivalences for the groupjoin. Since σ and χ
are linear and Z is linear in its left argument, it is easy to show that

σp(e1 ZG1θG2;g:f e2) ≡ σp(e1) ZG1θG2;g:f e2, (7.179)

χa:e(e1 ZG1θG2;g:f e2) ≡ χa:e(e1) ZG1θG2;g:f e2. (7.180)

Then, we note that unary grouping can be expressed with the help of the
groupjoin.

ΓθG;f (e) ≡ ΠC(ρA(e1)′←A(e1)(ρA(e1)←A(e1)′(Π
D
G(e)) ZG′θG;f e)),

ΓθG;g;F (e) ≡ ΠC(ρA(e1)′←A(e1)(ρA(e1)←A(e1)′(Π
D
G(e)) ZG′θG;g;F e)),

ΓθG;F (e) ≡ ΠC(ρA(e1)′←A(e1)(ρA(e1)←A(e1)′(Π
D
G(e)) ZG′θG;F e)),

where C on the right-hand side of an equivalence contains all attributes provided
in the result of the left-hand side of the equivalence.

The groupjoin itself can be expressed with the help of unary grouping and
a left outerjoin:

e1 ZG1θG2;f e2 ≡ ΠC(e1 E
f(∅)
G1=G2

ΓθG2;f (e2)), (7.181)

e1 ZG1θG2;g;F e2 ≡ ΠC(e1 E
F (∅)
G1=G2

ΓθG2;g;F (e2)), (7.182)

e1 ZG1θG2;F e2 ≡ ΠC(e1 E
F (∅)
G1=G2

ΓθG2;F (e2)), (7.183)

where C = G∪A(F). We need to attach a small correction to these equivalences.
Consider for example Eqv. 7.183. It only holds if F (∅) = F ({⊥A(e2)}). This is
true in SQL-92 for min, max, sum, count(a), but not count(*). More precisely,
count(*) yields 0 if the input is the empty set, and 1 if it is applied to some null-
tuple. Thus, the right-hand side yields 0 for empty groups, whereas it should
produce 1. Obviously, this problem can easily be fixed in the left outerjoin by
using the correct default value of 1 for all attributes containing the result of a
count(*). Hence, we define count(∗)(∅) := 1 in the context of default values for
outerjoins. Thus, the above equivalences now read

e1 ZG1θG2;f e2 ≡ ΠC(e1 E
f({⊥A(e2)

})
G1=G2

ΓθG2;f (e2)), (7.184)

e1 ZG1θG2;g;F e2 ≡ ΠC(e1 E
F ({⊥A(e2)

})
G1=G2

ΓθG2;g;F (e2)), (7.185)

e1 ZG1θG2;F e2 ≡ ΠC(e1 E
F ({⊥A(e2)

})
G1=G2

ΓθG2;F (e2)). (7.186)

Apart from this detail, these equivalences follow directly from the definition of
the groupjoin.

7.11. EQUIVALENCES FOR UNARY GROUPING 287

For the regular join, we can apply a selection to get rid of tuples not finding
a join partner by counting the number of join partners. This leads to the
following equivalences:

ΠC(e1 BG1=G2 ΓθG2;g;F (e2)) ≡ σc2>0(e1 ZG1θG2;g;F◦(c2:|g|) e2),

ΠC(e1 BG1=G2 ΓθG2;F (e2)) ≡ σc2>0(e1 ZG1θG2;F◦(c2:count(∗)) e2),

ΠC(e1 BG1=G2 ΓG2;g;F (e2)) ≡ σc2>0(e1 ZG1=G2;g;F◦(c2:|g|) e2),

ΠC(e1 BG1=G2 ΓG2;F (e2)) ≡ σc2>0(e1 ZG1=G2;F◦(c2:count(∗)) e2).

Pushing Grouping into the Groupjoin

The general assumptions for the next three equivalences are as follows. Let F
and F be two aggregation vectors. Let G be a set of grouping attributes such
that G ⊆ A(e1) ∪ A(F). Let J1 and J2 be non-empty sets of attributes with
J1 ⊆ A(e1) and J2 ⊆ A(F). Define G1 = G ∩ A(e1) and G+

1 = G1 ∪ J1.
Assume F is splittable into F1 and F2, and F1 is decomposable into F 1

1 and
F 2
1 . Then

ΓG;F (e1 ZJ1θJ2;F
e2) ≡ ΓG;(F2⊗c1)◦F 2

1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1) ZJ1θJ2;F

e2)).

(7.187)
Note that F2 can only use attributes from F . Before we state the proof, note
that two simplifications are derivable: If F2 is empty, then

ΓG;F (e1 ZJ1θJ2;F
e2) ≡ ΓG;F 2

1
(ΓG+

1 ;F 1
1
(e1) ZJ1θJ2;F

e2)) (7.188)

holds if F1 is decomposable into F 1
1 and F 2

1 . If F1 is empty, then

ΓG;F (e1 ZJ1θJ2;F
e2) ≡ ΓG;(F2⊗c1)(ΓG+

1 ;(c1:count(∗))(e1) ZJ1θJ2;F
e2)) (7.189)

holds if F2 is decomposable into F 1
2 and F 2

2 .
Trying to push the outer unary grouping into the right argument of the

groupjoin does not make sense, since the right-hand side of a groupjoin will al-
ready be grouped by the groupjoin itself and a double grouping is not beneficial.
However, it could be done.

Proof of Eqv. 7.187:

ΓG;F (e1 ZJ1θJ2;F
e2) ≡7.183 ΓG;F (e1 E

F (∅)
J1=J2

ΓθJ2,F
(e2))

≡7.143 ΓG;(F2⊗c1)◦F 2
1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1)E

F (∅)
J1=J2

ΓθJ2,F
(e2)))

≡7.183 ΓG;(F2⊗c1)◦F 2
1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1) ZJ1θJ2;F

e2))

2

Eliminating the top grouping

Since ΠG+
1
(ΓG+

1 ;F 1
1 ◦(c1:count(∗))(e1)) is duplicate-free, we can apply Eqv. 7.97 to

Eqv. 7.187 if G→ G+ holds. With C = G ∪ A(F), this gives us
ΓG;F (e1 ZJ1θJ2;F

e2) ≡ ΠC(χF̂2⊗c1◦F̂ 2
1

(ΓG+
1 ;F 1

1 ◦(c1:count(∗))(e1) ZJ1θJ2;F
e2)).

(7.190)

288 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

Simplifications result in the following equivalences, which also hold if G→ G+

holds:

ΓG;F (e1 ZJ1θJ2;F
e2) ≡ ΠC(ΓG+

1 ;F (e1) ZJ1θJ2;F
e2), (7.191)

ΓG;F (e1 ZJ1θJ2;F
e2) ≡ ΠC(χF̂2⊗c1(ΓG+

1 ;(c1:count(∗))(e1) ZJ1θJ2;F
e2)).(7.192)

The first equivalence additionally needs that F2 is empty, the second that F1 is
empty.

Important Operator Conversions

We now introduce two equivalences which allow us to replace a sequence of a
grouping operator and a left-outerjoin/join by a single groupjoin [621].

For i = 1, 2, let ei be algebraic expressions and J1 = J2 be a join predi-
cate, such that for the join attributes Ji ⊆ A(ei) holds. For a set of grouping
attributes G, define Gi = G ∩ A(ei) and G+

i = Gi ∪ Ji. Further, let F be a
splittable and decomposable aggregation vector with F(F) ⊆ A(e2). We denote
by C the set of attributes occurring in the result, i.e., C = G ∪ A(F). Then,
the equivalence

ΓG;F (e1 EJ1=J2 e2) ≡ ΠC(e1 ZJ1=J2;F e2) (7.193)

holds under the conditions that

1. G→ G+
2 and G1, G

+
2 → TID(e1) hold in e1 EJ1=J2 e2,

2. J2 → G+
2 holds in e2,

3. F(F) ⊆ A(e2), and

4. F (∅) = F ({⊥A(e2)}).

We discuss these conditions to provide the intuition behind them. The two
conditions under 1. stem from the main theorem of Yan and Larson in [946].
They assure that a grouping can be pushed into a regular join. In our context,
the condition G1, G

+
2 → TID(e1) assures that no two tuples from e1 belong to

the same group. This is necessary since the groupjoin on the right-hand side
provides exactly one output tuple for each input tuple of e1. The condition
G→ G+

2 implies that grouping by G+
2 is not finer grained than grouping by G,

which would lead to problems.
In case the second condition (J2 → G+

2) is not fulfilled, we would have more
groups on the left-hand side than on the right-hand side of our equivalence,
which would violate it. This is easy to see if we add to G an evil attribute
from e2, which is not functionally determined by J2. The importance of the
functional dependencies is illustrated in the examples below.

The third condition (F(F) ⊆ A(e2)) can actually be relaxed if we maintain
a final map operator (see Eqvs. 7.117 and 7.135). The fourth condition follows
from the discussion of Eqv. 7.183.

Eqv. 7.193 is important since it allows us to replace a unary grouping and
a left outerjoin by a groupjoin. This is very beneficial in several scenarios.

7.11. EQUIVALENCES FOR UNARY GROUPING 289

R1

a

1

R2

a

1
1

R3

a b

1 1
1 2

S

c d e

1 8 1
1 9 2

Figure 7.15: Example relations

m1 : R1 Ea=c S

a c d e

1 1 8 1
1 1 9 2

m2 : R2 Ea=c S

a c d e

1 1 8 1
1 1 9 2
1 1 8 1
1 1 9 2

m3 : R3 Eb=e S

a b c d e

1 1 1 8 1
1 2 1 9 2

Figure 7.16: Join results

Consider just the one where all these operators have a hash-based implementa-
tion in a main-memory setting. Then, the left-hand side requires to build two
hash tables, whereas the right-hand side requires to build only one. Further,
no intermediate result tuples for the outerjoin have to be built.

The second equivalence replaces a sequence of a join and a grouping by a
groupjoin. Given the notations of the previous subsection, the equivalence

ΓG;F (e1 BJ1=J2 e2) ≡ ΠC(σc2>0(e1 ZJ1=J2;F◦(c2:count(∗)) e2)) (7.194)

holds under the conditions that

1. G→ G+
2 and G1, G

+
2 → TID(e1) hold in e1 BJ1=J2 e2

2. J2 → G+
2 holds in e2, and

3. F(F) ⊆ A(e2).

The intuition behind these conditions is the same as for the previous equiva-
lence. The fourth condition could be omitted, since empty groups are eliminated
by the selection σc2>0. Eqv. 7.194 is beneficial under similar circumstances as
Eqv. 7.193.

Before we come to the proofs, let us have a look at some examples. Fig. 7.15
contains some relations. The results of some outerjoins (Ri Eq S) with two
different join predicates are given in Fig. 7.16. Since all tuples in some Ri

always find a join partner, the results of the outerjoins are the same as the
corresponding join results. We are now interested in the functional dependencies
occurring in the conditions of our main equivalences. Therefore, we discuss
four example instances of Eqv. 7.194, where at most one of the functional
dependencies is violated:

290 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

l1 : Γa;sum(d)(R1 Ea=c S)

a sum(d)

1 17

r1 : R1 Za=c;sum(d) S

a sum(d)

1 17
l2 : Γa,e;sum(d)(R1 Ea=c S)

a e sum(d)

1 1 8
1 2 9

r2 : R1 Za=c;sum(d) S

a sum(d)

1 17

l3 : Γa;sum(d)(R2 Ea=c S)

a sum(d)

1 34

r3 : R2 Za=c;sum(d) S

a sum(d)

1 17
1 17

l4 : Γa;sum(d)(R3 Eb=e S)

a sum(d)

1 17

r4 : R3 Zb=e;sum(d) S

a b sum(d)

1 1 8
1 2 9

Figure 7.17: Left- and right-hand sides

G→ G+
2 G1, G

+
2 → TID(e1) J2 → G+

2

1 + + +
2 + + -
3 + - +
4 - + +

The according instances of the left-hand and right-hand side of Eqv. 7.194 are:

LHS RHS

1 Γa;sum(d)(R1 Ea=c S) R1 Za=c;sum(d) S

2 Γa,e;sum(d)(R1 Ea=c S) R1 Za=c;sum(d) S

3 Γa;sum(d)(R2 Ea=c S) R2 Za=c;sum(d) S

3 Γa;sum(d)(R3 Eb=e S) R3 Zb=e;sum(d) S

The functional dependencies have to be checked on the join results given in
Fig. 7.16. In order to help the reader to check the functional dependencies,
we provide the following table holding the main attribute sets occurring in our
main equivalences:

G G1 G2 J2 G+
2

1 {a} {a} ∅ {c} {c}
2 {a, e} {a} {e} {c} {c, e}
3 {a} {a} ∅ {c} {c}
4 {a} {a} ∅ {e} {e}

Taking a look at Fig. 7.17, we see that both sides of the equivalence give the
same result only if none of the functional dependencies is violated.

7.12. ELIMINATING REDUNDANT JOINS 291

Proof of Eqv. 7.193 We now give the proof of Eqv. 7.193. We start with
the right-hand side and transform it until we get the left-hand side:

ΠC(e1 ZJ1=J2;F e2)

≡7.183 ΠC(e1 E
F (∅)
J1=J2

ΓJ2;F (e2))

≡7.14 ΠC(e1 E
F (∅)
J1=J2

ΓG+
2 ;F (e2))

≡7.137 ΓG;F (e1 EJ1=J2 e2)).

The preconditions follow from collecting the preconditions of the different equiv-
alences applied. 2

Proof of Eqv. 7.194 Eqv. 7.194 follows directly from Eqv. 7.193. An alter-
native is to modify the above proof by using Eqv. 7.187 instead of Eqv. 7.183
and Eqv. 7.117 instead of Eqv. 7.137.

Remark Often, we encounter expression of the form ΓG;F (e1)ZJ1=J2 e2. If
G = J1, the hash table for the grouping can be reused by the groupjoin. Simi-
larily, if G ⊇ J1, any sorting produced to perform a sort-based grouping can be
reused for a a sort-based groupjoin.

7.11.8 Intersection and Difference

There is not much we can do in terms of pushing a unary grouping operator
down an intersection or set difference. We can only change an explicit bag
representation into a multiplicity-based bag representation. This gives us the
following two equivalences:

ΓG;F (e1 ∩ e2) ≡ ΓG;(F⊗m)(χm:min(c1,c2)((7.195)

E1 BA(e1)=A(e2)′ ρA(e2)←A(e2)′(E2))),

ΓG;F (e1 \ e2) ≡ ΓG;(F⊗m)(χm:c1−̇c2((7.196)

E1 E
c2:0
A(e1)=A(e2)′ ρA(e2)←A(e2)′(E2))),

where Ei is defined as

ΓA(ei);ci:count(∗)(ei)

for i = 1, 2.

7.12 Eliminating Redundant Joins

Since the join and outerjoin operations are very expensive, it makes sense to
investigate possibilities to elimininate redundant joins and outerjoins. These
often occur if queries use views [87, 658, 659], if queries are generated by front-
end tools [327], if data is integrated from different source [165], or if objects are
instantiated using relational views [88, 538]. One possibility studied intensively
is to use tableaux techniques to detect and eliminate redundant joins [17, 18,

292 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

?, 470, 471, 577, 759]. Chandra and Merlin show that finding the minimal
conjunctive query for a given one is NP-hard [144].

The techniques discussed in the above papers apply to set semantics and
not to bags. This deficiency was later remedied [159, 160, 221, 497]. Chaudhuri
and Vardi as well as Ioannids and Ramakrishnan showed independently that
the NP-hardness result still holds under bag semantics [159, 160, 449, 450].

Other work on join elimination occurs in the context of semantic query
optimization. Early work here is by King [496]. The implementation of inner
join elimination techniques in DBMSs is described by Cheng et al. for DB2 [172]
and by Ghazal, Bhashyam, and Crolotte for Teradata [327]. They also describe
the left-outer join elimination technique implemented in Teradata [328].

In this brief subsection, we present some simple algebraic equivalences that
allow us to remove redundant joins and outerjoins. To derive an algorithm
to eliminate all unnecessary joins is rather complicated and builds upon query
containment and query equivalence. These will be discussed in depth in Chap-
ter. 10.

Clearly, it is beneficial to eliminate joins with relations, whose attributes
are not needed to evaluate the query. Consider a simple algebraic expression
containing a single join and another expression where the join has been elimi-
nated:

ΠA(e1)(e1 BA1=A2 e2) ≡ e1

where Ai ⊆ A(ei). This equivalence only holds if

1. for every tuple in e1 at most one join partner in e2 exists and

2. for every tuple in e1 at least one join partner in e2 exists.

The first condition is easily satisfied if A2 is a (super-) key of e2. The second
condition demands that ΠA1(e1) ⊆ ρA2←A1(e2). However, this does not truely
suffice. Additionally, we must have that all attributes in A1 are not null.

If there is a referential integrity constraint e1.A1 → e2.A2 and the foreign-
key attributes A1 are nullable, the join can still be eliminated if we add a
not-null predicate on the foreign-key attributes [172]:

ΠA(e1)(e1 BA1=A2 e2) ≡ σ¬(A1
.
=⊥)(e1)

If we work with sets, things simplify a lot. Then,

ΠD
A(e1)(e1 BA1=A2 e2) ≡ e1

holds whenever the second condition is fulfilled.
Outerjoins are also easier. The equivalence

ΠA(e1)(e1 EA1=A2 e2) ≡ e1

holds if the first condition holds.
Note that the above equivalences do not demand e1 and e2 to be different.

Thus they can also be used to eliminate redundant self-(outer)-joins.
Other pointers to the literature on join elimination are [164, 466, 855].

7.13. SEMIJOIN AND ANTIJOIN REDUCER 293

7.13 Semijoin and Antijoin Reducer

In the context of distributed and cluster-based database systems, it is important
to reduce the amount of data shipped around [136, 264, 514, 666]. Introduc-
ing semijoin reducer is a common technique to achieve this. The according
equivalences are:

e1 Bq e2 ≡ e1 Bq (e2 Nq e1) (7.197)

e1 Nq e2 ≡ e1 Nq (e2 Nq e1) (7.198)

e1 Tq e2 ≡ e1 Tq (e2 Nq e1) (7.199)

e1 Eq e2 ≡ e1 Eq (e2 Nq e1) (7.200)

e1 Zq;g:e e2 ≡ e1 Zq;g:e (e2 Nq e1) (7.201)

Assume we are given two relations R1 and R2 on two computers (stations) C1

and C2 and wish to calculate the join R1 Bp12 R2. Let Ji := A(Ri)∩F(p12) be
the join attributes of the relations Ri. And define eJ2 := ΠD

J2
(R2). Semijoin

reduction then works by sending the projection of the join attributes, i.e., eJ2
of relation R2 to the computer C1 where the relation R1 resides. There, the
semijoin R1 Np12 eJ2 is calculated. Then, we could send over the result to
computer C2 and perform the join. However, sometimes it is beneficial to also
reduce relation R2, e.g., if the join is calculated at some computer C3. Then,
we can send the result of eJ21 := ΠD

J1
(R1 Np12 eJ2 to computer C2 and use it

to reduce R2. However, if less than half of the values qualify, it is better to
send the antijoin’s result, i.e., eA21 := ΠD

J1
(R1 Tp12 eJ2 and use R2 Tp12 eA21

to reduce R2. Integrating semijoin reducers into old-style plan generators has
been described by Stocker, Kossmann, Braumandl, and Kemper [836].

7.14 Outerjoin Simplification

7.15 Correct and Complete Exploration of the Core
Search Space

7.15.1 The Core Search Space

The core search space for a given operator tree, normally derived from the
input query, is spanned by the transformations derived from the commutativ-
ity, associativity, l-asscom and r-asscom properties of the operators occurring
in the input tree. Except for commutativity, these transformations are shown
in Fig. 7.18 for some arbitrary binary operators ◦a and ◦b with their accord-
ing predicates. Note the syntactic constraints on the left and remember that
commutativity does not have these syntactic constraints. These syntactic con-
straints have one interesting consequence. Let us call a predicate p of some
binary operator ◦ degenerate, if if does not reference relations from at least one
argument side of ◦. Then, we can observe that the syntactic constraints for
non-degenerate predicates imply that either associativity or l-asscom can be
applied for left nesting but not both, and either associativity or r-asscom can
be applied for right-nesting but not both.

294 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

◦bpb
e3

e1 e2

◦apa

◦bpb
e3

e1 e2

◦apa

e2 e3

◦bpb

◦apa
e1

e2 e3

◦bpb

◦bpb
e2

e1 e3

◦apa

r-asscom (◦a, ◦b)

l-asscom (◦a, ◦b)

F(pa) ∩ A(e3) = ∅

F(pb) ∩ A(e2) = ∅

assoc (◦a, ◦b)

≡

≡

≡
F(pb) ∩ A(e1) = ∅

F(pa) ∩ A(e2) = ∅

F(pb) ∩ A(e1) = ∅

F(pa) ∩ A(e3) = ∅

◦apa
e1

◦apa

e1 e3

◦bpb e2

Figure 7.18: Transformation rules for assoc, l-asscom, and r-asscom

Fig. 7.19 shows an example of the seach space for an expression (e1◦a12e2)◦b13
e3, where the subscripts of the operators indicate which arguments are refer-
enced in their predicate. We observe that any expression in this search space
can be reached by a sequence of at most two applications of commutativity, at
most one application of associativity, l-asscom, or r-asscom, finally followed by
at most two applications of commutativity. The total number of applications
of commutativity can be restricted to 2. The case (e1 ◦a12 e2) ◦b23 e3 is left to the
reader.

The last observation only holds if there are no degenerate predictates and
no cross products in the original plan. Fig. 7.20 shows all possible plans for
two binary operators ◦a and ◦b. One can think of them as cross products. The
plans are generated by applying assoc, l-asscom, r-asscom, and commutativity
rewrites. Assume that the initial plan is the one in row 1 and column 3. The
other plans in the first row are generated by using all rewrites but commuta-
tivity. The second row shows the plans derived from the plan above them by
applying commutativity to the lower operator. The third row applies commu-
tativity to the top operator of the plan above it in the first row. The fourth row
applies commutativity to both operators. Thus, all plans in a column below
a plan in the first row can be generated by at most two applications of com-
mutativity. Of course, there are more possibilities to transform one plan into
another. In order to indicate them, let us denote the matrix of plans by P . The

7.15. CORRECT AND COMPLETE EXPLORATIONOF THE CORE SEARCH SPACE295

comm (ob)
e3 o

b
13 (e2 o

a
12 e1)(e2 o

a
12 e1) o

b
13 e3

comm (ob)
(e1 o

a
12 e2) o

b
13 e3 e3 o

b
13 (e1 o

a
12 e2)

comm (oa)

l-asscomm (oa, ob)

comm (oa)
(e1 o

b
13 e3) o

a
12 e2 e2 o

a
12 (e1 o

b
13 e3)

comm (ob)

comm (oa)
(e3 o

b
13 e1) o

a
12 e2 e2 o

a
12 (e3 o

b
13 e1)

comm (oa)

comm (ob)

r-asscomm (oa, ob)

assoc (ob, oa)

assoc (oa, ob)

Figure 7.19: Core search space example

application of transformations other than commutativity gives:

P [2, i] ←→ P [3, i+ 1]

P [3, i] ←→ P [2, i+ 1]

P [4, i] ←→ P [4, i+ 1]

P [1, 1] ←→ P [4, 6]

P [2, 1] ←→ P [3, 6]

P [3, 1] ←→ P [3, 6]

It is easy to see, that we need more than one of assoc, l-asscom, or r-asscom to
get from P [1, 3] to, e.g., P [1, 1].

7.15.2 Exploration

How does the plan generator explore this search space? Remember the join or-
dering algorithms from Chapter 3, especially DPsub, DPsize, and DPccp, which
are all based on dynamic programming. We extend the simple algorithm DPsub

296 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

1 = r-assom(2) 2 = assoc(3) 3 4 = l-asscom (3) 5 = assoc(4) 6 = r-asscom(5)

◦b
e2 ◦a

e1 e3

◦a

e1 ◦b
e2 e3

◦b

◦a

e1 e2

e3

◦a

◦b
e1 e3

e2

◦b
e1 ◦a

e3 e2

◦a

e3 ◦b
e1 e2

◦b
e2 ◦a

e3 e1

◦a

e1 ◦b
e3 e2

◦b

◦a

e2 e1

e3

◦a

◦b
e3 e1

e2

◦b
e1 ◦a

e2 e3

◦a

e3 ◦b
e2 e1

◦b

◦a

e1 e3

e2

◦a

◦b
e2 e3

e1

◦b
e3 ◦a

e1 e2

◦a

e2 ◦b
e1 e3

◦b

◦a

e3 e2

e1

◦a

◦b
e1 e2

e3

◦b

◦a

e3 e1

e2

◦a

◦b
e3 e2

e1

◦b
e3 ◦a

e2 e1

◦a

e2 ◦b
e3 e1

◦b

◦a

e2 e3

e1

◦a

◦b
e2 e1

e3

Figure 7.20: The complete search space

to one called DPsube. The resulting code is shown in Fig. ??. As input it takes
the set of n relations R = {R0, . . . , Rn−1} and the set of operators O containing
n − 1 operators which DPsube has to use in order to build a plan. First, it
constructs plan for single relations. Then, it enumerates all subsets S of re-
lations by decoding an integer, which represents a bitvector. For each set of
relations S, DPsube then enumerates all subsets S1 of S and their complements
S2. Both of them must be non-empty. For each pair (S1, S2), all operators ◦
in O are then tested for applicability via a call to applicable. If the operator
is applicable, then the best plans p1 for S1 and p2 for S2 are recalled from the
dynamic programming table BestPlan and combined into the plan p1 ◦ p2 for
S. The costs of this plan are then calculated and it is possibly added to the
DP-table. Since this piece of code is straight forward, we did not detail on it.
Note that only if an operator is applicable then DPsube also considers p2 ◦ p1 if
◦ is commutative. The rest of the section deals with different implementations
of applicable.

Two implementations of applicable are described in the literature. Each of
them uses a set of relations as a short-hand representation of possible reorder-
ing conflicts. The first set is called EEL, and is presented by Rao, Lindsay,
Lohman, Pirahesh, and Simmen [717, 716]. The second set is called TES, and
is presented by Moerkotte and Neumann [620, 619]. The first approach is lim-
ited to B, T, and E. Both approaches generate invalid plans, i.e., plans which
are not equivalent to the input operator tree. Thus, we will present an alter-
native test. The main properties are that it will be correct and complete. An
implementation of applicable is correct, if only valid plans are generated. It is
complete, if all valid plans are generated.

7.15. CORRECT AND COMPLETE EXPLORATIONOF THE CORE SEARCH SPACE297

Algorithm DPsube

Input: a set of relations R = {R0, . . . , Rn−1}
a set of operators O with associated conflict descriptors

Output: an optimal bushy operator tree

for all Ri ∈ R
BestPlan({Ri}) = Ri;

for 1 ≤ i < 2n − 1 ascending
S = {Rj ∈ R|(⌊i/2j⌋mod 2) = 1}
if (|S| = 1) continue
for all S1 ⊂ S, S1 ̸= ∅ do

S2 = S \ S1;
for all ◦ ∈ O do

if (applicable(◦, S1, S2))
build and handle the plans BestPlan(S1) ◦ BestPlan(S2)
if (◦ is commutative)

build and handle the plans BestPlan(S2) ◦ BestPlan(S1)
return BestPlan(R);

Figure 7.21: Algorithm DPsube

Preliminaries

In order to open our approach for new algebraic operators, we use a table driven
approach. We use four tables which contain the properties of the algebraic
operators. These contain the information of Tables 7.6 and 7.7 together with
the information about the commutativity of the operators. Thus, extending
our approach only requires to extend these tables.

We develop our final approach in three steps. At each step, we present a
complete bundle consisting of three components:

1. a representation for conflicts

2. a conflict detection (CD) algorithm, which detects the conflicts from an
initial operator tree and produces a conflict represention for this operator,
and

3. the implementation of applicable, which uses the conflict representation
for an operator and then determines whether the operator can be applied
in a given context.

Each of the subsequently discussed bundles is correct, but only the last one is
complete.

The main idea in the following (and in the literature cited above) is to ex-
tend the consumer/producer constraints. Therefore, we first introduce syntactic
eligibility sets (SES for short), which are attached to operators and contain the

298 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

set of relations that must be present before the operator can be applied. Some-
times, SES is called NEL.

For every operator ◦, SES(◦) is thus a set of relations. Then, a plan of the
form plan(S1)◦plan(S2) is only considered if the test SES(◦) ⊆ S1∪S2 succeeds.
Hence, SES checks for a consumer/producer relationships.

Some operators like the groupjoin or map operator introduce new attributes.
These are treated as if they belong to a new artificial relation. This new relation
is present in the set of accessible relations after the groupjoin or map operator
has been applied.

We assume that an initial operator tree is given and refer to it as the operator
tree. We need some notation. For a set of attributes A, we denote by REL(A)
the set of relations to which these attributes belong. We abbreviate REL(F(e))
by FT(e). Let ◦ be an operator in the initial operator tree. We denote by left(◦)
(right(◦)) its left (right) descendants. STO(◦) denotes the operators contained in
the operator subtree rooted at ◦. REL(◦) denotes the set of relations contained
in the subtree rooted at ◦.

The syntactic eligibility set (SES) is used to express the syntactic con-
straints: all referenced attributes/relations must be present before an expression
can be evaluated. First of all, it contains the relations referenced by a predicate.
Further, as we also deal with table functions and dependent join operators as
well as groupjoins, we need the following extensions. Let R be a relation, T
a table-valued function call, ◦p any of our binary or unary operators except a
groupjoin, and gj ∈ {Z,[}. Then, we define:

SES(R) = {R}
SES(T) = {T}
SES(◦p) =

⋃

R∈FT(p)

SES(R) ∩ REL(◦p)

SES(gjp;a1:e1,...,an:en) =
⋃

R∈FT(p)∪FT(ei)

SES(R) ∩ REL(gj)

All conflict representations have a component TES which contains a set of
tables. We always initialize TES with SES as calculated above. Further, we
assume that our conflict representation has two accessors tesl and tesr which
return

tesl(◦) := TES(◦) ∩ REL(left(◦))
tesr(◦) := TES(◦) ∩ REL(right(◦))

This distinction is necessary, since we want to consider commutativity explicitly
and prevent in those cases where commutativity does not hold, that operators
which occurred on the left-hand side of an operator move to its right-hand side
or vice versa. All our implementations of applicable conjunctively include the
tests

tesl ⊆ S1, and

tesr ⊆ S2.

7.15. CORRECT AND COMPLETE EXPLORATIONOF THE CORE SEARCH SPACE299

◦b

◦a

e1 e2

e3
assoc
−−→

◦a

e1 ◦b
e2 e3

¬assoc(◦a, ◦b)
TES(◦b) ∪= REL(e1)

l-asscom
−−→

◦a

◦b
e1 e3

e2
¬l-asscom(◦a, ◦b)

TES(◦b) ∪= REL(e2)

◦b
e3 ◦a

e1 e2

assoc
−−→

◦a

◦b
e3 e1

e2
¬assoc(◦b, ◦a)

TES(◦b) ∪= REL(e2)

r-asscom
−−→

◦a

e1 ◦b
e3 e2

¬r-asscom(◦a, ◦b)
TES(◦b) ∪= REL(e1)

Figure 7.22: Calculating TES for simple operator trees

Approach CD-A

Let us first consider a simple operator tree with only two operators. Take a
look at the upper half of Fig. 7.22. There, it illustrates the application of
associativity and l-asscom to some plan. In the case that associativity does
not hold, we add REL(e1) to TES(◦b). This prevents the plan on the right-hand
side of the arrow marked with assoc. It does not, however, prevent the plan
on the right-hand side of the arrow marked with l-asscom. Similarily, adding
REL(e2) to TES(◦b) does prevent the plan resulting from l-asscom but not the
plan resulting from applying associativity. The lower part of Fig. 7.22 shows
the actions needed if an operator is nested in the right argument. Again, we
can precisely prevent the invalid plans.

The only problem we now have to solve is that a conflicting operator is
deeper down the tree. This is possible since in general the ei are trees them-
selves. Some reordering could possibly move a conflicting operator up to the
top of an argument subtree. We thus have to calculate the total eligibility sets
bottom-up. In a first step, for every operator ◦ in a given operator tree SES(◦)
is calculated. Then, TES(◦) is initialized to SES(◦). After that, the following
procedure is applied bottom-up to every operator ◦apa in the operator tree:

CD-A(◦bpb) // operator ◦b and its predicate pb

for ∀ ◦a ∈ STO(left(◦b))
if ¬assoc(◦a, ◦b) then TES(◦b) ∪= REL(left(◦a))

300 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

if ¬l-asscom(◦a, ◦b) then TES(◦b) ∪= REL(right(◦a))
for ∀ ◦a ∈ STO(right(◦b))

if ¬assoc(◦b, ◦a) then TES(◦b) ∪= REL(right(◦a))
if ¬r-asscom(◦a, ◦b) then TES(◦b) ∪= REL(left(◦a))

If we do not have degenerate predicates and cross products among the operators
in the initial operator tree, we can safely use TES instead of REL.

The conflict representation comprises the TES for every operator. The defi-
nition of applicable is

applicable(◦, S1, S2) := tesl(◦) ⊆ S1 ∧ tesr(◦) ⊆ S2.

Let us now see why applicable is correct. We have to show that it prevents
the generation of bad plans. Take the ¬ assoc case with nesting on the left.
Let the original operator tree contain (e1 ◦a12 e2) ◦b23 e3. Define the set of tables
R2 := FT(◦b23) ∩ REL(left(◦b23)) and R3 := FT(◦b23) ∩ REL(right(◦b23)). Then
SES(◦b23) = R2 ∪R3. Further, since ¬assoc(◦a12, ◦b23), we have

TES(◦b23) ⊇ SES(◦b23) ∪ REL(e1).

Note that we used ⊇ and not equality since due to other conflicts, TES(◦b) could
be larger. Next, we observe that

tesl(◦b23) ⊇ (SES(◦b23) ∪ REL(e1)) ∩ REL(left(◦b23)) = REL(e1) ∪R2

tesr(◦b23) ⊇ (SES(◦b23) ∪ REL(e1)) ∩ REL(right(◦b23)) = R3

Let S1, S2 be a pair of two arbitrary subsets of relations generated by DPsube.
Then, the call applicable(◦b, S1,S2) checks

tesl(◦b23) ⊆ S1 and

tesr(◦b23) ⊆ S2,

and fails if S1 ̸⊇ REL(e1). Thus, neither e2 ◦b23 e3 nor e3 ◦b23 e2 will be generated
and, hence, e1◦a12(e2◦b23e3) will not be generated. Similarily, if ¬l-asscom(◦a, ◦b),
tesl(◦b) will contain REL(e2) and the test prevents the generation of e1◦be3. The
remaining two cases can be checked analogously.

From this discussion, it follows that DPsube generates only valid plans. How-
ever, it does not generate all valid plans. It is thus incomplete, as we can see
from the example shown in Fig. 7.23. Since ¬assoc(N,E), TES(E) contains
R1. Thus, neither Plan 1 nor Plan 3 or any of those derived from applying join
commutativity to them will be generated.

Approach CD-B

In order to avoid this problem, we need the more flexible mechanism of conflict
rules. A conflict rule is simply a pair of sets of tables denoted by T1 → T2.
With every operator node ◦ in the operator tree, we associate a set of conflict

7.15. CORRECT AND COMPLETE EXPLORATIONOF THE CORE SEARCH SPACE301

E2,3

B0,2

N0,1

R0 R1

R2

R3 B0,2

N0,1

R0 R1

E2,3

R2 R3

N0,1

B0,2

R0 E

R2 R3

R1

initial plan Plan 1 Plan 3

Figure 7.23: Example showing the incompleteness of CD-A

◦b

◦a

e1 e2

e3
assoc
−−→

◦a

e1 ◦b
e2 e3

¬assoc(◦a, ◦b)
CR(◦b) + = REL(e2)→ REL(e1)

l-asscom
−−→

◦a

◦b
e1 e3

e2
¬l-asscom(◦a, ◦b)

CR(◦b) + = REL(e1)→ REL(e2)

◦b
e3 ◦a

e1 e2

assoc
−−→

◦a

◦b
e3 e1

e2
¬assoc(◦b, ◦a)

CR(◦b) + = REL(e1)→ REL(e2)

r-asscom
−−→

◦a

e1 ◦b
e3 e2

¬r-asscom(◦a, ◦b)
CR(◦b) + = REL(e2)→ REL(e1)

Figure 7.24: Calculating conflict rules for simple operator trees

rules. Thus, our conflict representation now associates with every operator a
TES and a set of conflict rules.

Before we introduce their construction, let us illustrate their role in applica-
ble(S1, S2). A conflict rule T1 → T2 is obeyed for S1 and S2, if with S = S1∪S2
the following condition holds:

T1 ∩ S ̸= ∅ =⇒ T2 ⊆ S.

Thus, if T1 contains a single relation from S, then S must contain all relations
in T2. Keeping this in mind, it is easy to see that the invalid plans are indeed
prevented by the rules shown in Fig. 7.24 if they are obeyed.

As before, we just need to generalize it to arbitrary trees:

302 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

B0,1

R0 N1,3

B1,2

R1 R2

R3

B1,2

B0,1

R0 N1,3

R1 R3

R2

initial plan valid plan prevented

Figure 7.25: Example showing the incompleteness of CD-B

CD-B(◦bpb) // operator ◦b and its predicate pb

for ∀ ◦a ∈ STO(left(◦b))
if ¬assoc(◦a, ◦b) then CR(◦b) + = REL(right(◦a))→ REL(left(◦a))
if ¬l-asscom(◦a, ◦b) then CR(◦b) + = REL(left(◦a))→ REL(right(◦a))

for ∀ ◦a ∈ STO(right(◦b))
if ¬assoc(◦b, ◦a) then CR(◦b) + = REL(left(◦a))→ REL(right(◦a))
if ¬r-asscom(◦a, ◦b) then CR(◦b) + = REL(right(◦a))→ REL(left(◦a))

The test applicable(◦, S1, S2) checks two conditions:

1. tesl ⊆ S1 ∧ tesr ⊆ S2 must hold, and

2. all rules in the rule set of ◦ must be obeyed.

Again, this implementation of applicable is correct but not complete, as the
example in Fig. 7.25 shows. Since assoc(B,N) and l-asscom(B,N), the only
conflict occurs due to r-asscom(B,N). Thus,

REL({R3})→ REL({R1, R2}) ∈ CR(B0,1)

The latter rule prevents the plan on the right-hand side of Fig. 7.25. Note that it
is overly careful since R2 ̸∈ FT(N1,3). In fact, r-asscom would never be applied
in this example, since B0,1 accesses table R1 and applying r-asscom would thus
destroy the consumer/producer relationship already checked by SES(B0,1).

Approach CD-C

The approach CD-C differs from CD-B only by the calculation of the conflict
rules. The conflict representation and the procedure for applicable remain the
same. The idea is now to learn from the above example and include only those
relations under operator ◦a, which occur in the predicate. However, we have to
be careful to include special cases for degenerate predicates and cross products.

CD-C(◦bpb) // operator ◦b and its predicate pb

7.15. CORRECT AND COMPLETE EXPLORATIONOF THE CORE SEARCH SPACE303

for ∀ ◦a ∈ STO(left(◦b))
if ¬assoc(◦a, ◦b) then

if REL(left(◦a)) ∩ FT(◦a) ̸= ∅ then
CR(◦b) + = REL(right(◦a))→ REL(left(◦a)) ∩ FT(◦a)

else
CR(◦b) + = REL(right(◦a))→ REL(left(◦a))

if ¬l-asscom(◦a, ◦b) then
if REL(right(◦a)) ∩ FT(◦a) ̸= ∅ then

CR(◦b) + = REL(left(◦a))→ REL(right(◦a)) ∩ FT(◦a)
else

CR(◦b) + = REL(left(◦a))→ REL(right(◦a))
for ∀ ◦a ∈ STO(right(◦b))

if ¬assoc(◦b, ◦a) then
if REL(right(◦a)) ∩ FT(◦a) ̸= ∅ then

CR(◦b) + = REL(left(◦a))→ REL(right(◦a)) ∩ FT(◦a)
else

CR(◦b) + = REL(left(◦a))→ REL(right(◦a))
if ¬r-asscom(◦a, ◦b) then

if REL(left(◦a)) ∩ FT(◦a) ̸= ∅ then
CR(◦b) + = REL(right(◦a))→ REL(left(◦a)) ∩ FT(◦a)

else
CR(◦b) + = REL(right(◦a))→ REL(left(◦a))

Rule Simplification

Large TES make the search space to be explored by the plan generator smaller
and, thus, lead to more efficiency, at least if an advanced plan generator like
DPhyp is used. Further, reducing the number of rules slightly decreases plan
generation time. Thus, applying laws like

R1 → R2, R1 → R3 ≡ R1 → R2 ∪R3

R1 → R2, R3 → R2 ≡ R1 ∪R3 → R2

can be used to rearrange the rule set for efficient evaluation. However, we are
much more interested in eliminated rules altogether by adding their right-hand
side to the TES. For some operator ◦, consider a conflict rule R1 → R2. If
R1∩TES(◦) ̸= ∅, then we can add R2 to TES due to the existential quantifier on
the left-hand side of a rule in the definition of obey. Further, if R2 ⊆ TES(◦), we
can safely eliminate the rule. Applying these rearrangements is often possible
since both REL(left(◦a))∩FT(◦) and REL(right(◦a))∩FT(◦) will be non-empty.

7.15.3 More Issues

Unary Operators

Not all unary operators are freely reorderable (see Table 7.3). Fortunately,
handling conflicts for unary operators is quite simple. We associate a new

304 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

0b / σ / �

0a /

a

0b/

0a / σ / �

b

0a / σ / �

c

0b/

Figure 7.26: Conflict detection for unary and binary operators

artificial relation with every unary operator (that needs one). For a given unary
operator ◦a, denote this relation by AREL(◦a). Then, whenever a conflict with
a unary operator ◦b above ◦a occurs, we add AREL(◦a) to TES(◦b). The result
is that they will never be reordered. This is captured in the following code
fragment:

CD-C

for each unary operator (◦b)
for each unary operator ◦a in STO(◦b)

if ¬reorderable(◦a, ◦b)
TES(◦b) + = AREL(◦a)

Mixing Unary and Binary Operators

A unary operator maybe left- or right-pushable into some binary operator (see
Table 7.4). In the given original operator tree, a unary operator may occur
above or below a binary operator. Accordingly, we extend CD-C by two more
cases.

Let us first consider the case where a binary operator ◦a can be found
somewhere below a unary operator ◦b. This is illustrated in Fig. 7.26 a. (Don’t
be confused by the two dotted lines, they will be used later on. Just image a
single line connecteding ◦b with ◦a.) If ◦b is left- and right-pushable into ◦a, we
do not have any conflict. If ◦b is neither left- nor right-pushable into ◦a, any
valid plan must contain ◦b above ◦a. This is achieved by extending the TES of
◦b by all relations below ◦a. Consider the case where ◦b is not right-pushable.
Then, we must prevent any plan where ◦b occurs in the right subtree of ◦a.
Adding a conflict rule ◦a which says that if any relation from ◦a’s right subtree
occurs in the current plan to which we want to add ◦b, then it must contain
all relations from its left subtree. The other case is symmetric. We summarize
these ideas in the following extension to CD-C:

7.15. CORRECT AND COMPLETE EXPLORATIONOF THE CORE SEARCH SPACE305

CD-C

for all unary operators ◦b in the original operator tree
for all binary operators ◦a ∈ STO(◦b)

if ¬left-pushable(◦b, ◦a) ∧ right-pushable(◦b, ◦a)
CR(◦b)+ = REL(left(◦a))→ REL(right(◦a))

if left-pushable(◦b, ◦a) ∧ ¬right-pushable(◦b, ◦a)
CR(◦b)+ = REL(right(◦a))→ REL(left(◦a))

if ¬left-pushable(◦b, ◦a) ∧ ¬right-pushable(◦b, ◦a)
TES(◦b)+ = REL(◦a)

Now, we consider the case where a unary operator ◦a can be found some-
where below a binary operator ◦b (see Fig. 7.26 b,c). In this case, if it cannot
be pulled up, we prevent this by adding the artificial relation AREL of ◦b to
the TES of ◦a:

CD-C

for all binary operators ◦b in the original operator tree
for all unary operators ◦a ∈ STO(left(◦b))

if ¬left-pushable(◦a, ◦b)
TES(◦b)+ = AREL(◦b)

for all unary operators ◦a ∈ STO(right(◦b))
if ¬right-pushable(◦a, ◦b)

TES(◦b)+ = AREL(◦b)

A selection operator can be changed into a join if its predicate references two
or more relations. In this case, a conflict between the resulting join and some
other binary operator might occur. We can handle these potential conflicts as
follows. Consider Fig. 7.26 a. By ◦b/σ/B we denote our selection that can be
turned into a join. By ◦a/E we denote a binary operator below our selection.
The case that it might be a left outerjoin is used in a subsequent example.
The Figure shows the trick we perform. We assume that a selection that can
be turned into a join has two arguments, a left and a right subtree. Both of
which point to the (only) child node of the selection. Thus, the left outerjoin is
once the left child of the selection/join and once the right one. Then, the usual
CD-C procedure can be run in addition to the above conflict handling. Let us
do so for the example. In case we treat the left outerjoin as the left child of the
outerjoin, we derive from ¬assoc(E,B)

CR(◦b)+ = REL(right(◦a))→ REL(left(◦a))

possibly with ∩FT(◦a) on the right-hand side. In the other case, we get due to
the fact that ¬r-asscom(B,E)

CR(◦b)+ = REL(right(◦a))→ REL(left(◦a)),

306 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

possibly with ∩FT(◦a) on the right-hand side. In any case, both conflicts result
in the same conflict rule. Further, both are subsumed by the above conflict
handling for the unary/binary operator mix. The reader should validate that
this is the case for all the operators in our algebra. However, since we want to
be purely table driven, we simply add these (redundant) conflict rules and rely
on rule simplification.

Cross Products and Degenerate Predicates

Cross products and degenerate predicates require more care as the comparison
between Fig. 7.19 and Fig. 7.20 shows. They lack the syntactic constraints due
to attribute accesses, which highly restrict the number of syntactically valid
plans. Consider an example like

(R1 AR2)B1,3 (R3 N3,4 R4).

So far, nothing prevents DPsube to consider invalid plans like

R1 B1,3 (R3 N3,4 (R2 AR4)).

Note that in order to prevent this plan, we would have to detect conflicts on
the “other side” of the plan. In our example, we need to consider conflicts
between operators in the left and the right subtree of B1,3. Since cross products
and degenerate predicates should be rare in real queries, it suffices to produces
correct plans. We have no ambition to explore the complete search space. Thus,
we just want to make sure that in these abnormal cases the plan generator still
produces a correct plan. In order to do so, we proceed as follows. We extend
the conflict representation by two bitvectors representing the left and the right
relations of an operator. Let us call them relLeft and relRight. Then, we extend
the applicable test and check that at least one relation from relLeft occurs in the
left subplan, and at least one relation from relRight occurs in the right subplan.
That is, in the test for applicable(◦, S1, S2), we conjunctively check

(relLeft ∩ S1 ̸= ∅) ∧ (relRight ∩ S2 ̸= ∅).

This results in a correct test, but, as experiments have shown, about a third
of the valid search space will not be explored if cross products are present in
the initial operator tree. However, note that if the initial plan does not contain
cross products and degenerate predicates, this test will always succeed such that
in this case still the whole core search space is explored. Further, still a larger
portion of the core search space is explored when comparing this approach to
the one by Rao et al. [716, 717]. There, two separate runs of the plan generator
for the arguments of a cross product hinders any reordering of operators with
cross products.

There is a second issue concerning cross products. In some rare cases, they
might be beneficially introduced, even if the initial plan does not demand them.
In this case, we can proceed as proposed by Rao et al. [716, 717]. For each
relation R, a companion set is calculated which contains all relations, that are
connected to R only by inner join predicates. Within a companion set, all join
orders and introductions of cross products are valid.

7.16. LOGICAL ALGEBRA FOR SEQUENCES 307

Other Plan Generators

It is rather simple to incorporate our test into other algorithms than DPsub (e.g.,
DPsize, DPccp, TDxxx). However, the result is not necessarily too efficient. An
efficient approach is discussed in Chapter ??, where we generalize DPccp to cover
hypergraphs. To see why this is appropriate, observe that (tesl(◦), tesr(◦)) is a
hyperedge.

Beyond the Core Search Space

At the beginning, we talked about the core search space. Why core? Because
there are more equivalences which we would like to be considered by the plan
generator. First of all, early grouping can significantly improve performance.
Then, some equivalences with operator conversions (e.g., Eqvs. ??, 7.94, 7.95,
7.194), and 7.193) are also important. These cases require some special treat-
ment. This is discussed in Chapter ??.

7.16 Logical Algebra for Sequences

7.16.1 Introduction

The algebra (NAL) we use here extends the SAL-Algebra [70] developed by
Beeri and Tzaban. SAL is the order-preserving counterpart of the algebra used
in [189, 191] and in this book.

SAL and NAL work on sequences of sets of variable bindings, i.e., sequences
of unordered tuples where every attribute corresponds to a variable. We allow
nested tuples, i.e. the value of an attribute may be a sequence of tuples. Single
tuples are constructed by using the standard [·] brackets. The concatenation
of tuples and functions is denoted by ◦. The set of attributes defined for an
expression e is defined as A(e). The set of free variables of an expression e is
defined as F(e).

The projection of a tuple on a set of attributes A is denoted by |A. For an
expression e1 possibly containing free variables, and a tuple e2, we denote by
e1(e2) the result of evaluating e1 where bindings of free variables are taken from
variable bindings provided by e2. Of course this requires F(e1) ⊆ A(e2). For a
set of attributes A, we define the tuple constructor ⊥A such that it returns a
tuple with attributes in A initialized to NULL.

For sequences e we use α(e) to denote the first element of a sequence. We
identify single element sequences and elements. The function τ retrieves the
tail of a sequence, and ⊕ concatenates two sequences. We denote the empty
sequence by ϵ. As a first application, we construct from a sequence of non-
tuple values e a sequence of tuples denoted by e[a]. It is empty if e is empty.
Otherwise, e[a] = [a : α(e)]⊕ τ(e)[a].

By id we denote the identity function. In order to avoid special cases during
the translation of XQuery into the algebra, we use the special algebraic operator
(2̂) that returns a singleton sequence consisting of the empty tuple, i.e., a tuple
with no attributes.

308 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

We will only define order-preserving algebraic operators. For the unordered
counterparts see [191]. Typically, when translating a more complex XQuery into
our algebra, a mixture of order-preserving and not order-preserving operators
will occur. In order to keep the section readable, we only employ the order-
preserving operators and use the same notation for them that has been used in
[189, 191], SAL [70], and this book.

Again, our algebra will allow nesting of algebraic expressions. For example,
within a selection predicate of a select operator we allow the occurrence of
further nested algebraic expressions. Hence, a join within a selection predicate is
possible. This simplifies the translation procedure of nested XQuery expressions
into the algebra. However, nested algebraic expressions force a nested loop
evaluation strategy. Thus, the goal of the paper will be to remove nested
algebraic expressions. As a result, we perform unnesting of nested queries not
at the source level, but at the algebraic level. This approach is more versatile
and less error-prone.

7.16.2 Algebraic Operators

We define the algebraic operators recursively on their input sequences. For
unary operators, if the input sequence is empty, the output sequence is also
empty. For binary operators, the output sequence is empty whenever the left
operand represents an empty sequence.

The order-preserving selection operator is defined as

σ̂p(e) :=

ϵ if e = ϵ,
α(e)⊕ σ̂p(τ(e)) if p(α(e)),
σ̂p(τ(e)) else.

For a list of attribute names A, we define the projection operator as

Π̂A(e) :=

{
ϵ if e = ϵ,

α(e)|A ⊕ Π̂A(τ(e)) else.

We also define a duplicate-eliminating projection Π̂D
A . Besides the projection,

its semantics is similar to that of the distinct-values function of XQuery:
it does not preserve order. However, we require it to be deterministic and
idempotent. Sometimes we just want to eliminate some attributes. When we
want to eliminate the set of attributes A, we denote this by Π̂A. We use Π̂ also

for renaming attributes. Then we write Π̂A′:A. The attributes in A are renamed
to those in A′. Attributes other than those in A remain untouched.

The map operator is defined as follows:

χ̂a:e2(e1) :=

{
ϵ if e1 = ϵ,
α(e1) ◦ [a : e2(α(e1))]⊕ χ̂a:e2(τ(e1)) else.

It extends a given input tuple t1 ∈ e1 by a new attribute a whose value is
computed by evaluating e2(t1). For an example see Figure 7.27.

7.16. LOGICAL ALGEBRA FOR SEQUENCES 309

e1 := R1

a1
1
2
3

e2 := R2

a2 b

1 2
1 3
2 4
2 5

e3 := χ̂a:σ̂a1=a2 (e2)
(e1)

a1 a

1 ⟨[1, 2], [1, 3]⟩
2 ⟨[2, 4], [2, 5]⟩
3 ⟨ ⟩

Figure 7.27: Example for Map Operator

We define the cross product of two tuple sequences as

e1×̂e2 :=
{
ϵ if e1 = ϵ,

(α(e1)Âe2)⊕ (τ(e1)×̂e2) else.

where

e1Âe2 :=

{
ϵ if e2 = ϵ,

(e1 ◦ α(e2))⊕ (e1Âτ(e2)) else.

We are now prepared to define the join operation on ordered sequences:

e1B̂pe2 := σ̂p(e1×̂e2).

We define the semijoin as

e1N̂pe2 :=

{
α(e1)⊕ (τ(e1)N̂pe2) if ∃x ∈ e2 p(α(e1) ◦ x),
τ(e1)N̂pe2 else.

and the anti-join as

e1T̂pe2 :=

{
α(e1)⊕ (τ(e1)T̂pe2) if ̸ ∃x ∈ e2 p(α(e1) ◦ x),
(τ(e1)T̂pe2) else.

The left outer join, which will play an essential role in unnesting, is defined
as e1Ê

g:e
p e2 :=

(α(e1)B̂pe2)⊕ (τ(e1)Ê
g:e

p e2) if (α(e1)B̂pe2) ̸= ϵ,
(α(e1) ◦ ⊥A(e2)\{g} ◦ [g : e]) else.

⊕(τ(e1)Ê
g:e

p e2)

where g ∈ A(e2). Our definition deviates slightly from the standard left outer
join operator, as we want to use it in conjunction with grouping and (aggregate)
functions. Consider the relations R1 and R2 in Figure 7.28. If we want to join
R1 (via a left outerjoin) with e3, which is grouped on a2, we need to be able
to handle empty groups (as for the tuple with a1 = 3 in e1 in the example). In
the definition of the left outerjoin with default, the expression e then defines
the value given to the attribute g for all those elements in e1 that do not find

a join partner in e2. In our example, it would specify Ê
g=0

.
We define the dependency join (d-join for short) as

e1<̂e2>̂ :=

{
ϵ if e1 = ϵ

α(e1)Âe2(e1)⊕ τ(e1)<̂e2>̂ else

310 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

e1 := R1

a1
1
2
3

e2 := R2

a2 b

1 2
1 3
2 4
2 5

e3 := Γ̂a2;g:count(R2)

a2 g

1 2
2 2

e4 := Γ̂=a2;g:id(R2)

a2 g

1 ⟨[1, 2], [1, 3]⟩
2 ⟨[2, 4], [2, 5]⟩

e5 := R1 Ẑa1=a2;g:id(R2)

a1 g

1 ⟨[1, 2], [1, 3]⟩
2 ⟨[2, 4], [2, 5]⟩
3 ⟨ ⟩

Figure 7.28: Examples for unary grouping and the groupjoin

Let θ ∈ {=,≤,≥, <,>, ̸=} be a comparison operator on atomic values. The
grouping operator which produces a sequence-valued new attribute containing
“the group” is defined by using a groupjoin.

Γ̂θA;g:f (e) := Π̂A:A′(Π̂D
A′:A(Π̂A(e)) ẐA′θA;g:fe)

where the groupjoin operator (sometimes called nest-join [831]) is defined as

e1 ẐA1θA2;e:fe2 :=

{
ϵ if e1 = ϵ

α(e1) ◦ [g : G(α(e1))]⊕ (τ(e1) ẐA1θA2;g:fe2)

Here, G(x) := f(σ̂x|A1
θA2

(e2)), and function f assigns a meaningful value to
empty groups. See also Figure 7.28 for an example. The unary grouping oper-
ator processes a single relation and obviously groups only on those values that
are present. The groupjoin works on two relations and uses the left-hand one
to determine the groups. This will become important for the correctness of the
unnesting procedure.

Given a tuple with a sequence-valued attribute, we can unnest it using the
unnest operator defined as

µ̂g(e) :=

{
ϵ if e = ϵ,
(α(e)|{g}×̂α(e).g)⊕ µ̂g(τ(e)) else.

where e.g retrieves the sequence of tuples of attribute g. In case that g is empty,
it returns the tuple ⊥A(e.g). (In our example in Figure 7.28, µ̂g(e4) = e2.)

We define the unnest map operator as follows:

Υ̂a:e2(e1) := µ̂g(χ̂g:e2[a](e1)).

This operator is mainly used for evaluating XPath expressions. Since this is
a very complex issue [338, 340, 416], we do not delve into optimizing XPath
evaluation, but instead take an XPath expression occurring in a query as it is
and use it in the place of e2. Optimized translation of XPath is orthogonal to
our unnesting approach and not covered in this paper. The interested reader is
referred to [416, 417].

7.17. LITERATURE 311

7.16.3 Equivalences

To acquaint the reader with ordered sequences, we state some familiar equiva-
lences that still hold.

σ̂p1(σ̂p2(e)) = σ̂p2(σ̂p1(e)), (7.202)

σ̂p(e1×̂e2) = σ̂p(e1)×̂e2, (7.203)

σ̂p(e1×̂e2) = e1×̂σ̂p(e2), (7.204)

σ̂p1(e1B̂p2e2) = σ̂p1(e1)B̂p2e2, (7.205)

σ̂p1(e1B̂p2e2) = e1B̂p2 σ̂p1(e2), (7.206)

σ̂p1(e1N̂p2e2) = σ̂p1(e1)N̂p2e2, (7.207)

σ̂p1(e1Ê
g:e
p2 e2) = σ̂p1(e1)Ê

g:e
p2 e2, (7.208)

e1×̂(e2×̂e3) = (e1×̂e2)×̂e3, (7.209)

e1B̂p1(e2B̂p2e3) = (e1B̂p1e2)B̂p2e3, (7.210)

σ̂p(e1×̂e2) = e1B̂pe2, (7.211)

e1<̂e2>̂ = e1×̂e2, (7.212)

Υ̂a:f(χ̂b(e))(2̂) = Π̂a:b(f(e)), (7.213)

Υ̂a:e2(e1) = e1×̂Υ̂a:e2(2̂). (7.214)

(7.215)

Of course, in the above equivalences the usual restrictions hold. For ex-
ample, if we want to push a selection predicate into the left part of a join,
it may not reference attributes of the join’s right argument. In other words,
F(p1) ∩ A(e2) = ∅ is required. As another example, Eqv. 7.214 only holds if
F(e1)∩A(e1) = ∅. In Eqv. 7.213, the function f may not alter the schema, and
b must be an attribute name. Please note that cross product and join are still
associative in the ordered context. However, neither of them is commutative.
Further, pushing selections into the second argument of a left-outer join is (in
general) not possible. For strict predicates we can do better, but this is beyond
the scope of the book.

7.16.4 Bibliography

Zaniolo [536]

7.17 Literature

• Bags, Sets, boolean algebras: [626]

• NF2: [4, 204, 431, 746, 747, 546, 748, 547, 778]

• HAS: [130]

• Aggregates: [492, 502]

• SQL to Algebra: [903, 134]

312 CHAPTER 7. AN ALGEBRA FOR SETS, BAGS, AND SEQUENCES

• Calculus to Algebra: [903, 637] Nakano: without duplicates

• BAGs: [21], [221]

• OO Algebra of Steenhagen et al. [831, 832, 830, 833]

• OO Algebra of Cluet and Moerkotte [189, 191].

• OO Algebra [173]

• OO Algebra [188]

• OO Algebra [380]

• OO Algebra [561]

• OO Algebra [760]

• OO Algebra [802, 801, 800, 803]

• OO Algebra [899, 900]

• OO Algebra [964]

• SAL [70]: works on lists. Intended for semistructured data. SAL can be
thought of as the order-preserving counterpart of the algebra presented
in [189, 191] extended to handle semistructured data. These extensions
are similar to those proposed in [5, 181]

• TAX [462]: The underlying algebra’s data model is based on sets of or-
dered labeled trees. Intended for XML.

• XML: Construction: [281, 282]

• no-name [820]: order preserving algebra for OLAP-style queries

• [369]

• Document Processing Algebras: [182, 384]

• Geo: [385]

• Mumick, Pirahesh, and Ramakrishnan introduce a variant of Datalog with
bag semantics [633]. Further, they show that the magic set transformation
retains the correct number of duplicates.

7.18 ToDo

Grouping Mapping and Commutativity Comment on ΠA(R1∩R2) ̸≡ ΠA(R1)∩ToDo
ToDo ΠA(R2) ΠA(R1 \R2) ̸≡ ΠA(R1) \ΠA(R2)

[717]
pregrouping Tsois, Sellis: [882]
bulktypes: Albert: [21]
bulktypes: Dayal: [221]

Chapter 8

Declarative Query
Representation

8.1 Calculus Representations

relational calculus originally introduced by Codd: [198, 197].
Variant for embedding in Pascal/R: [776]
calculus for complex objects: [49]

8.2 Datalog

8.3 Tableaux Representation

Tableaus have been introduced by [19, 17, 18] Tableaus are able to represent a
particuar kind of queries, the so called conjunctive queries ([143], [733]).

Expressions containing disjunction (set union) and negation (set difference)
can be represented by sets of tableaus ([759],[472]).

query processing with tables: [660]

8.4 Monoid Comprehension

[119, 278, 279]

8.5 Expressiveness

transitivity: [691]. aggregates: [502]. complex object and nested relations: [3].

8.6 Bibliography

313

314 CHAPTER 8. DECLARATIVE QUERY REPRESENTATION

Chapter 9

Translation and Lifting

9.1 Query Language to Calculus

9.2 Query Language to Algebra

9.3 Calculus to Algebra

9.4 Algebra to Calculus

9.5 Bibliography

315

316 CHAPTER 9. TRANSLATION AND LIFTING

Chapter 10

Query Equivalence,
Containment, Minimization,
and Factorization

This chapter is devoted to three related problems. Let q be a query and d be a
database. We denote by q(d) the result of evaluating the query on the database.
Two queries q1 and q2 are by definition equivalent (q1 ≡ q2), if q1(d) = q2(d) for
all databases d. The problem of deciding whether two queries are equivalent
is the query equivalence problem. We define q1 ⊆ q2 if q1(d) ⊆ q2(d) for all
databases d. The problem of deciding whether for two q1 ⊆ q2 holds is the
query containment problem. Obviously, q1 ≡ q2 ≺≻ q1 ⊆ q2 ∧ q2 ⊆ q1.

The third problem is query minimization. Consider the following conjunc-
tive query written as a rule in datalog:

q(X,Y) : −p(X,Y), p(X,Y).

Obviously, this query is equivalent to

q(X,Y) : −p(X,Y).

under set semantics. The latter query now contains fewer body literals. Query
minimization now asks for an equivalent query with the least possible number
of body literals. One possible approach is to successively delete a body literal
until no more body literal can be deleted without violating equivalence to the
original query.

The above example is also illustrative since it shows that query equiva-
lence (and thus query containment) differs under different semantics: whereas
the above two queries are equivalent under set semantics, they are not under
bag semantics. To see this, consider the extensional database {p(a, b), p(a, b)}.
The result of the first query contains p(a, b) four times whereas the last query
contains is only 2 times.

317

318CHAPTER 10. QUERY EQUIVALENCE, CONTAINMENT, MINIMIZATION, AND FACTORIZATION

10.1 Set Semantics

10.1.1 Conjunctive Queries

A conjunctive query may contain literals where the predicate is built-in. For
example, it applies comparison operators =, <,>,≤,≥, ̸=. Any explicit use
of equality can be eliminated as follows. For any literal of the form X = c,
any occurrence of X is replaced by c and the equality literal is dropped from
the query clause. For any literal of the form X = Y , any occurrence of Y
is replaced by X and the equality literal is dropped from the query clause.
This procedure is not possible for the other comparison operators <,>,≤,≥, ̸=
which we call inequality opertors. An inequality is any literal literal using an
inequality operator.

Containment and minimization for conjunctive queries without inequalities
are NP-complete Problems. First note that a tableaux directly corresponds
to a conjunctive queries with all body literals having a common predicate.
From that and the NP-completeness results for tableaux containment which
in turn follows immediately from first order subsumption [65, 319], it follows
immediately that containment of conjunctive queries is NP-complete. Chandra
and Merlin proved that minimization is NP-complete [143]. The complexity of
checking for equivalence of conjunctive queries is related to graph isomorphism.

EX
The procedure for checking query containment builds upon mappings from

queries to queries1. These mappings have two different names: homomorphism
and containment mapping .

Let q1 and q2 be the two queries for which we want to check containment.
Assume the qi are of the form

q1 : r1 : − l1, . . . , lk
q2 : r2 : − l′1, . . . , l

′
m

Let V(qi) be the set of variables occurring in qi, and C(qi) be the set of constants
occurring in qi. Further, let h be a substitution h : V(q2) → (V(q1) ∪ C(q1)).
We call h a containment mapping from q2 to q1, if and only if the following
conditions are fulfilled:

1. h(r2) = r1 for the head literals, and

2. for all i (1 ≤ i ≤ m) there exists a j (1 ≤ j ≤ k) such that h(l′i) = lj .

The latter condition states that for each body literal l′i in q2 there is a body
literal lj in q1 such that h(li) = l′i. Note that this does not imply that h is
injective or surjective.

The following theorem connects containment mappings with the contain-
ment problem:

Theorem 10.1.1 Let q1 and q2 be two conjunctive queries. Then q1 ⊆ q2 if
and only if there is a containment mapping h mapping q2 to q1.

1In fact, Chandra and Merlin mapped natural models which is essentially the same.

10.1. SET SEMANTICS 319

Consider the following example:

q1 : p(X1, X2) : − q(X2, X1), q(X1, X3)
q2 : p(Y1, Y2) : − q(Y2, Y1), q(Y3, Y1), q(Y1, Y4)

Consider h with h(Y1) = X1, h(Y2) = X2, h(Y3) = X2, and h(Y4) = X3. Then

l : p(Y1, Y2) q(Y2, Y1) q(Y3, Y1) q(Y1, Y4)
h(l) : p(X1, X2) q(X2, X1) q(X2, X1) q(X1, X3)

and, hence, q1 ⊆ q2.
A query q is minimal, if it contains the minimal possible number of body

literals. More formally, q is minimal , if for any query q′ with q ≡ q′ the number
of body literals in q′ greater than or equal to the number of body literals in
q. The following theorem shows that our initial thoughts on minimization are
correct for conjunctive queries.

Theorem 10.1.2 Let q be a conjunctive query. Then there is a minimal query
q′ equivalent to q such that q′ results from q by deleting zero or more body
literals.

This suggests a simple procedure for minimizing a given query q. For every
body literal check whether some containment mapping h exists such that it is
subsumed by some other body literal. Note that this containment mapping
must not rename head variables.

Let q and q′ be two conjunctive queries. If q can be derived from q′ solely
by reordering body literals and renaming variables, then q and q′ are called
isomorphic. Minimal queries are unique up to some isomorphism. Obviously,
minimizing conjunctive queries is also NP-complete.

Let us now come to unions of conjunctive queries. Let Q = Q1 ∪ . . . ∪ Qk

and Q′ = Q′1 ∪ . . . ∪Q′l be two unions of conjunctive queries Qi and Q
′
j with a

common head predicate. A containment mapping h from Q to Q′ maps each Qi

to some Q′j such that h(Qi) ⊆ Q′j . Sagiv and Yannakakis showed the following
theorem [759].

Theorem 10.1.3 Let Q = Q1 ∪ . . .∪Qk and Q′ = Q′1 ∪ . . .∪Q′l be two unions
of conjunctive queries Qi and Q

′
j with a common head predicate. Then Q ⊆ Q′

if and only if there is a containment mapping from Q to Q′.

This theorem gives us a corollary which allows us minimizing unions of
conjunctive queries by a pairwise checking of containment [759] (see also [887]).

Corollary 10.1.4 Let Q = Q1 ∪ . . .∪Qk be a union of conjunctive queries Qi

with common head predicate. Then there exists a subset R of Q such that

1. R ≡ Q

2. ¬∃ R′ ⊂ R R′ ≡ Q

3. If Qm is any equivalent to Q, then there is a containment mapping from
Qm to R but none from Qm to any proper subset R′ of R.

320CHAPTER 10. QUERY EQUIVALENCE, CONTAINMENT, MINIMIZATION, AND FACTORIZATION

This corollary implies that we can minimize a query that is a union of con-
junctive queries by eliminating those conjunctive queries Qi from it that are
contained in some Qj .

For conjunctive queries the problems of containment, equivalence, and min-
imization are

The problems of containment, equivalence, and minimization of conjunctive
queries are most difficitult if all body literals have a common predicate p. This
is quite an unrealistic assumption as typical conjunctive queries will not only
self-join the same relation. A first question is thus whether there exist special
cases where there are polynomial algorithms for containment checking. Another
strain of work is devoted to more complex queries. As it turns out, the results
become less nice and more restricted.

10.1.2 . . . with Inequalities

We now turn to conjunctive queries with inequalities in their body. For this
section, we assume that the domain is totally ordered and dense. That is, for
all x and y with x < y, there exists a z with x < z < y. In this context, we
have the following theorem:

Theorem 10.1.5 Assume the two conjunctive queries q1 and q2 are of the form

q1 : p1 : − l1, . . . , lk, e1, . . . , el
q2 : p2 : − l′1, . . . , l

′
m, e

′
1, . . . , e

′
n

where pi are the head literals, li and l′i are ordinary subgoals and ei and e′i
are inequalities. Let h be a containment mapping from q2 to q1 where both are
restricted to their ordinary literals. If additionally for all i = 1, . . . , n we have

e1, . . . , el =⇒ h(e′i)

then q1 ⊆ q2.

This result is due to Klug [503] who used the following procedure to reason
about inequalities using comparison operators in {=, <,≤}. Given a set of
inequalities L, an directed graph G is defined whose nodes are the variables
and constants in L. Whenever for all x < y or x ≤ y in L, the edge (x, y) is
added to G. For all constants c and c′ in L, if c < c′ then we add an edge
(c, c′). Edges are labeled with the according comparison operator. For equality
predicates, an edge in both direction is added. Given the graph G, we conclude
that x ≤ y if there is a path from x to y and x < y only if additionally at least
one edge is labelled by <. An alternative is to use the procedure presented in
Section 11.2.3 to solve the inequality inference problem. It also allows for the
comparison operator ̸=.

To see why a dense domain is important consider the domain of integers.
From 1 < x < 3 we can easily conclude that x = 2, a fact we can derive
neither from the procedure above nor from the axioms and inference procedure
presented in Section 11.2.3.

10.2. BAG SEMANTICS 321

Unfortunately, the other direction of Theorem ?? is wrong as the following
example shows:

q1 : p(X1, X2) : − q(X1, X2), r(X3, X4), r(X4, X3)
q2 : p(Y1, Y2) : − q(Y1, Y2), r(Y3, Y4), Y3 ≤ Y4

Obviously, Y3 ≤ Y4 cannot be implied by any non-existing inequalities from q1.
However, for q1 to be non-empty, we must have r(a, b) and r(b, a) for some a
and b. We also have a ≤ b or b ≤ a. In the former case, we can chose Y3 = a
and Y4 = b and in the latter Y3 = b and Y4 = a to satisfy r(Y3, Y4) and Y3 ≤ Y4.

Klug provides an alternative method to solve the containment problem. It
builds upon canonical models. He then shows that if the containment test
succeeds for all canonical models then and only then query containment holds
[503]. Klug does not give an explicit algorithm for constructing these canonical
models but these can be found in the literature [?]. He also gives two simple
subclasses of inequality queries, where constants are allowed only on the left-
or only on the right-hand side. For these subclasses if and only if holds in the
above Theorem ??.

Although the theorem is stated in terms of conjunctive queries with in-
equalities, it holds for any predicate p. Assume two queries of the following
form:

q1 : p1 : − l1, . . . , lk, P
q2 : p2 : − l′1, . . . , l

′
m, P

′

where P and P ′ are arbitrary formulas. If there is a containment mapping from
q2 to q1 where both are restricted to their ordinary literals and P =⇒ h(P ′),
then q1 ⊆ q2.

10.1.3 . . . with Negation

The first incarnation of negation we consider is set difference. Here, Sagiv and
Yannakakis where the first to derive some results [759].

[201]

10.1.4 . . . under Constraints

constraints: [470, 471, 439]
negation+constraints: [270, 271, 272, 273]

10.1.5 . . . with Aggregation

[202, 203]

10.2 Bag Semantics

10.2.1 Conjunctive Queries

• definition bag-containment, bag-equivalence [221, 497]

– characterizations [159, 450, 449] (no proofs in [160])

322CHAPTER 10. QUERY EQUIVALENCE, CONTAINMENT, MINIMIZATION, AND FACTORIZATION

– complexity results [159]

• definition bag-set containment, bag-set equivalence [159]

10.3 Sequences

10.3.1 Path Expressions

XPath constructs and their short-hands to denote XPath sublanguages.

• branching (’[]’)

• wild cards (’*’)

• descendant axis (’//’)

• disjunction : only binary or branching, (’—’) (or-branching)

Otherwise XPath only contains the child axis and node name tests. These
sublanguages are represented as tree patterns.

Query containment for certain subclasses:

• XP[],∗,// is coNP-complete [606]

Consider we have to answer p ⊆ p′. Then

– if p ∈ P [],// and p ∈ P [],∗,// then query containment is coNP-
complete.

– in PTIME if number of ’//’ is restricted by d which then gives the
degree of the polynomial describing the time complexity

– remains coNP-complete if p contains no ’*’ p′ contains at most two
’*’s

– remains coNP-complete if p contains at most 5 branches and p′ con-
tains at most 3 branches.

• P[],∗ is in PTIME (follows from work on conjunctive acyclic queries [951],
also noted by Wood [934])

• P[],// is in PTIME [28]

• P∗,// is in PTIME (these are related to a fragment of regular expressions
[607])

• Por is in PTIME

• P[],or is coNP-complete

• P| is coNP-complete [606]
[645] showed that P[],∗,//,| is coNP-complete for infinite alphabets and in
PSPACE for finite alphabets.

10.4. MINIMIZATION 323

• P//,| is PSPACE-complete

• P[],∗,// with variable binding and equivality tests is Πp
2- hard [235]

A PTIME algorithm for the fragment P// can be found in [118]

Florescu, Levy, and Suciu showed that for a language quite similar to P[],//

containment is NP-complete if evaluated on a graph-based data model instead
of a tree-based one [290].

Calvanese et al. also consider a graph-based data model and more expressive
queries [122].

[645] also contains work on languages with variable bindings with different
semantics.

More result: [235]

query containment with DTDs: [935]

Schwentick gives a very good overview over complexity results for contain-
ment checking [779]. We should repeat his table here.

10.4 Minimization

minimization: [522]

10.5 Detecting common subexpressions

[283, 393, 391]

10.5.1 Simple Expressions

Simple Non-Expensive Expressions

Simple Expensive Expressions

10.5.2 Algebraic Expressions

10.6 Bibliography

In a pair of papers Aho, Sagiv, and Ullmann [17, 18] study equivalence, con-
tainment, and minimization problems for tableaux. More specifically, they
introduce a restricted variant of relational expressions containing projection,
natural join, and selection with predicates that only compare attributes with
constants. They further assume the existence of a universal relation. That
is, every relation R is the projection of the universal relation on A(R). Now,
these restricted conjunctive queries can be expressed with tableaux. The au-
thors tableaux equivalence, containment, and minimization problems also in
the presence of functional dependences. The investigated problems are all NP-
complete. Since the practical usefulness is limited we do not give the concrete
results of this pair of papers.

[158, 161] contains (complexity) results for deciding query equivalence in
the case of recursive and nonrecursive datalog.

324CHAPTER 10. QUERY EQUIVALENCE, CONTAINMENT, MINIMIZATION, AND FACTORIZATION

View selection problem (just pointers): . . .
[468, 464, 465]
[167]

• conjunctive queries: equivalence and minimization are NP-complete [143,
18]
In [18] tableaux are used.

• polynomial algorithms for equivalence and minimization for simple tableaux:
[18, 17]

• union of elementary differences: Πp
2 complete: remark in [759] and a

pointer to the thesis of Sagiv [756].

• acyclic conjunctive queries: PTIME [951]

• equivalence (σ, B, π, ∪), equivalence (σ, B, π, ∪, \): ΠP
2 -complete [759]

• Recursive Datalog: [100]

Part III

Rewrite Techniques

325

Chapter 11

Simple Rewrites

11.1 Simple Adjustments

11.1.1 Rewriting Simple Expressions

Constant Folding

Constant subexpressions are evaluated and the result replaces the subexpres-
sion. For example an expression 1/100 is replaced by 0.01. Other expressions
like a− 10 = 50 can be rewritten to a = 60. However, the latter kind of rewrite
is rarely performed by commercial systems.

Eliminate Between

A predicate of the form Y BETWEEN X AND Z is replaced by X <= Y AND Y <=
Z. This step not only eliminates syntactic sugar but also enables transitivity
reasoning to derive new predicates (see).

Eliminate IN

A predicate of the form x IN (c1,...,cn) is rewritten to x = c1 OR ...OR x

= cn. This eliminates on form of the IN predicate and enables multikey index
access.

Another possibility is to use a table function that produces a table with one
column whose values are exactly those in the IN-list. From thereon, regular
optimization takes place. This possibility is also investigated when several
comparisons of a column with a constants are disjunctively connected.

Eliminating LIKE

A predicate of the form a LIKE ’Guy’ can only be rewritten to a = ’Guy’ if
a is of type varchar. This is due to the different white space padding rules for
LIKE and =.

327

328 CHAPTER 11. SIMPLE REWRITES

Start and Stop conditions derived from LIKE predicates

A predicate of the form a LIKE ‘bla%‘ gives rise to a start condition a >=
‘bla‘. Which can enable subsequent index usage. A stop predicate of the form
a < ’blb’ can also be derived. completing a range predicate for an index scan.
Start and stop conditions can only be derived if there is no leading ‘%‘ in the
pattern.

Pushing NOT operations down and eliminating them

NOT operations need to be pushed downwards for correctness reasons. At-
tention has to be paid to the IS NOT NULL and IS NULL predicates. XXX
complete set of rules go into some table.

Merge AND, OR, and other associative operations

While parsing, AND and OR operations are binary. For simpler processing they
are often n-ary in the internal representation. Therefor (p AND (q AND r)) is
rewritten to (AND p q r).

In general, associative nested operations should be merged. Examples of
other associative operations are + and ∗.

Normalized Argument Order for Commutative Operations

enabling factorization, constant folding: move constants to the left Speed upToDo
evaluation of equal.

Eliminate - and /

(x− y) ; x+ (−y) x/y ; x ∗ (1/y)

Adjust join predicates

A = B +C becomes A−C = B if AandB are from one relation and C is from
another.

Simplifying boolean expressions

The usual simplification rules for boolean expressions can be applied. For ex-
ample, if a contradiction can be derived.

Eliminating ANY, SOME, and ALL

ANY and SOME operators in conjunction with a comparison operator are
rewritten into disjunction of comparison predicates. For example a > ANY

(c1, c2) is rewritten to a > c1 OR a > c2. Correspondingly, an ALL oper-
ator with a constant list is rewritten into a conjunction of comparisons. For
example, a > ALL(c1, c2) is rewritten to a > c1 AND a > c2.

If a subquery occurs, then the ANY or SOME expression is rewritten to
a correlated subquery in an EXIST predicate. Consider the query a > ANY

11.2. DERIVING NEW PREDICATES 329

(SELECT b FROM ...WHERE p). It is rewritten to EXISTS(SELECT ...FROM

...WHERE p AND a > b).
Correspondingly, a subquery within an ALL operator is rewritten into a

NOT EXISTS subquery. For example, a > (SELECT b FROM ...WHERE p) is
rewritten into NOT EXISTS (SELECT b FROM ...WHERE p and a <= b)

• CASE ¡==¿ UNION

11.1.2 Normal forms for queries with disjunction

Another step of the NFST component or the first step of the rewriting compo-
nent can be the transformation of boolean expressions found in where clauses
in order to account for NULL values. Pushing not operators inside the boolean
expression allows to use two-valued logic instead of three-valued logic. If we
miss this step, we can get wrong results.

Another possible step is the subsequent transformation of the boolean ex-
pressions in where clauses into disjunctive normal form (DNF) or conjunctive
normal form (CNF). This step is not always necessary and really depends on
which plan generation approach is taken. Hence, this step could take place as
late as in a preparatory step for plan generation. It is (obviously) only neces-
sary if the query contains disjunctions. We discuss plan generation for queries
with disjunctions in Section ??.

11.2 Deriving new predicates

Given a set of conjunctive predicates, it is often possible to derive new predicates
which might be helpful during query plan generation.

This section discusses ways to infer new predicates.

11.2.1 Collecting conjunctive predicates

A query predicate may not only contain the and connector, but also or or not.
For the inference rules in this section we need base predicates that occur

conjunctively.
We say that a (base) predicate q occurs conjunctively in a (complex) pred-

icate p if p [q ← false] can be simplified to false. That is, if we replace every
occurrence of q by true, the simplification rules in Figure 11.1 (Fig. ??) simplify
p [q ← true] to false.

These simplification rules can be used to implement a simple member func-
tion occursConjunctively to determine whether a predicate occurs conjunctively
in a predicate or not. Together with a member function or visitor Collect-
BasePredicates, we can compute the set of conjunctively occurring predicates.
This set will form the basis for the next subsections.

11.2.2 Equality

Equality is a reflexive, symmetric and transitive binary relationship (see Fig. 11.2).
Such a relation is called an equivalence relation Hence, a set of conjunctively

330 CHAPTER 11. SIMPLE REWRITES

NOT true → false

NOT false → true

p AND true → p

p AND false → false

p OR true → true

p OR false → p

Figure 11.1: Simplification rules for boolean expressions

x = x
x = y =⇒ y = x
x = y ∧ y = z =⇒ x = z

Figure 11.2: Axioms for equality

occurring equality predicates implicitly partitions the set of composed terms
(IUs) into disjunctive equivalence classes.

Constants: Let X be an equivalence class of equal expressions. Let Y be
the set of all equality expressions that contributed to X. Then, in the query
predicate we replace all expressions x = y by x = c and y = c and subsequently
eliminate redundant expressions.

σx=c(e1 Bx=y e2) ≡ σx=c(e1)A σy=c(e2)

replace all predicates by IU=C.IU’s equivalent to a constant In [208] an ab-
stract data structure is presented that helps computing the equivalence classes
fast and also allows for a fast check whether two terms (IUs) are in the same
equivalence class. Since we are often interested in whether a given IU is equal
to a constant - or, more specifically, equal to another IU bound to a constant
-, we have to modify these algorithms such that the IU bound to a constant, if
it exists, becomes the representative of its equivalence class.

For the member functions addEqualityPredicate, getEqualityRepresentative
and isInSameEqualityClass we need an attribute equalityRepresentative in
class IU that is initialized such that it points to itself. Another member
equalityClassRank is initialized to 0. The code for the two member functions
is given in Figure 11.3.

By calling addEqualityPredicate for all conjunctively occurring equality pred-
icates we can build the equivalence classes.

11.2.3 Inequality

Table 11.1 gives a set of axioms used to derive new predicates from a set of
conjunctively occurring inequalities S (see [887], see Fig. 11.4).

11.2. DERIVING NEW PREDICATES 331

These axioms have to be applied until no more predicates can be derived.
The following algorithm [887] performs this task efficiently:

1. Convert each X < Y into X ̸= Y and X ≤ Y .

2. Compute the transitive closure of ≤.

3. Apply axiom A8 until no more new predicates can be derived.

4. Reconstruct < by using axiom A4.

Step 3 can be performed as follows. For any true IUs X and Y we find these
IUs Z with X ≤ Z ≤ Y .

Then we check whether any two such Z’s are related by ̸=. Here, it is
sufficient to check the original ̸= pairs in S and these derived in 1.

A1 : X ≤ X
A2 : X < Y ⇒ X ≤ Y
A3 : X < Y ⇒ X ̸= Y

A4 : X ≤ Y ∧X ̸= Y ⇒ X < Y

A5 : X ̸= Y ⇒ Y ̸= X

A6 : X < Y ∧ Y < Z ⇒ X < Z

A7 : X ≤ Y ∧ Y ≤ Z ⇒ X ≤ Z
A8 : X ≤ Z ∧ Z ≤ Y ∧X ≤W ∧W ≤ Y ∧W ̸= Z ⇒ X ̸= Y

Table 11.1: Axioms for inequality

11.2.4 Aggregation

Let R1, . . . , Rn be relations or views, A1, . . . , Am attributes thereof, pw and ph
predicates, and a1, . . . , al expressions of the form fj(Bj) for aggregate functions
fj and attributes Bj . For a query block of the form

select A1, . . . , Ak, a1, . . . , al
from R1, . . . , Rn

where pw
group byA1, . . . , Am

having ph

332 CHAPTER 11. SIMPLE REWRITES

we consider the derivation of new predicates [551]. Obviously, the following
predicates are true:

min(B) ≤ B

max(B) ≥ B

max(B) ≥ min(B)

min(B) ≤ avg(B)

avg(B) ≤ max(B)

If pw contains conjunctively a predicate Bθc for some constant c, we can fur-

ther infer
min(B) θ c if θ ∈ {>,≥}
max(B) θ c if θ ∈ {<,≤}
avg(B) θ c if θ ∈ {<,≤, >,≥}

These predicates can then

be used to derive further predicates. The original and the derive predicates
are usefule when the query block is embedded in another query block since
we are allowed to add them to the embedding query block conjunctively (see
Section 12.3).

If we know restrictions on the aggregates from some embedding query block,
we might be able to add predicates to pw. The following table contains the re-
strictions on an aggregate we know in the left column and the predicates we can

infer in the right column:

max(B) ≥ c ; B ≥ c if no other aggregation occurs
max(B) > c ; B > c if no other aggregation occurs
min(B) ≤ c ; B ≤ c if no other aggregation occurs
min(B) < c ; B < c if no other aggregation occurs

Note that the aggregation occurring in the left column must be the only aggre-
gation found in the query block. That is, l = 1 and ph contains no aggregation
other than a1. To see why this is necessary, consider the following query

select deptNo, max(salary), min(salary)
from Employee
group bydeptNo

Even if we know that max(salary) > 100.000, the above query block is not
equivalent to

select deptNo, max(salary), min(salary)
from Employee
where salary ¿ 100.000
group bydeptNo

Neither is

select deptNo, max(salary)
from Employee
group bydeptNo
having avg(salary) ¿ 50.000

11.3. PREDICATE PUSH-DOWN AND PULL-UP 333

equivalent to

select deptNo, max(salary)
from Employee
where salary ¿ 100.000
group bydeptNo
having avg(salary) ¿ 50.000

even if we know that max(salary) > 100.000.

11.2.5 ToDo

[579]

11.3 Predicate Push-Down and Pull-Up

11.4 Eliminating Redundant Joins

11.5 Distinct Pull-Up and Push-Down

11.6 Set-Valued Attributes

In this section, we investigate the effect of query rewriting on joins involving
set-valued attributes in object-relational database management systems. We
show that by unnesting set-valued attributes (that are stored in an internal
nested representation) prior to the actual set containment or intersection join
we can improve the performance of query evaluation by an order of magnitude.
By giving example query evaluation plans we show the increased possibilities
for the query optimizer. This section is based on [423].

11.6.1 Introduction

The growing importance of object-relational database systems (ORDBMS) [841]
has kindled a renewed interest in the efficient processing of set-valued attributes.
One particular problem in this area is the joining of two relations on set-valued
attributes [315, 420, 713]. Recent studies have shown that finding optimal join
algorithms with set-containment predicates is very hard [121]. Nevertheless, a
certain level of efficiency for joins on set-valued attributes is indispensable in
practice.

Obviously, brute force evaluation via a nested-loop join is not going to be
very efficient. An alternative is the introduction of special operators on the
physical level of a DBMS [420, 713]. Integration of new algorithms and data
structures on the physical level is problematic, however. On one hand this
approach will surely result in tremendous speed-ups, but on the other hand
this efficiency is purchased dearly. It is very costly to implement and integrate
new algorithms robustly and reliably.

334 CHAPTER 11. SIMPLE REWRITES

We consider an alternative approach to support set-containment and non-
empty intersection join queries by compiling these join predicates away. The
main idea is to unnest the set-valued attributes prior to the join. Thereby, we
assume a nested internal representation [712]. This is also the underlying rep-
resentation for the specific join algorithms proposed so far [420, 713]. Whereas
[713] concentrates on set-containment joins, we also consider joins based on
non-empty intersections. Ramasamy et al. also present a query rewrite for con-
tainment queries in [713], but on an unnested external representation, which
(as shown there) exhibits very poor performance. Further, the special case of
empty sets was not dealt with.

The goal of our paper is to show that by rewriting queries we can compile
away the original set-containment or intersection join. As our experiments with
DB2 show, our rewrite results in speed-up factors that grow linearly in the size
of the input relations as compared to quadratic growth for brute-force nested-
loop evaluation. The advantage of this approach—as compared to [420, 713]—is
that no new join algorithms have to be added to the database system.

11.6.2 Preliminaries

In this section we give an overview of the definition of the set type. Due to the
deferral of set types to SQL-4 [291], we use a syntax similar to that of Informix
1. A possible example declaration of a table with a set-valued attribute is:

create table ngrams (

setID integer not null primary key,

content set<char(3)>

);

setID is the key of the relation, whereas content stores the actual set. The
components of a set can be any built-in or user-defined type. In our case we
used set<char(3)>, because we wanted to store 3-grams (see also Section ??).
We further assume that on set-valued attributes the standard set operations
and comparison operators are available.

Our rewriting method is based on unnesting the internal nested representa-
tion. The following view defining the unnested version of the above table keeps
our representation more concise:

create view view_ngrams(setID, d, card) as (

(select ngrams.setID, d.value, count(ngrams.content)

from ngrams, table(unnest<char(3)>(ngrams.content)) d)

union all

(select ngrams.setID, NULL, 0)

from ngrams

where count(ngrams.content) = 0)

);

1http://www.informix.com/documentation/

11.6. SET-VALUED ATTRIBUTES 335

where setID identifies the corresponding set, d takes on the different values in
content and card is the cardinality of the set. We also need unnest<char(3)>,
a table function that returns a set in the form of a relation. As unnest<char(3)>
returns an empty relation for an empty set, we have to consider this special case
in the second subquery of the union statement, inserting a tuple containing a
dummy value.

11.6.3 Query Rewrite

We are now ready to describe the queries we used to compare the nested and
unnested approach. We concentrate on joins based on subset-equal and non-
empty intersection predicates, because these are the difficult cases as shown in
[121]. We have skipped joins involving predicates based on equality, because
the efficient evaluation of these predicates is much simpler and can be done in
a straightforward fashion (see [420]).

Checking Subset Equal Relation

Here is a query template for a join based on a subset-equal predicate:

select n_1.setID, n_2.setID

from ngrams n_1, ngrams n_2

where is_subseteq(n_1.content, n_2.content) <> 0;

(The comparison with 0 is only needed for DB2, which does not understand the
type bool.)

This query can be rewritten as follows. The basic idea is to join the unnest-
ed version of the table based on the set elements, group the tuples by their
set identifiers, count the number of elements for every set identifier and com-
pare this number with the original counts. The filter predicate vn1.card <=
vn2.card discards some sets that cannot be in the result of the set-containment
join. We also consider the case of empty sets in the second part of the query.
Summarizing the rewritten query we get

(select vn1.setID, vn2.setID

from view_ngrams vn1, view_ngrams vn2

where vn1.d = vn2.d

and vn1.card <= vn2.card

group by vn1.setID, vn1.card, vn2.setID, vn2.card

having count(*) = vn1.card)

union all

(select vn1.setID, vn2.setID

from view_ngrams vn1, view_ngrams vn2

where vn1.card = 0);

Checking Non-empty Intersection

Our query template for joins based on non-empty intersections looks as follows.

336 CHAPTER 11. SIMPLE REWRITES

select n_1.setID, n_2.setID

from ngrams n_1, ngrams n_2

where intersects(n_1.content, n_2.content) <> 0;

The formulation of the unnested query is much simpler than the unnested
query in Section 11.6.3. Due to our view definition, not much rewriting is
necessary. We just have to take care of empty sets again, although this time in
a different, simpler way.

select distinct vn1.setID, vn2.setID

from view_ngrams vn1, view_ngrams vn2

where vn1.d = vn2.d

and vn1.card > 0;

11.7 Bibliography

This section is based on the investigations by Helmer and Moerkotte [423].
There, we also find a performance evaluation indicating that that the rewrites
depending on the relation sizes result in speed-up factors between 5 and 50 even
for moderately sized relations. Nevertheless, it is argued their, that support for
set-valued attributes must be build into the DBMS. A viable alternative to the
rewrites presented here is the usage of special join algorithms for join predicates
involving set-valued attributes [315, 419, 420, 581, 601, 602, 713]. Nevertheless,
as has been shown by Cai, Chakaravarthy, Kaushik, and Naughton, dealing
with set-valued attributes in joins theoretically (and of course practical) difficult
issue [121]. Last, to efficiently support simple selection predicates on set-valued
attributes, special index structures should be incorporated into the DBMS [421,
422, 424].

11.7. BIBLIOGRAPHY 337

IU::addEqualityClassUnderThis(IU* lIU){

IU*lRepresentativeThis = this -> getEqualityRepresentativeIU;

IU*lRepresentativeArg = aIU -> getEqualityRepresentativeIU;

lRepresentativeArg -> _equalityRepresentative =

lRepresentativeThis;

if(lRepresentativeArg -> _equalityClassRank >=

lRepresentativeThis -> _equalityClassRank){

lRepresentativeThis -> _equalityClassRank =

lRepresentativeArg -> _equalityClass Rank + 1;

}

}

IU::addEqualityPredicate(Compositing* p){

IU*lLeft = p -> leftIU;

IU*lRight = p -> rightIU;

if (p -> isEqualityPredicateIU &&

lLeft -> getEqualityRepresentativeIU ==

lRight -> getEqualityRepresentativeIU){

if(lLeft - > isBoundToConstantIU) {

lLeft -> addEqualityClassUnderThis(lRight);

}else

if(lRight -> isBoundToConstantIU){

lRight -> addEqualityClassUnderThis(lLeft),

}else

if (lLeft -> _equalityClassRank > lRight ->

_equalityClassRank){

lLeft -> addEqualityClassUnderThis(lRight)

}else{

lright -> addEqualityClassUnderThis(lLeft)

}

}

}

IU* IU:: getEqualityRepresentativeIU(){

if (this == _equalityRepresentative){

_equalityRepresentative = _equalityRepresentative ->

getEqualityRepresentativeIU;

}

return_equalityRepresentative;

}

Figure 11.3:

338 CHAPTER 11. SIMPLE REWRITES

A1 X ≤ X
A2 X < Y ⇒ X ≤ Y
A3 X < Y ⇒ X ̸= Y
A4 X ≤ Y ∧X ̸= Y ⇒ X < Y
A5 X ̸= Y ⇒ Y ̸= X
A6 X < Y ∧ Y < Z ⇒ X < Z
A7 X ≤ Y ∧ Y ≤ Z ⇒ X ≤ Z
A8 X ≤ Z ∧ Z ≤ Y ∧X ≤W ∧W ≤ Y ∧W ̸= Z ⇒ X ̸= Y

Figure 11.4: Axioms for inequality

Chapter 12

View Merging

12.1 View Resolution

View merging can be as simple as replacing the view name in the from clause
of a query by the view definition. We would like to call this step view reso-
lution. This then results in a query with nesting in the from clause that can
subsequently be unnested (see ??). Consider the following example: XXX Ex-
ample Other examples are given below. One must be careful not to produce
variable clashes. Especially if a view is referenced several times, variables must
be renamed.

12.2 Simple View Merging

Of course, these two steps can be merged into one step. The overall effect is
then that the view name is replaced by all the entries in the from clause of the
view definition and the predicate contained in the where clause of the view
definition is conjunctively added to where clause of the query block whose
from clause contained the view name. Consider the following view definition

create view

which is refenced in the following query:

View merging resuls in

However, there are a few pitfalls. This simple version of view merging can
only be applied to simple select-project-join queries not containing duplicate
elimination, set operations, grouping or aggregation. In these cases, complex
view merging must be applied.

339

340 CHAPTER 12. VIEW MERGING

12.3 Predicate Move Around (Predicate pull-up and
push-down)

If unnesting is not implemented or not possible, several techniques like predicate
move around, semi-join techniques and magic rewriting allow the copying of
predicates from one block into another block in order to reduce the number of
qualifying tuples [551, 631, 632, 633, 791].

Let us briefly illustrate the main idea by means of a simple example query

select e.name
from Employee e,

(select d.name, d.dno
from Department d
where d.dno = e.dno and

d.boss.name = e.name and
d.boss.name like ’%S’) as D(dname,ddno)

where e.dno between 1 and 10

which can be rewritten by predicate move around to

select e.name
from Employee e,

(select d.name, d.dno
from Department d
where d.dno = e.dno and

d.boss.name = e.name and
d.dno between 1 and 10 and
d.boss.name like ’%S’) as D(dname,dd no)

where e.dno between 1 and 10 and
e.name like ’%S’

Predicate push-down and pull-up often occurs in conjunction with views.
Let us therefore consider some examples. The following view that cannot be
simply merged because it contains a union operator. Consider the case where
there are two different employee tables that are unioned in a view.

create view Emp(eno, name, salary, dno) as
select e1.eno, e1.name, e1.salary, e1.dno
from Emp1[e1]
union all
select e2.eno, e2.name, e2.salary, e2.dno
from Emp2[e2]

Simple view merging cannot be applied to the query

select e.eno, e.name
from Emp[e]
where e.salary > 150000

12.4. COMPLEX VIEW MERGING 341

but view resolution with a subsequent push-down of the predicate e.salary >
150.000 will result in

select e.eno, e.name
from (select e1.eno, e1.name, e1.salary, e1.dno

from Emp1[e1]
where e1.salary > 150000)

union all(select e2.eno, e2.name, e2.salary, e2.dno
from Emp2[e2]
where e2.salary > 150000)

Note that we did not eliminate unneeded columns/attributes. Further note
that we can now exploit possible indexes on Emp1.salary and Emp2.salary.
In case union would have been used in the view definition, the rewritten query
would also contain union requiring a duplicate elimination.

Here is another example where pushing a predicate down results in much
more efficient plans. Given the view

define view EmpStat as
select e.dno, min(e.salary) minSal, max(e.salary) maxSal, avg(e.salary) avgSal
from Emp[e]
group by e.dno

the query

select *
from EmpStat[e]
where e.dno = 10

can be rewritten to

select e.dno, min(e.salary) minSal, max(e.salary) maxSal, avg(e.salary) avgSal
from Emp[e]
where e.dno = 10
group by e.dno

which can be further simplified to

select e.dno, min(e.salary) minSal, max(e.salary) maxSal, avg(e.salary) avgSal
from Emp[e]
where e.dno = 10

12.4 Complex View Merging

12.4.1 Views with Distinct

XXX TODO views with distinct

342 CHAPTER 12. VIEW MERGING

12.4.2 Views with Group-By and Aggregation

Consider the following view with a group-by clause and aggregation:

create view AvgSalary as
select e.dno, avg(e.salary) as avgSalary
from Emp[e]
group by e.dno

The following query uses this view:

select d.name, s.avgSalary)
from Dept[d], AvgSalary[s]
where d.location = ‘Paris‘ and

d.dno = s.dno

Using the view definition, this query can be rewritten to

select d.name, avg(e.salary) as avgSalary
from Dept[d], Emp[e]
where d.location = ‘Paris‘ and

d.dno = e.dno
group by d.ROWID, d.name

where d.ROWID is a either a key-attribute like d.dno or a unique row identifier of
the tuples in Dept. Or course, this transformation is not valid in general. The
primary condition here is that we have a key-foreign key join. More specifically,
d.dno must be the key of the Dept table or it must be a unique attribute.

Applying simple view resolution results in:

select d.name, s.avgSalary)
from Dept[d], (select e.dno, avg(salary) as avgSalary

from Emp[e]
group by e.dno) [s]

where d.location = ‘Paris‘ and
d.dno = s.dno

This query can then be unnested using the techniques of Section ??.
Sometimes strange results occur. Consider for example the view

define view EmpStat as
select e.dno, min(e.salary) minSal, max(e.salary) maxSal, avg(e.salary) avgSal
from Emp[e]
group by e.dno

If the user issues the query

12.4. COMPLEX VIEW MERGING 343

select avg(minSal), avg(maxSal), avg(avgSal)
from EmpStat

view merging results in

select avg(min(e.salary)), avg(max(e.salary)), avg(avg(e.salary))
from Emp[e]
group by e.dno

This is perfectly o.k. You just need to think twice about it. The resulting plan
will contain two group operations: XXX Plan

12.4.3 Views in IN predicates

Consider a view that contains the minimum salary for each department

create view MinSalary as
select e.dno, min(e.salary) as minSalary
from Emp[e]
group by e.dno

and a query asking for all those employees together with their salaries in Parisian
departments earning the minimum salary:

select e.name, e.salary
from Emp[e], Dept[d]
where e.dno = d.dno and

d.location = ‘Paris‘ and
(e.dno, e.sal) in MinSalary

This query can be rewritten to:

select e.name, e.salary
from Emp[e], Dept[d], Emp[e2]
where e.dno = d.dno and

d.location = ‘Paris‘ and
e.dno = e2.dno

group by e.ROWID, d.ROWID, e.name, e.salary
having e.salary = min(e2.sal)

Note that the employee relation occurs twice. Avoiding to scan the employee
relation twice can be done as follows:

12.4.4 Final Remarks

Not all views can be merged. If for example a rownum function that numbers
rows in a table is used in a view definition for a result column, then the view
cannot be merged. Unmerged views will remain as nested subqueries with

344 CHAPTER 12. VIEW MERGING

two alternative evaluation strategies: Either they will be evaluated as nested
queries, that is for every row produced by some outer producer the view is
evaluated, or the view will be materialized into a temporary table. Whatever
is more efficient must be chosen by the plan generator. However, techniques
for deriving additional predicates and subsequent techniques such as predicate
move around (predicate pull-down, push-down) are still applicable.

12.5 Bibliography

Chapter 13

Quantifier treatment

13.1 Pseudo-Quantifiers

Again, the clue to rewrite subqueries with a ANY or ALL predicate is to apply
aggregate functions [314]. A predicate of the form

< ANY (select . . .
from . . .
where . . .)

can be transformed into the equivalent predicate

< (select max(. . .)
from . . .
where . . .)

Analogously, a predicate of the form

< ALL (select . . .
from . . .
where . . .)

can be transformed into the equivalent predicate

< (select min(. . .)
from . . .
where . . .)

In the above rewrite rules, the predicate < can be replaced by =, ≤, etc. If the
predicate is > or ≥ then the above rules are flipped. For example, a predicate
of the form >ANY becomes >select min and >ALL becomes >select max.

After the rewrites have been applied, the Type A or Type JA unnesting
techniques can be applied, depending on the details of the inner query block.

345

346 CHAPTER 13. QUANTIFIER TREATMENT

13.2 Existential quantifier

Existential quantifiers can be seen as special aggregate functions and query
blocks exhibiting an existential quantifier can be unnested accordingly [220].
For example, an independent existential subquery can be treated the same way
as a Type A query. Nested existential quantifiers with a correlation predi-
cate can be unnested using a semi-join. Other approaches rewrite (existential)
quantifiers using the aggregate function count [314]. Consider the partial query
pattern

. . .
where exists (select . . .
from . . .
where . . .)

It is equivalent to

. . .
where 0 > (select count(. . .)
from . . .
where . . .)

A not exists like in

. . .
where not exists (select . . .
from . . .
where . . .)

is equivalent to

. . .
where 0 = (select count(. . .)
from . . .
where . . .)

After these rewrites have been applied, the Type A or Type JA unnesting
techniques can be applied, depending on the details of the inner query block.

13.3 Universal quantifier

Universal quantification is a little more complex. An overview is provided in
[184]. Here is the prototypical OQL query pattern upon which our discussion

13.3. UNIVERSAL QUANTIFIER 347

Case-No. 1 2 3 4 5 6 7 8

p() p() p() p() p(e1) p(e1) p(e1) p(e1)
q() q(e1) q(e2) q(e1, e2) q() q(e1) q(e2) q(e1, e2)

Case-No. 9 10 11 12 13 14 15 16

p(e2) p(e2) p(e2) p(e2) p(e1, e2) p(e1, e2) p(e1, e2) p(e1, e2)
q() q(e1) q(e2) q(e1, e2) q() q(e1) q(e2) q(e1, e2)

Table 13.1: Classification Scheme According to the Variable Bindings

of universal quantifiers nested within a query block is based:

Q ≡ select e1
from e1 in E1

where for all e2 in select e2
from e2 in E2

where p:
q

where p (called the range predicate) and q (called the quantifier predicate) are
predicates in a subset of the variables {e1, e2}. This query pattern is denoted
by Q.

In order to emphasize the (non-)occurrence of variables in a predicate p, we
write p(e1, . . . , en) if p depends on the variables e1, . . . , en. Using this conven-
tion, we can list all the possible cases of variable occurrence. Since both e1 and
e2 may or may not occur in p or q, we have to consider 16 cases (see Table 13.1).
All cases but 12, 15, and 16 are rather trivial. Class 12 queries can be unnested
by replacing the universal quantifier by a division, set difference, anti-semijoin,
or counting. Class 15 queries are treated by set difference, anti-semijoin or
grouping with count aggregation. For Class 16 queries, the alternatives are set
difference, anti-semijoin, and grouping with count aggregation. In all cases,
special care has to be taken regarding NULL values. For details see [184].

Class 12 Let us first consider an example of a Class 12 query.

select al.name
from al in Airline
where for all ap in (select ap

from ap in Airport
where apctry = ’USA’):

ap in al.lounges

Define U ≡ πap(σapctry=′USA′(Airport[ap, apctry])). Then the three alternative
algebraic expressions equivalent to this query are

• plan with division:
if U = ∅

348 CHAPTER 13. QUANTIFIER TREATMENT

then Airline[name]
else µap:lounges(Airline[name, lounges])÷ U

• plan with set difference:

Airline[name] \ (πname(U Nap̸∈lounges Airline[name, lounges]))

• plan with anti-semijoin:

πname(U Tap ̸∈lounges Airline[name, lounges])

This plan is only valid, if the projected attributes of Airline form a su-
perkey.

The plan with the anti-semijoin is typically the most efficient.

In general, the plan with division is [637, 355]:

ifσp(e2)
(E2[e2])̸=∅(((E1[e1]Bq(e1,e2) E2[e2])÷ σp(e2)(E2[e2])), E1[e1])

In case the selection σp(e2)(E2[e2]) yields at least a one tuple or object, we can
apply the prediate p to the divident, as in

ifσp(e2)
(E2[e2])̸=∅(((E1[e1]Bq(e1,e2) σp(e2)(E2[e2]))÷ σp(e2)(E2[e2])), E1[e1]).

If the quantifier predicate q(e1, e2) is of the form e2 ∈ e1.SetAttribute, then the
join can be replaced by an unnest operator:

ifσp(e2)
(E2[e2]) ̸=∅((µe2:SetAttribute(E1[e1,SetAttribute])÷ σp(e2)(E2[e2])), E1[e1])

Using set difference, the translation is

E1[e1] \ πe1((E1[e1]× σp(e2)(E2[e2])) \ (E1[e1]Bq(e1,e2) σp(e2)(E2[e2])))

which can be optimized to

E1[e1] \ E1[e1]N¬q(e1,e2) σp(e2)(E2[e2])

This plan is mentioned in [830], however using a regular join instead of a semi-
join.

The anti-semijoin can be employed to eliminate the set difference yielding
the following plan:

E1[e1] T¬q(e1,e2) σp(e2)(E2[e2])

This plan is in many cases the most efficient plan. However, the correctness of
this plan depends on the uniqueness of e1, i.e., the attribute(s) e1 must be a
(super) key of E1. This is especially fulfilled in the object-oriented context if
e1 consists of or contains the object identifier.

We do not present the plans based group and count operations (see [184]).

13.3. UNIVERSAL QUANTIFIER 349

Class 15 Here is an example query of Class 15:

select al.name
from al in Airline
where for all f in (

select f
from f in Flight
where al = f.carrier):
f.to.apctry != “Libya”

The quantifier’s range formulat σp(e1,e2)(E2[e2]) is obviously not closed. It
contains the free variable e1. According to the reduction algorithm of Codd
[199], the division plan is

(E1[e1]B¬p(e1,e2)∨q(e2) E2[e2])÷ E2[e2].

The plan with set difference is

E1[e1] \ πe1((E1[e1]Bp(e1,e2) E2[e2]) \ (E1[e1]Bp(e1,e2) σq(e2)(E2[e2])))

and the most efficient plan using the antijoin is

E1[e1] Tp(e1,e2) σ¬q(e2)(E2[e2]).

Class 16 Here is an example Class 16 query:

select al.name
from al in Airline
where for all ap in (

select ap
from ap in Airport
where apctry = alctry):
ap in al.lounges

The range predicate again depends on the outer level variable e1. A valid
division plan looks similar to the one for Class 15. A plan with set difference is

E1[e1] \ πe1((E1[e1]Bp(e1,e2) E2[e2]) \ (E1[e1]Bp(e1,e2)∧q(e1,e2) E2[e2])).

This plan can first be refined by replacing the seet difference of the two join
expression by a semijoin resultint in

E1[e1] \ (E1[e1]Np(e1,e2)∧¬q(e1,e2) E2[e2])

Finally, the remaining set difference is transformed into an anti-semijoin which
also covers the semijoin:

E1[e1] Tp(e1,e2)∧¬q(e1,e2) E2[e2].

Again, the uniqueness constraing on E2[e2] is required for this most efficient
plan to be valid.

For all discussed classes, problems with NULL values might occur. In that
case, the plans have to refined [184].

350 CHAPTER 13. QUANTIFIER TREATMENT

13.4 Bibliography

[467] [220] [184] [715, 708]

Chapter 14

Unnesting Nested Queries

351

352 CHAPTER 14. UNNESTING NESTED QUERIES

Chapter 15

Optimizing Queries with
Materialized Views

15.1 Conjunctive Views

15.2 Views with Grouping and Aggregation

15.3 Views with Disjunction

15.4 Bibliography

materialized view with aggregates: [828],
materialized view with disjunction: [11],
SQL Server: [334]
other: [12, 151, 152, 163, 549, 843, 881, 948] [139, 143, 166, 154, 283, 482,

535, 676, 707, 785]
some more including maintenance etc: [10, 15, 53, 95, 151, 157, 205, 383, 398]

[434, 481, 548, 704, 749, 266, 828] [843, 852, 851, 973, 949] [6, 252, 253, 405]
Overview: [390]
[550]
performance eval: [93]
Stacked views: [225]
recursion: [255]
with patterns (integration): [707], [254, 256], [234]

353

354CHAPTER 15. OPTIMIZING QUERIESWITHMATERIALIZED VIEWS

Chapter 16

Semantic Query Rewrite

16.1 Constraints and their impact on query opti-
mization

Using Constraints: [332, 374]

16.2 Semantic Query Rewrite

Semantic query rewrite exploits knowledge (semantic information) about the
content of the object base. This knowledge is typically specified by the user.
We already saw one example of user-supplied information: inverse relationships.
As we already saw, inverse relationships can be exploited for more efficient query
evaluation.

Another important piece of information is knowledge about keys. In con-
junction with type inference, this information can be used during query rewrite
to speed up query execution. A typical example is the following query

select distinct *
from Professor p1, Professor p2
where p1.university.name = p2.university.name

By type inference, we can conclude that the expressions p1.university and
p2.university are of type University. If we further knew that the name of uni-
versities are unique, that is the name is a candidate key for universities, then
the query could be simplified to

select distinct *
from Professor p1, Professor p2
where p1.university = p2.university

Evaluating this query does no longer necessitate accessing the universities to
retrieve their name.

Some systems consider even more general knowledge in form of equivalences
holding over user-defined functions [1, 289]. These equivalences are then used
to rewrite the query. Thereby, alternatives are generated all of which are sub-
sequently optimized.

355

356 CHAPTER 16. SEMANTIC QUERY REWRITE

Semantic Query Optimization: [139]

16.3 Exploiting Uniqueness in Query Optimization

[681]

16.4 Bibliography

[82] [73] [943] Foreign functions semantic rules rewrite: [154] Conjunctive Queries,
Branch Minimization: [743]

Part IV

Plan Generation

357

Chapter 17

Current Search Space and Its
Limits

17.1 Plans with Outer Joins, Semijoins and Anti-
joins

outer join reordering [299, 298, 736, 308], outer join/antijoin plan generation
[717], semijoin reducer [836],

17.2 Expensive Predicates and Functions

17.3 Techniques to Reduce the Search Space

• join single row tables first

• push down SARGable predicates

• For large join queries do not apply transitivity of equality to derive new
predicates and disable cross products and possibly bushy trees.

17.4 Bibliography

359

360 CHAPTER 17. CURRENT SEARCH SPACE AND ITS LIMITS

Chapter 18

Dynamic Programming-Based
Plan Generation

18.1 Introduction

So far, we treated predicates that reference a single relation as selection predi-
cates and predicates that reference two relations as join predicates. In general,
a predicate can reference more than two relations. In this case, it can be treated
as a join predicate. Consider for example the query

select * from R, S, T, where R.A = S.B AND S.C = T.D and R.E
+ S.F = T.G

A query graph as defined in Section ?? does not suffice to capture these
predicates. What is needed are hypergraphs.

There exists a second reason why hypergraphs are needed. In Section 7.15,
we introduced several conflict handling mechanisms, which allow for the correct
enumeration of the core search space. Every operator ◦ within some operator
tree has a set of relations TES associated with it. This set of relations was a
subset of all the relations in the leaf nodes below the operator subtree rooted
at ◦. Hence, some relations occurred on ◦’s left side, others on its right side.
Thus, we splitted TES into TESleft and TESright. Then, the pair (TESleft, TESright)
is a hyperedge.

Algorithm DPsube was used to calculate the best plan bottom-up. The
applicability test, among other things, assured that only connected components
and connected complements thereof were formed. The test often fails. This is
similar to the manner the tests of DPsub and DPsize (see Section ??) failed
for regular graphs. There, this fact lead us to the development of DPccp, which
enumerates CCPs for regular graphs quite efficiently.

The first goal of this section is to build an equally efficient enumerator for
CCPs for hypergraphs. Then, this basic algorithm is extended such that it is
able to deal with more operators than those handled in the core search space.

361

362CHAPTER 18. DYNAMIC PROGRAMMING-BASED PLANGENERATION

R1

R2

R3

R4

R5

R6

Figure 18.1: Sample hypergraph

18.2 Hypergraphs

Let us start with the definition of hypergraphs.

Definition 18.2.1 (hypergraph) A hypergraph is a pair H = (V,E) such
that

1. V is a non-empty set of nodes and

2. E is a set of hyperedges, where a hyperedge is an unordered pair (u, v) of
non-empty subsets of V (u ⊂ V and v ⊂ V) with the additional condition
that u ∩ v = ∅.

We call any non-empty subset of V a hypernode. We assume that the nodes in
V are totally ordered via an (arbitrary) relation ≺. The ordering on nodes is
important for our algorithm.

A hyperedge (u, v) is simple if |u| = |v| = 1. A hypergraph is simple if all
its hyperedges are simple.

Note that a simple hypergraph is the same as an ordinary undirected graph.
In our context, the nodes of hypergraphs are relations and the edges are ab-
stractions of join predicates. Consider, for example, a join predicate of the form
R1.a+R2.b+R3.c = R4.d+R5.e+R6.f . This predicate will result in a hyper-
edge ({R1, R2, R3}, {R4, R5, R6}). Fig. ?? contains an example of a hypergraph.
The set V of nodes is V = {R1, . . . , R6}. Concerning the node ordering, we
assume that Ri ≺ Rj ⇐⇒ i < j. There are the simple edges ({R1}, {R2}),
({R2}, {R3}), ({R4}, {R5}), and ({R5}, {R6}). The hyperedge from above is
the only true hyperedge in the hypergraph.

Note that is possible to rewrite the above complex join predicate. For
example, it is equivalent to R1.a + R2.b = R4.d + R5.e + R6.f − R3.c. This
leads to a hyperedge
({R1, R2}, {R3, R4, R5, R6}). If the query optimizer is capable of performing
this kind of algebraic transformations, all derived hyperedges are added to the
hypergraph, at least conceptually. We will come back to this issue in Section ??.

To decompose a join ordering problem represented as a hypergraph into
smaller problems, we need the notion of subgraph. More specifically, we only
deal with node-induced subgraphs.

Definition 18.2.2 (subgraph) Let H = (V,E) be a hypergraph and V ′ ⊆ V
a subset of nodes. The node induced subgraph G|V ′ of G is defined as G|V ′ =

18.3. CCPS: CSG-CMP-PAIRS FOR HYPERGRAPHS 363

(V ′, E′) with E′ = {(u, v)|(u, v) ∈ E, u ⊆ V ′, v ⊆ V ′}. The node ordering on
V ′ is the restriction of the node ordering of V .

As we are interested in connected subgraphs, we give

Definition 18.2.3 (connected) Let H = (V,E) be a hypergraph. H is con-
nected if |V | = 1 or if there exists a partitioning V ′, V ′′ of V and a hyperedge
(u, v) ∈ E such that u ⊆ V ′, v ⊆ V ′′, and both G|V ′ and G|V ′′ are connected.

If H = (V,E) is a hypergraph and V ′ ⊆ V is a subset of the nodes such that the
node-induced subgraph G|V ′ is connected, then we call V ′ a connected subgraph
or csg for short. The number of connected subgraphs is important for dynamic
programming: it directly corresponds to the number of entries in the dynamic
programming table. If a node set V ′′ ⊆ (V \ V ′) induces a connected subgraph
G|V ′′ , we call V ′′ a connected complement of V ′ or cmp for short.

For the purpose of this chapter, we assume that all hypergraphs are con-
nected. This way, we can make sure that no (additional) cross products are
needed. This condition can easily be assured by adding according hyperedges:
for every pair of connected components, we can add a hyperedge whose hypern-
odes contain exactly the relations of the connected components. By considering
these hyperedges as A operators. As we saw in Section 7.15, cross products can
be handled by our conflict detectors can be handled

18.3 CCPs: Csg-Cmp-Pairs for Hypergraphs

With these notations, we can move closer to the heart of dynamic programming
by defining a csg-cmp-pair, or ccp for short.

Definition 18.3.1 (csg-cmp-pair, ccp) Let H = (V,E) be a hypergraph and
S1, S2 two subsets of V such that S1 ⊆ V and S2 ⊆ (V \ S1) are a connect-
ed subgraph and a connected complement. If there further exists a hyperedge
(u, v) ∈ E such that u ⊆ S1 and v ⊆ S2, we call (S1, S2) a csg-cmp-pair.

Note that if (S1, S2) is a csg-cmp-pair, then (S2, S1) is one as well. Out
of these two possibilities, only one will be enumerated by our subsequent al-
gorithm. More specifically, we will restrict the enumeration of csg-cmp-pairs
to those (S1, S2) which satisfy the condition that min(S1) ≺ min(S2), where
min(S) = s such that s ∈ S and ∀s′ ∈ S : s ̸= s′ =⇒ s ≺ s′. Since this
restriction will hold for all csg-cmp-pairs enumerated by our procedure, we are
sure that no duplicate csg-cmp-pairs are calculated. As a consequence, we have
to take some care in order to ensure that our dynamic programming procedure
is complete: if the binary operator we apply is commutative, the procedure to
build a plan for S1 ∪ S2 from plans for S1 and S2 has to take commutativity
into account. However, this is not really a challenge.

Obviously, in order to be correct, any dynamic programming algorithm has
to consider all csg-cmp-pairs [618]. Further, only these have to be considered.
Thus, the minimal number of cost function calls of any dynamic programming
algorithm is exactly the number of csg-cmp-pairs for a given hypergraph. Note

364CHAPTER 18. DYNAMIC PROGRAMMING-BASED PLANGENERATION

that the number of connected subgraphs is far smaller than the number of csg-
cmp-pairs. The problem now is to enumerate the csg-cmp-pairs efficiently and
in an order acceptable for dynamic programming. The latter can be expressed
more specifically. Before enumerating a csg-cmp-pair (S1, S2), all csg-cmp-pairs
(S′1, S

′
2) with S

′
1 ⊆ S1 and S′2 ⊆ S2 have to be enumerated.

18.4 Neighborhood

The main idea to generate csg-cmp-pairs is to incrementally expand connected
subgraphs by considering new nodes in the neighborhood of a subgraph. Infor-
mally, the neighborhood N(S) under an exclusion set X consists of all nodes
reachable from S that are not in X. We derive an exact definition below.

When choosing subsets of the neighborhood for inclusion, we have to treat
a hypernode as a single instance: either all of its nodes are inside an enumer-
ated subset or none of them. Since we want to use the fast subset enumeration
procedure introduced by Vance and Maier [898], we must have a single bit
representing a hypernode and also single bits for relations occurring in simple
edges. Since these may overlap, we are constrained to choose one unique rep-
resentative of every hypernode occurring in a hyperedge. We choose the node
that is minimal with respect to ≺. Accordingly, we define:

min(S) = {s|s ∈ S, ∀s′ ∈ S s ̸= s′ =⇒ s ≺ s′}

Note that if S is empty, then min(S) is also empty. Otherwise, it contains a sin-
gle element. Hence, if S is a singleton set, then min(S) equals the only element
contained in S. For our hypergraph in Fig. ?? and with S = {R4, R5, R6}, we
have min(S) = {R4}.

Let S be a current set, which we want to expand by adding further relations.
Consider a hyperedge (u, v) with u ⊆ S. Then, we will add min(v) to the
neighborhood of S. However, we have to make sure that the missing elements
of v, i.e. v \min(v), are also contained in any set emitted. We thus define

min(S) = S \min(S)

For our hypergraph in Fig. ?? and with S = {R4, R5, R6}, we have min(S) =
{R5, R6}.

We define the set of non-subsumed hyperedges as the minimal subset E ↓
of E such that for all (u, v) ∈ E there exists a hyperedge (u′, v′) ∈ E ↓ with
u′ ⊆ u and v′ ⊆ v. Additionally, we make sure that none of the nodes of a
hypernode are contained in a set X, which is to be excluded from neighborhood
considerations. We thus define a set containing the interesting hypernodes for
given sets S and X. We do so in two steps. First, we collect the potentially
interesting hypernodes into a set E ↓′ (S,X) and then minimize this set to
eliminate subsumed hypernodes. This step then results in E ↓ (S,X), with
which the algorithm will work.

E ↓′ (S,X) = {v|(u, v) ∈ E, u ⊆ S, v ∩ S = ∅, v ∩X = ∅}

18.5. THE CCP ENUMERATOR BUENUMCPPHYP 365

Define E ↓ (S,X) to be the minimal set of hypernodes such that for all v ∈
E ↓′ (S,X) there exists a hypernode v′ in E ↓ (S,X) such that v′ ⊆ v. Note
that apart from the connectedness, we test exactly the conditions given in
Def. 18.3.1. For our hypergraph in Fig. ?? and with X = S = {R1, R2, R3}, we
have E ↓ (S,X) = {{R4, R5, R6}}.

We are now ready to define the neighborhood of a hypernode S, given a set
of excluded nodes X.

IN(S,X) =
⋃

v∈E↓(S,X)

min(v) (18.1)

For our hypergraph in Fig. ?? and with X = S = {R1, R2, R3}, we have
IN(S,X) = {R4}. Assuming a bit vector representation of sets, the neighbor-
hood can be efficiently calculated bottom-up.

18.5 The CCP Enumerator BuEnumCppHyp

Before starting with the algorithm description we give a high-level overview of
the general principles used in the algorithm:

1. The algorithm constructs ccps by enumerating connected subgraphs from
an increasing part of the query graph;

2. both the primary connected subgraphs and its connected complement are
created by recursive graph traversals;

3. during traversal, some nodes are forbidden to avoid creating duplicates.
More precisely, when a function performs a recursive call it forbids all
nodes it will investigate itself;

4. connected subgraphs are increased by following edges to neighboring nodes.
For this purpose hyperedges are interpreted as n : 1 edges, leading from
n of one side to one (specific) canonical node of the other side (cmp.
Eq. 18.1).

Summarizing the above, the algorithm traverses the graph in a fixed order and
recursively produces larger connected subgraphs. The main challenge relative
to DPccp is the traversal of hyperedges: First, the ”starting” side of the edge
can require multiple nodes, which complicates neighborhood computation. In
particular the neighborhood can no longer be computed as a simple bottom-up
union of local neighborhoods. Second, the ”ending” side of the edge can lead
to multiple nodes at once, which disrupts the recursive growth of components.
Consider a set S1, which we want to extend by a hyperedge (u,w). Even if
u ⊆ S1, there is no guarantee that S1 ∪ w will be connected.

To overcome these problems, the algorithm picks a representative end node.
In our exmaple, it picks the 1 in the n : 1 of item 4 (see also Eq. 18.1). With
it, it starts the recursive growth and exploits the DP table to check if a valid
constellation has been reached, i.e., the constructed hypernode induces a con-
nected subgraph. This exploitation builds on the fact that our DP strategies

366CHAPTER 18. DYNAMIC PROGRAMMING-BASED PLANGENERATION

enumerate subsets before supersets. We are now prepared to discuss the details
of the algorithm.

We give the implementation of our join ordering algorithm for hypergraphs
by means of the pseudocode for member functions of a class BuEnumCcpHyp.
This allows us to minimize the number of parameters by assuming that this
class contains references to the query hypergraph (G = (V,E)) and to the
dynamic programming table (DpTable).

The whole algorithm is distributed over five subroutines. The top-level rou-
tine BuEnumCcpHyp initializes the DpTable with access plans for single relations
and then calls EmitCsg and EnumerateCsgRec for each set containing exactly
one relation. In a real implementation, the DpTable should be initialized before
calling BuEnumCcpHyp.

The member function EnumerateCsgRec is responsible for enumerating con-
nected subgraphs. It does so by calculating the neighborhood and iterating
over each of its subset. For each such subset S1, it calls EmitCsg. This member
function is responsible for finding suitable complements. It does so by calling
EnumerateCmpRec, which recursively enumerates the complements S2 for the
connected subgraph S1 found before. The pair (S1, S2) is a csg-cmp-pair. For
every such pair, EmitCsgCmp is called. Its main responsibility is to consider a
plan built up from the plans for S1 and S2. The following subsections discuss
these five member functions in detail. We illustrate them with the example
hypergraph shown in Fig. ??. The corresponding traversal steps are shown in
Fig. 18.2, we will illustrate them during the description of the algorithm.

18.5.1 BuEnumCcpHyp

The pseudocode for BuEnumCcpHyp looks as follows:

BuEnumCcpHyp()
for each v ∈ V // initialize DpTable

DpTable[{v}] = plan for v
for each v ∈ V descending according to ≺

EmitCsg({v}) // process singleton sets
EnumerateCsgRec({v},Bv) // expand singleton sets

return DpTable[V]

In the first loop, it initializes the dynamic programming table with plans for sin-
gle relations. In the second loop, it calls for every node in the query graph, in de-
creasing order (according to≺) the two subroutines EmitCsg and EnumerateCsgRec.
In Fig. 18.2, we find the call stack of our algorithm. The calls generated by
BuEnumCcpHyp correspond to those with stack-depth zero, where the stack-
depth is indicated in the second column from the left. For convenience, we not
only give the parameters, but also the neighborhood IN. The algorithm calls
EmitCsg({v}) for single nodes v ∈ V to generate all csg-cmp-pairs ({v}, S2) via
calls to EnumerateCsgCmp and EmitCsgCmp, where v ≺ min(S2) holds. This con-
dition implies that every csg-cmp-pair is generated only once, and no symmetric
pairs are generated. In Fig. 18.2, this corresponds to single vertex graphs, e.g.
step 1 and 2. The calls to EnumerateCsgRec extend the initial set {v} to larger

18.5. THE CCP ENUMERATOR BUENUMCPPHYP 367

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

1 2 3 4 5 6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

7 8 9 10 11 12

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

13 14 15 16 17 18

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

19 20 21 22 23 24

. .

..

R1

R2

R3

R4

R5

R6

. .

..

R1

R2

R3

R4

R5

R6

Legend:
R2R1 connected subgraph R1 forbidden node
R2R1 connected complement R1 non-forbidden node

25 26

Figure 18.2: Trace of algorithm for Figure ??

sets S1, for which then connected subsets of its complement S2 are found such
that (S1, S2) results in a csg-cmp-pair. In Fig. 18.2, this is shown in step 2, for
example, where EnumerateCsgRec starts with R5 and expands it to {R5, R6} in
step 4 (step 3 being the construction of the complement). To avoid duplicates
during enumerations, all nodes that are ordered before v according to ≺ are
prohibited during the recursive expansion [618]. Formally, we define this set as
Bv = {w|w ≺ v} ∪ {v}.

18.5.2 EnumerateCsgRec

The general purpose of EnumerateCsgRec is to extend a given set S1, which
induces a connected subgraph of G to a larger set with the same property. It
does so by considering each non-empty, proper subset of the neighborhood of S1.
For each of these subsets N , it checks whether S1∪N is a connected component.
This is done by a lookup into the DpTable. If this test succeeds, a new connected
component has been found and is further processed by a call EmitCsg(S1∪N).
Then, in a second step, for all these subsets N of the neighborhood, we call
EnumerateCsgRec such that S1 ∪ N can be further extended recursively. The

368CHAPTER 18. DYNAMIC PROGRAMMING-BASED PLANGENERATION

reason why we first call EmitCsg and then EnumerateCsgRec is that in order
to have an enumeration sequence valid for dynamic programming, smaller sets
must be generated first. Summarizing, the code looks as follows:

EnumerateCsgRec(S1, X)
for each N ⊆ IN(S1, X): N ̸= ∅

if DpTable[S1 ∪N]̸= ∅
EmitCsg(S1 ∪N)

for each N ⊆ IN(S1, X): N ̸= ∅
EnumerateCsgRec(S1 ∪N,X ∪ IN(S1, X))

Take a look at step 12. This call was generated by BuEnumCcpHyp on S1 =
{R2}. The neighborhood consists only of {R3}, since R1 is in X (R4, R5, R6

are not in X either, but not reachable). EnumerateCsgRec first calls EmitCsg,
which will create the joinable complement (step 13). It then tests {R2, R3}
for connectedness. The according DpTable entry was generated in step 13.
Hence, this test succeeds, and {R2, R3} is further processed by a recursive call to
EnumerateCsgRec (step 14). Now the expansion stops, since the neighborhood
of {R2, R3} is empty, because R1 ∈ X.

18.5.3 EmitCsg

EmitCsg takes as an argument a non-empty, proper subset S1 of V , which
induces a connected subgraph. It is then responsible to generate the seeds for
all S2 such that (S1, S2) becomes a csg-cmp-pair. Not surprisingly, the seeds
are taken from the neighborhood of S1. All nodes that have ordered before the
smallest element in S1 (captured by the set Bmin(S1)) are removed from the
neighborhood to avoid duplicate enumerations [618]. Since the neighborhood
also contains min(v) for hyperedges (u, v) with |v| > 1, it is not guaranteed that
S1 is connected to v. To avoid the generation of false csg-cmp-pairs, EmitCsg
checks for connectedness. However, each single neighbor might be extended to
a valid complement S2 of S1. Hence, no such test is necessary before calling
EnumerateCmpRec, which performs this extension. The pseudocode looks as
follows:

EmitCsg(S1)
X = S1 ∪Bmin(S1)

N = IN(S1, X)
for each v ∈ N descending according to ≺

S2 = {v}
if ∃(u, v) ∈ E : u ⊆ S1 ∧ v ⊆ S2

EmitCsgCmp(S1, S2)
EnumerateCmpRec(S1, S2, X ∪Bv(N))

where Bv(W) = {w|w ∈W,w ≤ v} is defined as in Section 3.2.4 for DPccp.
Take a look at step 20. The current set S1 is S1 = {R1, R2, R3}, and the

neighborhood is IN = {R4}. As there is no hyperedge connecting these two

18.5. THE CCP ENUMERATOR BUENUMCPPHYP 369

sets, there is no call to EmitCsgCmp. However, the set {R4} can be extended
to a valid complement, namely {R4, R5, R6}. Properly extending the seeds of
complements is the task of the call to EnumerateCmpRec in step 21.

18.5.4 EnumerateCmpRec

EnumerateCsgRec has three parameters. The first parameter S1 is only used
to pass it to EmitCsgCmp. The second parameter is a set S2 which is connect-
ed and must be extended until a valid csg-cmp-pair is reached. Therefore, it
considers the neighborhood of S2. For every non-empty, proper subset N of
the neighborhood, it checks whether S2 ∪N induces a connected subset and is
connected to S1. If so, we have a valid csg-cmp-pair (S1, S2) and can start plan
construction (done in EmitCsgCmp). Irrespective of the outcome of the test, we
recursively try to extend S2 such that this test becomes successful. Overall, the
EnumerateCmpRec behaves very much like EnumerateCsgRec. Its pseudocode
looks as follows:

EnumerateCmpRec(S1, S2, X)
for each N ⊆ IN(S2, X): N ̸= ∅

if DpTable[S2 ∪N]̸= ∅ ∧
∃(u, v) ∈ E : u ⊆ S1 ∧ v ⊆ S2 ∪N

EmitCsgCmp(S1, S2 ∪N)
X = X ∪ IN(S2, X)
for each N ⊆ IN(S2, X): N ̸= ∅

EnumerateCmpRec(S1, S2 ∪N,X)

Take a look at step 21 again. The parameters are S1 = {R1, R2, R3} and
S2 = {R4}. The neighborhood consists of the single relation R5. The set
{R4, R5} induces a connected subgraph. It was inserted into DpTable in step 6.
However, there is no hyperedge connecting it to S1. Hence, there is no call to
EmitCsgCmp. Next is the recursive call in step 22 with S2 changed to {R4, R5}.
Its neighborhood is {R6}. The set {R4, R5, R6} induces a connected subgraph.
The according test via a lookup into DpTable succeeds, since the according
entry was generated in step 7. The second part of the test also succeeds, as our
only true hyperedge connects this set with S1. Hence, the call to EmitCsgCmp

in step 23 takes place and generates the plans containing all relations.

18.5.5 EmitCsgCmp

The procedure EmitCsgCmp(S1,S2) is called for every S1 and S2 such that
(S1, S2) forms a csg-cmp-pair. It is the (call back) interface for BuEnumCcpHyp.
Its only task is to call BuildPlan, which then builds the optimal plan(s) for
(S1, S2).

18.5.6 Neighborhood Calculation

The formulation of neighborhood we used, is only one possibility. In fact, any
neighborhood satisfying the following condition will do. Let G = (V,E) be a

370CHAPTER 18. DYNAMIC PROGRAMMING-BASED PLANGENERATION

calcNeighborhood(S, X)
N := ∅
if isConnected(S)

N = simpleNeighborhood(S) \ X
else

foreach s ∈ S
N ∪= simpleNeighborhood(s)

F = (S ∪X ∪N) // forbidden since in X or already handled
foreach (u, v) ∈ E

if u ⊆ S
if v ∩ F = ∅

N += min(v)
F ∪= N

if v ⊆ S
if u ∩ F = ∅

N += min(u)
F ∪= N

Figure 18.3: Pseudocode for calcNeighborhood

hypergraph not containing any subsumed edges. For some set S, for which we
want to calculate the neighborhood, define the set of reachable hypernodes as

W (S,X) := {w|(u,w) ∈ E, u ⊆ S,w ∩ (S ∪X) = ∅},

where X contains the forbidden nodes. Then, any set of nodes N such that for
every hypernode in W (S,X) exactly one element is contained in N can serve
as the neighborhood.

Further, in order to make BuEnumCcpHyp as efficient as DPccp for simple
graphs, it is convenient to materialize the simple neighborhood for every plan
class contained in the DpTable and calculate it bottom-up. Figure 18.3 contains
one possible implementation of the neighborhood calculation.

18.6 DPhyp

18.7 Adding Selections

18.8 Adding Maps

18.9 Adding Grouping

Chapter 19

Optimizing Queries with
Disjunctions

19.1 Introduction

Simple rewrites as indicated in Section ?? for IN and OR predicates that boil
down to comparisons of a column with a set of constants can eliminate disjunc-
tion from the plan or push it into a multirange index access.

Another possibility that can be used for disjunctions on single columns is
to use DISJOINT UNION of plans. This is a special form of UNION where
conditions ensure that no phantom duplicates are produced. The DISJOINT
UNION operator merely concatenates the result tables without any further
overhead like duplicate elimination.

For example a predicate of the form x = c1 or y = c2 where x and y are
columns of the same table results in two predicates

1. x = c1

2. x <> c1 AND y = c2

Obviously, no row can satisfy both conditions. Hence, the query select *

from R where x = c1 or y = c2 can be safely rewritten to

(select * from R where x = c1) DISJOINT UNION (select * from

R where x <> c1 AND y = c2

In case there are indexes on x and y efficient plans do exist. If they don’t the
table R needs to be scanned twice. This problem is avoided by using bypass
plans.

DISJOIN UNIONs can also be used for join predicates. Consider the follow-
ing example query: select * from R, S where R.a = S.a OR R.b = S.a This
query can be rewritten to (select * from R, S where R.a = S.a) DISJOINT

UNION (select * from R, S where R.a <> S.a and R.b = S.b) The gen-
eral condition here is that all equality predicates have one side identical. Note
that both tables are scanned and joined twice. Bypass plans will eliminate this
problem.

371

372 CHAPTER 19. OPTIMIZING QUERIES WITH DISJUNCTIONS

Let us consider a more complex example: select * from R, S where R.a

= S.a AND h.b IN (c1,c2).
XXX

19.2 Using Disjunctive or Conjunctive Normal Forms

19.3 Bypass Plans

All the above approaches rely on conjunctive normal forms. However, in the
presence of disjunctions, this does not necessarily yield good plans. Using a
disjunctive normal form does not always solve the problem either and this
approach has its own problems with duplicates. This is why bypass plans where
developed [489, 835, 186]. The idea is to provide selection and join operators
with two different output streams: one for qualifying tuples and one for the
not qualifying tuples. We cannot go into the details of this approach and only
illustrate it by means of examples. Let us first consider a query with no join and
a selection predicate of the form a ∧ (b ∨ c). This selection predicate is already
in conjunctive normal form. The disjunctive normal form is (a ∧ b) ∨ (a ∧ c).
We first consider some DNF-based plans (Fig. 19.1). These plans generate
duplicates, if a tuple qualifies for both paths. Hence, some duplicate elimination
procedure is needed. Note that these duplicates have nothing to do with the
duplicates generated by queries. Even if the query does not specify distinct,
the duplicates generated must be eliminated. If there are duplicates, which is
quite likely, then the condition a is evaluted twice for those tuples qualifying
for both conjuncts (Plan a and b). Figure 19.2 presents two CNF plans.

Ib
II

Ia

∪ ∪ ∪

σb σb σb

σa σa σaσc

σc σcσa

σa

Figure 19.1: DNF plans

19.3. BYPASS PLANS 373

I II

σa

σaσb∨c

σb∨c

Figure 19.2: CNF plans

CNF plans never produce duplicates. The evaluation of the boolean factors
can stop as soon as some predicate evaluates to true. Again, some (expensive)
predicates might be evaluted more than once in CNF plans. Figure 19.3 shows
some bypass plans. Note the different output streams. It should be obvious,
that a bypass plan can be more efficient than both a CNF or DNF plan. It

I II III
IV V

−− −−− −+ +

+− +

+

∪ ∪ ∪ ∪

σa σa

σaσa

σa

σa

σa

σb

σb

σb σb σb

σc

σc

σc

σc
σc

Figure 19.3: Bypass plans

is possible to extend the idea of bypass plans to join operators. However, this
and the algorithm to generate bypass plans is beyond the scope of the current
paper (see [489, 835, 186]).

374 CHAPTER 19. OPTIMIZING QUERIES WITH DISJUNCTIONS

19.4 Implementation remarks

The internal representation of execution plans during plan generation typically
differs from that used in Rewrite I. The reason is that many plans have to be
generated and space efficiency is a major concern. As in the query representa-
tion discussed earlier, the physical algebraic operators can be organized into a
hierarchy. Besides their arguments, they possibly contain backpointers to the
original query representation (e.g. for predicates). Sharing is a must for plan
generation. Hence, subplans are heavily shared. The plan nodes are enhanced
by so-called property vectors. These contain information about the plan:

• logical information

– the set of relations joined

– the set of predicates applied so far

– the set of IUs computed so far

– order information

• physical information

– costs

– cardinality information

For fast processing, the first three set-valued items in the logical information
block are represented as bit-vectors. However, the problem is that an upper
bound on the size of these bitvectors is not reasonable. Hence, they are of
variant size. It is recommendable, to have a plan node factory that generates
plan nodes of different length such that the bit-vectors are included in the plan
node. A special interpreter class then knows the offsets and lengths of the
different bitvectors and supplies the operations needed to deal with them. This
bit-vector interpreter can be attached to the plan generator’s control block as
indicated in Fig. 25.3.

19.5 Other plan generators/query optimizer

There are plenty of other query optimizers described in the literatur. Some of
my personal favorites not mentioned so far are the Blackboard query optimzer
[488], the Epoq optimizer [612, 611], the Genesis optimizer [57, 62], the Gral
query optimizer [67], the Lanzelotte query optimizer [529, 530, 531], the Orion
optimizer [50, 51, 493], the Postgres optimizer [469, 400, 398, 399], the Prima
optimizer [404, 402], the Probe optimizer [223, 222, 655], the Straube optimizer
[850, 889, 847, 848, 846, 849]. Highly recommended is a description of the DB2
query optimizer(s) [322].

Also interesting to read is the first proposal for a rule-based query optimizer
called Squirel [823] and other proposals for rule-based query optimizers [295,
780, 486, 485, 580].

19.6. BIBLIOGRAPHY 375

19.6 Bibliography

Disjunctive queries: P. Ciaccia and M. Scalas: Optimization Strategy for Re-
lational Queries. IEEE Transaction on Software Engineering 15 (10), pp 1217-
1235, 1989.

Kristofer Vorwerk, G. N. Paulley: On Implicate Discovery and Query Op-
timization. International Database Engineering and Applications Symposium
(IDEAS’02)

Jack Minker, Rita G. Minker: Optimization of Boolean Expressions-Historical
Developments. IEEE Annals of the History of Computing 2 (3), pp 227-238,
1980.

Chaudhuri: SIGMOD 03: [149]
Conjunctive Queries, Branch Minimization: [743]
Also Boolean Difference Calculus (?): [824]

376 CHAPTER 19. OPTIMIZING QUERIES WITH DISJUNCTIONS

Chapter 20

Generating Plans for the Full
Algebra

377

378 CHAPTER 20. GENERATING PLANS FOR THE FULL ALGEBRA

Chapter 21

Generating DAG-structured
Plans

@misc{ roy-optimization,

author = "Prasan Roy",

title = "Optimization of DAG-Structured Query Evaluation Plans",

url = "citeseer.nj.nec.com/roy98optimization.html" }

379

380 CHAPTER 21. GENERATING DAG-STRUCTURED PLANS

Chapter 22

Simplifying the Query Graph

[This chapter was written by Thomas Neumann]

22.1 Introduction

As we have seen in Chapter 3, computing the the optimal join for large queries is
a very hard problem. Most hand-written queries join just a few (<15) relations,
but in general join queries can become quite large: Some systems like SAP R/3
store their data in thousands of relations, and subsequently generate large join
queries. Other examples include data warehousing, where a fact table is joined
with a large number of dimension tables, forming a star join, and databases that
make heavy use of views to simplify query formulation (where the views then
implicitly add joins). Existing database management systems have difficulties
optimizing very large join queries, falling back to heuristics when they cannot
solve them exactly anymore. This is unfortunate, as it does not offer a smooth
transition. Ideally, one would optimize a query as much as possible under given
time constraints.

When optimizing join queries, the optimal join order is usually determined
using some variant of dynamic programming (DP). However finding the opti-
mal join is NP-hard in general, which means that large join queries become
intractable at some point. On the other hand, the complexity of the problem
depends heavily upon the structure of the query (see Chapter 3), where some
queries can be optimized exactly even for a large number of relations while
other queries quickly become too difficult. As computing the optimal join order
becomes intractable at some point, the standard technique of handling large
join queries resorts to some heuristics. Some commercial database systems first
try to solve the problem exactly using DP, and then fall back to greedy heuris-
tics when they run out memory. As we have seen in Chapter 3, a wide range
of heuristics has been proposed in the literature. Most of them integrate some
kind of greedy processing in the optimization process, greedily building execu-
tion plan fragments that seem plausible. The inherent problem of this approach
is that it is quite likely to greedily make a decision that one would regret hav-
ing more information about the complete execution plan. For example greedily
deciding which two relations should be joined first is very hard, as it depends

381

382 CHAPTER 22. SIMPLIFYING THE QUERY GRAPH

on all other joins involved in the query.

Here, we follow a different approach presented in [639]: If a query is too
complex to optimize exactly, we simplify it using a greedy heuristic until it
becomes tractable using DP. The simplification step does not build execution
plans but modifies the join graph of the query to make it more restrictive,
ruling out join orders that it considers unlikely. In a way this is the opposite
of the standard greedy plan building techniques: Instead of greedily choosing
joins (which is very hard), we choose joins that must be avoided. The great
advantage of this approach is that we can start with the ’easy’ decisions (i.e.,
the relatively obvious ones) using the heuristic and then leave the hard execution
plan building to the DP algorithm once the problem is simplified enough. The
resulting optimization algorithm adapts naturally to the query complexity and
the given time budget, simplifying the query just as much as needed and then
optimizing the simplified query exactly.

22.2 On Optimizing Join Queries

Optimizing the join order is one of the most important steps of query optimiza-
tion, as changes in the join order can affect the query execution times by orders
of magnitudes. Unfortunately computing the optimal join order is NP-hard in
general, and the standard technique of using dynamic programming fails if the
query is large enough.

Still, there are large differences in problem complexity even for queries of the
same size. When disregarding cross products, the join predicates included in the
query induce a query graph, and the structure of that query graph determines
the complexity of the problem. Clique queries for example, where there is a join
predicate between any two relations involved in the query, are the worst-case
scenario for join ordering. Here any combination of relations is joinable, all joins
affect each other through redundant join edges, and both the space complexity
and the runtime complexity of the best known algorithm increases exponentially
(in the order of O(2n) and O(4n), where n is the number of relations). For clique
queries there is little hope of ever finding a good algorithm, but fortunately large
clique queries never occur in practice. Chain queries on the other hand, where
relations are joined sequentially, are quite common in practice and much easier
to optimize: Any join tree without cross products must only consist of relations
that are neighboring in the chain, i.e., that form a subchain. As there are less
than n2 subchains of a chain of length n, and we can join a subchain only with
less than n other (neighboring) subchains, we get a space complexity of O(n2)
and a time complexity of O(n3). Other graph structures are between these two
extremes. Star queries, which are common in data warehouse applications where
dimension tables are joined to a central fact table, have a space complexity of
O(2n) and a time complexity of O(n2n).

The practical impact of these complexity differences can be seen in Fig-
ure 22.1. It shows the optimization time using DPhyp and the setup discussed
in Section [639]. One observation here is that while small queries (<10 rela-
tions) can be optimized quickly regardless of the graph structure, larger queries

22.3. GRAPH SIMPLIFICATION ALGORITHM 383

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 4 6 8 10 12 14 16 18 20

op
tim

iz
at

io
n

tim
e

[m
s]

number of relations

chains
cycles

stars
grids

cliques

Figure 22.1: Runtimes for Different Query Graphs

soon become too expensive for everything except chain and cycle queries. Clique
queries are particular bad, of course, but even the data warehousing star queries
are too complex relatively soon. For really large queries (e.g., 50 relations),
finding the optimal solution using DP is out of question for most query types.

Now the basic idea of graph simplification stems from the fact that some
graph easier to solve than others: If the problem is too difficult to solve exactly,
we change the query graph to make it easier to solve. We will look at this
simplification strategy in the next section.

22.3 Graph Simplification Algorithm

After examining the impact of the query graph structure on optimization time,
we now study an algorithm to simplify the query graph as much as needed to
allow for a dynamic programming solution. We first discuss the simplification
itself, then how this can be used to simplify a query graph as much as needed,
and then one edge selection heuristic (which is orthogonal to the main simpli-
fication algorithm). Finally we show that the approach is plausible by proving
optimality for star queries and certain classes of cost functions.

During this section we assume that the query has been brought into proper
query (hyper-)graph form. In particular we assume that all non-inner joins have
been expressed as hyperedges, as suggested in [619]. This allows us to reason
about graph structures alone without violating proper query semantics.

384 CHAPTER 22. SIMPLIFYING THE QUERY GRAPH

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0 BR1 R0 BR1

joins R0 BR2 {R0, R1}BR2

R0 BR3 R0 BR3

original 1st step

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0 BR1 R0 BR1

joins {R0, R1}BR2 {R0, R1}BR2

{R0, R1}BR3 {R0, R1, R2}BR3

2nd step 3rd step

Figure 22.2: Exemplary Simplification Steps for a Star Query

22.3.1 Simplifying the Query Graph

When a query graph is too complex to solve exactly, we perform a simplification
step to reduce its complexity. Note that with simplification we mean a simplifi-
cation of the underlying optimization problem. The graph itself becomes more
complex, at least for a human. This is illustrated in Figure 22.2. The original
query is a star query with three satellite relations. The number of possible join
trees (ignoring commutativity) is 3! = 6, as any linear join order is valid. To re-
duce the search space we look for decisions that are relatively easy. For example
if R0 B R1 is very selective and R0 B R2 greatly increases the cardinality, it is
probably a good idea to join R1 first (for the real criterion see Section 22.3.3).
We thus modify the join R0 B R2 into {R0, R1} B R2. This describes that we
can join a join tree containing R0 and R1 with a join tree contain R2, and forms
a hyperedge in the query graph. The search space shrinks to 3 possible trees,
as now R1 is required to come before R2. R3 can still be joined arbitrary, either
before R1, between R1 and R2, or after R2. We can reduce the search space to
two trees by requiring R1 to be joined before R3 (2. step), and finally to just
one valid tree by ordering the join with R2 before the join with R3 (3. step). At
this point the optimization problem is trivial to solve, but the solution could be
poor due to the heuristical join ordering. In the actual algorithm we therefore
simplify just as much as needed to be able to solve the optimization problem,
and we perform these simplification first where we are most certain about the
correct join ordering.

The pseudo-code for a single simplification step is shown in Figure 22.3.
It examines all pairs of joins, and checks if they are neighboring in the query
graph, i.e., they touch via common relations. The condition is somewhat com-
plex, as the query graph contains hyperedges and not just regular join edges.
It checks if B2 could occur in a subtree of B1 and if B2 need not come before
B1 (otherwise ordering has no effect). If they are neighboring, we compute the

22.3. GRAPH SIMPLIFICATION ALGORITHM 385

SimplifyGraph(G = (V,E))
j1 = ∅, j2 = ∅, M = −∞
// Find the most beneficial simplification
for each SL

1 B1 S
R
1 ∈ E

for each SL
2 B2 S

R
2 ∈ E, B1 ̸= B2

// Does B1 neighbor B2?
if ((SL

2 ⊆ SL
1 ∨ SR

2 ⊆ SL
1) ∧ (SL

2 ∪ SR
2 ̸⊆ SL

1))∨
((SL

2 ⊆ SR
1 ∨ SR

2 ⊆ SR
1) ∧ (SL

2 ∪ SR
2 ̸⊆ SR

1))
b =orderingBenefit(SL

1 B1 S
R
1 ,S

L
2 B2 S

R
2)

if b > M ∧ (B2 could be ordered before B1)
j1 = SL

1 B1 S
R
1 , j2 = SL

2 B2 S
R
2 , M = b

// No further simplification possible?
if j1 = ∅ return G
// Order j2 = SL

2 B2 S
R
2 before j1 = SL

1 B1 S
R
1

if (SL
2 ⊆ SL

1 ∨ SR
2 ⊆ SL

1) ∧ (SL
2 ∪ SR

2 ̸⊆ SL
1))

return (V,E \ {j1} ∪ {(SL
1 ∪ SL

2 ∪ SR
2)B1 S

R
1 })

else
return (V,E \ {j1} ∪ {SL

1 B1 (S
R
1 ∪ SL

2 ∪ SR
2)})

Figure 22.3: Pseudo-Code for a Single Simplification Step

expected benefit of ordering B2 before B1. The implementation of ordering-
Benefit is orthogonal to the simplification itself, it should predict how likely it
is that B2 must come before B1 (see Section 22.3.3). We restrict ourselves to
ordering neighboring joins as it is hard to make useful predictions about arbi-
trary unrelated joins. Note that through a series of simplification steps the join
neighborhoods increase, such that the algorithm can ultimately order all joins
if needed. The algorithm remembers the join pair (j1, j2) with the maximum
estimated benefit, and modifies the query graph such that j2 must come before
j1. This creates an hyperedge in the query graph, as now j1 ’requires’ all rela-
tions involved in j2 to guarantee the ordering, effectively shrinking the search
space.

A detail of the pseudo-code not discussed yet is the condition ’B2 could be
ordered before B1’ in the first loop. So far we have assumed that it is indeed
possible to order B2 before B1, but this might not be the case: First, the query
might contain non-inner joins, which are not freely reorderable. Second, if the
query is cyclic, a series of simplification steps could lead to a contradiction,
demanding (transitively) that B1 must come before B2 and B2 before B1. To
avoid this, we build a partial ordering of joins as a directed graph, deriving the
initial one from the original query hypergraph and then ordering the joins as
indicated by the simplification step. The condition ’B2 could be ordered before
B1’ is effectively a check if an edge B2 → B1 would create a cycle in our graph.

In general the performance of SimplifyGraph can be improved significantly
by maintaining proper data structures. As we will see in the next section, the
algorithm is applied repeatedly to simplify a query graph, thus it pays off to
remember already computed results. We therefore materialize all neighbors of a

386 CHAPTER 22. SIMPLIFYING THE QUERY GRAPH

join, and update the neighbors when a join is modified. Further, we remember
the estimated benefit for each neighbor, and keep all joins in a priority queue
ordered by the maximum benefit they can get from ordering a neighbor. This
eliminates the two nested loops in the algorithm, and greatly improves runtime.

22.3.2 The Full Algorithm

The full algorithms works in two phases: First, it repeatedly performs sim-
plification steps until the problem complexity has decreased enough, and then
it runs a dynamic programming algorithm to find the optimal solution for the
simplified graph. To check if the graph has been simplified enough, we can reuse
the DPccp algorithm [618], where the complexity of the dynamic programming
algorithm depends on the number of connected subgraphs in the query graph.
More precisely, the number of connected subgraphs is identical to the size of
the DP table after the optimization is finished. We can therefore simplify the
query graph until the number of connected subgraphs decreased sufficiently.

Counting the number of connected subgraphs is not that trivial, but an
algoruthm follows naturally from graph-based query optimization: The DPhyp
algorithm [619] solves the join ordering problem by enumerating all connected
subgraphs of the query graph and joining them with all connected subgraphs
that are disjoint from but connected to the first subgraph. By simply eliminat-
ing the enumeration of the second subgraph we get an algorithm that produces
all connected subgraphs. Note that the algorithm does not have to fill a DP
table, as we are only interested in the number of connected subgraphs, and we
can stop as soon as we have enumerated more than our maximum number of
connected subgraphs. Howver, enumerating 10,000 subgraphs in a query graph
with 100 relations takes roughly 5ms. This means that while checking the prob-
lem complexity is not that expensive, we cannot afford to check it after each
simplifications step, as there may be thousands of simplification steps.

The full algorithm therefore operates as depicted in Figure 22.4. It is in-
voked by giving a query graph G and a maximum complexity budget b. It
first generates all possible simplifications Ḡ by applying the SimplifyGraph step
repeatedly. The complexity of these graphs decreases monotonically, as each
simplification step adds more restrictions. Then, it performs a binary search
over the list of graphs, and computes the complexity just for the currently ex-
amined graph. The graph with the least number of simplification steps that
has a complexity ≤ b is stored in Gb. Note that Gb could be equal to G, i.e.,
the original problem, if the graph is simple enough. After the binary search,
the optimal solution for Gb is computed by using DPhyp [619].

Again the pseudo-code is simplified. In particular it is not advisable to
really materialize all query graphs in Ḡ, as this becomes noticeably expensive
for queries with more than 50 relations. Instead, we just remember the two joins
(j1, j2) selected for merging by the SimplifyGraph step. Then we materialize
the graphs examined by the binary search by replaying the merge steps based
upon these (j1, j2) values relative to the last materialized graph. Using these
techniques, the full algorithm (including the finalDPhyp call) takes less than one
second for a star query with 50 relations and a complexity budget of 10, 000 in

22.3. GRAPH SIMPLIFICATION ALGORITHM 387

GraphSimplificationOptimizer(G = (V,E),b)
// Input: A query graph G and a complexity budget b
// Output: The best plan found under the budget b

// Compute all possible simplification steps
Ḡ = a list of query graphs, G′ = G
do

append G′ to Ḡ
G = G′, G′ =SimplifyGraph(G)

while G ̸= G′

// Use binary search to find the necessary simplifications
l = 0, r = |Ḡ|, v = r,Gb = Ḡ[r − 1]
while l < r

m = ⌊ l+r
2 ⌋

c =#connected subgraphs in Ḡ[m] (count at most b+ 1)
if c > b
l = c+ 1

else
r = c
if c < v
v = c,Gb = Ḡ[m]

// Solve the simplified graph
return DPhyp(Gb)

Figure 22.4: The Full Optimization Algorithm

experiments [639]. Note that we can even avoid generating all possible merge
steps: By using search techniques for unbounded search (e.g., [76]) we can
generate merging steps as required by the search strategy. This does not change
the asymptotic complexity, but it is more efficient if most queries require few
or no simplification steps (which is probably the case in practice).

22.3.3 Join Ordering Criterion

So far we have assumed that the simplification algorithm can somehow esti-
mate the benefit of ordering B2 before B1. In principle this is orthogonal to
the simplification algorithm, and different kinds of ordering criterion could be
used. The experiments in [639] used the following estimation function, which
compares the relative costs of the join orders, and gave very good results:

orderingBenefit(X B1 R1, X B2 R2) =
C((X B1 R1)B2 R2)

C((X B2 R2)B1 R1)

The rational here is that if joining first R2 and then R1 is orders of magni-
tude cheaper than first joining R1 and then R2, it is very likely that the join
with R2 will come before the join with R1 in the optimal solution, regardless of
the other relations involved. As the simplification algorithms orders the highest

388 CHAPTER 22. SIMPLIFYING THE QUERY GRAPH

expected benefit first, it first enforces orderings where the cost differences are
particularly large (and thus safe).

Note that the criterion shown above is oversimplified. First, computing
the cost function C is not trivial, as we are only comparing joins and do not
have complete execution plans yet. In particular information about physical
properties of the input is missing, which is required by some cost functions. One
way to avoid this is to use the Cout cost functions for the benefit estimation.
The advantage of Cout is that it can be used without physical information,
and further the optimizations based upon Cout are usually not that bad, as
minimizing intermediate results is a plausible goal. Using the real cost function
would be more attractive, but for some cost functions we can only use the real
cost function in the final DP phase, as then physical information is available.

The second problem is that we are not really comparing X B1 R1 with
X B2 R2, but SL

1 B1 S
R
1 with SL

2 B2 S
R
2 , where B1 and B2 are neighboring

hyperedges in the query graph. The are multiple cases that can occur, here we
assume that SL

2 ⊆ SL
1 , the other cases are analogous. We define |S|B as the

output cardinality of joining the relations in S:

|S|B = (ΠR∈S |R|) ∗ (ΠBi∈V|Ssel(Bi)).

Then the joins SL
1 B1S

R
1 and SL

2 B2S
R
2 can be interpreted asXB1R1 andXB2R2

with |X| = max(|SL
1 |B, |SL

2 |B), |R1| = |SR
1 |B, and |R2| = |SR

2 |B. Note that we
do not have to compute the costs of joining the relations in Si, as we are only
interested in comparing the relative performance of B1 and B2. Note further
that the accuracy of the prediction will increase over time, as the Si grow and
at some point contain all relations that will come before a join. Therefore it
is important to make the ’safe’ orderings early, when the uncertainty is higher,
and perform the more unclear orderings later when more is known about the
input.

22.3.4 Theoretical Foundation

The join ordering criterion presented in the previous section is a heuristic, and
can lead to suboptimal execution plans. However, in some cases, in particular
for star queries with certain cost functions, we can guarantee the optimality of
the reduction.

We define that cost function C is relative order preserving if the following
condition holds for arbitrary relations R0,...,3 and arbitrary joins B1,2,3 with
independent join predicates:

C(R0 B1 R1 B2 R2) ≥C(R0 B2 R2 B1 R1)
⇒C(R0 B3 R3 B1 R1 B2 R2)≥C(R0 B3 R3 B2 R2 B1 R1)

Or, in other words, the optimal relative ordering of B1 and B2 remains un-
changed by changing the cardinality of R0 by a factor of α. This is closely
related to the known ASI property of cost functions [438]. as it can be shown
easily that every ASI cost function is relative order preserving. But relative or-
der preserving is more general than ASI, for example a simple sort-merge-join

22.3. GRAPH SIMPLIFICATION ALGORITHM 389

cost function (CSM (R1 B R2) = C(R1) + C(R2) + |R1| log |R1| + |R2| log |R2|)
does not satisfy the ASI property, but is relative order preserving.

As queries we consider star queries of the form Q = (V = {R0, . . . , Rn), E =
{R0 B1 R1, . . . , R0 Bn Rn}) (can be guaranteed by renaming relations), and
require independence between join predicates and a relative order preserving
cost function C. W.l.o.g. we assume that the cost function is symmetric,
as we can always construct a symmetric cost function by using min(C(Ri B

Rj), C(Rj B Ri)). Then, star queries have two distinct properties: First, all
query plans are linear, with R0 involved in the first join. Thus, as our cost
function is symmetric, we can restrict ourselves to plans of the form (R0 B

Rπ(1)) . . . B Rπ(n), where π(i) defines a permutation of [1, n]. Second, given a
non-empty join tree T and a relation Ri ̸∈ T , T ′ = T B Ri is a valid join tree
and |T ′| = |T ||Ri| |R0BRi|

|R0||Ri| . Thus any (new) relation can be joined to an existing
join tree and the selectivity of the join is unaffected by the relations already
contained in the tree (due to the independence of join predicates). Note that
while this holds for star queries, it does not hold in general. For example, clique
queries also allow for an arbitrary join order, but the selectivities are affected
by previously joined relations.

Using these observations, we now show the optimality for star queries:

Lemma 22.3.1 Given a query Q = (V,E), a relative order preserving cost
function C and four relations R0, Ri, Rj , Rk ∈ V (i ̸= j ̸= k ̸= 0). Then
C(R0 Bi Ri Bj Rj) ≥ C(R0 Bj Rj Bi Ri) implies C(R0 Bi Ri Bj Rj Bk Rk) ≥
C(R0 Bj Rj Bi Ri Bk Rk).

Theorem 22.3.2 Follows directly from the fact that (R0BiRiBjRj) ≡ (R0Bj

Rj Bi Ri). The join Bk gets the same input in both cases, and thus causes the
same costs. This lemma holds even for non-star queries and arbitrary (mono-
tonic) cost functions.

Lemma 22.3.3 Given a query Q = (V,E), a relative order preserving cost
function C and four relations R0, Ri, Rj , Rk ∈ V (i ̸= j ̸= k ̸= 0). Then
C(R0 Bi Ri Bj Rj) ≥ C(R0 Bj Rj Bi Ri) implies C(R0 Bk Rk Bi Ri Bj Rj) ≥
C(R0 Bk Rk Bj Rj Bi Ri).

Theorem 22.3.4 Follows from the definition of relative order preserving cost
functions.

Corollary 1 Given a query Q = (V,E), a relative order preserving cost func-
tion C, three relations R0, Ri, Rj ∈ V (i ̸= j ̸= 0), and two join sequences
S1, S2 of relations in V such that R0S1 Bi Ri Bj RjS2 forms a valid join tree.
Then C(R0BiRiBj Rj) ≥ C(R0Bj Rj BiRi) implies C(R0S1BiRiBj RjS2) ≥
C(R0S1 Bj Rj Bi RiS2).

Theorem 22.3.5 Follows from Lemma 22.3.1 and 22.3.3. Both assume noth-
ing about Rk except independence, thus BkRk could be a sequence of joins.

390 CHAPTER 22. SIMPLIFYING THE QUERY GRAPH

Theorem 1 Given a star query Q = (V,E) and a relative order preserving cost
function C. Then for any optimal optimal join tree T and pairs of relations
Ri, Rj neighbored in T (i.e., T has the form R0S1 Bi Ri Bj RjS2) the following
condition holds: Either C(R0 Bi Ri Bj Rj) ≤ C(R0 Bj Rj Bi Ri) or T ′ =
R0S1 Bj Rj Bi RiS2 is optimal, too.

Theorem 22.3.6 By contradiction. We assume that C(R0 Bi Ri Bj Rj) >
C(R0 Bj Rj Bi Ri) and T ′ is not optimal. By Corollary 1 we can deduce that
C(R0 Bi Ri Bj Rj) > C(R0 Bj Rj Bi Ri) ⇒ C(T ′) = C(R0S1 Bj Rj Bi RiS2) ≤
C(R0S1 Bi Ri Bi RiS2) = C(T). This is a contradiction to the assumption that
T ′ is not optimal

This theorem is a strong indication that our simplification algorithm is plau-
sible, as we know that one of the optimal solutions will satisfy the ordering
constraints used by the algorithm. Unfortunately the authors of [639] were
only able to prove the optimality by restricting the cost function some more
(perhaps unnecessarily): A cost function C is fully relative order preserving if
it is relative order preserving and the following condition holds for arbitrary
relations R0,...,3 and arbitrary joins B1,2,3 with independent join predicates:
C(R0 B1 R1 B2 R2) ≥ C(R0 B2 R2 B1 R1) ⇒ C(R0 B1 R1 B3 R3 B2 R2) ≥
C(R0 B2 R2 B3 R3 B1 R1). Again, this property is satisfied by all ASI cost
functions. Using this definition, we can show the optimality as follows.

Lemma 22.3.7 Given a query Q = (V,E), a fully relative order preserving
cost function C, three relations R0, Ri, Rj ∈ V (i ̸= j ̸= 0), and three join
sequences S1, S2, S3 of relations in V such that R0S1 Bi RiS2 Bj RjS3 forms a
valid join tree. Then C(R0BiRiBjRj) ≥ C(R0BjRjBiRi) implies C(R0S1Bi

RiS2 Bj RjS3) ≥ C(R0S1 Bj RjS2 Bi RiS3).

Theorem 22.3.8 Follows from Corollary 1 and the definition of fully relative
order preserving cost functions.

Theorem 2 Given a star query Q = (V,E) and a fully relative order pre-
serving cost function C. Applying the GraphSimplificationOptimizer algorithm
repeatedly leads to the optimal execution plan.

Theorem 22.3.9 As Q is a star query, any linear join order is valid, thus join
ordering is done purely based upon costs. The algorithm repeatedly orders the
two joins with the largest quotient, which is guaranteed to be ≥ 1 due to the lack
of join ordering constraints. Lemma 22.3.7 shows joins can be ordered relative
to each other regardless of other relations, thus if the algorithm orders Bi before
Bj there exists an optimal solution with Bi before Bj (analogue to Theorem 1).
The algorithm simplified the graph until the joins are in a total order, which
uniquely describes one optimal execution plan.

22.4 The Time/Quality Trade-Off

One particular interesting propery of the simplification algorithm is that it
offers a direct trade-off between time and result quality. We therefore repeat
some experimental results from [639] here that illustrate this trade-off.

22.4. THE TIME/QUALITY TRADE-OFF 391

 0
 5

 10

 0 20 40 60 80 100 120 140 160

co
st

s

number of simplification steps

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

tim
e

[m
s]

 0

 100000

 200000

 300000

 400000

 500000
#s

ub
gr

ap
hs

Figure 22.5: The Effect of Simplification Steps for a Star Query with 20 Rela-
tions

Clearly, each simplification step decreases the search space, i.e., the number
of connected subgraphs. Ideally the optimization time goes down analogous-
ly, and, unfortunately, the costs will go up if the heuristic makes mistakes.
Figure 22.5 shows how the number of connected subgraphs, the optimization
time, and the scaled costs (relative to the optimal solution) change during sim-
plification of a star query with 20 relations. As predicted, the search space
shrinks monotonically with simplification. It does not shrink strictly mono-
tonically, as the simplification algorithm sometimes adds restrictions that are
already implied through other restrictions, but this is not an issue for the full
algorithm due to the binary search. The optimization time follows the search
space size, although there are some local peaks. Apparently they are caused
by the higher costs of hyperedges for the DPhyp algorithm relative to normal
edges. The scaled costs are constantly 1 here, i.e., the algorithm produces the
optimal solution regardless of the number of simplification steps. This is due to
the theoretical properties of the ordering heuristic (see Section 22.3.4), which
in this case is optimal.

For grid queries the general situation is similar as shown in Figure 22.6.
Search space and optimization time decrease similar to star queries, the costs
however increase over time. Initially the heuristic performs only the relatively
safe orderings, which do not cause any increases in costs, but at some point it
makes a mistake in ordering and causes the costs to increase step-wise. Fortu-
nately this happens when the search space has already been reduced a lot, which
means that for simpler queries there is a reasonable hope that the heuristic will

392 CHAPTER 22. SIMPLIFYING THE QUERY GRAPH

 0
 15
 30

 0 20 40 60 80 100

co
st

s

number of simplification steps

 0
 300
 600
 900

 1200
 1500
 1800
 2100

tim
e

[m
s]

 0
 3000
 6000
 9000

 12000
 15000
 18000
 21000
 24000

#s
ub

gr
ap

hs

Figure 22.6: The Effect of Simplification Steps for a Grid Query with 20 Rela-
tions

never reach the point where it starts making mistakes.

Chapter 23

Deriving and Dealing with
Interesting Orderings and
Groupings

[This chapter was written by Thomas Neumann and Guido Moerkotte]

23.1 Introduction

The most expensive operations (e.g. join, grouping, duplicate elimination) dur-
ing query evaluation can be performed more efficiently if the input is ordered
or grouped in a certain way. Therefore, it is crucial for query optimization to
recognize cases where the input of an operator satisfies the ordering or group-
ing requirements needed for a more efficient evaluation. Since a plan generator
typically considers millions of different plans – and, hence, operators –, this
recognition easily becomes a performance bottleneck for plan generation, often
leading to heuristic solutions.

The importance of exploiting available orderings has already been recog-
nized in the seminal work of Selinger et al [784]. They presented the concept of
interesting orderings and showed how redundant sort operations could be avoid-
ed by reusing available orderings, rendering sort-based operators like sort-merge
join much more interesting.

Along these lines, it is beneficial to reuse available grouping properties, for
example for hash-based operators. While heuristic techniques to avoid redun-
dant group-by operators have been given [155], for a long time groupings have
not been treated as thoroughly as orderings. One reason might be that while
orderings and groupings are related (every ordering is also a grouping), group-
ings behave somewhat differently. For example, a tuple stream grouped on the
attributes {a, b} need not be grouped on the attribute {a}. This is different
from orderings, where a tuple stream ordered on the attributes (a, b) is also
ordered on the attribute (a). Since no simple prefix (or subset) test exists for
groupings, optimizing groupings even in a heuristic way is much more difficult
than optimizing orderings. Still, it is desirable to combine order optimization
and the optimization of groupings, as the problems are related and treated sim-

393

394CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

ilarly during plan generation. Recently, some work in this direction has been
published [911]. However, this only covers a special case of grouping. Instead,
in this chapter we follow the approach presented by Neumann and Moerkotte
[644, 643]

Other existing frameworks usually consider only order optimization, and
experimental results have shown that the costs for order optimization can have
a large impact on the total costs of query optimization [644]. Therefore, some
care is needed when adding groupings to order optimization, as a slowdown of
plan generation would be unacceptable.

In this chapter, we present a framework to efficiently reason about orderings
and groupings. It can be used for the plan generator described in Chapter ??,
but is actually an independent component that could be used in any kind of plan
generator. Experimental results show that it efficiently handles orderings and
groupings at the same time, with no additional costs during plan generation and
only modest one time costs. Actually, the operations needed for both ordering
and grouping optimization during plan generation can be performed in O(1),
basically allowing to exploit groupings for free.

23.2 Problem Definition

The order manager component used by the plan generator combines order op-
timization and the handling of grouping in one consistent set of algorithms and
data structures. In this section, we give a more formal definition of the prob-
lem and the scope of the framework. First, we define the operations of ordering
and grouping (Section 23.2.1 and 23.2.2). Then, we briefly discuss functional
dependencies (Section 23.2.3) and how they interact with algebraic operators
(Section 23.2.4). Finally, we explain how the component is actually used during
plan generation (Section 23.2.5).

23.2.1 Ordering

During plan generation, many operators require or produce certain orderings.
To avoid redundant sorting, it is required to keep track of the orderings a certain
plan satisfies. The orderings that are relevant for query optimization are called
interesting orders [784]. The set of interesting orders for a given query consists
of

1. all orderings required by an operator of the physical algebra that may be
used in a query execution plan for the given query, and

2. all orderings produced by an operator of the physical algebra that may
be used in a query execution plan for the given query.

This includes the final ordering requested by the given query, if this is specified.
The interesting orders are logical orderings. This means that they specify a

condition a tuple stream must meet to satisfy the given ordering. In contrast,
the physical ordering of a tuple stream is the actual succession of tuples in
the stream. Note that while a tuple stream has only one physical ordering,

23.2. PROBLEM DEFINITION 395

it can satisfy multiple logical orderings. For example, the stream of tuples
((1, 1), (2, 2)) with schema (a, b) has one physical ordering (the actual stream),
but satisfies the logical orderings a, b, ab and ba.

Some operators, like sort, actually influence the physical ordering of a
tuple stream. Others, like select, only influence the logical ordering. For
example, a sort[a] produces a tuple stream satisfying the ordering (a) by
actually changing the physical order of tuples. After applying select[a=b] to
this tuple stream, the result satisfies the logical orderings (a), (b), (a, b), (b, a),
although the physical ordering did not change. Deduction of logical orderings
can be described by using the well-known notion of functional dependency (FD)
[818]. In general, the influence of a given algebraic operator on a set of logical
orderings can be described by a set of functional dependencies.

We now formalize the problem. Let R = (t1, . . . , tr) be a stream (ordered
sequence) of tuples in attributes A1, . . . , An. Then R satisfies the logical order-
ing o = (Ao1 , . . . , Aom) (1 ≤ oi ≤ n) if and only if for all 1 ≤ i < j ≤ r the
following condition holds:

(ti.Ao1 ≤ tj .Ao1)

∧ ∀1 < k ≤ m (∃1 ≤ l < k(ti.Aol < tj .Aol)) ∨
((ti.Aok−1

= tj .Aok−1
) ∧

(ti.Aok ≤ tj .Aok))

Next, we need to define the inference mechanism. Given a logical ordering
o = (Ao1 , . . . , Aom) of a tuple stream R, then R obviously satisfies any logical
ordering that is a prefix of o including o itself.

Let R be a tuple stream satisfying both the logical ordering o = (A1, . . . , An)
and the functional dependency f = B1, . . . , Bk → Bk+1

1 with Bi ∈ {A1 . . . An}.
Then R also satisfies any logical ordering derived from o as follows: add Bk+1

to o at any position such that all of B1, . . . , Bk occurred before this position
in o. For example, consider a tuple stream satisfying the ordering (a, b); after
inducing the functional dependency a, b→ c, the tuple stream also satisfies the
ordering (a, b, c), but not the ordering (a, c, b). Let O′ be the set of all logical
orderings that can be constructed this way from o and f after prefix closure.
Then, we use the following notation: o ⊢f O′. Let e be the equation Ai = Aj .
Then, o ⊢e O′, where O′ is the prefix closure of the union of the following three
sets. The first set is O1 defined as o ⊢Ai→Aj O1, the second is O2 defined as
o ⊢Aj→Ai O2, and the third is the set of logical orderings derived from o where a
possible occurrence of Ai is replaced by Aj or vice versa. For example, consider
a tuple stream satisfying the ordering (a); after inducing the equation a = b,
the tuple stream also satisfies the orderings (a, b), (b) and (b, a). Let e be an
equation of the form A = const. Then O′ (o ⊢e O′) is derived from o by inserting
A at any position in o. This is equivalent to o ⊢∅→A O

′. For example, consider a
tuple stream satisfying the ordering (a, b); after inducing the equation c = const
the tuple stream also satisfies the orderings (c, a, b), (a, c, b) and (a, b, c).

1Any functional dependency which is not in this form can be normalized into a set of FDs
of this form.

396CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

Let O be a set of logical orderings and F a set of functional dependen-
cies (and possibly equations). We define the sets of inferred logical orderings
Ωi(O,F) as follows:

Ω0(O,F) := O

Ωi(O,F) := Ωi−1(O,F) ∪⋃

f∈F,o∈Ωi−1(O,F)

O′ with o ⊢f O′

Let Ω(O,F) be the prefix closure of
⋃∞

i=0Ωi(O,F). We write o ⊢F o′ if and
only if o′ ∈ Ω(O,F).

23.2.2 Grouping

It was shown in [911] that, similar to order optimization, it is beneficial to
keep track of the groupings satisfied by a certain plan. Traditionally, group-by
operators are either applied after the rest of the query has been processed or
are scheduled using some heuristics [155]. However, the plan generator could
take advantage of grouping properties produced e.g. by avoiding re-hashing if
such information was easily available.

Analogous to order optimization, we call this grouping optimization and
define that the set of interesting groupings for a given query consists of

1. all groupings required by an operator of the physical algebra that may be
used in a query execution plan for the given query

2. all groupings produced by an operator of the physical algebra that may
be used in a query execution plan for the given query.

This includes the grouping specified by the group-by clause of the query, if any
exists.

These groupings are similar to logical orderings, as they specify a condition
a tuple stream must meet to satisfy a given grouping. Likewise, functional
dependencies can be used to infer new groupings.

More formally, a tuple stream R = (t1, . . . , tr) in attributes A1, . . . , An

satisfies the grouping g = {Ag1 . . . , Agm} (1 ≤ gi ≤ n) if and only if for all
1 ≤ i < j < k ≤ r the following condition holds:

∀1 ≤ l ≤ m ti.Agl = tk.Agl

⇒ ∀1 ≤ l ≤ m ti.Agl = tj .Agl

Two remarks are in order here. First, note that a grouping is a set of
attributes and not – as orderings – a sequence of attributes. Second, note
that given two groupings g and g′ ⊂ g and a tuple stream R satisfying the
grouping g, R need not satisfy the grouping g′. For example, the tuple stream
((1, 2), (2, 3), (1, 4)) with the schema (a, b) is grouped by {a, b}, but not by {a}.
This is different from orderings, where a tuple stream satisfying an ordering o
also satisfies all orderings that are a prefix of o.

23.2. PROBLEM DEFINITION 397

New groupings can be inferred by functional dependencies as follows: Let R
be a tuple stream satisfying both the grouping g = {A1, . . . , An} and the func-
tional dependency f = B1, . . . , Bk → Bk+1 with {B1, . . . , Bk} ⊆ {A1, . . . , An}.
Then R also satisfies the grouping g′ = {A1, . . . , An} ∪ {Bk+1}. Let G′ be the
set of all groupings that can be constructed this way from g and f . Then we
use the following notation: g ⊢f G′. For example {a, b} ⊢a,b→c {a, b, c}. Let e
be the equation Ai = Aj . Then g ⊢e G′ where G′ is the union of the follow-
ing three sets. The first set is G1 defined as g ⊢Ai→Aj G1, the second is G2

defined as g ⊢Aj→Ai G2, and the third is the set of groupings derived from g
where a possible occurrence of Ai is replaced by Aj or vice versa. For example,
{a, b} ⊢b=c {a, c}. Let e be an equation of the form A = const. Then g ⊢e G′ is
defined as g ⊢∅→A G

′. For example, {a, b} ⊢c=const {a, b, c}.
Let G be a set of groupings and F be a set of functional dependencies (and

possibly equations). We define the set of inferred groupings Ωi(G,F) as follows:

Ω0(G,F) := G

Ωi(G,F) := Ωi−1(G,F) ∪⋃

f∈F,g∈Ωi−1(G,F)

G′ with g ⊢f G′

Let Ω(G,F) be
⋃∞

i=0Ωi(G,F). We write g ⊢F g′ if and only if g′ ∈ Ω(G,F).

23.2.3 Functional Dependencies

The reasoning about orderings and groupings assumes that the set of func-
tional dependencies is known. The process of gathering the relevant functional
dependencies is described in detail in [818, 819]. Predominantly, there are three
sources of functional dependencies:

1. key constraints

2. join predicates [references constraints]

3. filter predicates

4. simple expressions

However, the algorithm makes no assumption about the functional dependen-
cies. If for some reason an operator induces another kind of functional depen-
dency (e.g., when using TID-based optimizations [588]), this can be handled
the same way. The only important fact is that we provide the set of functional
dependencies as input to the algorithm.

23.2.4 Algebraic Operators

To illustrate the propagation of orderings and groupings during query optimiza-
tion, we give some rules for concrete (physical) operators in Figure 23.1. As a

398CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

operator requires produces

scan(R) - O(R)
indexscan(Idx) - O(Idx)
map(S,a = f(b)) - Ω(O(S), b→ a)
select(S,a = b) - Ω(O(S), a = b)
bnl-join(S1,S2) - O(S1)
indexnl-join(S1,S2) - O(S1)
djoin(S1,S2) - O(S1)
sort(S,a1, . . . , an) - (a1, . . . , an)
group-by(S,a1, . . . , an) - {a1, . . . , an}
hash(S,a1, . . . , an) - {a1, . . . , an}
sort-merge(S1,S2 ,⃗a = b⃗) a⃗ ∈ O(S1) ∧ b⃗ ∈ O(S2) Ω(O(S1), a⃗ = b⃗)

hash-join(S1,S2 ,⃗a = b⃗) a⃗ ↓∈ O(S1) ∧ b⃗ ↓∈ O(S2) Ω(O(S1), a⃗ = b⃗)

Figure 23.1: Propagation of orderings and groupings

shorthand, we use the following notation:
O(R) set of logical orderings and groupings satisfied by the physical order-

ing of the relation R
O(S) inferred set of logical orderings and groupings satisfied by the tuple

stream S
x ↓ {y|y ∈ x}

Note that these rules somewhat depend on the actual implementation of the
operators, e.g. a blockwise nested loop join might actually destroy the ordering
if the blocks are stored in hash tables. The rules are also simplified: For exam-EXC
ple, a group-by will probably compute some aggregate functions, inducing new
functional dependencies. Furthermore, additional information can be derived
from schema information: If the right-hand side of a dependent join (index
nested loop joins are similar) produces at most one tuple, and the left-hand
side is grouped on the free attributes of the right-hand side (e.g. if they do not
contain duplicates) the output is also grouped on the attributes of the right-
hand side. This situation is common, especially for index nested loop joins,
and is detected automatically if the corresponding functional dependencies are
considered. Therefore, it is important that all operators consider all functional
dependencies they induce.

23.2.5 Plan Generation

To exploit available logical orderings and groupings, the plan generator needs
access to the combined order optimization and grouping component, which we
describe as an abstract data type (ADT). An instance of this abstract data
type OrderingGrouping represents a set of logical orderings and groupings,
and wherever necessary, an instance is embedded into a plan note. The main
operations the abstract data type OrderingGrouping must provide are

1. a constructor for a given logical ordering or grouping,

23.3. OVERVIEW 399

2. a membership test (called containsOrdering(LogicalOrdering)) which
tests whether the set contains the logical ordering given as parameter,

3. a membership test (called containsGrouping(Grouping)) which tests
whether the set contains the grouping given as parameter, and

4. an inference operation (called infer(set<FD>)). Given a set of functional
dependencies and equations, it computes a new set of logical orderings and
groupings a tuple stream satisfies.

These operations can be implemented by using the formalism described
before: containsOrdering tests for o ∈ O, containsGrouping tests for o ∈ G
and infer(F) calculates Ω(O,F) respectively Ω(G,F). Note that the intuitive
approach to explicitly maintain the set of all logical orderings and groupings
is not useful in practice. For example, if a sort operator sorts a tuple stream
on (a, b), the result is compatible with logical orderings {(a, b), (a)}. After a
selection operator with selection predicate x = const is applied, the set of logical
orderings changes to {(x, a, b), (a, x, b), (a, b, x), (x, a), (a, x), (x)}. Since the
size of the set increases quadratically with every additional selection predicate
of the form v = const, a naive representation as a set of logical orderings is
problematic. This led Simmen et al. to introduce a more concise representation,
which is discussed in the related work section. Note that Simmen’s technique is
not easily applicable to groupings, and no algorithm was proposed to efficiently
maintain the set of available groupings. The order optimization component
described here closes this gap by supporting both orderings and groupings.
The problem of quadatic growth is avoided by only implicitly representing the
set.

23.3 Overview

As we have seen, explicit maintenance of the set of logical orderings and group-
ings can be very expensive. However, the ADT OrderingGrouping required
for plan generation does not need to offer access to this set: It only allows to
test if a given interesting order or grouping is in the set and changes the set
according to new functional dependencies. Hence, it is not required to explicitly
represent this set; an implicit representation is sufficient as long as the ADT
operations can be implemented atop of it. In other words, we need not be able
to reconstruct the set of logical orderings and groupings from the state of the
ADT. This gives us room for optimizations.

The initial idea (see [644]) was to represent sets of logical orderings as states
of a finite state machine (FSM). Roughly, a state of the FSM represents a
current physical ordering and the set of logical orderings that can be inferred
from it given a set of functional dependencies. The edges (transitions) in the
FSM are labeled by sets of functional dependencies. They lead from one state
to another, if the target state of the edge represents the set of logical orderings
that can be derived from the orderings the edge’s source node represents by
applying the set of functional dependencies the edge is labeled with. We have

400CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

a

abdabdc

abcd

abc

{b→ d} {b→ d}

{b→ d}

ε

ε
ab

ε

ε

ε

Figure 23.2: Possible FSM for orderings

to use sets of functional dependencies, since a single algebraic operator may
introduce more than one functional dependency.

Let us illustrate the idea by a simple example and then discuss some prob-
lems. In Figure 23.2, an FSM for the interesting order (a, b, c) and its prefixes
(remember that we need prefix closure) and the set of functional dependencies
{b → d} is given. When a physical ordering satisfies (a, b, c), it also satisfies
its prefixes (a, b) and (a). This is indicated by the ϵ transitions. The func-
tional dependency b → d allows to derive the logical orderings (a, b, c, d) and
(a, b, d, c). This is handled by assuming that the physical ordering changes to
either (a, b, c, d) or (a, b, d, c). Hence, these states have to be added to the FSM.
We further add the transitions induced by {b → d}. Note that the resulting
FSM is a non-deterministic finite state machine (NFSM).

Assume we have an NFSM as above. Then (while ignoring groupings) the
state of the ADT is a state of the NFSM and the operations of the ADT can
easily be mapped to the FSM. Testing for a logical ordering can be performed
by checking if the node with the ordering is reachable from the current state
by following ϵ edges. If the set must be changed because of a functional de-
pendency the state is changed by following the edge labeled with the functional
dependency. Of course, the non-determinism is in our way.

While remembering only the active state of the NFSM avoids the problem
of maintaining a set of orderings, the NFSM is not really useful from a prac-
tical point of view, since the transitions are non-deterministic. Nevertheless,
the NFSM can be considered as a special non-deterministic finite automaton
(NFA), which consumes the functional dependencies and ”recognizes” the pos-
sible physical orderings. Further, an NFA can be converted into a deterministic
finite automaton (DFA), which can be handled efficiently. Remember that the
construction is based on the power set of the NFA’s states. That is, the states
of the DFA are sets of states of the NFA [553]. We do not take the deviation
over the finite automaton but instead lift the construction of deterministic finite
automatons from non-deterministic ones to finite state machines. Since this is
not a traditional conversion, we give a proof of this step in Section ??.

Yet another problem is that the conversion from an NFSM to a deterministic
FSM (DFSM) can be expensive for large NFSMs. Therefore, reducing the size
of the NFSM is another problem we look at. We introduce techniques for
reducing the set of functional dependencies that have to be considered and

23.3. OVERVIEW 401

abcdabc

{b→ d}

Figure 23.3: Possible FSM for groupings

a

abdabdc

abcd

abc

abc abcd

{b→ d} {b→ d}

{b→ d}

ε

ε
ab

ε

ε

ε

ε

ε

{b→ d}

Figure 23.4: Combined FSM for orderings and groupings

further techniques to prune the NFSM in Section 23.4.7.

The idea of a combined framework for orderings and groupings was presented
in [643]. Here, the main point is to construct a similar FSM for groupings and
integrate it into the FSM for orderings, thus handling orderings and groupings
at the same time. An example of this is shown in Figure 23.3. Here, the
FSM for the grouping {a, b, c} and the functional dependency b → c is shown.
We represent states for orderings as rounded boxes and states for groupings
as rectangles. Note that although the FSM for groupings has a start node
similar to the FSM for orderings, it is much smaller. This is due to the fact
that groupings are only compatible with themselves, no nodes for prefixes are
required. However, the FSM is still non-deterministic: given the functional
dependency b → c, the grouping {a, b, c, d} is compatible with {a, b, c, d} itself
and with {a, b, c}; therefore, there exists an (implicit) edge from each grouping
to itself.

The FSM for groupings is integrated into the FSM for orderings by adding
ϵ edges from each ordering to the grouping with the same attributes; this is
due to the fact that every ordering is also a grouping. Note that although the
ordering (a, b, c, d) also implies the grouping {a, b, c}, no edge is required for
this, since there exists an ϵ edge to (a, b, c) and from there to {a, b, c}.

After constructing a combined FSM as described above, the full ADT sup-
porting both orderings and groupings can easily be mapped to the FSM: The

a,ab,abc

abd,abcd,a,ab,abc,{ab}

abdc,{abd}

{b→ d}

Figure 23.5: Possible DFSM for Figure 23.4

402CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

state of the ADT is a state of the FSM and testing for a logical ordering or
grouping can be performed by checking if the node with the ordering or group-
ing is reachable from the current state by following ϵ edges (as we will see, this
can be precomputed to yield the O(1) time bound for the ADT operations). If
the state of the ADT must be changed because of functional dependencies, the
state in the FSM is changed by following the edge labeled with the functional
dependency.

However, the non-determinism of this transition is a problem. Therefore, for
practical purposes the NFSM must be converted into a DFSM. The resulting
DFSM is shown in Figure 23.5. Note that although in this simple example the
DFSM is very small, the conversion could lead to exponential growth. There-
fore, additional pruning techniques for groupings are presented in Section 23.4.7.
However, the inclusion of groupings is not critical for the conversion, as the
grouping part of the NFSM is nearly independent of the ordering part. In
Section 23.5 we look at the size increase due to groupings. The memory con-
sumption usually increases by a factor of two, which is the minimum expected
increase, since every ordering is a grouping.

Some operators, like sort, change the physical ordering. In the NFSM, this
is handled by changing the state to the node corresponding to the new physical
ordering. Implied by its construction, in the DFSM this new physical ordering
typically occurs in several nodes. For example, (a, b, c) occurs in both nodes of
the DFSM in Figure 23.5. It is, therefore, not obvious which node to choose.
We will take care of this problem during the construction of the NFSM (see
Section 23.4.3).

23.4 Detailed Algorithm

23.4.1 Overview

Our approach consists of two phases. The first phase is the preparation step
taking place before the actual plan generation starts. The output of this phase
are the precomputed values used to implement the ADT. Then the ADT is used
during the second phase where the actual plan generation takes place. The first
phase is performed exactly once and is quite involved. Most of this section covers
the first phase. Only Section 23.4.6 deals with the ADT implementation.

Figure 23.6 gives an overview of the preparation phase. It is divided into
four major steps, which are discussed in the following subsections. Subsection
23.4.2 briefly reviews how the input to the first phase is determined and, more
importantly, what it looks like. Section 23.4.3 describes in detail the construc-
tion of the NFSM from the input. The conversion from the NFSM to the DFSM
is only briefly sketched in Section 23.4.4, for details see [553]. From the DFSM
some values are precomputed which are then used for the efficient implemen-
tation of the ADT. The precomputation is described in Section 23.4.5, while
their utilization and the ADT implementation are the topic of Section 23.4.6.
Section 23.4.7 contains some important techniques to reduce the size of the
NFSM. They are applied in Steps 2 (b), 2 (c) and 2 (e). During the discussion,
we illustrate the different steps by a simple running example. More complex

23.4. DETAILED ALGORITHM 403

1. Determine the input

(a) Determine interesting orders

(b) Determine interesting groupings

(c) Determine set of functional dependencies

2. Construct the NFSM

(a) Construct states of the NFSM

(b) Filter functional dependencies

(c) Build filters for orderings and groupings

(d) Add edges to the NFSM

(e) Prune the NFSM

(f) Add artificial start state and edges

3. Convert the NFSM into a DFSM

4. Precompute values

(a) Precompute the compatibility matrix

(b) Precompute the transition table

Figure 23.6: Preparation steps of the algorithm

examples can be found in Section 23.5.

23.4.2 Determining the Input

Since the preparation step is performed immediately before plan generation, it
is assumed that the query optimizer has already determined which indices are
applicable and which algebraic operators can possibly be used to construct the
query execution plan.

Before constructing the NFSM, the set of interesting orders, the set of in-
teresting groupings and the sets of functional dependencies for each algebraic
operator are determined. We denote the set of sets of functional dependencies
by F . It is important for the correctness of our algorithms that we note which
of the interesting orders are (1) produced by some algebraic operator or (2) only
tested for. Note that the interesting orders which satisfy (1) may additionally
be tested for as well. We denote those orderings under (1) by OP , those under
(2) by OT . The total set of interesting orders is defined as OI = OP ∪ OT .
The orders produced are treated slightly differently in the following steps. The ToDo: details

on determining
interesting or-
ders?

groupings are classified similarly to the orderings: We denote the grouping pro-
duced by some algebraic operator by GP , and those just tested for by GT . The
total set of interesting groupings is defined as GI = GP ∪GT . More information
on how to extract interesting groupings can be found in [911]. Furthermore,
for a sample query the extraction of both interesting orders and groupings is

404CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

illustrated in Section 23.5.

To illustrate subsequent steps, we assume that the set of sets of functional
dependencies

F = {{b→ c}, {b→ d}},

the interesting groupings

GI = {{b}} ∪ {{b, c}}

and the interesting orders

OI = {(b), (a, b)} ∪ {(a, b, c)}

have been extracted from the query. We assume that those in OT = {(a, b, c)}
and GT = {{b, c}} are tested for but not produced by any operator, whereas
those in OP = {(b), (a, b)} and GP = {{b}} may be produced by some algebraic
operators.

23.4.3 Constructing the NFSM

An NFSM consists of a tuple (Σ, Q,D, qo), where

• Σ is the input alphabet,

• Q is the set of possible states,

• D ⊆ Q× (Σ ∪ {ϵ})×Q is the transition relation, and

• q0 is the initial state.

Coarsely, Σ consists of the functional dependencies, Q of the relevant or-
derings and groupings, and D describes how the orderings or groupings change
under a given functional dependency. Some refinements are needed to provide
efficient ADT operations. The details of the construction are described now.

For the order optimization part the states are partitioned in Q = QI ∪QA∪
{q0}, where q0 is an artificial state to initialize the ADT, QI is the set of states
corresponding to interesting orderings and QA is a set of artificial states only
required for the algorithm itself. QA is described later. Furthermore, the set
QI is partitioned in QP

I and QT
I , representing the orderings in OP and OT ,

respectively. To support groupings, we add to QP
I states corresponding to the

groupings in GP and to QT
I states corresponding to the groupings in GT .

The initial NFSM contains the states QI of interesting groupings and order-
ings. For the example, this initial construction not including the start state qo is
shown in Figure 23.7. The states representing groupings are drawn as rectangles
and the states representing orderings are drawn with rounded corners.

When considering functional dependencies, additional groupings and order-
ings can occur. These are not directly relevant for the query, but have to be
represented by states to handle transitive changes. Since they have no direct
connection to the query, these states are called artificial states. Starting with

23.4. DETAILED ALGORITHM 405

b,c

b

a,b,c

a,b

b

Figure 23.7: Initial NFSM for sample query

the initial states QI , artificial states are constructed by considering functional
dependencies

QA = (Ω(OI ,F) \OI) ∪ (Ω(GI ,F) \GI).

In our example, this creates the states (b, c) and (a), as (b, c) can be inferred
from (b) when considering {b→ c} and (a) can be inferred from (a, b), since (a)
is a prefix of (a, b). The result is show in Figure 23.8 (ignore the edges).

Sometimes the ADT has to be explicitly initialized with a certain ordering
or grouping (e.g. after a sort). To support this, artificial edges are added
later on. These point to the requested ordering or grouping (states in QP

I) and
are labeled with the state that they lead to. Therefore, the input alphabet
Σ consists of the sets of functional dependencies and produced orderings and
groupings:

Σ = F ∪QP
I ∪ {ϵ}.

In our example, Σ = {{b→ c}, {b→ d}, (b), (a, b), {b}}.
Accordingly, the domain of the transition relation D is

D ⊆ ((Q \ {q0})× (F ∪ {ϵ})× (Q \ {q0}))
∪ ({qo} ×QP

I ×QP
I).

The edges are formed by the functional dependencies and the artificial edges.
Furthermore, ϵ edges exist between orderings and the corresponding groupings,
as orderings are a special case of grouping:

DFD = {(q, f, q′) | q ∈ Q, f ∈ F ∪ {ϵ}, q′ ∈ Q, q ⊢ fq
′}

DA = {(q0, q, q) | q ∈ QP
I }

DOG = {(o, ϵ, g) | o ∈ Ω(OI ,F), g ∈ Ω(GI ,F), o ≡ g}
D = DFD ∪DA ∪DOG

First, the edges corresponding to functional dependencies are added (DFD).
In our example, this results in the NFSM shown in Figure 23.8.

Note that the functional dependency b → d has been pruned, since d does
not occur in any interesting order or grouping. The NFSM can be further
simplified by pruning the artificial state (b, c), which cannot lead to a new
interesting order. The result is shown in Figure 23.9. A detailed description of
these pruning techniques can be found in Section 23.4.7.

406CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

b

a,b

a,b,c

b

b,c

b,c

a

{b→ c} ε

ε

ε

{b→ c}

{b→ c}

q0

Figure 23.8: NFSM after adding DFD edges

b

a,b

a,b,c

b

b,ca

{b→ c} ε

ε

{b→ c}

q0

Figure 23.9: NFSM after pruning artificial states

The artificial start state q0 has emanating edges incident to all states rep-
resenting interesting orders in OP

I and interesting groupings in GP
I (DA). Also,

the states representing orderings have edges to their corresponding grouping
states (DOG), as every ordering is also a grouping. The final NFSM for the
example is shown in Figure 23.10. Note that the states representing (a, b, c)
and {b, c} are not linked by an artificial edge since it is only tested for, as they
are in QT

I .

a b,c

b

a,b,c

a,b

b

(a,b)

(b)

{b}

qo

{b→ c}
ε

ε{b→ c}

ε

Figure 23.10: Final NFSM

23.4. DETAILED ALGORITHM 407

{b}

(b)

(a,b)

6:(a),(a,b),(a,b,c)

5:(b),{b},{b,c}

4:{b},{b,c}

3:(a),(a,b)

2:(b),{b}

1:{b}

{b→ c}

{b→ c}

{b→ c}

qo

Figure 23.11: Resulting DFSM

state 1: 2: 3: 4: 5: 6:
(a) (a,b) (a,b,c) (b) {b} {b,c}

1 0 0 0 0 1 0
2 0 0 0 1 1 0
3 1 1 0 0 0 0
4 0 0 0 0 1 1
5 0 0 0 1 1 1
6 1 1 1 0 0 0

Figure 23.12: contains Matrix

23.4.4 Constructing the DFSM

The construction of the DFSM from the NFSM follows the standard power
set construction that is used to translate an NFA into a DFA [553]. A formal
description and a proof of correctness is given in Section ??. It is important
to note that this construction preserves the start state and the artificial edges.
The resulting DFSM for the example is shown in Figure 23.11.

state 1: 2: 3: 4:
{b→ c} (a, b) (b) {b}

qo - 3 2 1
1 4 - - -
2 5 - - -
3 6 - - -
4 4 - - -
5 5 - - -
6 6 - - -

Figure 23.13: transition Matrix

408CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

23.4.5 Precomputing Values

To allow for an efficient precomputation of values, every occurrence of an inter-
esting order, interesting grouping or set of functional dependencies is replaced
by integers. This allows comparisons in constant time (equivalent entries are
mapped to same integer). Further, the DFSM is represented by an adjacency
matrix.

The precomputation step itself computes two matrices. The first matrix
denotes whether an NFSM state in QI is active, i.e. an interesting order or an
interesting grouping, is contained in a specific DFSM state. This matrix can
be represented as a compact bit vector, allowing tests in O(1). For our running
example, it is given (in a more readable form) in Figure 23.12. The second
matrix contains the transition table for the DFSM relation D. Using it, edges
in the DFSM can be followed in O(1). For the example, the transition matrix
is given in Figure 23.13.

23.4.6 During Plan Generation

During plan generation, larger plans are constructed by adding algebraic op-
erators to existing (sub-)plans. Each subplan contains the available orderings
and groupings in the form of the corresponding DFSM state. Hence, the state
of the DFSM, a simple integer, is the state of our ADT OrderingGrouping.

When applying an operator to subplans, the ordering and grouping require-
ments are tested by checking whether the DFSM state of the subplan contains
the required ordering or grouping of the operator. This is done by a simple
lookup in the contains matrix.

If the operator introduces a new set of functional dependencies, the new
state of the ADT is computed by following the according edge in the DFSM.
This is performed by a quick lookup in the transition matrix.

For “atomic” subplans like table or index scans, the ordering and grouping
is determined explicitly by the operator. The state of the DFSM is determined
by a lookup in the transition matrix with start state qo and the edge annotated
by the produced ordering or grouping. For sort and group-by operators the
state of the DFSM is determined as before by following the artificial edge for
the produced ordering or grouping and then reapplying the set of functional
dependencies that currently hold.

In the example, a sort on (b) results in a subplan with ordering/grouping
state 2 (the state 2 is active in the DFSM), which satisfies the ordering (b)
and the grouping {b}. After applying an operator which induces b → c, the
ordering/grouping changes to state 5 which also satisfies {b, c}.

23.4.7 Reducing the Size of the NFSM

Reducing the size of the NFSM is important for two reasons: First, it reduces
the amount of work needed during the preparation step, especially the con-
version from NFSM to DFSM. Even more important is that a reduced NFSM
results in a smaller DFSM. This is crucial for plan generation, since it reduces

23.4. DETAILED ALGORITHM 409

the search space: Plans can only be compared and pruned if they have compa-
rable ordering and a comparable set of functional dependencies (see [818, 819]
for details). Reducing the size of the DFSM removes information that is not
relevant for plan generation and, therefore, allows a more aggressive pruning of
plans.

At first, the functional dependencies are pruned. Here, functional dependen-
cies which can never lead to a new interesting order or grouping are removed.
For convenience, we extend the definition of Ω(O,F) and define

Ω(O, ϵ) := Ω(O, ∅).

Then the set of prunable functional dependencies FP can be described by

ΩN (o, f) := Ω({o}, {f}) \ Ω({o}, ϵ)
FP := {f |f ∈ F ∧ ∀o ∈ OI ∪GI :

(Ω(ΩN (o, f), F) \ Ω({o}, ϵ)) ∩ (OI ∪GI) = ∅}.

Pruning functional dependencies is especially useful, since it also prunes artifi-
cial states that would be created because of the dependencies. In the example,
this removed the functional dependency b → d, since d does not appear in
any interesting order or grouping. This step also removes the artificial states
containing d.

The artificial states are required to build the NFSM, but they are not visible
outside the NFSM. Therefore, they can be pruned and merged without affecting
plan generation. Two heuristics are used to reduce the set of artificial states:

1. All artificial nodes that behave exactly the same (that is, their edges lead
to the same states given the same input) are merged and

2. all edges to artificial states that can reach states in QI only through ϵ
edges are replaced with corresponding edges to the states in QI .

More formally, the following pairs of states can be merged:

{(o1, o2) | o1 ∈ QA, o2 ∈ QA ∧ ∀f ∈ F :

(Ω({o1}, {f}) \ Ω({o1}, ϵ)) =
(Ω({o2}, {f}) \ Ω({o2}, ϵ))}.

The following states can be replaced with the next state reachable by an ϵ edge:

{o | o ∈ QA ∧ ∀f ∈ F :

Ω(Ω({o}, ϵ), {f}) \ {o} =
Ω(Ω({o}, ϵ) \ {o}, {f})}.

In the example, this removed the state (b, c), which was artificial and only led
to the state (b).

These techniques reduce the size of the NFSM, but still most states are
artificial states, i.e. they are only created because they can be reached by con-
sidering functional dependencies when a certain ordering or grouping is avail-
able. But many of these states are not relevant for the actual query processing.

410CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

For example, given a set of interesting orders which consists only of a single
ordering (a) and a set of functional dependencies which consists only of a→ b,
the NFSM will contain (among others) two states: (a) and (a, b). The state
(a, b) is created since it can be reached from (a) by considering the functional
dependency, however, it is irrelevant for the plan generation, since (a, b) is not
an interesting order and is never created nor tested for. Actually, in the ex-
ample above, the whole functional dependency would be pruned (since b never
occurs in an interesting order), but the problem remains for combinations of
interesting orders: Given the interesting orders (a), (b) and (c) and the func-
tional dependencies {a→ b, b→ a, b→ c, c→ b}, the NFSM will contain states
for all permutations of a, b and c. But these states are completely useless, since
all interesting orders consist only of a single attribute and, therefore, only the
first entry of an ordering is ever tested.

Ideally, the NFSM should only contain states which are relevant for the
query; since this is difficult to ensure, a heuristic can be used which greatly
reduces the size of the NFSM and still guarantees that all relevant states are
available: When considering a functional dependency of the form a → b and
an ordering o1, o2, . . . , on with oi = a for some i (1 ≤ i ≤ n), the b can be
inserted at any position j with i < j ≤ n+1 (for the special case of a condition
a = b, i = j is also possible). So, an entry of an ordering can only affect entries
on the right of its own position. This means that it is unnecessary to consider
those parts of an ordering which are behind the length of the longest interesting
order; since that part cannot influence any entries relevant for plan generation,
it can be omitted. Therefore, the orderings created by functional dependencies
can be cut off after the maximum length of interesting orders, which results in
less possible combinations and a smaller NFSM.

The space of possible orderings can be limited further by taking into account
the prefix of the ordering: before inserting an entry b in an ordering o1, o2, . . . , on
at the position i, check if there is actually an interesting order with the prefix
o1, o2, ...oi−1, b and stop inserting if no interesting order is found. Also limit the
new ordering to the length of the longest matching interesting order; further
attributes will never be used. If functional dependencies of the form a = b occur,
they might influence the prefix of the ordering and the simple test described
above is not sufficient. Therefore, a representative is chosen for each equivalence
class created by these dependencies, and for the prefix test the attributes are
replaced with their representatives. Since the set of interesting orders with
a prefix of o1, . . . , on is a superset of the set for the prefix o1, ...on, on+1, this
heuristic can be implemented very efficiently by iterating over i and reducing
the set as needed.

Additional techniques can be used to avoid creating superfluous artifical
states for groupings: First, in Step 2.3 (see Figure 23.6) the set of attributes
occurring in interesting groupings is determined:

AG = {a | ∃g ∈ GI : a ∈ g}

Now, for every attribute a occurring on the right-hand side of a functional

23.4. DETAILED ALGORITHM 411

dependency the set of potentially reachable relevant attributes is determined:

r(a, 0) = {a}
r(a, n) = r(a, n− 1) ∪

{a′ | ∃(a1 . . . am → a′) ∈ F :

{a1 . . . am} ∩ r(a, n− 1) ̸= ∅}
r(a) = r(a, |F|) ∩AG

This can be used to determine if a functional dependency actually adds
useful attributes. Given a functional dependency a1 . . . an → a and a grouping
g with {a1 . . . an} ⊆ g, a should only be added to g if r(a) ̸⊆ g, i.e. the
attribute might actually lead to a new interesting grouping. For example, given
the interesting groupings {a}, {a, b} and the functional dependencies a→ c, a→
d, d = b. When considering the grouping {a}, the functional dependency a→ c
can be ignored, as it can only produce the attribute c, which does not occur in
an interesting grouping. However, the functional dependency a→ d should be
added, since transitively the attribute b can be produced, which does occur in
an interesting grouping.

Since there are no ϵ edges between groupings, i.e. groupings are not com-
patible with each other, a grouping can only be relevant for the query if it is
a subset of an interesting ordering (as further attributes could be added by
functional dependencies). However, a simple subset test is not sufficient, as
equations of the form a = b are also supported; these can effectively rename
attributes, resulting in a slightly more complicated test:

In Step 2.3 (see Figure 23.6) the equivalence classes induced by the equations
in F are determined and for each class a representative is chosen (a and a1 . . . an
are attributes occuring in the GI):

E(a, 0) = {a}
E(a, n) = E(a, n− 1) ∪

{a′ | ((a = a′) ∈ F) ∨ ((a′ = a) ∈ F)}
E(a) = E(a, |F|)
e(a) = a representative choosen from E(A)

e({a1 . . . an}) = {e(a1) . . . e(an)}.

Using these equivalence classes, a mapped set of interesting groupings is
produced that will be used to test if a grouping is relevant:

GE
I = {e(g) | g ∈ GI}

Now a grouping g can be pruned if ̸ ∃g′ ∈ GE
I : e(g) ⊆ g′. For example,

given the interesting grouping {a} and the equations a = b, b = c, the grouping
{d} can be pruned, as it will never lead to an interesting grouping; however, the
groupings {b} and {c} have to be kept, as they could change to an interesting
grouping later on.

412CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

Note that although they appear to test similar conditions, the first pruning
technique (using r(a)) is not dominated by the second one (using e(a)). Con-
sider e.g. the interesting grouping {a}, the equation a = b and the functional
dependency a→ b. Using only the second technique, the grouping {a, b} would
be created, although it is not relevant.

23.4.8 Complex Ordering Requirements

Specifying the ordering requirements of an operator can be surprisingly difficult.
Consider the following SQL query:

select *

from S s, R r

where r.a=s.a and r.b=s.b and

r.c=s.c and r.d=s.d

When answering this query using a sort-merge join, the operator has to
request a certain odering. But there are many orderings that could be used:
The intuitive ordering would be abcd, but adcb or any other premutation could
have been used as well. This is problematic, as checking for an exponential
number of possibilities is not acceptable in general. Note that this problem is
not specific to our approach, the same is true, e.g., for Simmen’s approach.

The problem can be solved by defining a total ordering between the at-
tributes, such that a canonical ordering can be constructed. We give some rules
how to derive such an ordering below, but it can happen that such an order-
ing is unavailable (or rather the construction rules are ambiguous). Given, for
example, two indices, one on abcd and one on adcb, both orderings would be a
reasonable choice. If this happens, the operators have two choices: Either they
accept all reasonable orderings (which could still be an exponential number,
but most likely only a few orderings remaing) or they limit themselves to one
ordering, which could induce unnecessary sort operators. Probably the second
choice is preferable, as the ambiguous case should be rare and does not justify
the complex logic of the first solution.

The attribute ordering can be derived by using the following heuristical
rules:

1. Only attributes that occur in sets without natural ordering (i.e. complex
join predicates or grouping attributes) have to be ordered.

2. Orderings that are given (e.g., indices, user-requested orderings etc.) or-
der some attributes.

3. Small orderings should be considered first. If an operator requires an or-
dering with the attributes abc, and another operator requires an ordering
with the attributes bc, the attributes b and c should come before a.

4. The attributes should be ordered according to equivalence classes. If a
is ordered before b, all orderings in E(a) should be ordered before all
orderings in E(b).

23.5. EXPERIMENTAL RESULTS 413

n #Edges t (ms) #Plans t/plan t (ms) #Plans t/plan % t % #Plans %. t/plan
5 n-1 2 1541 1.29 1 1274 0.78 2.00 1.21 1.65
6 n-1 9 7692 1.17 2 5994 0.33 4.50 1.28 3.55
7 n-1 45 36195 1.24 12 26980 0.44 3.75 1.34 2.82
8 n-1 289 164192 1.76 74 116562 0.63 3.91 1.41 2.79
9 n-1 1741 734092 2.37 390 493594 0.79 4.46 1.49 3.00
10 n-1 11920 3284381 3.62 1984 2071035 0.95 6.01 1.59 3.81
5 n 4 3060 1.30 1 2051 0.48 4.00 1.49 2.71
6 n 21 14733 1.42 4 9213 0.43 5.25 1.60 3.30
7 n 98 64686 1.51 20 39734 0.50 4.90 1.63 3.02
8 n 583 272101 2.14 95 149451 0.63 6.14 1.82 3.40
9 n 4132 1204958 3.42 504 666087 0.75 8.20 1.81 4.56
10 n 26764 4928984 5.42 2024 2465646 0.82 13.22 2.00 6.61
5 n+1 12 5974 2.00 1 3016 0.33 12.00 1.98 6.06
6 n+1 69 26819 2.57 6 12759 0.47 11.50 2.10 5.47
7 n+1 370 119358 3.09 28 54121 0.51 13.21 2.21 6.06
8 n+1 2613 509895 5.12 145 208351 0.69 18.02 2.45 7.42
9 n+1 27765 2097842 13.23 631 827910 0.76 44.00 2.53 17.41
10 n+1 202832 7779662 26.07 3021 3400945 0.88 67.14 2.29 29.62

Figure 23.14: Plan generation for different join graphs, Simmen’s algorithm
(left) vs. our algorithm (middle)

5. Attributes should be ordered according to the functional dependencies,
i.e. if a → b, a should come before b. Note that a = b suggests no
ordering between a and b.

6. The remaining unordered attributes can be ordered in an arbitrary way.

The rules must check if they create contradictions. If this happens. the
contradicting ordering must be omitted, resulting in potentially superfluous sort
operators. Note that in some cases these sort operators are simply unavoidable:
If for the example query one index on R exists with the ordering abcd and one
index on S with the ordering dcba, the heuristical rules detect a contradiction
and choose one of the orderings. This results in a sort operator before the
(sort-merge) join, but this sort could not have been avoided anyway.

23.5 Experimental Results

The framework described in this chapter solves two problems: First, it provides
an efficient representenation for reasoning about orderings and second, it allows
keeping track of orderings and groupings at the same time. Since these topics
are treated separately in the related work, the experimental results are split in
two sections: In Section 23.6 the framework is compared to another published
framework while only considering orderings, and in Section 23.7 the influence
of groupings is evaluated.

23.6 Total Impact

We now consider how order processing influences the time needed for plan
generation. Therefore, we implemented both our algorithm and the algorithm
proposed by Simmen et al. [818, 819] and integrated them into a bottom-up
plan generator based on [567].

To get a fair comparison, we tuned Simmen’s algorithm as much as possible.
The most important measure was to cache results in order to eliminate repeated

414CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

calls to the very expensive reduce operation. Second, since Simmen’s algorithm
requires dynamic memory, we implemented a specially tailored memory man-
agement. This alone gave us a speed up by a factor of three. We further tuned
the algorithm by thoroughly profiling it until no more improvements were possi-
ble. For each order optimization framework the plan generator was recompiled
to allow for as many compiler optimizations as possible. We also carefully ob-
served that in all cases both order optimization algorithms produced the same
optimal plan.

We first measured the plan generation times and memory usage for TPC-
R Query 8. A detailed discussion of this query follows in Section 23.7, here
we ignored the grouping properties to compare it with Simmen’s algorithm.
The result of this experiment is summarized in the following table. Since or-
der optimization is tightly integrated with plan generation, it is impossible to
exactly measure the time spent just for order optimization during plan gener-
ation. Hence, we decided to measure the impact of order optimization on the
total plan generation time. This has the advantage that we can also (for the
first time) measure the impact order optimization has on plan generation time.
This is important since one could argue that we are optimizing a problem with
no significant impact on plan generation time, hence solving a non-problem. As
we will see, this is definitely not the case.

In subsequent tables, we denote by t(ms) the total execution time for plan
generation measured in milliseconds, by #Plans the total number of subplans
generated, by t/plan the average time (in microseconds) needed to introduce
one plan operator, i.e. the time to produce a single subplan, and by Memory
the total memory (in KB) consumed by the order optimization algorithms.

Simmen Our algorithm

t (ms) 262 52
#Plans 200536 123954
t/plan (µs) 1.31 0.42
Memory (KB) 329 136

From these numbers, it becomes obvious that order optimization has a signif-
icant influence on total plan generation time. It may come as a surprise that
fewer plans need to be generated by our approach. This is due to the fact
that the (reduced) FSM only contains the information relevant to the query,
resulting in fewer states. With Simmen’s approach, the plan generator can only
discard plans if the ordering is the same and the set of functional dependen-
cies is equal (respectively a subset). It does not recognize that the additional
information is not relevant for the query.

In order to show the influence of the query on the possible gains of our
algorithm, we generated queries with 5-10 relations and a varying number of
join predicates —that is, edges in the join graph. We always started from
a chain query and then randomly added some edges. For small queries we
averaged the results of 100 queries and averaged 10 queries for large queries.
The results of the experiment can be found in Fig. 23.14. In the second column,
we denote the number of edges in terms of the number of relations (n) given in
the first column. The next six columns contain (1) the total time needed for

23.7. INFLUENCE OF GROUPINGS 415

n #Edges Simmen Our Algorithm DFSM
5 n-1 14 10 2
6 n-1 44 28 2
7 n-1 123 77 2
8 n-1 383 241 3
9 n-1 1092 668 3
10 n-1 3307 1972 4
5 n 27 12 2
6 n 68 36 2
7 n 238 98 3
8 n 688 317 3
9 n 1854 855 4
10 n 5294 2266 4
5 n+1 53 15 2
6 n+1 146 49 3
7 n+1 404 118 3
8 n+1 1247 346 4
9 n+1 2641 1051 4
10 n+1 8736 3003 5

Figure 23.15: Memory consumption in KB for Figure 23.14

plan generation (in ms), (2) the number of (sub-) plans generated, and (3) the
time needed to generate a subplan (in µs), i.e. to add a single plan operator, for
(a) Simmen’s algorithm (columns 3-5) and our algorithm (columns 6-8). The
total plan generation time includes building the DFSM when our algorithm is
used. The last three columns contain the improvement factors for these three
measures achieved by our algorithm. More specifically, column % x contains
the result of dividing the x column of Simmen’s algorithm by the corresponding
x column entry of our algorithm.

Note that we are able to keep the plan generation time below one second
in most cases and three seconds in the worst case, whereas when Simmen’s
algorithm is applied, plan generation time can be as high as 200 seconds. This
observation leads to two important conclusions:

1. Order optimization has a significant impact on total plan generation time.

2. By using our algorithm, significant performance gains are possible.

For completeness, we also give the memory consumption during plan gen-
eration for the two order optimization algorithms (see Fig. 23.15). For our
approach, we also give the sizes of the DFSM which are included in the to-
tal memory consumption. All memory sizes are in KB. As one can see, our
approach consumes about half as much memory as Simmen’s algorithm.

23.7 Influence of Groupings

Integrating groupings in the order optimization framework allows the plan gen-
erator to easily exploit groupings and, thus, produce better plans. However,
order optimization itself might become prohibitively expensive by considering

416CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

groupings. Therefore, we evaluated the costs of including groupings for different
queries.

Since adding support for groupings has no effect on the runtime behavior
of the plan generator (all operations are still one table lookup), we measured
the runtime and the memory consumption of the preparation step both with
and without considering groupings. When considering groupings, we treated
each interesting ordering also as an interesting grouping, i.e. we assumed that
a grouping-based (e.g. hash-based) operator was always available as an alter-
native. Since this is the worst-case scenario, it should give an upper bound for
the additional costs. All experiments were performed on a 2.4 GHz Pentium
IV, using the gcc 3.3.1.

To examine the impact for real queries, we choose a more complex query
from the well-known TPC-R benchmark ([879], Query 8):

select
o year,
sum(case when nation = ’[NATION]’

then volume
else 0

end) / sum(volume) as mkt share
from

(select
extract(year from o orderdate) as o year,
l extendedprice * (1-l discount) as volume,
n2.n name as nation

from part,supplier,lineitem,orders,customer,
nation n1,nation n2,region

where
p partkey = l partkey and
s suppkey = l suppkey and
l orderkey = o orderkey and
o custkey = c custkey and
c nationkey = n1.n nationkey and
n1.n regionkey = r regionkey and
r name = ’[REGION]’ and
s nationkey = n2.n nationkey and
o orderdate between date ’1995-01-01’ and

date ’1996-12-31’ and
p type = ’[TYPE]’

) as all nations
group by o year
order by o year;

When considering this query, all attributes used in joins, group-by and
order-by clauses are added to the set of interesting orders. Since hash-based
solutions are possible, they are also added to the set of interesting groupings.

23.7. INFLUENCE OF GROUPINGS 417

This results in the sets

OP
I = {(o year), (o partkey), (p partkey),

(l partkey), (l suppkey), (l orderkey),

(o orderkey), (o custkey), (c custkey),

(c nationkey), (n1.n nationkey),

(n2.n nationkey), (n regionkey),

(r regionkey), (s suppkey), (s nationkey)}
OT

I = ∅
GP

I = {{o year}, {o partkey}, {p partkey},
{l partkey}, {l suppkey}, {l orderkey},
{o orderkey}, {o custkey}, {c custkey},
{c nationkey}, {n1.n nationkey},
{n2.n nationkey}, {n regionkey},
{r regionkey}, {s suppkey}, {s nationkey}}

GT
I = ∅

Note that here OT
I and GT

I are empty, as we assumed that each ordering
and grouping would be produced if beneficial. For example, we might assume
that it makes no sense to intentionally group by o year: If a tuple stream is
already grouped by o year it makes sense to exploit this, however, instead of
just grouping by o year it could make sense to sort by o year, as this is required
anyway (although here it only makes sense if the sort operator performs early
aggregation). In this case, {o year} would move from GP

I to GT
I , as it would

be only tested for, but not produced.

The set of functional dependencies (and equations) contains all join condi-
tions and constant conditions:

F = {{p partkey = l partkey}, {∅ → p type},
{o custkey = c custkey}, {∅ → r name},
{c nationkey = n1.n nationkey},
{s nationkey = n2.n nationkey},
{l orderkey = o orderkey},
{s suppkey = l suppkey},
{n1.n regionkey = r regionkey}}

To measure the influence of groupings, the preparation step was executed
twice: Once with the data as given above and once with GP

I = ∅ (i.e. groupings
were ignored). The space and time requirements are shown below:

With Groups Without Groups

Duration [ms] 0.6ms 0.3ms
DFSM [nodes] 63 32
Memory [KB] 5 2

418CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10 11

du
ra

tio
n

(m
s)

no of relations

preparation time

o+g (n-1)
o (n-1)
o+g (n)

o (n)
o+g (n+1)

o (n+1)

Figure 23.16: Time requirements for the preparation step

Here time and space requirements both increase by a factor of two. Since
all interesting orderings are also treated as interesting groupings, a factor of
about two was expected.

While Query 8 is one of the more complex TPC-R queries, it is not overly
complex when looking at order optimization. It contains 16 interesting order-
ings/groupings and 8 functional dependencies, but they cannot be combined in
many reasonable ways, resulting in a comparatively small DFSM. In order to
get more complex examples, we produced randomized queries with 5− 10 rela-
tions and a varying number of join predicates. We always started from a chain
query and then randomly added additional edges to the join graph. The results
are shown for n− 1, n and n+ 1 additional edges. In the case of 10 relations,
this means that the join graph consisted of 18, 19 and 20 edges, respectively.

The time and space requirements for the preparation step are shown in
Figure 23.16 and Figure 23.17, respectively. For each number of relations, the
requirements for the combined framework (o+g) and the framework ignoring
groupings (o) are shown. The numbers in parentheses (n− 1, n and n+ 1) are
the number of additional edges in the join graph.

As with Query 8, the time and space requirements roughly increase by a
factor of two when adding groupings. This is a very positive result, given that a
factor of two can be estimated as a lower bound (since every interesting ordering
is also an interesting grouping here). Furthermore, the absolute time and space
requirements are very low (a few ms and a few KB), encouraging the inclusion
of groupings in the order optimization framework.

23.8. ANNOTATED BIBLIOGRAPHY 419

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10 11

m
em

or
y

(K
B

)

no of relations

memory consumption of precomputed values

o+g (n-1)
o (n-1)
o+g (n)

o (n)
o+g (n+1)

o (n+1)

Figure 23.17: Space requirements for the preparation step

23.8 Annotated Bibliography

Very few papers exist on order optimization. While the problem of optimizing
interesting orders was already introduced by Selinger et al. [784], later papers
usually concentrated on exploiting, pushing down or combining orders, not on
the abstract handling of orders during query optimization.

Papers by Simmen, Shekita, and Malkemus [818, 819] introduced a frame-
work based on functional dependencies for reasoning about orderings. Since
this is the only paper which really concentrates on the abstract handling orders
and our approach is similar in the usage of functional dependencies, we will
describe their approach in some more detail.

For a plan node they keep just a single (physical) ordering. Additional-
ly, they associate all the applicable functional dependencies with a plan node.
Hence, the lower-bound space requirement for this representation is essential-
ly Ω(n), where n is the number of functional dependencies derived from the
query. Note that the set of functional dependencies is still (typically) much
smaller than the set of all logical orderings. In order to compute the function
containsOrdering, Simmen et al. apply a reduction algorithm on both the
ordering associated with a plan node and the ordering given as an argument
to containsOrdering. Their reduction roughly does the opposite of deducing
more orderings using functional dependencies. Let us briefly illustrate the re-
duction by an example. Assume the physical ordering a tuple stream satisfies
is (a), and the required ordering is (a, b, c). Further assume that there are two
functional dependencies available: a→ b and a, b→ c. The reduction algorithm
is performed on both orderings. Since (a) is already minimal, nothing changes.
Let us now reduce (a, b, c). We apply the second functional dependency first.
Using a, b→ c, the reduction algorithm yields (a, b) because c appears in (a, b, c)

420CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

after a and b. Hence, c is removed. In general, every occurrence of an attribute
on the right-hand side of a functional dependency is removed if all attributes
of the left-hand side of the functional dependency precede the occurrence. Re-
duction of (a, b) by a → b yields (a). After both orderings are reduced, the
algorithm tests whether the reduced required ordering is a prefix of the reduced
physical ordering. Note that if we applied a → b first, then (a, b, c) would re-
duce to (a, c) and no further reduction would be possible. Hence, the rewrite
system induced by their reduction process is not confluent. This problem is not
mentioned by Simmen et al., but can have the effect that containsOrdering
returns false whereas it should return true. The result is that some orderings
remain unexploited; this could be avoided by maintaining a minimal set of func-
tional dependencies, but the computation costs would probably be prohibitive.
This problem does not occur with our approach. On the complexity side, every
functional dependency has to be considered by the reduction algorithm at least
once. Hence, the lower time bound is Ω(n).

In case all functional dependencies are introduced by a single plan node and
all of them have to be inserted into the set of functional dependencies associated
with that plan node, the lower bound for inferNewLogicalOrderings is also
Ω(n).

Overall, Simmen et al. proposed the important framework for order opti-
mization utilizing functional dependencies and nice algorithms to handle order-
ings during plan generation, but the space and time requirements are unfortu-
nate since plan generation might generate millions of subplans. Also note that
the reduction algorithm is not applicable for groupings (which, of course, was
never intended by Simmen): Given the grouping {a, b, c} and the functional
dependencies a → b and b → c, the grouping would be reduced to {a, c} or
to {a}, depending on the order in which the reductions are performed. This
problem does not occur with orderings, as the attributes are sorted and can be
reduced back to front.

A recent paper byWang and Cherniack [911] presented the idea of combining
order optimization with the optimization of groupings. Based upon Simmen’s
framework, they annotated each attribute in an ordering with the information
whether it is actually ordered by or grouped by. For a single attribute a, they
write OaO(R) to denote that R is ordered by a, OaG(R) to denote that R is
grouped by a and OaO→bG to denote that R is first ordered by a and then
grouped by b (within blocks of the same a value). Before checking if a required
ordering or grouping is satisfied by a given plan, they use some inference rules to
get all orderings and groupings satisfied by the plan. Basically, this is Simmen’s
reduction algorithm with two extra transformations for groupings. In their
paper the check itself is just written as ∈, however, at least one reduction on
the required ordering would be needed for this to work (and even that would
not be trivial, as the stated transformations on groupings are ambiguous). The
promised details in the cited technical report are currently not available, as the
report has not appeared yet. Also note that, as explained above, the reduction
approach is fundamentally not suited for groupings. In Wang’s and Cherniack’s
paper, this problem does not occur, as they only look at a very specialized
kind of grouping: As stated in their Axiom 3.6, they assume that a grouping

23.8. ANNOTATED BIBLIOGRAPHY 421

OaG→bG is first grouped by a and then (within the block of tuples with the same
a value) grouped by b. However, this is a very strong condition that is usually
not satisfied by a hash-based grouping operator. Therefore, their work is not
general enough to capture the full functionality offered by a state-of-the-art
query execution engine.

In this chapter, we followed [644, 643].

422CHAPTER 23. DERIVING ANDDEALINGWITH INTERESTINGORDERINGS ANDGROUPINGS

Chapter 24

Cardinality and Cost
Estimation

24.1 Introduction

The plan generator relies on a cost function to evaluate the different plans and to
determine the cheapest one. This chapter is concerned with the development of
cost functions. The main input to cost functions are cardinalities. For example,
assume a scan of a relation, which also applies a selection predicate. Clearly,
the cost of scanning the relation depends on the physical layout of the relation
on disk. Further, the CPU cost for evaluating the predicate depends on the
number of tuples in the relation. Note that the cardinality of a relation is
independent of its physical layout.

In general, the cost of an algebraic operator is estimated by using a profile of
the database. The profile must be small, e.g., a couple of kilobytes per relation1.
We distuinguish between the logical and the physical profile. For each database
item and its constituents, there exist specialized logical and physical profiles.
They exist for relations, indices, attributes, and sets of attributes. Consider a
relation R. Its cardinality |R| belongs to its logical profile, whereas the number
of pages ||R|| it occupies belongs to its physical profile. In Chapter 4, we saw
more advanced physical profiles.

The DBMS must be capable to perform several operations to derive profiles
and to deal with them. Fig. 24.1 gives an overview. This figure roughly follows
the approach of Mannino et al. [583, 582]. The first operation is the build op-
eration, that takes as input a specification of the profiles to be build (because
there are many different alternatives, as we will see) and the database. From
that, it builds the according profiles for all database items of all the different
granularities. When updates arrive, the profiles must be updated. This can
either be done by a complete recalculation or by an incremental update opera-
tion on the profiles themselves. The latter is reflected in the operation update.
Unfortunately, not all profiles can have an update operation. Within this book,
we will not be too concerned with building and updating profiles. At the end

1Given today’s cost for main memory, it may also be reasonable to use a couple of
megabytes.

423

424 CHAPTER 24. CARDINALITY AND COST ESTIMATION

cardinality
estimation

cost
estimation

establishing
physical
profiles

calculus or
algebraic expression

calculus or
algebraic expression

profile specification

update

profile

logical profile

cardinality estimation

physical profiles

algebraic expression

logical profile

physical profile

logical profile(s)

algebraic operator

logical profile

cardinality estimate

physical profile

logical profile

physical profile(s)

update

build

profile

cost

profile

propagation

Figure 24.1: Overview of operations for cardinality and cost estimations

of this chapter, we will provide some references (See [210] for an overview).

The main operations this chapter deals with are among the remaining ones.
The first of them is cardinality estmation. Given an algebraic expression or a
calculus expression together with a logical profile of the database, we estimate
the output/result cardinality of the expression. Why do we say algebraic or
calculus expression? Remember that plan generators generate plans for plan
classes. Each plan class corresponds to a set of equivalent plans. They all pro-
duce the same result and, hence, the same number of output tuples. Thus, in
theory, one arbitrary representative of the class of equivalent algebraic expres-
sions should suffice to calculate the logical profile, as a logical profile depends
only on the outcome. On the other hand, the plan class more directly corre-
sponds to a calculus expression. Hence, estimating the result cardinality of a
calculus expression is a viable alternative. In the literature, most papers deal
with the first approach while only a few deal with the latter (e.g., [227]).

The second operation we will be concerned with is cost estimation. Given
logical and physical profiles for all inputs and an algebraic operator (tree), this
operation calculates the actual costs. Chapter 4 contains a detailed discussion
about disk access cost calculation. Hence, this part is considered done for
building blocks and access paths.

The third major task is profile propagation. Given a logical or physical
profile and an expression, we must be able to calculate the profile of the result,
since this may be the input to other expressions and thus be needed for further
cardinality estimates. The estimation of a physical profile occurs mostly in

24.1. INTRODUCTION 425

|χa:e2(e1)| = |e1|
|Γg;f (e)| = |ΠD

g (e)|
e1 Zg;f e2	=	e1				
e1 T e2	=	e1	−	e1 N e2		
e1 E e2	=	e1 B e2	+	e1 T e2		
e1 K e2	=	e1 1 e2	+	e1 T e2	+	e2 T e1
e1 1 e2	=	ΠD				

A(e1)∪A(e2)(e11̄e2)|
Sort(e)	=	e		
Tmp(e)	=	e		
e1 A e2	=	e1	∗	e2
ΠA(e)	=	e	(bag sematics)	

|e1 ∪s e2| = |ΠD
A(e1)(e1 ∪b e2)| (bag vs. set semantics)

|e1 ∩s e2| = |e1 1 e2| equijoin over all attributes

|e1 \s e2| = |e1| − |e1 ∩s e2|
|e1 ∪b e2| = |e1|+ |e2| bag semantics

|ΠD
α∪β(R)| = |ΠD

α (R)| if there is an FD α→ β

Table 24.1: Observations on cardinalities of different algebraic operators

cases where operators write to disk. Given Chapter 4, this task is easy enough
to be left to the reader.

Since we follow the algebraic approach, we must be able to calculate the
output cardinality of every operator occurring in the algebra. This task is
vastly simplified by the observations contained in Table 24.1.

This shows that we can go a far way if we are able to estimate the output
cardinality for duplicate eliminating projections, selections, (bag) joins, and
semijoins. For a certain class of profiles, Richard shows that a profile consist-
ing ‘only’ of the sizes of all duplicate eliminating projections on all subsets of
attributes of all relations is a complete profile under certain assumptions [730].
Since the set of subsets of a set of attributes can be quite large, Richard ex-
ploits functional dependencies to reduce this set by exploiting the fact that
|ΠD

α∪β(R)| = |ΠD
α (R)| if there exists a functional dependency α→ β.

A major differenciator for logical attribute profiles is the kind of the domain
of the attribute. We distinguish between categorial attributes (e.g., color), dis-
crete ordered domains (e.g., integer attributes, decimals, strings), and continous
ordered domains (e.g., float). Categorial domains may be ordered or unordered.
In the first case they are called ordinal, in the latter nominal. We will be mainly
concerned with integer attributes. Strings are special, and we discuss some ap-
proaches in Sec. 24.13.6. Continous domains are also special. The probability
of occurrence of any value in a continous domain in a finite set is zero. The
techniques developed in this section can often easily be adopted to continous

426 CHAPTER 24. CARDINALITY AND COST ESTIMATION

domains, even if we do not mention this explicitly.

24.2 A First Approach

The first approach to cost and cardinality estimation integrated into a dynamic
programming-based plan generator was presented by Selinger et al. [784]. We
will use it as the basis for this section.

24.2.1 Top-Most Cost Formula (Overall Costs)

Their top-most cost formula states that the total cost of a query evaluation
plan equals the weighted sum of the I/O and CPU costs:

C = CI/O + wCcpu (24.1)

where w is the weight which can be adapted to different situations. If, for
example, the system is CPU bound, we should increase w and if it is I/O
bound, we decrease w.

However, it is not totally clear what we are going to optimize under this cost
formula. One interpretation could be the following. Assume w = 0.5. Then,
we could interprete the total costs as response time under the assumption that
fifty percent of the CPU time can be executed in parallel with I/O. Accordingly,
we find other top-most cost formulas. For example, the weight is sometimes
dropped [407]:

C = CI/O + Ccpu (24.2)

Under the above interpretation, this would mean that concurrency is totally
absent. The opposite, total concurrency between I/O and CPU, can also be
found [170]:

C = max(CI/O, Ccpu) (24.3)

In these green days, an alternative is to calculate the power consumption
during query execution. Therefore, we convert CPU time to Watts consumed
by the CPU and disk time to Watts consumed by the disks and simply add up
these number to get an estimate of the power consumption of the plan.

24.2.2 Summation of Operator Costs

Given a query evaluation plan, the task is to calculate its I/O and CPU costs.
This can be done by calculating the costs for each operator (op) occurring in
the query evaluation plan (QEP) and adding up the according costs:

CI/O =
∑

op∈QEP

CI/O(op)

Ccpu =
∑

op∈QEP

Ccpu(op)

However, these formulae sometimes raise a problem. For example, the nested
loop join method requires multiple evalutions of its inner part.

24.2. A FIRST APPROACH 427

Further, in order to count the I/O cost correctly, it is necessary to make
some assumptions when intermediate results are written to and read from disk.
We will use the following assumption: Every operator is responsible for passing
its result to the next operator via main memory. For example, a sort merge
join may require sorting its inputs. The sort operators are then responsible for
handing over their result to the merge join via main memory. This means that
the merge join may not require any I/O if the merge can be done purely in
main memory.

24.2.3 CPU Cost

To get an estimate of the CPU costs, Selinger et al. simply count the number
of calls to the tuple oriented interface (called RSI). This roughly corresponds
to the number of next calls in an iterator-based implementation of algebraic
operators (for details on the Research Storage Engine (RSS) and its interface
RSI see [42]). Hence, what needs to be known is the output cardinality of each
operator in the query plan.

Given the input and output cardinalities, it is often quite straightforward
to calculate the CPU costs. Take, for example, a selection operator. Clearly,
the selection predicate is called n times if n is the input cardinality. The selec-
tion predicate itself consists of several calls to comparison functions, Boolean
operators, arithmetic operators and the like. The CPU cost of each of these
operators can easily be determined (by counting CPU cycles or measurements),
and thus the total CPU cost of a selection operator can be determined easily.
Other operators are also straightforward. A problem only arises if functions
are called whose CPU costs can not easily be determined since they depend on
their parameters. A typical example are string comparisons, where the CPU
costs depend on the length of the string. Another example are user-defined
functions. The framework presented in [410] can be used for all more complex
functions. Another possibility is to use simplifying assumptions. The functions
we are talking about are executed on a per tuple basis. As there are typically
many tuples, using the average execution time for cost calculations is not a bad
idea.

24.2.4 Abbreviations

We need some abbreviations to state our cost formulas. A first bunch of them
is summarized in Table 24.2. There, we assume that an index is always a B+

tree.

24.2.5 I/O Costs

Selinger et al. measure I/O costs in the number of pages read. Let us first discuss
the different possible access paths to a single relation. Clearly, for a simple scan
of a relation R, ||R|| pages have to be read. The next access path is composed
of an access to a non-clustered index I to retrieve the tuple identifiers of those
tuples that satisfy a predicate p followed by an access to the base relation R.
Let F (p) be the fraction of tuples satisfying a certain predicate p. F (p) is called

428 CHAPTER 24. CARDINALITY AND COST ESTIMATION

R,S,T relations
I index

A,B,C attributes or sets of attributes
DA ΠD

A (R)
dA |DA|

minA minΠD
A (R) for an attribute A of R

maxA maxΠD
A (R) for an attribute A of R

|R| number of tuples of R
||R|| number of pages on which R is stored
||A||B average length of a value of attribute A of R (in bytes)
||A(R)||B average length of a tuple in bytes
||I|| number of leave pages of an index
H(I) depth of the index I minus 1

Table 24.2: Notational conventions

the selectivity of p. It is the main focus of the next subsection. Selinger et al.
distinguish two cases. In the first case, all pages containing qualifying tuples fit
into main memory. For this case, they estimate the number of pages accessed
by

H(T) + F (p) ∗ (||I||+ ||R||).

Note that with the help of Chapter 4, we can already do better. In the secondEXC
case, where the pages containing qualifying tuples do not fit into main memory,
they give the estimate

H(T) + F (p) ∗ (||I||+ |R|)

for the number of pages read.

In case of a clustered index, they estimate the number of pages read by

H(T) + F (p) ∗ (||I||+ ||R||).

Next, we have to discuss the costs of different join methods. Selinger et al.
propose cost formulas for the simple nested loop join (1nl) and the sort merge
join (1sm). Since summing up the costs of all operators in a tree results in
some problems for nested loop joins, they adhere to a recursive computation of
total costs. Let e1 and e2 be two algebraic expressions. Then they estimate the
cost of the simple nested loop join as follows:

CI/O(e1 1nl e2) = CI/O(e1) + |e1| ∗ CI/O(e2)

where |e1| denotes the number of tuples produced by the expression e1.

As the cost calculation for the sort merge join is not convincing, we follow
our own very simple approach here (see also Sec. 24.14). We split the costs
into the sort costs and the merge costs. Given today’s memory sizes, it is not
unlikely that we need a single merge phase. Hence, the I/O cost for sorting

24.2. A FIRST APPROACH 429

consists of writing and reading the result of ei if it needs to be sorted. This can
be estimated as

CI/O(sort(ei)) = CI/O(ei) + 2 ∗ ⌈1.2||A(ei)||B ∗ |ei|/pagesize⌉

where pagesize is the page size in bytes. The factor 1.2 is called the universal
fudge factor . In the above case, it takes care of the storage overhead incurred
by using slotted pages. If we assume that the merge phase of the sort merge
join can be performed in main memory, no additional I/O costs occur and we
are done.

Clearly, in the light of Chapter 4, counting the numbers of pages read is not
sufficient as the discrepancy between random and sequential I/O is tremendous.
Thus, better cost functions should use a more elaborate I/O cost model along
the lines of Chapter 4. In any case, note that the calculation of the I/O or CPU
costs of any operator highly depends on its input and output cardinalities.

24.2.6 Cardinality Estimates

Given a predicate p, we want to estimate its selectivity, which is defined as the
fraction of qualifying tuples. If p is a selection predicate applied to a relation
R, the selectivity of p is defined as

s(p) =
|σp(R)|
|R| .

If we know the selectivity of p, we can then easily calculate the result size of a
selection:

|σp(R)| = s(p)|R|
Similarly for joins. Given a join predicate p and two relations R and S, we
define the selectivity of p as

s(p) =
|R 1p S|
|R× S| =

|R 1p S|
|R| ∗ |S|

and can calculate the result size of a join by

|R 1p S| = s(p) |R| |S|.

The idea of the approach of Selinger et al. is to calculate the result cardinal-
ity for a plan class by the following procedure. First, the sizes of all relations
represented by the plan class are multiplied. This is the result of their cross
product. In a second step, they take a look at the predicate p applied to the
relations in the plan class. For p they calculate a selectivity estimate s(p) and
multiply it with the result of the first step. This then gives the result. Hence,
if a plan class represents the algebraic expression

σp(A
n
i=1Ri),

the cardinality estimate is

s(p)

n∏

i=1

|Ri|.

430 CHAPTER 24. CARDINALITY AND COST ESTIMATION

predicate s(p) comment

not(p1) 1− s(p1)
p1 ∧ p2 s(p1) ∗ s(p2) independence
p1 ∨ p2 s(p1) + s(p2)− s(p1)s(p2)
A = c 1/dA if dA is known, uniformity

1/10 else
A = B 1/max(dA, dB) if dA and dB are known, uniformity

1/dX if only dX , X ∈ {A,B} is known
1/10 else

A > c maxA−c
maxA−minA

if min and max are known, uniformity

1/3 else

c1 ≤ A ≤ c2 c2−c1
maxA−minA

if min and max are known, uniformity

1/4 else
A IN L min(1/2, s(A = c)|L|)
A IN Q |Q|/|X| X is cross product of all relations

in Q’s from clause

Table 24.3: Selectivity estimation as proposed by Selinger et al.[784]

Since p can be a complex predicate involving boolean operators, they have to
deal with them. Table 24.3 summarizes the proposed selectivity estimation. A
and B denote attributes, c, c1, c2 denote constants, L denotes a list of values, Q
denotes a subquery. In System R, the number of distinct values for an attribute
(dA, dB) is only known if there exists an according index on the attribute. Let
us give some rational for the selectivity estimation of A IN Q for an attribute A
and a subqueryQ. Assume that A is an attribute of relation R and the subquery
Q is of the form select B from S Further assume that ΠA(R) ⊆ ΠB(S),
i.e., referential integrity holds. Clearly, if all tuples of S are in the result of Q,
the selectivity is equal to 1. If the output cardinality of Q is restricted by a
factor s′ = |Q|/|S|, then we may assume that the number of distinct values in
Q’s result is restricted by the same factor. Hence, the selectivity factor of the
total predicate is also s′. Selinger et al. now continue as follows: “With a little
optimism, we can extend this reasoning to include subqueries which are joins
and subqueries in which column [B] is replaced by an arithmetic expression
involving column names. This leads to the formula given above.”

Discussion Taking a broad view at the above model, we see that

• the estimates for CPU and I/O times are quite rough,

• the approach is not complete, especially projection and semijoin are not
treated,

• profile propagation is not discussed.

Further, the uniformity and independence assumptions are applied. This has
been shown to be quite inaccurate in many cases. More specifically, apply-

24.3. THE SIMPLE PROFILE: A FIRST LOGICAL PROFILE AND ITS PROPAGATION431

ing these and other assumptions often leads to an overestimate of real result
cardinalities [177, 179].

How bad is it in terms of plan generation if we under- or overestimate the
cardinalities of intermediate results? As Ioannidis and Christodoulakis pointed
out, errors propagate multiplicatively through joins [451]. Assume we want to
join eight relations R1, . . . , R8 and that the cardinality estimates of Ri are each
a factor of 5 off. Then the cardinality estimation of R1 1 R2 1 R3 will be a
factor of 125 off. Clearly, this can affect the subsequent join ordering. If we
were only a factor of 2 off, the cardinality estimation of R1 1 R2 1 R3 could be
only a factor of eight off. This shows that minimizing the multiplicative error
is a serious intention.

The effect of misestimating cardinalities on plan quality has not been thor-
oughly investigated. There exists a study by Kumar and Stonebraker, which
concludes that it does not matter [521]. However, we do not trust this conclu-
sion. Swami and Schiefer give a query and its profiles for which bad cardinality
estimates lead to a very bad plan [864]. A very impressive example query is
presented in [884]. The plan produced for the query under cardinality estima-
tion errors runs 40 minutes while the plan produced with better cardinality
estimates takes less than 2 seconds. Later, we will give two further examples
showing that good cardinality estimation is vital for generation of good plans.
Hence, we are very sure that accurate estimation is vital for plan generation.
We suggest to the reader to find examples, using the simple Cout cost function,
where wrong cardinality estimates lead to bad plans. EXC

24.3 The Simple Profile: A First Logical Profile and
its Propagation

We call a logical profile complete if it allows us to perform cardinality estima-
tion and logical profile propagation for all algebraic operators. In this section,
we present an almost complete logical profile and describe the procedure of
profile propagation. The main components are the cumulated frequency, i.e.,
the number of tuples, and the number of distinct values for each attribute in a
relation. It is easy to see that we cannot do without either of them. Further,
an upper and lower bound for values of an attribute is needed. Again, we will
see that we cannot do without them. Hence, the following profile is minimal.

24.3.1 The Logical Profile

For every attribute A of a relation, we define its logical profile as a four tuple

bA = [lA, uA, fA, dA]

where lA is a lower and uA is an upper bound for the values of A. Further, fA is
the cumulated frequency, i.e., the number of tuples with an A value within the
bounds, and dA is the number of distinct values occurring as A’s values within
the given bounds.

432 CHAPTER 24. CARDINALITY AND COST ESTIMATION

For the purpose of this section, we can define

lA = min(ΠA(R))

uA = max(ΠA(R))

fA = |R|
dA = |ΠD

A (R)|

If the attribute A is implicit from the context or does not matter, we may omit
it.

24.3.2 Assumptions

The first two assumptions we make are:

1. All attribute values are uniformely distributed, and

2. the values of all attributes are drawn independently.

Other assumptions will follow.
Often in the formulas developed below, we talk about the universe (U) or

domain of the attributes. This is the potential set of values from which a
given attribute takes its values. In case of integer attributes, it is easy to see
that the domain of attribute A is [lA, uA]. The size of the domain, denoted
by nA, then is nA = uA − lA + 1. For real values, the size of the domain is
(almost) infinite. Thus, only some of the formulas given below may carry over
to attributes whose type is real. Please do not confuse the universe/domain of
an attribute A with the active domain of an attribute A, which contains the
actual values DA = ΠD

A (R) occurring for A in relation R.
Let us take a closer look at the assumptions. The uniform distribution

assumption means that every value occurs about the same number of times.
However, this cannot mean that every value of the domain does so, since dA may
be much smaller than nA. Hence, we refine the uniform distribution assumption
(UDA) by assuming that every distinct value occurs about fA/dA times.

The second assumption is called attribute value independence assumption
(AVI) or simply independence assumption. Assume we have two predicates p1
and p2 and wish to calculate the selectivity of p1 ∧ p2. Independence tells us
that we can do so by multiplying the selectivities of p1 and p2. Thus, under
independence sel(p1 ∧ p2) = sel(p1) ∗ sel(p2).

We still need another assumption: the equal spread assumption (ESA), also
called uniform spread assumption (USA) [210, 700]. It is used to answer the
question where the occurring distinct values are in the domain. The equal
spread assumption states that they occur at equal distance. Let us elaborate a
little on this.

For integers, we know the number nA of possible values from which A can
be drawn. It is nA = uA − lA + 1. Let us assume that we have only a few
distinct values, that is dA << nA. This is not strictly necessary but is good for
our intuition. We can now define the spread between two values occurring in A.
Let DA = ΠD

A (R) = {x1, . . . , xdA} where xi < xi+1 be the sorted set of values

24.3. THE SIMPLE PROFILE: A FIRST LOGICAL PROFILE AND ITS PROPAGATION433

occuring for attribute A, also known as active domain. Then we can define the
spread as

∆i = xi+1 − xi
The equal spread assumption (ESA) states that ∆i = ∆j for all 1 ≤ i, j < dA.
Denote this value by ∆A.

There are three subtypes of the equal spread assumption, depending on
whether we assume the lower and upper bounds lA and uA belong to DA. Type
I assumes lA, uA ∈ DA. Then ∆A becomes (uA − lA)/(dA − 1). In case of type
II, where lA ∈ DA and uA ̸∈ DA holds, we have ∆A = (uA − lA)/dA. For type
III, where lA ̸∈ DA and uA ̸∈ DA we get ∆A = (uA − lA)/(dA + 1). As an
example, take lA = 1, uA = 13, and dA = 3. Then for the three types we have
the different values 12/2 = 6, 12/3 = 4, and 12/4 = 3. It should be clear that
the difference is small if dA is sufficiently large. If dA is small, we can store
the frequency of each value explicitly. Otherwise, it is large, and it does not
matter which type we use. In case of integers, the above numbers may result
in non-integers. Thus, we prefer to define in this case

∆A = ⌊uq − lq + 1

dA
⌋.

An alternative to the uniform distribution assumption and the equal spread
assumption is the continous-value assumption. Here, we assume that all values
in the (discrete and finite) domain occur with frequency fA/nA.

Different assumptions can lead to different estimates. To see this, we first
fix some notation. Then, we provide estimation procedures under the contin-
ues value assumption and under the equal spread assumption. Afterwards, we
present an example. Assume we are given a relation R and one of its attributes
A. The possible values for attribute A as implied by its type is called universe
and abbreviated by UA. The set of possible values is the active domain DA,
which we already saw. The total number of tuples in R is typically called its
cardinality and denoted by |R|. However, in this chapter we prefer to call this
value cumulated frequency and denote it by fA. Remember that we denote the
minimum of DA by lA and the maximum by uA.

For attribute A, we consider range queries and try to estimate the result
cardinality thereof. Thus, we are interested in queries Q of the form

select count(*) from R where lq ≤ A ≤ uq.
We denote the result of this range query by fq.

We describe frequency densities of some attribute A by sets of points (xi, fi),
where xi is a domain value and fi is the frequency of the domain value. Thus,
the frequency density is the result of the query

select A, count(*) from R group by A.

Here is our example for a frequency density:

(1, 7), (5, 4), (7, 2), (8, 1).

Thus, the integer value 1 occurs 7 times and the value 7 occurs 2 times.

434 CHAPTER 24. CARDINALITY AND COST ESTIMATION

To estimate the result cardinality of a range query Q with bounds lq and
uq under the continous value assumption, we use the formula

f̂q(cva) :=
uq − lq + 1

ua − la + 1
∗ fA.

Let us first recall the spread under the equal spread assumptions. For integer
values, we defined

∆A := ⌊uq − lq + 1

dA
⌋.

Using this definition, we provide an estimate for f̂q(esa) by applying the fol-
lowing formula:

f̂q(esa) := ⌊
qu − ql + 1

∆A
⌋ ∗ fA

dA
.

Note that if the active domain is dense, i.e., all possible values within [lA, uA]
occur in the database, then the estimation under cva and esa coincide.EXC

Fig. 24.2 shows the results for 28 different range queries specified by their
lower bound (lq) and upper bound (uq) for the frequency density given above.
The true cumulated frequency within the given query range is given in the
column fq. The estimates determined under CVA and ESA are presented as
well as a column indicating the better assumption for that particular query. As
we can see, in most cases ESA wins. However, experiments by Wang and Sevcik
[906] came to the conclusion that the opposite is true and CVA is superior to
ESA. (We can follow this claim at least for some of their data sets). Since
estimates using CVA are easier to calculate and easily extendible to contineous
domains, we prefer them.

Given the above assumptions (and one more to come), the task is to establish
the operations cardinality estimation and logical profile propagation. The latter
implies that we can calculate the logical profile of all attributes of any result
relation established by applying some algebraic operator. Assume we have
solved this task. Then it is clear that the cumulated frequency fA, which
equals |R| in this section, solves the task of cardinality estimation. Hence,
we will not mention the cardinality estimation task explicitly any more. The
use of the cumulated frequency fA instead of the seemingly simpler cardinality
notation |R| is motivated by the fact that a single attribute will have multiple
(small, piecewise) profiles if histograms are applied. To make the formulas of
this section readily available for histogram use is the main motivation for using
the cumulated frequency.

24.3.3 Profile Propagation for Selection

We start with the selection operation. Let R be a relation and A,C ∈ A(R)
be two attributes of R. We are given the profiles bA = [lA, uA, fA, dA] and
bC = [lC , uC , fC , dC] and have to calculate the profiles b′A = [l′A, u

′
A, f

′
A, d

′
A]

and b′C = [l′C , u
′
C , f

′
C , d

′
C] for σp(A)(R) for various selection predicates p(A) in

attribute A. We assume that the attribute values of A and C are uniformly
distributed and that A and C are independent. If a selection predicate uses

24.3. THE SIMPLE PROFILE: A FIRST LOGICAL PROFILE AND ITS PROPAGATION435

no lq uq fq f̂q(cva) f̂q(esa) winner

1 1 2 7 3.5 3.5
2 1 3 7 5.25 3.5 cva
3 1 4 7 7 7
4 1 5 11 8.75 7 cva
5 1 6 11 10.5 10.5
6 1 7 13 12.25 10.5 cva
7 1 8 14 14 14
8 2 3 0 3.5 3.5
9 2 4 0 5.25 3.5 esa
10 2 5 4 7 7
11 2 6 4 8.75 7 esa
12 2 7 6 10.5 10.5
13 2 8 7 12.25 10.5 esa
14 3 4 0 3.5 3.5
15 3 5 4 5.25 3.5 esa
16 3 6 4 7 7
17 3 7 6 8.75 7 esa
18 3 8 7 10.5 10.5
19 4 5 4 3.5 3.5
20 4 6 4 5.25 3.5 esa
21 4 7 6 7 7
22 4 8 7 8.75 7 esa
23 5 6 4 3.5 3.5
24 5 7 6 5.25 3.5 cva
25 5 8 7 7 7
26 6 7 2 3.5 3.5
27 6 8 3 5.25 3.5 esa
28 7 8 3 3.5 3.5

Figure 24.2: Sample for range query result estimation under CVA and ESA.

two attributes A and B, we again need to give the profile propagation for all
attributes C, which are different from them.

Exact match queries The first case we consider is σA=c for a constant c.
Clearly, l′A = c, u′A = c. Further,

d′A =

{
1 if c ∈ ΠA(R)
0 else

We cannot be sure whether the first or second case occurs. Since no reasonable
cardinality estimation should ever return zero, we always assume c ∈ ΠA(R).
More generally, we assume that all constants in a query are contained in the
database in the according attributes.

As every distinct value occurs about fA/dA times, we conclude that f ′A =

436 CHAPTER 24. CARDINALITY AND COST ESTIMATION

fA/dA. A special case occurs if A is the key. Then, we can immediately conclude
that f ′A = 1.

Let us now consider another attribute C ∈ A(R), C ̸= A. Since f ′C = f ′A,
we only need to establish d′C . For the lack of any further knowledge, we keep
the lower and upper bounds, i.e. l′C = lC and u′C = uC . To derive the number of
distinct values remaining for attribute B, we can use the formula by Yao/Waters
(see Sec. 4.16.1) Denote by s(p) = |σA=c(R)|/|R| = f ′A/fA the fraction of tuples
that survives the selection with predicate p ≡ A = c. Fix a distinct value for
C. Using the uniform distribution assumption, it occurs in fC/dC tuples of R.

Then, for this value we have
(fA−fC/dC

f ′
A

)
possibilities to chose f ′A tuples without

it. The total number of possibilities to chose f ′A tuples is
(fA
f ′
A

)
. Thus, we may

conclude that
d′C = dCYfA

fC/dC
(f ′A)

Alternatively, we could use

d′C = dC ∗ (1− (1− s(p))fC/dC)

or any other good approximation (see Section 4.16.1).

Range queries Let us now turn to range queries, i.e. selection predicates of
the form c1 ≤ A ≤ c2, where lA ≤ c1 < c2 ≤ uA. In all of them, the lower
and upper bounds are given by the range, i.e. l′A = c1 and u′A = c2. Using the
System R approach, we can estimate

f ′A =
c2 − c1
uA − lA

∗ fA

d′A =
c2 − c1
uA − lA

∗ dA

This estimate is good for real values.
We could also rewrite the above estimate for the number of distinct values

d′A to

d′A =
c2 − c1
∆A

As soon as we have estimated the number of distinct values in a given range,
we can easily derive the cumulated frequency, as every distinct value occurs as
often as it did in R. Thus f ′A = fA ∗ (d′A/dA).

For another attribute C, C ̸= A, the profile propagation is the same as in
the case for A = c. We only need to define s(p) = |σc1≤A≤c2(R)|/|R|.

Equality-based correlation The next case we consider is a predicate of the
form A = B. If uA < lB or uB < lA, the result is empty. If lA ̸= lB or uA ̸= uB,
we first apply a selection with predicate max(lA, lB) ≤ A ≤ min(uA, uB) and
max(lA, lB) ≤ B ≤ min(uA, uB). So assume w.l.o.g. that lA = lB and uA = uB.
Note that fA = fB. Denote this number by f . Define n to be the number
of values in the domain of attributes A and B. For integers, this number is

24.3. THE SIMPLE PROFILE: A FIRST LOGICAL PROFILE AND ITS PROPAGATION437

n = uA − lA + 1. To refer to the elements of the domain, we assume that it is
{x1, . . . , xn} with xi < xi+1.

Let x be a value in the domain. Then we say that R has a hole at x in
attribute A, if x ̸∈ ΠA(R). Consider a value x in the domain. The probability
of not having a hole at x in A is

p(x ∈ A) =
(
n−1
dA−1

)
(
n
dA

) =
dA
n

In general, we have

f ′A = f ′B =
n∑

i=1

fAp(xi = A)p(xi = B|xi = A) (24.4)

where fA = f/dA is the average frequency of a distinct value in ΠA(R), p(xi =
A) = dA/n is the probability that a tuple has xi as its value for attribute A,
and p(xi = B|xi = A) is the conditional probability that a tuple has xi in its
B value if it is known that it has an A value xi.

Let us first consider the special case where ΠA(R) ⊆ ΠB(R). Then p(xi =
B|xi = A) becomes 1/dB. Hence,

f ′A = f ′B =
n∑

i=1

f

dA

dA
n

1

dB
= f/dB

For ΠB(R) ⊆ ΠA(R), we get f ′A = f ′B = f/dA. Summarizing these cases, we
may conclude that

f ′A = f ′B =
f

max(dA, dB)

which is the formula applied in System R if indices exist on A and B. Clearly,
we can calculate an upper bound on the number of distinct values as

d′A = d′B = min(dA, dB).

Let us estimate the cumulated frequency after the selection if none of the
above conditions hold and independence of A and B holds. Then, the condi-
tional probability p(xi = B|xi = A) becomes p(xi = B) = 1/n. Thus

f ′A = f ′B =
n∑

i=1

f

dA

dA
n

1

n
=
f

n

If A and B are independent and uniformly distributed, the number of dis-
tinct values d′A = d′B can be estimated as follows. According to Section 4.16.1,
we can estimate the number of distinct values in ΠAB(R) as D(n∗n, |R|), where
|R| = fA = fB. Since out of the n ∗ n possible pairs of values only n are of the
form (xi, xi), only n/(n ∗n) = 1/n tuples are of the qualifying form. Using this
factor, we derive

d′A = d′B =
D(n ∗ n, fA)

n

438 CHAPTER 24. CARDINALITY AND COST ESTIMATION

In case of ΠA(R) ⊆ ΠB(R), only dA such pairs out of dA ∗ dB exist. Thus, the
factor becomes dA/(dA ∗ dB) = 1/dB. For ΠB(R) ⊆ ΠA(R), we have the factor
1/dA. Both cases can be summarized as in

d′A = d′B =
D(n ∗ n, fA)
max(dA, dB)

In case the domain size n is not available, we could estimate it by |ΠD
A (R) ∪

ΠD
B (S)|. If this number is not available either, we could hesitatingly use dAdB.
An alternative is to use

d′A = d′B = dA ∗ YfA
fA/dA

(f ′A)

or some of its approximations like

d′A = d′B = dA ∗ (1− (1− s(A = B)fA/dA)),

where s(A = B) = f ′A/fA.

Inequality-based correlation As a last exercise, let us calculate the profile
for selections of the form σA≤B(R). For simplicity, we assume lA = lB and
uA = uB. Thus, l

′
A = l′B = lA and u′A = u′B = uA. To calculate the cumulative

frequency of the result under independence of A and B, we apply the type I
equal spread assumption, with ∆A = (uA − lA)/(dA − 1). Hence, we assume
that xi = lA + (i− 1)∆A. This gives us

f ′A =

dA∑

i=1

fAp(xi ≤ B|xi = A)

=

dA∑

i=1

fAp(xi ≤ B)

= fA

dA∑

i=1

xi − lB
uB − lB

= fA
1

uB − lB
((

dA∑

i=1

xi)− dAlB)

= fA
dA

uB − lB
(lA − lB +∆A

dA − 1

2
)

= fA
dA

uB − lB
(uA − lA)
(dA − 1)

(dA − 1)

2

= fA
uA − lA
uB − lB

dA
2

=
fA
dA

dA
2

=
fA
2

24.3. THE SIMPLE PROFILE: A FIRST LOGICAL PROFILE AND ITS PROPAGATION439

predicate f ′ d′ comment

A = c f ′A = fA/dA d′A = 1

c1 ≤ A ≤ c2 f ′A = c2−c1
uA−lA ∗ fA d′A = c2−c1

uA−lA ∗ dA

f ′A = d′A ∗ (fA/dA) d′A = (c2−c1)
∆A

A = B f ′A = f
max(dA,dB) d′A = dA ∗ YfA

fA/dA
(f ′A) ΠA(R)

⊆
⊇ ΠB(R)

f ′A = f ′B = fA
n d′A = dA ∗ YfA

fA/dA
(f ′A) else

A ≤ B f ′A = f ′B = fA
2 d′A = dA ∗ YfA

fA/dA
(f ′A)

p(A) f ′C = fA d′C = dC ∗ YfA
dC/fC

(f ′A)
C ̸∈ A = F(p)

Table 24.4: Profile propagation for selection

As an exercise the reader may verify that f ′A = (dA − 1)fA/(2dA) under the
type II equal spread assumption. As an additional exercise the reader should
derive d′A and d′B. We conjecture that EXC

d′A = D(nA, f ′A)

or

d′A = dA ∗ YfA
fA/dA

(f ′A).

The following observation is crucial: Even if in the original relations the values
of A and B are uniformely distributed, which typically is not the case, the
distribution of the values A and B after the selection with A ≤ B is non-
uniform. For example,

p(xi ≤ B) =
xi − lB
uB − lB

for lB ≤ xi ≤ uB. Table 24.4 summarizes our findings about profile propagation
for selections.

Open ranges and functions There are plenty of other cases for selection
predicates, which we have not discussed. Let us briefly mention a few of them.

440 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Clearly, we have:

σA ̸=c(R)	=	R	−	σA=c(R)		
σc1<A≤c2(R)	=	σc1≤A≤c2(R)	−	σA=c1(R)		
σc1≤A<c2(R)	=	σc1≤A≤c2(R)	−	σA=c2(R)		
σc1<A<c2(R)	=	σc1≤A≤c2(R)	−	σA=c1(R)	−	σA=c2(R)
σc1≤A(R)	=	σc1≤A≤uA				

(R)|
|σc1<A(R)| = |σc1≤A<uA

(R)|
|σA≤c2(R)| = |σlA≤A≤c2(R)|
|σA<c2(R)| = |σlA≤A<c2(R)|

This helps to estimate the f ′A. The d
′
A are left to the reader.EXC

Estimating selectivities for (user defined) functions and expressions can be
done by using computed attributes. For example, cardinalities for selections
with predicates like g(A) = c for a function g can be treated by introducing an
additional attribute gA for which a profile can be established.

24.3.4 Profile Propagation for Join

As for equality-based correlation, we assume for this subsection that the upper
and lower bounds of the join attributes A and B are the same. If this is not
the case, we apply the according selections first.

Semijoin Let us now turn to the join operator and its variants. We start with
the left-semijoin and consider expressions of the type R NA=B S. If ΠA(R) ⊆
ΠB(S), then R NA=B S = R, and no profiles change. If ΠA(R) ⊇ ΠB(S), then
f ′A = fAdB/dA and d′A = dB. If A and B are independent, we calculate

f ′A =

n∑

i=1

fA
dA
p(xi = A)p(xi ∈ B) =

n∑

i=1

fA
dA

dA
n

dB
n

=
fAdB
n

.

and

d′A =
dAdB
n

.

For an attribute C ∈ A(R) \ {A,B}, we have f ′C = f ′A and

d′C = dC ∗ YfA
fC/dC

(f ′A).

Regular Join For the regular join R 1A=B S. Let us start with an at-
tribute C ∈ A(R)\{A,B}. We can apply the formulas for the semijoin because
ΠD

C (R 1A=B S) = ΠD
C (R N S). For attributes C ∈ A(S) \ {A,B} remember

that the join commutes.

We turn to the case where ΠA(R) ⊆ ΠB(S). In this case, it is easy to see
that f ′A = f ′B = fAfB/dB and d′A = d′B = dA. If ΠA(R) ⊇ ΠB(S), we have just
to exchange the roles of R and S.

24.3. THE SIMPLE PROFILE: A FIRST LOGICAL PROFILE AND ITS PROPAGATION441

If A and B are independent, we proceed as follows. Denote again by n the
domain size of A and B and the values of DA = ΠA(R) by {x1, . . . , xdA}. Then,
we can argue that

f ′A = f ′B =
n∑

i=1

fA
dA

fB
dB
p(xi = A)p(xi ∈ B) =

n∑

i=1

fA
dA

fB
dB

dA
n

dB
n

=
fAfB
n

.

Rosenthal showed that this result also holds if the condition of fairness holds
for at least one relation [734]. A relation is called fair with respect to an
attribute A if for the expected value E(|σA=x(R)|) = |R|/nA holds. In this
case, the expected value for the result of the join is (|R||S|)/n. Note that
ΠD

A (R 1A=B S) = ΠD(R NA=B S). Thus, we can estimate the number of
distinct values as

d′A = d′B =
dAdB
n

.

Selfjoin The above formulas only apply if we are not dealing with a selfjoin.
Of course, R 1A=B R does not pose any problems. However, R 1A=A R does,
because all tuples find a join partner. The estimates are easy to derive:

f ′A =
fAfA
dA

d′A = dA

For all attributes C other than A, f ′C = f ′A and d′C = dC .
As pointed out by [23], selfjoin sizes can be used to derive an upper bound

for general joins:

|RBA=B S| ≤
|RBA=A R|+ |S BB=B S|

2
.

This bound, which is an immediate consequence of the Cauchy Schwarz in-
equality, can be used as a sanity check. Table 24.5 summarizes our findings for
joins.

24.3.5 Profile Propagation for Projection

The next operator we deal with is the duplicate eliminating projection. Given
our work from Chapter 4, it is not surprising, that we simply have to apply the
D function. For single attributes A, we have

f ′A = d′A = dA

For a set of attributes A = {A1, . . . , An}, the result cardinality of ΠD
A(R) is

D(
n∏

i=1

nAi , |R|),

if nAi , the size of the domain of Ai, is known. Otherwise, we can use the
estimate

D(
n∏

i=1

dAi , |R|)

442 CHAPTER 24. CARDINALITY AND COST ESTIMATION

join f’ d’ comment

RNA=B S f ′A = fA d′A = dA ΠA(R) ⊆ ΠB(S)

f ′A = fAdB
dA

d′A = dB ΠA(R) ⊇ ΠB(S)

f ′A = fAdB
n d′A = dAdB

n else

f ′C = f ′A d′C = dC ∗ YfA
dC/fC

(f ′A) for C ∈ A(R) \ {A,B}

RBA=B S f ′A = fAfB
dB

d′A = dA ΠA(R) ⊆ ΠB(S)

f ′A = fAfB
n d′A = dAdB

n else

RBA=A R f ′A = fAfA
dA

d′A = dA

Table 24.5: Profile propagation for joins

The number of distinct values in any attribute does not change, i.e. d′Ai
= dAi .

If we have a functional dependencies and κ → A for a set of attributes A
and κ ⊂ A, then

ΠD
A(R) = ΠD

κ (R).

Further, if |ΠD
A(R)| = |R|, we have |ΠD

A′(R)| = |R| for all A′ with A′ ⊇ A.
The above estimates for the result size of a duplicate eliminating projection

assumes that the attribute values are uniformly distributed, i.e., every distinct
value occurs with the same probability. As we will not deal with projections
any more in this part of the book, let us complete the subject by giving an
approach where each attribute value can have its own probability of occurrence.
This is not unlikely, and for attributes with few possible values the following
approach proposed by Yu, Zuzarte, and Sevcik is quite reasonable [966]. The
assumptions are that the attributes are independent and the values of each
of them are drawn by independent Bernoulli trials. Under these assumptions,
they derive the following three results: a lower bound, an upper bound, and an
estimate for the expected number of distinct values in the projection. In order
to state these results, we need some additional notation. Let R be a relation
and define N = |R|. Further let G = {A1, . . . , An} be a subset of the attributes
of R. Define di = |ΠD

Ai
(R)| to be the number of distinct values occurring in

attribute Ai. We denote values of Ai by ai,1, . . . , ai,di .

We wish to derive an estimate for DG = |ΠD
G(R)|. Therefore, we model each

attribute Ai by a frequency vector fi = (fi,1, . . . , fi,di) where fi,j is the number
of occurrences of the j-th distinct value ai,j of Ai divided by N . If, for example,
A1 has three distinct values which occur 90, 9, and 1 times in a relation with
N = 100 elements, then f1 becomes (0.9, 0.09, 0.01).

Let us first look at bounds for DG. Trivially, DG is bounded from above by

DG ≤ min{N,
n∏

i=1

di}

24.3. THE SIMPLE PROFILE: A FIRST LOGICAL PROFILE AND ITS PROPAGATION443

and from below by
DG ≥

n
max
i=1

di.

These bounds are very rough. This motivated Yu et al. to derive better ones.
Before we proceed, let us consider another example. Assume we have three

attributes A1, A2, and A3 all with frequency vectors fi = (0.9, 0.09, 0.01) for a
relation of size N = 100. Since we assume attribute independence, the proba-
bility of (a1,3, a2,3, a3,3) is 0.01∗0.01∗0.01. Thus, its occurrence in a relation of
size 100 is highly unlikely. Hence, we expect DG to be less than 27 = 3*3*3. In
general, we observe that the probability of occurrence of a tuple (a1,j1 , . . . , an,jn)
is the product of the relative frequencies f1,j1 ∗ . . . ∗ fn,jn . From this, the ba-
sic idea of the approach of Yu et al. becomes clear: we have to systematically
consider all the different possibilities to multiply relative frequencies. This is
nicely captured by the Kronecker product (tensor product).

Before we proceed, let us state the upper and lower bounds in case of two
attributes by giving two theorems developed by Yu et al. [966].

Theorem 24.3.1 (lower bound) For a set of attributes {A1, A2} of a rela-
tion R and its frequency vectors, we define li,j for i = 1, 2 and 1 ≤ j ≤ di as the
minimum number of different values that have to be combined with fi,j given
the marginals, i.e.

li,j = min{|F | | F ⊆ {1, . . . , di′}, ∀q ̸∈ F S(F) ≤ fi,j < S(F) + fi′,q}

where i′ = 3− i and S(F) =∑p∈F fi′,p. Further define

D⊥G = max
i=1,2

di∑

j=1

li,j .

Then D⊥G is a lower bound for DG and D⊥G ≥ maxd1,d2.

Theorem 24.3.2 (upper bound) For a set of attributes {A1, A2} of a rela-
tion R and its frequency vectors, we define ui,j for i = 1, 2 and 1 ≤ j ≤ di as
the maximum number of different values that can be combined with fi,j given
the marginals, i.e.

ui,j = min{di′ , fi,jN}
where i′ = 3− i. Further define

D⊤G = min
i=1,2

di∑

j=1

ui,j .

Then D⊤G is a lower bound for DG and D⊤G ≤ min{N,∏n
i=1 di}.

The algorithm in Fig. 24.3 calculates the lower bound D⊥G. Calculating the
upper bound D⊤G is much easier. For each fi,j , we compute ui,j by simply
comparing fi,jN and di′ . Adding up the ui,j for each attribute and taking the
lesser of the two sums gives the desired result.

444 CHAPTER 24. CARDINALITY AND COST ESTIMATION

CalculateLowerBoundForNumberOfDistinctValues(f1, f2)
/* frequency vectors f1 and f2 */
sort fi (i = 1, 2) in descending order;
for i = 1, 2 {

i′ = 3− i;
for j = 1, . . . di {

k = 1;

while (fi,j >
∑k

l=1 fi′,l)
++k;

li,j = k;
}

lbi =
∑di

j=1 li,j ;

}
D⊥G = maxi=1,2 lbi;
return D⊥G

Figure 24.3: Calculating the lower bound D⊥G

Let us start by repeating the definition of the Kronecker product of two
matrices A = (ai,j) and B = (bi,j) of dimension n×m and n′ ×m′. The result
A⊗B is a matrix of dimension nn′ ×mm′. The general definition is

A⊗B =

a1,1B a1,2B . . . a1,mB
a2,1B a2,2B . . . a2,mB
.
an,1B an,2B . . . an,mB

 .

The estimate can not be calculated easily. First, we calculate the Kronecker
product fG = f1 ⊗ . . . ⊗ fn of all frequency vectors. Note that to every value
combination v ∈ ΠD

A1
(R)× . . .×ΠD

An
(R) there corresponds exactly one compo-

nent in fG, which contains its probability of occurrence. With this observation,
it is easy to derive the following theorem, in which we denote by fG,i the i-th
component of fG and by M its length, i.e. M =

∏n
i=1 di. Further remember

that N = |R|.

Theorem 24.3.3 (estimate) Let the following assumptions hold:

1. The data distributions of individual attributes in G are independent.

2. For the value combinations vi, its occurrence is the result of an indepen-
dent Bernoulli trial, with the success (occurrence) probability fG,i.

3. The occurrences of individual possible value combinations are independent.

Then, the expected number of distinct values DG is

E[DG] =M −
M∑

i=1

(1− fG,i)
N .

24.3. THE SIMPLE PROFILE: A FIRST LOGICAL PROFILE AND ITS PROPAGATION445

EstimateNumberOfDistinctValues(f1, . . . , fn)
/* frequency vectors fi */
/* step 1: calculate fG = f1 ⊗ . . .⊗ fn */
fG = f1;
for (i = 2; i ≤ n; ++i) {

fold = fG;
fG = ϵ; // empty vector
for (j = 1; j ≤ |fold|; ++j) {

for (k = 1; k ≤ di; ++k) {
fG = push back(fG, f

old
j × fi,j); // append a value to a vector

}
}

}
/* step 2: compute the expected number of distinct value combinations */
S = 0;
for (j = 1, j ≤M ; ++j) { // M = length(fG)

S += (1− fj)N ;
}
D̂G =M − S;
return D̂G;

Figure 24.4: Calculating the estimate for DG

The algorithm for computing the estimate is given in Fig. 24.4. In the first,
most expensive phase, it constructs the Kronecker product. Then, the simple
calculations according to the theorem follow. A more efficient implementation
would calculate the Kronecker product only implicitly. Further, the frequency
vectors may not be completely known but only a part of it via some histogram.
As was also shown by Yu et al., end-biased histograms (coming soon) are opti-
mal under the following error metrics. Let D̂G,hist be the estimate derived for
a histogram. The error function they consider is

Eabs = |D̂G − D̂G,hist|.

24.3.6 Profile Propagation for Division

As a starting point, we use an observation made by Merrett and Otoo [603].
Assume we are given two sets X and Y , which are both subsets of a finite
domain D with |D| = n elements. Then |X| < |Y | implies that X ̸⊆ Y .
Otherwise, we can calculate the probability of X ⊇ Y as

p(X ⊇ Y) =

(|X|
|Y |

)
/

(
n

|Y |

)

Now let R and S be two relations with A(R) = {A,B} and A(S) = {B}. A
value a ∈ ΠD

A (R) is contained in the result ofR÷B if and only if ΠB(σA=a(R)) ⊇

446 CHAPTER 24. CARDINALITY AND COST ESTIMATION

S. Hence, for any such a, fA = fA/dA and nB equal to the size of the common
domain of R.B and S.B, we can calculate the survival probability as

(
fA
|S|

)
/

(
nB
|S|

)

provided that fA ≥ |S| and R is a set. Denote by f ′A and d′A the cumulated
frequency and the number of distinct values for attribute A in the result of
R÷ S. Then we have the estimate

f ′A = d′A = dA ∗
(
fA
|S|

)
/

(
nB
|S|

)

in case R is a set.

If R is a bag, we must be prepared to see duplicates in σA=a(R). In this
case we can adjust the above formula to

f ′A = d′A = dA ∗
(
xA
|S|

)
/

(
n

|S|

)

where xA = D(xA, nA), and nA is the size of the domain of R.A.

If there is some variance among the number of distinct values associated
with the a ∈ ΠD

A (R), the estimate will be rough. To cure this, we need better
information. Define for each a ∈ ΠD

A (R) the number ha to be the number of
distinct b values occurring for it, i.e. ha = |ΠD

B (σA=a(R))|. Then we could
estimate f ′A and d′A as follows:

f ′A = d′A =
∑

a∈ΠD
A (R)

(
ha
|S|

)
/

(
n

|S|

)

Keeping ha for every possible a may not be practical. However, if the number
of distinct values in H = {ha|a ∈ ΠD

A (R)} is small, we can keep the number of
distinct a values for each possible ha. Assume H = {h1, . . . , hk} and define

gi = |{a ∈ ΠD
A (R)|ha = hi}|,

then we have the estimate

f ′A = d′A =

k∑

i=0,hi≥|S|
gi

(
hi
|S|

)
/

(
n

|S|

)
.

24.3.7 Remarks

NULL Values Our profile is not really complete for attributes which can
have NULL values. To deal with these, we need to extend our profiles by the
frequency d⊥A with which NULL occurs in an attribute A of some relation. It is
straightforward to extend the above profile to deal with this additional count.

24.4. APPROXIMATION OF A SET OF VALUES 447

Name Definition Error minimized

median(x̃)

{
x(n+1)/2 n odd

(xn/2 + xn/2+1)/2 n even
E1 =

∑n
i=1 |xi − x̂|

mean(x̄) 1/n
∑n

i=1 xi E2 =
√∑n

i=1(xi − x̂)2

middle (max(x) + min(x))/2 E∞ = maxni=1 |xi − x̂|

q-value
√

max(X)min(X) Eq = maxni=1max{xi/x̂, x̂/xi}

Table 24.6: Approximations of a set of numbers by a single number

Uniformity is not sufficient As we have seen, even if all attributes are
uniformly distributed, which is rarely the case in practice, the result of algebraic
operators may no longer be uniformly distributed. As a consequence, we need
to be concerned with the approximation of the true distribution of values.

Sets of Attributes Note that nothing prevents us to use the formulas de-
veloped above for selections and joins if A and B are attribute sets instead of
single attributes. We just have to know or calculate dA for sets of attributes A.

24.4 Approximation of a Set of Values

24.4.1 Approximations and Error Metrics

Assume we have a set of values x = {x1, . . . , xn}. The task we want to tackle
is to approximate this set of values by a single value. The left two columns
of Table 24.6 show the names and definitions of some possible approximations.
Whereas mean and median are well known, the other two may be not. The
middle is defined as the value exactly between the minimum and maximum of
X. Hence, the distance from the middle to either extreme is the same. The q-
value needs some further restriction: the values in X must be larger than zero.
For our purposes, this restriction is not bad since execution costs are typically
larger than zero and frequencies are mostly larger than zero if they are not
exactly zero. The latter case needs some special attention if we use something
like the q-value, which we could also term geometric or multiplicative middle.

Let us take a look at a simple example. Assume X = {1, 2, 9}. Then we
can easily calculate the approximations summarized in the following table:

median mean middle q-value

2 4 5 3

Which of these approximations is the best one? The answer depends on the error
function we wish to minimize. Therefore, the rightmost column of Table 24.6
shows some error functions, which are minimized by the approximation defined
in the same line. The variable x̂ denotes the estimate whose error is to be

448 CHAPTER 24. CARDINALITY AND COST ESTIMATION

calculated. For E2 there exist plenty of equivalent formulations, where we think
of two error measures as being equivalent, if and only if they result in the same
minimum. Some important alternatives are 1/n

∑
(xi−x̂)2, 1/(n−1)

∑
(xi−x̂)2

(empirical variance), and simply
∑

(xi − x̂)2.
A nice property half of the approximations give us are error bounds. These

are E∞ and Eq. Define the spread s of x as max(x)−min(x). Then, given the
middle m of x, we have for every xi ∈ x that

m− s/2 ≤ xi ≤ m+ s/2.

Thus, we have a symmetric, additive error bound for all elements in x. Define
the geometric spread as s =

√
max(x)/min(x). Then we have a symmetric,

multiplicative error bound for all elements xi in x given by

(1/s)q ≤ xi ≤ sq

if q is the geometric middle. The following table shows the possible errors for
all approximations of our example set X = {1, 2, 9}:

median mean middle geo. mean
2 4 5 3

E1 8 10 11 9
E2 7.1 6.2 6.4 6.4
E∞ 7 5 4 6
Eq 4.5 4 5 3

Which of these error metrics and, hence, which approximation is the best?
Obviously, this depends on the application. In the query compiler context, E1
plays no role that we are aware of. E2 plays a predominant role as it is used to
approximate values in a given histogram bucket. This has not come by sharp
reasoning about the best possibility but merely by the existence of a huge body
of literature in this area. Currently, the other two error metrics, E∞ and Eq,
play minor roles. But this will change.

24.4.2 Example Applications

Let us discuss some example applications relevant to building a query compiler.
Assume we have to come up with the execution time (CPU usage) for some
function. This could be a simple arithmetic function built into our system,
a hash function executed for a hash-join, the CPU time used to dereference
a TID if the according page is in memory, the CPU time needed to search a
B-tree page residing in the buffer, or the CPU time needed to load a page from
secondary storage into the buffer. Careful as we are, we measure the function’s
execution time several times. Almost certainly, the numbers will not be same
for every execution, except maybe for the simplest functions. To come up within
a single number, we need to approximate the set of numbers derived from our
measurements. If the function is going to be executed many times within a
query execution plan (in which it occurs), we need to cost the average case
and the mean is the approximation of choice. We will see more applications in
Section 24.5.2.

24.5. APPROXIMATION WITH LINEAR MODELS 449

24.5 Approximation with Linear Models

24.5.1 Linear Models

In this section, we want to approximate a given set of points (xi, yi) (1 ≤ i ≤ m)
by a linear combination f̂ of given functions Φj , 1 ≤ j ≤ n. The general

assumption is that m > n. We define the estimation function f̂ as

f̂(x) :=
n∑

j=1

cjΦj(x)

for coefficients cj ∈ R. The estimates ŷi for yi are then derived from f̂ by

ŷi := f̂(xi) =

n∑

j=1

cjΦj(xi).

Note that the functions Φj are not necessarily linar functions. For example, we
could use polynomials Φj(x) = xj−1. Further, there is no need for x to be a
single number. It could as well be a vector x⃗.

It is convenient to state our approximation problem in terms of vectors and
matrices. Let (xi, yi) be the points we want to approximate and Φj , 1 ≤ j ≤ n
be some functions. We define the design matrix A ∈ Rm×n, A = (ai,j) by

ai,j = Φj(xi)

or, equivalently, as an explicit matrix

A =

Φ1(x1) Φ2(x1) Φ3(x1) . . . Φn(x1)
Φ1(x2) Φ2(x2) Φ3(x2) . . . Φn(x2)

. . .
Φ1(xm) Φ2(xm) Φ3(xm) . . . Φn(xm)

 (24.5)

Assume we wish to approximate the points by a polynomial of degree n − 1.
Then, Φi(x) = xi−1 and the design matrix becomes

A =

1 (x1)
1 (x1)

2 . . . (x1)
n−1

1 (x2)
1 (x2)

2 . . . (x2)
n−1

. . .
1 (xm)1 (xm)2 . . . (xm)n−1

 .

In the simplest case, where we want to use a linear function f̂(x) = c1 + c2x to
approximate the points, the design matrix becomes

A =

1 x1
1 x2
. . .

1 xm

 .

As an example consider the three points

(1, 20), (2, 10), (3, 60).

450 CHAPTER 24. CARDINALITY AND COST ESTIMATION

The design matrix becomes

A =

1 1
1 2
1 3

 (24.6)

For every column vector c⃗ = (c1, c2)
T

Ac⃗

gives the result of f̂ for all points. Clearly, c⃗ should be determined such that
the deviation of Ac⃗ from y⃗ = (y1, . . . , ym)T becomes minimal.

The deviation could be zero, that is Ac⃗ = y⃗. However, remember our as-
sumption that m > n. This means that we have more equations than variables.
Thus, we have an overdetermined system of equations and it is quite unlikely
that a solution to this system of equations exists. This motivates our goal to
find an approximation as good as possible. Next, we formalize this goal.

Often used measures for deviations or distances of two vectors are based on
norms.

Definition 24.5.1 (norm) Let S be a linear space. Then a function ||x|| :
S → R is called a norm if and only if it has the following three properties:

1. ||x|| > 0 unless x = 0

2. ||λx|| = |λ| ||x||

3. ||x+ y|| ≤ ||x||+ ||y||
Various norms, called p norms can be found in the literature. Let x ∈ Rn

and p ≥ 1 where p =∞ is possible. Then

||x||p = (

n∑

i=0

|xi|p)
1
p .

The most important norms are the l1, l2, and l∞ norms:

||x||1 = |x1|+ . . .+ |xn|
||x||2 =

√
(x1)2 + . . .+ (xn)2

||x||∞ =
n

max
i=1
|xi|

Using these norms, we can define distance functions d1, d2, and d∞. For two
vectors x and y in Rn, we define

d1(x, y) = ||x− y||1
d2(x, y) = ||x− y||2
d∞(x, y) = ||x− y||∞

It should be clear, that these define the error measures E1, E2, and E∞, which
we used in Sec. 24.4. The only missing error function is Eq. We immediately
fill this gap, and start with the one dimensional case.

24.5. APPROXIMATION WITH LINEAR MODELS 451

Definition 24.5.2 (Q-paranorm in R) Define for x ∈ R,

||x||Q =

∞ if x ≤ 0
1/x if 0 < x ≤ 1
x if 1 ≤ x

|| · ||Q is called Q-paranorm.

Note that for x > 0, ||x||Q = max(x, 1/x). The multivariate case is a straight-
forward extension using the maximum over all components:

Definition 24.5.3 (Q-paranorm in Rn) For x ∈ Rn, define

||x||Q =
n

max
i=1
||xi||Q.

We denote this paranorm by lq.

Definition 24.5.4 (paranorm) Let S be a linear space. Then a function
||x|| : S → R is called a paranorm if and only if the following two properties
hold:

1. ||x|| ≥ 0

2. ||x+ y|| ≤ ||x||+ ||y||

The Q-paranorm is a norm, hence the name. The only missing part is the
distance function stated next. Let x and y be two vectors in Rn, where y =
(y1, . . . , yn)

T with yi > 0. Then we define

dq(x, y) = ||x/y||Q

where we define x/y for two column vectors x, y ∈ Rn as follows:

x/y = (x1/y1, . . . , xn/yn)
T.

Between norms there exist some inequalities. For all vectors x ∈ Rn, we
have

||x||2 ≤ ||x||1 ≤ √
n||x||2

||x||∞ ≤ ||x||2 ≤ √
n||x||∞

||x||∞ ≤ ||x||1 ≤ n||x||∞
For lq, no such inequality exists as ||x||Q approaches infinity as x approaches
zero.

We can now formally state the approximation problem. Let A ∈ Rm×n

be the design matrix and (xi, yi), 1 ≤ i ≤ m be a set of points, and y⃗ =
(y1, . . . , ym). The goal is to find a vector a⃗∗ ∈ Rn minimizing d(Aa⃗, y⃗). That
is, we look for a⃗∗ ∈ Rn such that

d(Aa⃗∗, y⃗) = min
a⃗∈Rn

d(Aa⃗, y⃗) (24.7)

a⃗∗ is then called solution of the approximation problem or best approximation.

452 CHAPTER 24. CARDINALITY AND COST ESTIMATION

For different l (d), we get different problems. For l1 the problem is called
quantile regression. We will not deal with it here, since we do not know of any
application of it in the database context. The solutions for the problems for l2,
l∞, and lq are discussed in subsequent sections, after we have given some exam-
ple applications of what needs to be approximated in a DBMS. Before we pro-
ceed, let us give the solutions for approximating the points (1, 20), (2, 10), (3, 60)
with a linear function α + βx. The following table shows the values of x, y
and estimates for y produced by the best approximations f̂l2 , f̂l∞ , f̂lq , which
minimize l2, l∞, and lq, resp. Additionally, we give the α and β of the best
approximations as well as their quality measured by l1, l2 and lq.

x y f̂l2 f̂l∞ f̂lq
1 20 10 5 10
2 10 30 25 20
3 60 50 45 30

α 20 20 10
β -10 -15 0

l2 14.1421 15 19.1485
l∞ 20 15 30
lq 3 4 2

Let us repeat some general insights into approximation problems as defined
above. Thereby, we follow the exposition of Watson [914]. We start with stating
theorems on the existence of a solution. The following two theorems only apply
to norms. That is, they do not apply to lq. However, as we will see later,
solutions under lq exist.

Theorem 24.5.5 (Existence 1) Let M denote a compact set in a normed
linear space. Then to each point g of the space there exists a point of M closest
to g.

Compactness is a sufficient but not a necessary condition.

Theorem 24.5.6 (Existence 2) Let M be a finite dimensional subspace of a
normed linear space S. Then there exists a best approximation in M to any
point of S.

The next point to consider is the uniqueness of a solution. Proving the unique-
ness of a solution is easy, if the norm is strictly convex.

Definition 24.5.7 ((strictly) convex) Let f(x) be a function on the ele-
ments x of a linear space S. Then f(x) is convex if

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for all x1, x2 ∈ S and 0 ≤ λ ≤ 1.
If 0 < λ < 1 implies strict inequality in the above inequality, f(x) is called

strictly convex.

It is easy to show that all lp norms for p ̸= ∞ are strictly convex and that l∞
and lq are convex, but not strictly convex. For strictly convex norms, it is easy
to show that a solution is unique.

24.5. APPROXIMATION WITH LINEAR MODELS 453

Theorem 24.5.8 In a strictly convex normed linear space S, a finite dimen-
sional subspace M contains a unique best approximation to any point of S.

Although l∞ and lq are not strictly convex, under certain circumstances a unique
best approximation exists for them. This is discussed in subsequent sections.

Considering the above, one might conjecture that l2 approximation is much
simpler than l∞ or lq approximation. This is indeed the case. We will not repeat
all the findings from approximation theory and the algorithms developed. There
are plenty of excellent textbooks on this matter. We highly recommend the ex-
cellent book of Golub and van Loan [336], which discusses l2 approximation and
several algorithms to solve them (e.g. QR factorization and SVD). Other good
books to refresh one’s knowledge on matrix algebra are [389, 408, 432, 777].
Überhuber wrote another good book discussing l2 approximation, QR factor-
ization and SVD [885]. In the context of statistics, many different regression
models exist to approximate a given set of data. An excellent overview is pro-
vided by [?]. Another good reading, not only in this context, is the book by ToDo
Press, Teukolsky, Vetterling, and Flannery [702]. Before reading these books,
it might be helpful to repeat some linear algebra and some basics of matrices.
An excellent book for doing so was written by Schmidt and Trenkler [777]. The
only book we know of that discusses approximation under l∞, is the one by
Watson, already cited above [914]. Approximation under lq is not discussed in
any textbook. Hence, we must refer to the original articles [617, 623]. In any
case, since mathematics is quite involved at times, we give explicit algorithms
only for the approximation by a linear function. For all other cases, we refer to
the literature.

24.5.2 Example Applications

In this section, we give some examples of approximation problems occurring
in the database context. As we will see, different problems demand different
norms. Additionally, we sketch how to use approximations. The details are left
to the reader as an exercise.

Disk seek times

There exist small benchmarks, which measure the disk seek time for travelling
n cylinders (see Sec. 4.1). To cover for random errors, many measurements are
taken. The task is to find the parameters d and ci, 1 ≤ i ≤ 4, for the disk seek
time formula from Sec. 4.1:

seektime(d) =

{
c1 + c2

√
d d <= c0

c3 + c4d d > c0

Since many seeks occur during the processing of a single query, l2 is the appro-
priate norm. On the surface, we seem to have a problem using a simple linear
model. However, we can approximate the parts c1+c2

√
d and c3+c4d for sever-

al distinct c0 either by trying a full range of values for c0 or by a binary search.
The solution for c0 we then favor is the one in which the maximum of the errors
on both parts becomes minimal. A second problem is the occurrence of

√
d,

454 CHAPTER 24. CARDINALITY AND COST ESTIMATION

since this does not look linear. However, choosing Φ1 = 1 and Φ2(x) =
√
x will

work fine.

Another method is to transform a set of points (xi, yi) with two (injective)
transformation functions tx and ty into the set of points (tx(xi), ty(yi)). Then
this set is approximated and the result is transformed back. While using this
approach, special attention has to be paid to the norm, as it can change due to
the transformation. We see examples of this later on in Sec. 24.5.6.

Functions sensitive to parameter size

Another example is to approximate the execution time of a hash function on
string values. As its calculation depends on the length of the input string,
measurements can be taken for various lengths. Using l2 as a norm is perfect,
because the hash function is typically executed many times during a hash join
or hash teams [352].

Approximation of frequency densities and distributions

We start by demonstrating the usage of approximating functions for cardinal-
ity estimation. Then, we look at the choice of error metrics for estimating
selectivity results and the influence of cardinality estimation errors on joins.

Let R be a relation and A one of its attributes. Let (xi, fi) denote the
frequency fi with which the value xi occurs in attribute A. Typically, only
those values xi are written down and approximated for which fi ̸= 0. We
further assume that the xi are sorted, i.e., xi < xi+1. Using the methods to
come, we can approximate this set of points by a function f̂(x). To calculate
the output cardinality of a selection σA=c(R), we can simply return f̂(c) as an
estimate. Hence it is a good choice to use lq (see below for strong arguments).

To calculate the result cardinality for a range query of the form σc1≤A≤c2(R),
we distinguish several cases. First, assume that the domain of A is discrete and
the number of values between c1 and c2 is small. Then, we can calculate the
result quite efficiently by ∑

c1≤x≤c2
f̂(x)

if the active domain of the attribute under consideration is dense, which assume
in this subsection. In Section ??, we present estimation formulas without this
assumption. If the number of values between c1 and c2 is too large for an
explicit summation, we can apply speed-up techniques if the function f̂ has a
simple form. For example, if f̂ is a linear function f̂(x) = α + βx, the above
sum can be calculated very efficiently . If the number of values between c1 andEXC
c2 is very large and no efficient form for the above sum can be found, or if we
do not have a discrete domain, we can use the integral to approximate the sum.
Thus, we use the right-hand side of

∑

c1≤x≤c2
f̂(x) ≈

∫ c2

c1

f̂(x)dx

24.5. APPROXIMATION WITH LINEAR MODELS 455

xi 1 2 3 4 5 6 7 8 9 10
fi 10 10 0 1 1 1 0 1 40 36
f+i 10 20 20 21 22 23 23 24 64 100

5x 5 10 15 20 25 30 35 40 45 50

Figure 24.5: Example frequency density and cumulated frequency
.

to approximate the sum by evaluating an expression which is hopefully less
expensive to evaluate.

Yet another solution is the following. Instead of approximating (xi, fi) di-
rectly, we approximate (xi, f

+
i) where f+i =

∑
j≤i(fi). Let us denote the ap-

proximation of this cumulated frequency distribution by f̂+. Then the result
cardinality of a range query of the form σc1≤A≤c2(R) can be simply calculated
by

f̂+(c2)− f̂+(c1).
However, this can be very dangerous since even if the approximation of the
cumulated frequency function is rather precise, the difference can be vastly off
the true value as we will see next.

An example for a frequency density is shown in Figure 24.5. Further define
the cumulated frequency f+(c1, c2) as

f+(c1, c2) :=
∑

c1≤xi≤c2
fi.

Then, f+(c1, c2) gives the result for above query.
Define the cumulated frequency f+(c2) :=

∑
xi≤c2 fi. With the help of

f+(c2) we can calculate f+(c1, c2) by observing that f+(c1, c2) = f+(c2) −
f+(c1 − 1). An idea often found in the literature is to approximate f+(c2) by
some function f̂+(c2) and provide an estimate for f+(c1, c2) by defining

f̂+(c1, c2) := f̂+(c2)− f̂+(c1 − 1).

For our example, we let us define f̂+(x) = 5x. Note that this is a linear
approximation. Then, we see that f̂+(xi) is never more than a factor of 2 away
from f+(xi). Thus, it is a pretty good approximation. This is illustrated in
Figure 24.6. However, we see that

f̂+(8, 10) = 15

f+(8, 10) = 77

f̂+(4, 7) = 20

f+(4, 7) = 3

The estimates differ by far more than a factor of 2 from their true values. Thus,
we have to look for a different solution.

456 CHAPTER 24. CARDINALITY AND COST ESTIMATION

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

cum freq
5x

Figure 24.6: Cumulated frequency and its approximation

Assume for a change, that we are interested in half-open intervals. Thus, we
would like to provide estimates for f−(c1, c2) :=

∑
c1≤xi<c2

fi. A rather simple

method is to directly approximate f−(c1, c2) by a linear function f̂−(c1, c2) =
ac1 + bc2 + c, where we apply the two constraints that f̂−(x, x) = 0 and
f̂−(lA, uA) = fA. Remember that lA = min(ΠA(R)), uA = max(ΠA(R)), and
fA = |R|. With these constraints, f̂ simplifies to f̂−(c1, c2) = c2−c1

uA−lA , which
should look familiar to the reader. No errror bounds come with this approxi-
mation. Even worse, we do not know, whether it minimizes the q-errors or not.
Thus, it seems to be better to control the q-error more directly.

Number of Distinct Values Let A be an attribute of some relation R.
Consider the problem to provide estimates for

select count(distinct A) from R where c1 ≤ A ≤ c2
That is, we are interested in the number of distinct values of A in the interval
[c1, c2]. As above, we can approximate the function

d+(c1, c2) = |{a|a ∈ ΠA(R), c1 ≤ a ≤ c2}|
by some linear function.

Positions of interesting values

Consider an integer attribute A of a relation R with values in [l, u]. Imagine aELIM?

24.5. APPROXIMATION WITH LINEAR MODELS 457

situation where almost all values in [l, u] occur with some frequency in A. Only
a few holes exist. Denote by W the set of values in [l, u] that do not occur in
A. Again, the selection is of the form σc1≤A≤c2(R). In the case of holes, the
above summation for range queries leads to a wrong result. It would be better
to calculate the result cardinality as in

∑

c1≤x≤c2
f̂(x)−

∑

c1≤x≤c2,x∈W
f̂(x)

For this to work, we have to know where the holes in [l, u] are. If there are only
a few of them, we can memorize them. If they are to many to be stored, we
can approximate them as follows. Let W = {w1, . . . , wm}. Then, we can use
approximation techniques to approximate the set of points (i, wi), 1 ≤ i ≤ m.
Depending on the size of the interval [l, u] either l∞ or lq is the appropriate
norm. Similarily, the peaks, i.e., the distinct values occurring in the attribute
A of R, can be approximated if there are only a few of them in the domain of
A.

Why Q?

Minimizing error propagation. Let us assume that the purpose of our
approximation is to estimate the output cardinalities of selections on relations
Ri, i.e. σpi(Ri) for i = 1, . . . , n. The results of these cardinality estimations
are then used to find the optimal order of subsequent joins. More specifically,
assume we have to find the optimal query execution plan for the following
expression:

σp1(R1) 1 . . . 1 σpn(Rn), (24.8)

where we intentionally left out all the join predicates. Ioanidis and Christo-
doulakis pointed out that errors propagate exponentially through joins [451].
Denote by si the cardinality of σpi(Ri) and by ŝi its estimate. Further assume
that independence holds. This means, that si can be written as fi|Ri|, where
fi is the selectivity of pi. Denote by fi,j the selectivity of the join predicate
between Ri and Rj , if it exists. Otherwise we define fi,j = 1. The result of
joining a subset x ⊆ {R1, . . . , Rn} has cardinality

sx = (
∏

Ri∈x
fi)(

∏

Ri,Rj∈x
fi,j)(

∏

Ri∈x
|Ri|)

Denote by f̂i the estimate for the selectivities of the pi and assume that the
join selectivities have been estimated correctly (which, of course, is difficult in
practice). Then, the estimated cardinality of the result of joining the relations

458 CHAPTER 24. CARDINALITY AND COST ESTIMATION

in x is

ŝx = (
∏

Ri∈x
f̂i)(

∏

Ri,Rj∈x
fi,j)(

∏

Ri∈x
|Ri|)

= (
∏

Ri∈x
fi/fi)(

∏

Ri∈x
f̂i)(

∏

Ri,Rj∈x
fi,j)(

∏

Ri∈x
|Ri|)

= (
∏

Ri∈x
f̂i/fi)(

∏

Ri∈x
fi)(

∏

Ri,Rj∈x
fi,j)(

∏

Ri∈x
|Ri|)

= (
∏

Ri∈x
f̂i/fi)sx

where some i belong to the category with f̂i/fi < 1 and others to the one
with f̂i/fi > 1. Remember that during dynamic programming, all subsets of
relations are considered. Especially those subsets occur in which all relations
belong to one category only. Hence, building on the cancellation of errors by
mixing them from different categories is not a true option. Instead, we should
minimize ∏

Ri∈x
max{fi/f̂i, f̂i/fi}

in order to minimize errors and error propagation. This product can be mini-
mized by minimizing each of its factors. This means that if we want to minimize
error propagation, we have to minimize the multiplicative error Eq for estimat-
ing the cardinalities of selections based on equality. This finding can obviously
be generalized to any kind of selections. Thus, for cardinality estimations for
selections (and joins, or cardinality estimation in general) the q-error is the
error metrics of choice.

Error bounds guaranteeing plan optimality. Let us give another strong
argument for minimizing the multiplicative error Eq. Let us consider again the
join expression given in 24.8. Further, denote by fi the correct selectivity of
σAi=ci and by f̂i some estimate. If the plan generator uses the correct cardi-
nalities, it produces the optimal plan. Given the estimates, it might produce
another plan. The question is, how far can the cardinality estimates deviate
from the true cardinalities such that the opimal plan still remains the same.
More formally, denote by P the optimal plan under the correct cardinalities
f and by P̂ the optimal plan under the estimates f̂ . Then, we can restate
the above question to whether there exists a condition on f̂ such that if this
condition holds then P̂ = P. The nice truth is that such conditions exist and
they involve the Q paranorm.

In the simplest case, let us assume that the expression given in 24.8 is used
to evaluate a star query under an ASI cost function without considering cross
products. From Sec. 3.2.2, we can conclude that the optimal join order for
star queries starts with the center relation and orders the satellite relations
according to their rank. This holds if the a symmetric cost function is used like
Cout. The rank of a relation R is defined as rank(Ri) = (T (Ri) − 1)/C(Ri),
where C(S) are some fixed per tuple costs and T (Ri) = f0,ifi|R|, if f0,i is the

24.5. APPROXIMATION WITH LINEAR MODELS 459

join selectivity of the join of Ri with the center relation R0. Thus, P̂ = P if f
and f̂ result in the same ordering of the relations. Since f(x) = (x − 1)/c is
monotonically increasing for constants c, we can conclude that the ordering is
indeed the same as long as for all i ̸= j we have

f0,ifi|Ri| < f0,jfj |Rj | ⇐⇒ f0,if̂i|Ri| < f0,j f̂j |Rj |

which is equivalent to

firi
fjrj

< 1⇐⇒ f̂iri

f̂jrj
< 1

for ri = f0,i|Ri|. We now show that if

||fi
f̂i
||Q < min

i ̸=j

√
|| firi
fjrj
||Q (24.9)

for all i, then P = P̂ . This condition implies the much weaker condition that
for all i ̸= j

|| f̂i
fi
||Q ||

f̂j
fj
||Q < || firi

fjrj
||Q (24.10)

To show the claim, it suffices to show that (firi)/(fjrj) < 1 implies (f̂iri)/(f̂jrj) <
1. This follows from

f̂iri

f̂jrj
=

f̂i
fi

fj

f̂j

firi
fjrj

= (
f̂i
fi

fj

f̂j
)/(|| firi

fjrj
||Q) (∗)

≤ (|| f̂i
fi
||Q ||

fj

f̂j
||Q)/(||

firi
fjrj
||Q)

< 1

where (*) follows from (firi)/(fjrj) < 1. Thus, we have shown that if the
q-error is limited as in condition 24.9, the produced plan is still optimal.

From cardinality estimation error bounds to cost error bounds. If
there are cardinality estimation errors, the plan generator can accidentally pro-
duce the wrong plan. This plan may be suboptimal under the true cardinalities
but is optimal under the estimated cardinalities. The question is, how bad is
the plan? To clarify this, assume that the optimal plan under the true cardi-
nalities is P . The optimal plan under the estimated cardinalities is P̂ . Then,
we are interested in the factor by which the P̂ is worse than P . The following
theorem answers this question [622]:

Theorem 24.5.9 Let C = CSMJ or C = CGHJ be the cost function of the
sort-merge or the Grace hash join. For a given query in n relations, let P be
the optimal plan under the true cardinalities, P̂ be the optimal plan under the

460 CHAPTER 24. CARDINALITY AND COST ESTIMATION

 0

 2

 4

 6

 8

 10

 12

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

chain query
star query

Figure 24.7: Q-error and plan optimality

estimated cardinalities, C(P) be the true costs under C of the optimal plan,
and C(P̂) be the true costs under C of the plan produced under the estimated
cardinalities. Then

C(P̂) ≤ q4C(P),
where q is defined as

q = max
x⊆X
||ŝx/sx||Q,

with X being the set of relations to be joined, and sx (ŝx) is the true (estimated)
size of the join of the relations in x. That is, q is the maximum estimation error
taken over all intermediate results.

This bound is rather tight, as is demonstrated by the example shown in Fig. 24.7
(taken from [622]). This figure shows for a chain and a star query with four
relations the quotient cost(P̂)/cost(P) for increasing q-errors. For the star
query, we see that this ratio is about 11.11, which is about 23.46. Thus, a
bound of the form q3C(P) would fail.

24.5.3 Linear Models Under l2

Now that we know that the solution to our problem exists and is unique, we
continue by characterizing it. Let S be a linear space (say R2) and s ∈ S some
point. Further denote by G some linear subspace of S (say a straight line). For
any g ∈ G, we can define the residual vector g − f . Using residuals, we can
characterize the unique solution quite easily and intuitively. Exactly the vector
g∗ ∈ G is closest to f whose residual f − g is orthogonal to G. Remember that
two vectors are orthogonal if and only if their scalar product is zero. Now we
can characterize the solution to our approximation problem under l2.

Theorem 24.5.10 (Characterization) Let S be a linear space and G a sub-
space. An element g∗ is the best approximation of a point s ∈ S if and only
if

⟨g∗ − f, g⟩ = 0

holds. That is, if the error is orthogonal to all elements in G.

24.5. APPROXIMATION WITH LINEAR MODELS 461

Since we are used to solve equations for x, we rewrite our problem to Ax⃗ = b.
That is, the vector x⃗ replaces the coefficient vector c. Using Theorem 24.5.10,
we must have that Ax⃗∗−b is orthogonal to the range of A. The range of a matrix
A ∈ Rm×n is defined as R(A) = {Ax|x ∈ Rn}. Let ai be i-th column vector
of A and x⃗ = (x1, . . . , xn)

T. Then, the best approximation can be found by
solving the following system of linear equations, which is called (Gauß) normal
equations:

⟨a1, a1⟩x1 + ⟨a2, a1⟩x2 + . . . + ⟨an, a1⟩xn = ⟨b, a1⟩
⟨a1, a2⟩x1 + ⟨a2, a2⟩x2 + . . . + ⟨an, a2⟩xn = ⟨b, a2⟩

...
...

...
...

...
⟨a1, an⟩x1 + ⟨a2, an⟩x2 + . . . + ⟨an, an⟩xn = ⟨b, an⟩

or, using matrix notation, we get

ATAx⃗ = ATb⃗ (24.11)

This system of linear equations can be solved by many different approaches.
Some fast and numerically stable approaches are QR decomposition and sin-
gular value decomposition (SVD). Both leave the conditioning of the problem
unchanged. QR decomposition can only be applied if the the matrix has full
rank (see below). Otherwise, one has to keep up with variants of QR decom-
position or SVD. Hence, we will briefly discuss SVD. We will not give any
algorithms. The interested reader is referred to [336].

Before we proceed with SVD, let us repeat some basics on matrices. A
special matrix is the identity matrix I ∈ Rn×n with I = (δi,j)i,j , 1 ≤ i ≤ n.
Matrices can have plenty of properties. Here are some of them.

Definition 24.5.11 (rank) The rank of a matrix A, denoted by rank(A), is
the rank of the subspace R(A).

Definition 24.5.12 (full rank) A matrix A ∈ Rm×n, m > n has full rank if
its rank is n.

Definition 24.5.13 (symmetric) A matrix A ∈ Rn is symmetric if and only
if AT = A.

Note that for all matrices A ∈ Rm×n, we always have that AAT and ATA are
symmetric.

Definition 24.5.14 (idempotent) A matrix A ∈ Rn×n is idempotent if and
only if AA = A.

Definition 24.5.15 (inverse) A Matrix A−1 ∈ Rn×n is the inverse of a ma-
trix A ∈ Rn×n if and only if A−1A = AA−1 = I.

A matrix for which the uniquely determined inverse exists is called regular.

Definition 24.5.16 (orthogonal) A matrix A ∈ Rn×n is orthogonal if and
only if AAT = ATA = I.

462 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Let us use a simple, operational, recursive definition of the determinant.

Definition 24.5.17 (determinant) Let A ∈ Rn×n be a matrix. We define
the determinant of A as det(A) = a1,1 if n = 1. Otherwise, we define

det(A) =

n∑

j=1

(−1)i+jai,j det(Ai,j)

where Ai,j ∈ R(n−1)×(n−1) results from A by eliminating the i-th row and the
j-th column.

Definition 24.5.18 (characteristic polynomial) Let A ∈ Rn×n be a ma-
trix. The characteristic polynomial is defined as

Pn(z;A) := det(A− zI) =

∣∣∣∣∣∣∣∣∣

(a1,1 − z) a1,2 . . . a1,n
a2,1 (a2,2 − z) · · · a2,n
...

...
. . .

...
an,1 an,2 · · · (an,n − z)

∣∣∣∣∣∣∣∣∣

Definition 24.5.19 (Eigenvalue) Let A ∈ Rn×n be a matrix and Pn(z;A) its
characteristic polynomial. Any root λi of Pn(z;A), i.e. P(z;A)(λi) = 0 is called
Eigenvalue. The set of Eigenvalues is denoted by

λ(A) := {λ1, . . . , λk}

and is called spectrum of A.

Definition 24.5.20 (similar) Two matrices A,B ∈ Rn×n are similar if and
only if there exists a regular matrix X ∈ Rn×n such that B = X−1AX.

Two similar matrices have the same Eigenvalues, as can be seen from the fol-
lowing theorem.

Theorem 24.5.21 Let A,B ∈ Rn×n be two similar matrices. Then they have
the same characteristic polynomial.

Definition 24.5.22 (generalized inverse) A matrix A− ∈ Rn×m is the gen-
eralized inverse, or g-inverse, of a matrix A ∈ Rm×n, if AA−A = A holds.

Every matrix and, hence, every vector has a g-inverse. For regular matrices,
the g-inverse and the inverse coincide. In general, the g-inverse is not uniquely
determined. Adding some additional properties makes it unique.

Definition 24.5.23 (Moore-Penrose inverse) A matrix A+ ∈ Rn×m is the
Moore-Penrose inverse of a matrix A ∈ Rm×n if the following conditions hold:

1. AA+A = A

2. A+AA+ = A+

24.5. APPROXIMATION WITH LINEAR MODELS 463

3. (A+A)T = A+A

4. (AA+)T = AA+

For every matrix and, hence, every vector there exists a uniquely determined
Moore-Penrose inverse. In case A is regular, A+ = A−1 holds. If A is symmetric,
then A+A = AA+. If A is symmetric and idempotent, then A+ = A. Further,
all of A+A, AA+, I − A+A, and I − AA+ are idempotent. Here are some
equalities holding for the Moore-Penrose inverse:

(A+)+ = A (24.12)

(AT)+ = (A+)T (24.13)

(ATA)+ = A+(AT)+ (24.14)

(AAT)+ = (AT)+A+ (24.15)

ATAA+ = AT (24.16)

A+AAT = AT (24.17)

The following theorem states the existence of a decomposition of any matrix
into regular/orthogonal submatrices.

Theorem 24.5.24 (singular value decomposition) Let A ∈ Rm×n be a
matrix. Then there exist an orthogonal matrix U ∈ Rm×m and an orthogo-
nal matrix V ∈ Rn×n such that

UTAV = S

such that S ∈ Rm×n is of the form

S = diag(s1, . . . , sk)

with k = min(m,n) and, further

s1 ≥ s2 ≥ . . . ≥ sr > sr+1 = . . . = sk = 0

holds where r = rank(A).

For a proof and algorithms to calculate the SVD of an arbitrary matrix see the
book by Golub and Loan [336]. Another proof can be found in the book by
Harville [408]. The diagonal elements si of S, which is orthogonal equivalent to
A, are called singular values. From

STS = (UTAV)T(UTAV) = V TATUUTAV = V −1ATAV

it follows that STS and ATA are similar. Since STS = diag(s21, . . . , s
2
r , 0, . . . , 0)

and similar matrices have the same spectrum, it follows that

si =
√
λi

for λi ∈ λ(ATA), 1 ≤ i ≤ n.

464 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Define S−1 = diag(1/s1, . . . , 1/sr, 0, . . . , 0) and A
+ = V S−1UT. From

AA+A = (USV T)(V S−1UT)(USV T)

= USS−1SV T

= USV T

= A

and

A+AA+ = (V S−1UT)(USV T)(V S−1UT)

= V S−1SS−1UT

= V S−1UT

= A+

we see that A+ = V S−1UT is a g-inverse of A. The reader is advised to check
the remaining conditions of the Moore-Penrose inverse.

Remember that we have to solve ATAx⃗ = ATb⃗ for x⃗ in order to find the
best approximation for our set of data points. Set x⃗ = A+b⃗. Then

ATAx⃗ = ATAA+b⃗

= ATb⃗

where we used Eqn. 24.16. Hence, the Moore-Penrose inverse2 solves our prob-
lem. Moreover, the solution can be obtained easily from the singular value
decomposition.

Approximation by a linear function

Assume we are given m points (xi, yi), 1 ≤ i ≤ m and wish to approximate
them by a linar function f(x) = α+ βx. The design matrix, b and x⃗ then are

A =

1 x1
1 x2
...

...
1 xm

 x =

(
α
β

)
, b =

y1
...
ym

The resulting system of normal equations
(

m
∑m

i=1 xi∑m
i=1 xi

∑m
i=1(xi)

2

)(
α
β

)
=

(∑m
i=1 yi∑m

i=1 xiyi

)

has the solution

α =

∑m
i=1(xi)

2
∑m

i=1 yi −
∑m

i=1 xiyi
∑m

i=1 xi
m
∑m

i=1(xi)
2 − (

∑m
i=1 xi)

2
, β =

m
∑m

i=1 xiyi −
∑m

i=1 xi
∑m

i=1 yi
m
∑m

i=1(xi)
2 − (

∑m
i=1 xi)

2

Note that this is a very nice formula as new points arrive or are deleted, only
the sums have to be updated and the quotients to be calculated. There is no
need to look at the other points again.

2The Greville algorithm to calculate the Moore-Penrose inverse directly is described in
[777].

24.5. APPROXIMATION WITH LINEAR MODELS 465

24.5.4 Linear Models Under l∞

Let A ∈ Rm×n be a matrix, where m > n, and b ∈ Rm a vector. The problem
we solve in this section is to

find a⃗ ∈ Rn to minimize ||r(a)||∞ (24.18)

where
r(⃗a) = b⃗−Aa⃗ (24.19)

The components of the vector r(⃗a) are denoted by ri(⃗a).
As pointed out earlier, l∞ is a convex norm. Hence, a solution exists. Since

l∞ is not strictly convex, the uniqueness of the solution is not guaranteed.
To solve problem 24.18 by following the approach proposed by Watson [914].
We start by characterizing the solution, continue with the conditions under
which uniqueness holds, make some more observations, and finally derive an
algorithm for the case n = 2, i.e. we find a best approximation by a linear
function. Although only few applications in databases exist for l∞, it is very
useful to find a best approximation under lq if we want to approximate by a
function eβ+αx (see Sec. 24.5.6).

Assume we have a best solution a⃗. Then, for some indices i, ri(⃗a) attains the
maximum, i.e. ri(⃗a) = ||r(⃗a)||∞. Otherwise, a better solution would exist. We
denote the set of indices where the maximum is attained by Ī (⃗a). We further
denote by θi(⃗a) the sign of ri(⃗a). Thus ri(⃗a) = θi(⃗a)||r(⃗a)||∞ for all i ∈ Ī. The
following theorem gives a characterization of the solution.

Theorem 24.5.25 A vector a⃗ ∈ Rn solves problem 24.18 if and only if there
exists a subset I of Ī with |I| ≤ n+ 1 and a vector λ⃗ ∈ Rm such that

1. λi = 0 for all i ̸∈ I,

2. λiθi ≥ 0 for all i ∈ I, and

3. ATλ⃗ = 0⃗.

The set I in the theorem is called an extremal subset of a solution a⃗.
There are two important corollaries to this theorem.

Corollary 24.5.26 Let a⃗ solve problem 24.18. Then a⃗ solves an l∞ approxi-
mation problem in Rn+1 obtained by restricting the components of r(⃗a) to some
particular n+ 1 components. If A has rank t, then the components of r(⃗a may
be restricted to a particular t+ 1 components.

Corollary 24.5.27 Let a⃗ solve problem 24.18 and let I be chosen according
to Theorem 24.5.25 such that λi ̸= 0 for all i ∈ I. Further let d⃗ be another
solution to 24.18. Then

ri(d⃗) = ri(⃗a).

Hence, not surprisingly, any two solutions have the same residuals for compo-
nents where the maximum is attained. The theorem and its first corollary state
that we need at most t+1 solutions for a matrix A of rank t. The next theorem
shows that at least t+ 1 indices exist where the maximum is attained.

466 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Theorem 24.5.28 If A has rank t, a solution to problem 24.18 exists for which
|Ī| ≥ t+ 1.

Thus, any submatrix of A consisting of a subset of the rows of A, which core-
spond to the indices contained in Ī (⃗a), must have rank t for some solution a⃗ to
problem 24.18.

The above theorems and corollaries indicate that the clue to uniqueness is
the rank of subsets of rows of A. The following definition captures this intuition.

Definition 24.5.29 (Haar condition) A matrix R ∈ Rm×n, where m ≥ n
satisfies the Haar condition if and only if every submatrix consisting of n rows
of A is nonsingular.

Finally, we can derive uniqueness for those A which satisfy the Haar condition:

Theorem 24.5.30 If A satisfies the Haar condition, the solution to prob-
lem 24.18 is unique.

Obviously, we need to know, whether the Haar condition holds for a matrix
A. Remember that we want to approximate a set of points by a linear combi-
nation of functions Φj , 1 ≤ j ≤ n. From the points (xi, yi), 1 ≤ i ≤ m, and the
Φj , the design matrix A is derived as shown in Equation 24.5. If the Φj form a
Chebyshev set, the design matrix will fulfill the Haar condition.

Definition 24.5.31 (Chebyshev set) Let X be a closed interval of R. A set
of continous function Φ1(x), . . . ,Φn(x), Φi : X → R, is called a Chebyshev
set, if every non-trivial linear combination of these functions has at most n− 1
zeros in X.

Assume the xi are ordered, that is xi < xi+1 for 1 ≤ i < m. Further, it is well-
known that the set of polynomials Φj = xj−1, 1 ≤ j ≤ n, forms a Chebyshev
set on any interval X. From now on, we assume that our xi are ordered, that
is x1 < . . . < xm. Further, we define X = [x1, xm]. We also assume that the
matrix A of Problem 24.18 is defined as given in Equation 24.5, where the Φj

are continous functions from X to R.
We still need some more knowledge in order to build an algorithm. The

next definition will help to derive a solution for subsets I of {1, . . . ,m} with
|I| = n+ 1.

Definition 24.5.32 (alternating set) Let a⃗ be a vector in Rn. We say that
r(⃗a) alternates s times, if there exists points xi1 , . . . , xis ∈ {x1, . . . , xm} such
that

rik (⃗a) = −rik+1
(⃗a)

for 1 ≤ k < s. The set {xi1 , . . . , xis} is called an alternating set for a⃗.

Theorem 24.5.33 Let (xi, yi), 1 ≤ i ≤ m, be an ordered set of points with
xi ≤ xi+1 for 1 ≤ i < m. Define X = [x1, xm]. Further let Φj, 1 ≤ j ≤ n be
a Chebyshev set on X. Define A = (ai,j), where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and
ai,j = Φj(xi). Then, a vector a⃗ ∈ Rn solves Problem 24.18 if and only if there
exists an alternating set with n+ 1 points for a.

24.5. APPROXIMATION WITH LINEAR MODELS 467

Consider again the example where we want to approximate the three points
(1, 20), (2, 10), and (3, 60) by a linar function. We saw that the solution to our
problem is f̂l∞(x) = −15+ 20x. The following table gives the points, the value
of f̂l∞ , the residuals, including their signs.

x y f̂l∞ ri
1 20 5 +15
2 10 25 -15
3 60 45 +15

As Theorem 24.5.33 predicts, the signs of the residuals alternate.

The proof of Lemma 24.5.33 uses the following lemma (see [914]).

Lemma 24.5.34 Let (xi, yi), 1 ≤ i ≤ m, be an ordered set of points with
xi ≤ xi+1 for 1 ≤ i < m. Define X = [x1, xm]. Further let Φj, 1 ≤ j ≤ n be a
Chebyshev set on X. Define the n× n determinant

∆i = ∆(x1, . . . , xi−1, xi+1, . . . , xn+1)

where

∆(x1, . . . , xn) = det

∣∣∣∣∣∣∣

Φ1(x1) . . . Φn(x1)
...

...
...

Φ1(xn) . . . Φn(xn)

∣∣∣∣∣∣∣
(24.20)

Then

sign(∆i) = sign(∆i+1), ∀ 1 ≤ i ≤ n.

Let us take a closer look at Theorem 24.5.33 in the special case wherem = 3,
i.e. we have exactly three points (xi1 , yi1), (xi2 , yi2), and (xi3 , yi3). We find the
best linear approximation f̂(x) = α + βx under l∞ by solving the following
equations:

yi1 − (α+ βxi1) = −1 ∗ λ
yi2 − (α+ βxi2) = +1 ∗ λ
yi3 − (α+ βxi3) = −1 ∗ λ

where λ represents the value of ||r(⃗a)||∞ for the solution a⃗ to be found. Solving
these equations results in

λ =
yi2 − yi1

2
− (yi3 − yi1)(xi2 − xi1)

2(xi3 − xi1)

β =
yi2 − yi1
xi2 − yi1

− 2λ

xi2 − xi1
α = yi1 + λ− xi1β

The algorithm to find the best approximation under l∞ starts with three
arbitrary points with indices i1, i2, and i3 with xi1 < xi2 < xi3 . Next, it
derives α, β, and λ using the solutions to our equations 24.21-24.21. Then,
the algorithm tries find new indices j1, j2, j3 by exchanging one of the ij with

468 CHAPTER 24. CARDINALITY AND COST ESTIMATION

some k such that λ will be increased. Obviously, we use a k that maximizes the
deviation from the best approximation f̂ of i1, i2, i3, i.e.

||yk − f̂(xk)||∞ = max
i=1,...,m

||yi − f(xi)||∞.

Depending on the position of xk in the sequence i1, i2, i3 and the signs of the
residuals we determine the ij to be exchanged with k.

• xk < xi1
if (sign(yk − f̂k) == sign(yi1 − f̂i1))
then j1 = k, j2 = i2, j3 = i3
else j1 = k, j2 = i1, j3 = i2

• xi1 < xk < xi2
if (sign(yk − f̂k) == sign(yi1 − f̂i1))
then j1 = k, j2 = i2, j3 = i3
else j1 = i1, j2 = k, j3 = i2

• xi2 < xk < xi3
if (sign(yk − f̂k) == sign(yi2 − f̂i2))
then j1 = i1, j2 = k, j3 = i2
else j1 = i1, j2 = i2, j3 = k

• xk > xi3
if (sign(yk − f̂k) == sign(yi3 − f̂i3))
then j1 = i1, j2 = i2, j3 = k
else j1 = i2, j2 = i3, j3 = k

The above rules are called exchange rules. In general, they state that if k falls
between two indices, the one with the same sign as rk is replaced by k. If k is
smaller than the smallest index (larger than the largest index), we consider two
cases. If the smaller (largest) index has the same sign of its residue as k, we
exchange it with k; otherwise we exchange it with the largest (smallest) index.
Stated this way, we can use the exchange rules for cases where n > 2.

Algorithm 24.8 summarizes the above considerations.
In case n > 2, the above algorithm remains applicable. We just have to use

the general exchange rule and provide a routine solving the following system of
equations for xi and λ:EXC

a1,1x1 + a1,2x2 + a1,nxn = −λ
a2,1x2 + a2,2x2 + a2,nxn = +λ

.

an+1,1x2 + an+1,2x2 + an+1,nxn = (−1)n+1λ

24.5.5 Linear Models Under lq

Let (xi, yi) for 1 ≤ i ≤ m be a set of points with yi > 0, which we again want to
approximate by a linear combination of a given set of functions Φj , 1 ≤ j ≤ n.

24.5. APPROXIMATION WITH LINEAR MODELS 469

BestLinearApproximationUnderChebyshevNorm

1. Choose arbitrary i1, i2, i3 with xi1 < xi2 < xi3 .
(e.g. equi-distant ij .)

2. Calculate the solution for the system of equations.
This gives us an approximation function f̂(x) = α+ βx and λ.

3. Find an xk for which the deviation of f̂ from the given data is maximized.
Call this maximal deviation λmax.

4. If λmax − λ > ϵ for some small ϵ
then apply the exchange rule using xk and go to step 2.
(The ϵ is mainly needed for rounding problems with floating point num-
bers.)

5. Return α, β, λ.

Figure 24.8: Algorithm for best linear approximation under l∞

This time, we measure the deviation by applying lq. That is, we want to find a
coefficients aj such that the function

f̂(x) =
n∑

j=1

ajΦj(x)

minimizes

max
i=1,...,m

max

{
yi

f̂(xi)
,
f̂(xi)

yi

}
.

Let a⃗ and b⃗ be two vectors in Rn with bi > 0. Then, we define a⃗/⃗b = a⃗

b⃗
=

(a1/b1, . . . , an/bn)
tT .

Let A ∈ Rm×n be a matrix, where m > n and b⃗ = (b1, . . . , bm)tT be a vector
in Rm with bi > 0. Then we can state the problem as

find a⃗ ∈ Rn that minimizes ||Aa⃗/⃗b||Q (24.21)

under the constraint that αt
iT > 0, 1 ≤ i ≤ m, for all row vectors αi of A.

Alternatively, we can modify A by “dividing’ it by b⃗. We need some nota-
tions to do so. Let b⃗ = (b1, . . . , bm)tT be a vector in Rm. Define diag(⃗b) to be the
m×m diagonal matrix which contains the bi in its diagonal and is zero outside
the diagonal. For vectors b⃗ with bi > 0, we can define b⃗−1 = (1/b1, . . . , 1/bm)tT .

Using these notations, we can define

A′ = diag(⃗b−1)A

In the special case of univariate polynomial approximation with f̂(x) = a1 +

470 CHAPTER 24. CARDINALITY AND COST ESTIMATION

a2x+ . . .+ anx
n−1 the matrix A′ has the form

A′ =

1/y1 x1/y1 . . . xn−11 /y1
1/y2 x2/y2 . . . xn−12 /y2
...

... . . .
...

1/ym xm/ym . . . xn−1m /ym

 . (24.22)

Keeping the trick with A′ in mind, it is easy to see that Problem 24.21 can
be solved, if we can solve the general problem

finda⃗ ∈ Rnthat minimizes||Aa⃗||Q. (24.23)

The following proposition ensures that a solution to this general problem exists.
Further, since ||Aa⃗||Q is convex, the minimum is a global one.

Proposition 24.5.1 Let A ∈ Rm,n such that R(A) ∩ Rm
>0 ̸= ∅. Then ||A · ||Q

attains its minimum.

Recall that lq is subadditive and convex. Further it is lower semi-continuous
(see also [732, p. 52]). However, it is not strictly convex. Hence, as with l∞, we
expect uniqueness to hold only under certain conditions.

We need some more notation. Let A ∈ Rm,n. We denote by R(A) =
{Aa⃗ | a⃗ ∈ Rn} the range of A and by N (A) = {a⃗ ∈ Rn | Aa⃗ = 0} the nullspace
of A.

Problem (24.23) can be rewritten as the following constrained minimization
problem:

min
(a⃗,q)∈Rn×R

q subject to
1

q
≤ Aa⃗ ≤ q and q ≥ 1. (24.24)

The Lagrangian of (24.24) is given by

L(⃗a, q, λ+, λ−, µ) := q − (λ+)T(q −Aa⃗)− (λ−)T(Aa⃗− 1

q
)− µ(q − 1).

Assume that R(A) ∩ Rm
>0 ̸= ∅. Then the set {(⃗a, q) : 1

q ≤ Aa⃗ ≤ q and q ≥
1} is non-empty and closed and there exists (⃗a, q) for which we have strong
inequality in all conditions. Then the following Karush-Kuhn-Tucker conditions
are necessary and sufficient for (ˆ⃗a, q̂) to be a minimizer of (24.24), see, e.g., [825,
p. 62]: there exist λ̂+, λ̂− ∈ Rm

≥0 and µ̂ ≥ 0 such that

∇a⃗L(ˆ⃗a, q̂, λ̂
+, λ̂−, µ̂) = ATλ+ −ATλ− = 0 (24.25)

∂

∂q
L(ˆ⃗a, q̂, λ̂+, λ̂−, µ̂) = 1−

m∑

i=1

λ̂+i −
1

q2

m∑

i=1

λ̂−i − µ = 0 (24.26)

and for i = 1, . . . ,m,

λ̂+i

(
â− (Â⃗a)i

)
= 0, (24.27)

λ̂−i

(
(Â⃗a)i −

1

q̂

)
= 0, (24.28)

µ̂(q̂ − 1) = 0.

24.5. APPROXIMATION WITH LINEAR MODELS 471

Assume that 1m ̸∈ R(A), where 1m is the vector with all components 1. Then
q̂ > 1 and consequently µ̂ = 0. Furthermore, it is clear that not both λ̂+i and

λ̂−i can be positive because the conditions q̂ = (Aˆ⃗a)i and
1
q̂ = (Aˆ⃗a)i cannot be

fulfilled at the same time, since q̂ > 1.

Setting λ̂ := λ̂+ − λ̂−, we can summarize our findings (24.25) - (24.28) in
the following theorem.

Theorem 24.5.35 Let A ∈ Rm,n such that R(A) ∩ Rm
>0 ̸= ∅ and 1m ̸∈ R(A).

Then (̂⃗a, q̂) solves (24.24) if and only if there exists λ̂ ∈ Rm such that

i) ATλ̂ = 0.

ii) q = q
∑
λ̂i>0

λ̂i +
1
q

∑
λ̂i<0

λ̂i.

iii) λ̂i = 0 if 1
q̂ < (Â⃗a)i < q.

iv) if λ̂i > 0 then (Â⃗a)i = q̂ and if λ̂i < 0 then (Â⃗a)i = 1/q̂.

Remark. We see that 1 < q̂ = (Aˆ⃗a)i implies sign
(
(Aˆ⃗a)i − 1

)
= 1 and that

1 > 1/q̂ = (Aˆ⃗a)i implies sign
(
(Aˆ⃗a)i − 1

)
= −1; whence λ̂i

(
(Aˆ⃗a)i − 1

)
≥ 0.

For our approximation problem (24.21) this means that the residuum f̂(xi)−bi
fulfills λ̂i (f̂(xi)− bi) ≥ 0.

Under certain conditions, problem (24.23) has a unique solution which can
be simply characterized. Let us start with some straightforward considerations
in this direction. IfN (A) ̸= {⃗0}, then we have for any minimizer ˆ⃗a of ||A·||Q that
ˆ⃗a+β, β ∈ N (A) is also a minimizer. In particular, we have that N (A) ̸= {⃗0} if

• m < n,

• m ≥ n and A is not of full range, i.e., rank(A) < n.

In these cases, we cannot have a unique minimizer. Note further, that if 1m ∈
R(A), then the minimum of ||A · ||Q is 1 and the set of minimizers is given by

A+1m +N (A),

where A+ denotes the Moore-Penrose inverse of A. Of course, this can easily
be checked using the methods of Sec. 24.5.3.

In the following, we restrict our attention to the case m > n and rank(A) =
n.

The following proposition considers (n+ 1, n)–matrices.

Proposition 24.5.2 Let A ∈ Rn+1,n such that R(A) ∩ Rn+1
>0 ̸= ∅, 1m ̸∈ R(A)

and rank(A) = n. Then ||A · ||Q has a unique minimizer if and only if the

Lagrange multipliers λ̂i, i = 1, . . . , n+ 1 are not zero.

472 CHAPTER 24. CARDINALITY AND COST ESTIMATION

By spark(A) we denote the smallest number of rows of A which are linearly
dependent. In other words, any spark(A)−1 rows of A are linearly independent.
For the ’spark’ notation we also refer to [27].

Examples. 1. We obtain for the matrix

A :=

1 0 0
0 1 0
0 0 1
1 0 1

 , rg(A) = 3, spark(A) = 3.

2. The matrix (m,n)–matrix A in (24.22) is the product of the diagonal ma-
trix diag (1/bi)

m
i=1 with positive diagonal entries and a Vandermonde matrix.

Hence, it can easily be seen that spark(A) = n+ 1. If an (m,n)–matrix A has
spark(A) = n+ 1, then A fulfills the Haar condition.

Proposition 24.5.2 can be reformulated as follows:

Corollary 24.5.36 Let A ∈ Rn+1,n such that R(A)∩Rn+1
>0 ̸= ∅ and 1m ̸∈ R(A)

. Then ||A · ||Q has a unique minimizer if and only if spark(A) = n+ 1.

The result can be generalized by the following theorem.

Theorem 24.5.37 Let A ∈ Rm,n such that R(A) ∩ Rm
>0 ̸= ∅. Suppose that

spark(A) = n + 1. Then ||A · ||Q has a unique minimizer which is determined
by n+ 1 rows of A, i.e., there exists an index set J ⊂ {1, . . . ,m} of cardinality
|J | = n + 1 such that ||A · ||Q and ||A|J · ||Q have the same minimum and the
same minimizer. Here A|J denotes the restriction of A to the rows which are
contained in the index set J . We call such index set J an extremal set.

Of course the condition spark(A) = n + 1 is not necessary for ||A · ||Q to
have a unique minimizer as the following example shows.

Example. The matrices

A :=

1 0
0 1
−1 1

2
−4 2

 , and A :=

1 0
0 1
−4 4
−1 1

have both spark(A) = 2. By some following considerations, we obtain for
both problems that the minimum of ||A · ||Q is q̂ = 2. However, in the first

problem the minimizer is uniquely determined by ˆ⃗a = (12 , 2)
T while the whole

line c(12 , 1)
T + (1 − c)(32 , 2)T, c ∈ [0, 1] minimizes the functional in the second

case. For (12 , 1)
T we have sign(λ̂1, λ̂2, λ̂3, λ̂3) = (−1, 0, 1,−1) while the pattern is

(0, 1, 1,−1) for (32 , 2)T and (0, 0, 1,−1) within the line bounded by these points.
By Theorem 24.5.37, a method for finding the minimizer of ||A · ||Q would

be to compute the unique minimizers of the
(

m
n+1

)
subproblems ||A|J · ||Q for

all index sets J of cardinality n + 1 and to take the largest minimum â and
the correspondingˆ⃗a as minimizer of the original problem. For our line problem
there exist

(
m
3

)
= O(m3) of these subproblems. In the following section, we

give another algorithm which is also based on Theorem 24.5.37, but ensures

24.5. APPROXIMATION WITH LINEAR MODELS 473

that the value a enlarges for each new choice of the subset J . Since there is
only a finite number of such subsets we must reach a stage where no further
increase is possible and J is an extremal set. In normed spaces such methods
are known as ascent methods, see [914].

In this section, we suggest a detailed algorithm for minimizing ||A·||Q, where
we restrict our attention to the line problem

max
i=1,...,m

max

{
bi

β + αxi
,
β + αxi

bi

}
. (24.29)

i.e., to the matrix A in (24.22) with n = 2.

Corollary 24.5.38 Let (xi, bi), i = 1, 2, 3 be given points with pairwise distinct
xi ∈ R and positive bi, i = 1, 2, 3. Then the minimum q̂ and the minimizer
ˆ⃗a ∈ R2 of (24.29) are given by q̂ = ||q̂1||Q and

(
β̂
α̂

)
=

1

x2 − x1

(
x2 −x1
−1 1

)(
b1 q̂1
b2 q̂2

)
,

where

q̂1 :=

√
r2

1−r1 if r1 < 0 and r2 > 0,
√

1−r2
r1

if r1 > 0 and r2 < 0,√
1

r1+r2
if r1 > 0 and r2 > 0,

(24.30)

q̂2 :=

{
1/q̂1 if r1

r2
< 0,

x̂1 if r1
r2
> 0

and

r1 :=
b1(x2 − x3)
b3(x2 − x1)

, r2 :=
b2(x3 − x1)
b3(x2 − x1)

.

Remark. If the points are ordered, i.e., x1 < x2 < x3 (or alternatively in
descending order), then either Aˆ⃗a = (q̂, 1/q̂, q̂)T or Aˆ⃗a = (1/q̂, q̂, 1/q̂)T. This
means that λ̂ in Theorem 24.5.35 has alternating signs. In other words, the
points f(x1), f(x3) lie above b1, b3 and f(x2) lies below b2 or conversely.

Later we will show that the alternating sign condition is true for general
best polynomial approximation with respect to the Q-paranorm.

Corollary 24.5.38 is the basis of the Algorithm 24.9, which finds the optimal
line with respect to three points in each step and chooses the next three points
if the minimum corresponding to their line becomes larger.

Proposition 24.5.3 The algorithm computes the line f(x) = β̂ + α̂x which
minimizes (24.29).

Remark. Alternatively, one can deal with ordered points b1 < b2 < b3
which restricts the effort in (24.30) to q̂1 = r2

1−r1 but requires an ascending
ordering of the points xi1 , xi2 , xj in each step of the algorithm.

Finally, we want to generalize the remark on the signs of the Lagrange
multipliers given after Corollary 24.5.38. Remember that the set of polynomials
Φi(x) = xi−1, i = 1, . . . , n forms a Chebyshev set (see Def. 24.5.31). Applying
again Lemma 24.5.34, one can easily prove the following result.

474 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Algorithm. (Best line approximation with respect to lq)
Input: (xi, bi), i = 1, . . . ,m of pairwise distinct points xi ∈ R and bi > 0
Set i1 := 1, i2 := 2 and stopsignal := −1.
While stopsignal = −1 do

1. For i = 1, . . . ,m; i ̸= i1, i2 compute

r1,i :=
bi1(xi2 − xi)
bi(xi2 − xi1)

, r2,i :=
bi2(xi − xi1)
bi(xi2 − xi1)

.

2. Compute âj = max
i
{||x̂1(r1,i, r2,i)||Q} by (24.30). Let j ̸= i1, i2 be an

index where the maximum is attained and x̂1 = x̂1(r1,j , r2,j).

3. Compute a := max
i
{||r1,ix̂1 + r2,ix̂2||Q}.

Let k be an index, where the maximum is attained.

4. If a ≤ âj then stopsignal = 1 and â = âj ,

(
β̂
α̂

)
=

1

xi2 − xi1

(
xi2 −xi1
−1 1

)(
bi1 q̂1
bi2/q̂1

)
,

otherwise set i1 := j and i2 := k and return to 1.

Figure 24.9: Algorithm finding best linear approximation under lq.

Theorem 24.5.39 Let Φi : I → R, i = 1, . . . , n be a Chebyshev set and let
x1 < . . . < xn+1 be points in I. Then, for

Φ := (Φj(xi))
n+1,n
i,j=1 ,

the Lagrange multipliers λ̂i, i = 1, . . . , n+ 1 corresponding to the minimizer of
||Φ · ||Q have alternating signs.

For our polynomial approximation problem argmina⃗∈Rn ||Aa⃗||Q with A ∈
Rn+1,n defined by (24.22) and ordered points x1 < . . . < xn+1 we see that
A = diag(1/bi)

n+1
i=1 Φ, where Φ is the matrix belonging to the Chebyshev set

Φi(x) = xi−1. Since the bi are positive, we obtain immediately that the La-
grange multipliers λ̂i have alternating signs. Again, this means that f̂(xi)− bi
has alternating signs.

Using Theorem 24.5.39, we not only simplify Algorithm 24.9 but also use
Algorithm 24.8 even for approximation by arbitrary Chebyshev sets of size
n > 2. We only have to provide a routine which solves the following system of
equations:EXC

24.5. APPROXIMATION WITH LINEAR MODELS 475

a1,1x1 + a1,2x2 + a1,nxn = λ+1

a2,1x2 + a2,2x2 + a2,nxn = λ−1

.

an+1,1x2 + an+1,2x2 + an+1,nxn = λ(−1)
n

Let us illustrate this for n = 2. In this case, we can write

1

λ
(α+ βx1) = y1

λ(α+ βx2) = y2
1

λ
(α+ βx3) = y3

If we number the above equations from 1 to 3, then we may conclude that

3 =⇒ α = λy3 − βx3 (∗)
1, (∗) =⇒ λy3 − βx3 + βx1 = λy1
=⇒ (y3 − y1)λ = (x3 − x1)β
=⇒ λ = x3−x1

y3−y1 β (∗∗)
=⇒ λ = q13β (∗∗)
2, (∗), (∗∗) =⇒ q13β(q13y3β − βx3 + βx2) = y2
=⇒ β2(q13y3 − x3 + x2) = y2q

−1
13

=⇒ β =
√
g−1y2q

−1
13

where

q13 :=
x3 − x1
y3 − y1

g := q13y3 − x3 + x2

Caution is necessary, if β = 0. Then:

β = 0

α = λy1

λ =
√
y2/y1

24.5.6 Non-Linear Models under lq

In general there is a lot to say about this subject and we refer the reader to the
literature. However, let us consider two simple problems, which we can solve
using algorithms we already know:

1. Find the best approximation using ep(x) under lq, and

2. find the best approximation using ln(p(x)) under l∞,

where p(x) is a linear combination of a set of Chebyshev functions.

476 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Let us start with the first problem. That is, we ask for an exponential
function

f̂ = e
∑n

j=1 αjΦj

which best approximates under lq a given set of points (xi, yi), i = 1, . . . ,m

with pairwise distinct xi ∈ Rd and yi > 0, 1 ≤ i ≤ m. Note that f̂ > 0 by
definition. Since the ln function increases strictly monotone this is equivalent
to minimizing

ln

(
max

i=1,...,m
max

{
yi

f̂(xi)
,
f̂(xi)

yi

})
= max

i=1,...,m
max{ln yi − ln f̂(xi), ln f̂(xi)− ln yi}

= max
i=1,...,m

| ln yi −
n∑

j=1

αj Φj(xi)|

= ∥(ln yi)mi=1 − Φα∥∞.

Thus, it remains to find the best function
∑n

j=1 αj Φj(xi) with respect to the
l∞ norm.

It is now easy to see that we can solve the second problem as follows.
Let (xi, yi) be the data we want to approximate by a function of the formEXC
ln(p(x)) while minimizing the Chebyshev norm. We can do so by finding the
best approximation of (xi, e

yi) under lq.

24.5.7 Multidimensional Models under lq

In this section, we show that it is possible to find the best approximation under
lq in the multidimensional setting. The idea is to reduce the problem to second
order cone programming (SOCP).

In general, SOCP can be used to solve problems of the form

min
x∈Rs
⟨c, x⟩ subject to Mx+ b ∈ K

where c ∈ Rs, b ∈ Rt, M ∈ Rt,s, and K is a convex cone in Rt. For details
on SOCP, we refer to [564]. For us, it is important that software packages like
MOSEK solve SOCP problems quite efficiently.

We now show how our problem can be reduced to SOCP. Thereby, we follow
the approach of Setzer et al. [792]. Assume our set of d-dimensional points is
X = {x1, . . . , xm} ⊂ Rd. For each point xi, we have a measurement (e.g., its
frequency) fi > 0. Further, we want to find a linear model in functions Φj ,
1 ≤ j ≤ n. Then, the model can be represented by a matrix A := (Φj/fi)

m,n
i,j=1.

We assume that n < m and that A has full rank. The problem to find a best
approximation under lq can then be formulated as

α̂ = argminα∈Rn ||Aα||Q (24.31)

This is equivalent to the constraint problem

min
u∈Rm,α∈Rn

||u||Q subject to Aα = u

24.6. TRADITIONAL HISTOGRAMS 477

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10
 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18

Figure 24.10: Sample data sets

which in turn can be rewritten as

min
a∈R,u∈Rm,α∈Rn

a subject to Aα = u, 1 ≤ a, 1/a ≤ u ≤ a (24.32)

The first two constraints and u ≤ a are already cone constraints. The remaining
constraints 1 ≤ aui can be rewritten to

√
2 0

0
√
2

1 1
1 1

(
ui
a

)
+

0
0√
2

−
√
2

 ∈ L

4
r

because the following inequalities are equivalent:

(
√
2ui)

2 + (
√
2a)2 ≤ 2(ui + a+

√
2)(ui + a−

√
2)

u2i + a2 ≤ (ui + a)2 − 2

1 ≤ uia

An alternative formulation of the last constraint can be found in [792].

24.6 Traditional Histograms

In the simple profile of Section 24.3, we approximated the frequency density of
the whole domain by two numbers, the cumulated frequency fA and the number
of distinct values dA. The idea behind histograms is that a piecewise approx-
imation of the active domain may result in better estimates. Therefore, the

478 CHAPTER 24. CARDINALITY AND COST ESTIMATION

active domain [lA, uA] is partitioned into subsets called buckets. Traditionally,
for each bucket Bi, the cumulated frequency f+i of the values falling within the
bucket as well as the number of distinct values d+i of A within the bucket is
stored. A histogram then consists of a sequence of buckets.

24.6.1 Bucketization

Assume we wish to partition the active domainDA (= ΠA(R)) of some attribute
A of some relation R into β buckets Bi (1 ≤ i ≤ β). Then, each bucket contains
a subset of values of the universe of A. That is Bi ⊆ [lA, uA]. Not any subset is
used in practice. Since it is too memory consuming to store the values in each
bucket explicitly, buckets always comprise subintervals of the active domain.
Further, these are typically non-overlapping. That is Bi ∩Bj = ∅ for i ̸= j.

Such a partitioning of the active domain can be achieved in two steps. In
a first step, we fix a set of bucket boundaries bi ∈ [lA, ua] such that lA = b0 ≤
b1 ≤ . . . ≤ bα = uA. In order to decrease the search space, the bi are typically
chosen from the active domain, that is bi ∈ DA.

In a second step, we use these values as bucket boundaries to determine the
buckets. Here, there are several alternatives. Let us first consider the case of
an integer-valued attribute A. If we use closed intervals for buckets, we can
define a bucket as comprising the values in [bi−1 + 1, bi]. Note that [bi, bi+1]
does not work, since it overlaps with [bi+1, bi+2]. We could also build a bucket
[bi−1, bi− 1]. But with proper choices of the bi, these two are equivalent. A not
equivalent alternative is to use half-open intervals. In this case, we can define
a bucket as [bi, bi+1[.

Another issue is whether the buckets completely cover the active domain,
that is whether

⋃β
i=1Bi = [lA, uA] holds or not. In the latter case, we can define

buckets comprising closed intervals as [bi, bi+1] if we do not define buckets for
[bi−1, bi] and [bi+1, bi+2]. Thus, our histogram (the set of buckets we define)
contains holes. This is typically only the case if no value from DA falls into the
hole.

Summarizing, we have the following three alternatives for attribut with a
discrete, ordered domain:

1. closed-interval histogram without holes

2. closed-interval histogram with holes

3. half-open interval histogram without holes

Note that independent of the kind of histogram constructed, all the values bi
must be stored.

The literature is sparse on investigations of whether holes are good or not.
Most papers don’t even specify which kind of histogram they are talking about.
As an exception, Wang and Sevcik consider 1) and 2) [906]. They propose
to treat these two possibilities as alternatives during the construction of the
histogram.

For a contineous domain, e.g. floating point numbers, alternative 1) is not
(easily) possible. Thus, in this case, we can only choose between 2) and 3).

24.6. TRADITIONAL HISTOGRAMS 479

If most range queries use close ranges, 1) and 2) should be the preferred
options. To see this, note that we must add or subtract the frequencies of the
boundaries to convert a half-open or open inveral into a closed interval or vice
versa. Further, even if we have a good approximation of the exact frequencies
of single values, we still face the problem of values not occurring in the active
domain if it is not dense. Nonetheless, the subsequent discussion applies with
minor modifications to all three alternatives.

24.6.2 Heuristics to Determine Bucket Boundaries

In the sequel, we discuss some heuristics to determine the bucket boundaries.
All these algorithms have a parameter β for the number of buckets to construct.
Subsequently, we assume that we are given a set d of value/frequency pairs
X = {(xi, fi)|1 ≤ i ≤ d}. We assume that the xi are sorted in increasing order,
i.e., xi < xi+1 for 1 ≤ i < d. By F+ or n , we denote the cumulated frequency
F+ = n =

∑d
i=0 fI . The bucket boundaries will be denoted by b0, . . . , bβ, where

b0 = x0 and bβ = xd. Of course, we assume that b << d.

Equi-Width Histograms

Kooi was the first to propose histograms for selectivity estimation [512]. The
first type of histograms he proposed were equi-width histograms. In an equi-
width histogram, the bucket boundaries are determined by

bi = x0 + iδ

where δ = (xd − x0)/β.

Equi-Width Histograms

Kooi [512] also proposed the alternative of equi-width histograms [512]. There,
all buckets have about the same cumulated frequency. This can be achieved
by a single scan through X and starting a new bucket as soon as the current
bucket’s cumulated frequency exceeds F+/β.

Another interesting approach to equi-width histograms has been described
by Piatetsky-Shapiro and Connell [688]. There, buckets can overlap. The con-
struction is quite simple, though expensive. First, from X we construct a bag Y
of cardinality n such that each value xi occurs exactly fi times in Y . Then, Y is
sorted by increasing values. A parameter S is used to determine the number of
values to be stored. S determines the distance in the sorted vector Y between
two stored values via N = (n − 1)/S. From the sorted vector we then pick
every value at a position 1 + iN for i = 0, . . . , S. Hence, we store S + 1 values.
If (n − 1)/S is not an integer, the distance between the last two elements can
be smaller.

This approach is called distribution steps, but could also be termed quantiles.
If some values occur very frequently (more often than N times), then they are
stored more than once. Thus, the buckets overlap. Besides the values nothing
else is stored. Piatetsky-Shapiro and Connell then continue to give selectivity
estimation formulars [688], which we do not repeat here.

480 CHAPTER 24. CARDINALITY AND COST ESTIMATION

The Heuristics Zoo

Besides the classic equi-width and equi-depth heuristics to find bucket bound-
aries, a whole zoo of heuristics has been proposed. Fortunately, this zoo has
been classified by Poosala, Ioannidis, Haas, and Shekita [700].

Before we begin, let us recall some basic definitions. For every xi except the
last one, we define the spread si as si = xi+1−xi and the area ai as ai = fi ∗si.
The motivation behind these definitions is based on the two major problems we
face when approximating a given data distribution X. The problems are

1. largely varying fi and

2. largely varying si.

Any of the xi, fi, si, or ai is a parameter to the heuristics. We denote which
one of these the heuristics should apply by V (value), F (frequency), S (spread),
A (area), respectively.

The first partitioning heuristics is Equi-Sum. It gives rise to Equi-Sum(V),
Equi-Sum(F), Equi-Sum(S), and Equi-Sum(A) and tries to balance the sum of
its parameter such that all buckets exhibit about the same value for the sum.
Thus, Equi-Sum(V) corresponds to equi-width (here, we count the number of xi
falling into a bucket) and Equi-Sum(F) corresponds to equi-depth histograms.

The next bunch of heuristics are max-diff histograms. They come in the
flavors of max-diff(F), max-diff(S), and max-diff(A). They put bucket bounds
between those β − 1 values xi and xi+1 where the β − 1 highest values of the
differences |fi+1 − fi|, |si+1 − si|, |ai+1 − ai| are found.

End-biased histograms store those values together with their frequencies
that exhibit the β1 lowest and β2 highest frequencies with β = β1 + β2. The
remaining values are put into a single bucket. High-biased histograms only
store the β highest values and use a single histogram for the remaining values.
Compressed histograms additional use a regular histogram (e.g. equi-depth) to
approximate the frequency distribution of the remaining values.

Note that none of these histograms comes with a guarantee regarding the
maximal possible q-error for range queries. Histograms that exhibit this prop-
erty will be discussed in Sec. ??. But before that, we need to prepare ourselves
a little more.

24.7 More on Q

24.7.1 Properties of the Q-Error

Definition of the Q-Error

Let f ≥ 0 be a number and f̂ ≥ 0 be an estimate for f . Then, we define the
q-error of f̂ as

||f̂/f ||Q,
where ||x||Q := max(x, 1/x).

If for some value q ≥ 1 ||f̂/f ||Q ≤ q, we say that the estimate is q-acceptable.

24.7. MORE ON Q 481

Let R be a relation and A be one of its attributes. Let ΠD
A (R) = {x1, . . . , xd}

with xi ≤ xi+1. Denote by fi the frequency of xi and by f+(c1, c2) :=
∑

c1≤x<c2
fi

the cumulated frequency. Let f̂+(x, y) be an estimation function for f+. Let
q ≥ 1 be some number. We say that f̂+ is q-acceptable, if for all x1 ≤ c1 ≤
c2 ≤ xd the estimate f̂+(c1, c2) is q-acceptable.

Assume we know that
1

a
x ≤ x′ ≤ bx

for some numbers a, b ≥ 1 and x, x′ > 0. Then, it is easy to see that

||x/x′||Q ≤ max(a, b)

holds.

Sums

For 1 ≤ i ≤ n, let fi be true values and f̂i be estimates with ||f̂i/fi||Q ≤ q for
all 1 ≤ i ≤ n. Then

1/q ∗
n∑

i=1

fi ≤
n∑

i=1

f̂i ≤ q ∗
n∑

i=1

fi

holds, i.e.,

||
∑n

i=1 f̂i∑n
i=1 fi

||Q ≤ q.

Products

For 1 ≤ i ≤ n, let fi be true values and f̂i be estimates with ||f̂i/fi||Q ≤ qi for
all 1 ≤ i ≤ n. Then

n∏

i=1

(1/qi) ∗
n∏

i=1

fi ≤
n∏

i=1

f̂i ≤
n∏

i=1

qi ∗
n∏

i=1

fi

holds, i.e.,

||
∏n

i=1 f̂i∏n
i=1 fi

||Q ≤
n∏

i=1

qi.

Note that division behaves like multiplication.

Differences

Assume we are given a total value t > 0, which is the sum of a large values
l > 0 and a small value s > 0. Thus, t = l + s and s ≤ l. The latter implies
that s ≤ t/2 ≤ l.

If we know t and an estimate l̂ of l, we can get an estimate ŝ = t− l̂. This
kind of estimation is not a good idea, as we see from the following example.
Assume that t = 100, l = 90, s = 10, and l̂ = 99. Although ||l̂/l||Q = 1.1, we

have ŝ = t− l̂ = 1 and, thus, ||ŝ/s||Q = 10.
The situation is different, if we use an estimate ŝ of (the smaller) s to derive

an estimate l̂ for (the larger) l as the following theorem shows.

482 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Theorem 24.7.1 Let t, l, s > 0 be three numbers such that t = l+ s and s ≤ l.
Let ŝ be an estimate for s with ||ŝ/s||Q ≤ q for some q ≥ 1. Define the estimate

l̂ for l as l̂ = max(t/2, t− ŝ). Then ||l̂/l||Q ≤ min(2, q).

Proof: First, observe that if q = 1 the theorem trivially holds. Sec-
ond, observe that ||l̂/l||Q ≤ 2 always holds. Thus, if for some q we have

q = ||ŝ/s||Q >= 2 then ||l̂/l||Q ≤ q. Finally, we have to show that ||l̂/l||Q ≤ q
for 1 < q < 2.

Due to t = l + s and s ≤ l, we have

t/2 ≤ l = t− s (*),

and, thus t ≤ 2(t− s).
Further remember our assumption 2 > q = ||ŝ/s||Q. According to the

definition of l̂, we have to distinguish two cases.

Case 1: Assume t− ŝ < t/2. Then

t− ŝ < t/2

ŝ > t− t

2

qs > t− t

2

qs >
t

2

2q >
t

s
1

2q
<

s

t
(**)

Thus,

|| l̂
l
||Q = || t/2

l
||Q

= || t

2(t− s) ||Q

=∗
2(t− s)

t

= 2(1− s

t
)

≤∗∗ 2(1− 1

2q
)

= 2− 1

q
≤ q

To see why the last inequality holds, we first observe that 2 − 1
q is strongly

increasing in q. Further, remember that 1 ≤ q always holds and observe that
(1) q − (2 − 1

q) is strongly decreasing in q and (b) it attains its minimum in

24.7. MORE ON Q 483

the interval [1, 2] at q = 1, for which q − (2− 1
q) = 1− (2− 1

1) = 0. Thus, the

difference q− (2− 1
q) is always greater or equal to zero. This fact together with

q − (2− 1

q
) ≥ 0

q ≥ 2− 1

q

finishes Case 1.

Case 2: We have to show that

(1/q)l ≤ t− ŝ ≤ ql

under the assumptions that t/2 ≤ t− ŝ and 1 < q < 2.

We start by showing t− ŝ ≤ ql.

t− ŝ ≤ ql
≺≻ t− ŝ ≤ q(t− s)
≺ t− 1

q s ≤ q(t− s)
≺≻ t− 1

q s ≤ qt− qs
≺≻ qs− 1

q s ≤ qt− t
≺≻ (q − 1

q)s ≤ (q − 1)t

≺≻ (q− 1
q
)

(q−1) ≤ t
s

We now observe that

(q − 1
q)

(q − 1)
=

q − 1 + 1− 1
q

q − 1

= 1 +
1− 1

q

q − 1
≤ 2

≤ t

s

To see that
1− 1

q

q−1 ≤ 1 consider

1− 1
q

q−1 ≤ 1

≺≻ 1− 1
q ≤ q − 1

≺≻ 2 ≤ q + 1
q

The function f(x) = x + 1/x is monotonically increasing on x ∈ [1, 2], our
interval of interest. Thus, since 1 + 1/1 = 2, the claim follows.

We now show that (1/q)l ≤ t − ŝ under the assumptions that t/2 ≤ t − ŝ
and 1 < q < 2. If (1/q)(t− s) ≤ t/2 then (1/q)(t− s) ≤ t/2 ≤ t− ŝ and we are
done. Thus, assume t/2 ≤ (1/q)(t− s).

484 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Consider
(1/q)l ≤ t− ŝ

≺≻ 1/q(t− s) ≤ t− ŝ
≺ 1/q(t− s) ≤ t− qs
≺≻ 1

q t− 1
q s ≤ t− qs

≺≻ qs− 1
q s ≤ t− 1

q t

≺≻ (q − 1
q)s ≤ (1− 1

q)t

≺≻ q− 1
q

1− 1
q

≤ t
s (*)

Observe that

q − 1
q

1− 1
q

=
q2 − 1

q − 1

=
(q + 1)(q − 1)

q − 1

= q + 1 (**)

Summarizing (*) and (**), it suffices to show

q + 1 ≤ t

s
.

From our assumption t/2 ≤ 1
q (t− s), we can derive

t/2 ≤ 1
q (t− s)

≺≻ qt ≤ 2t− 2s
≺≻ q ≤ 2 t−s

t
≺≻ q ≤ 2(1− s

t)
≺≻ q ≤ 2− 2 s

t
≺≻ q + 1 ≤ 3− 2 s

t

Now, it suffices to show that

3− 2
s

t
≤ t

s
.

The following inequalities are equivalent:

3− 2
s

t
≤ t

s
3ts− 2s2 ≤ t2

0 ≤ t2 − 3ts+ 2s2

0 ≤ t2 − 2ts+ s2 − ts+ s2

0 ≤ (t− s)2 − s(t− s)
0 ≤ (t− s)− s
0 ≤ t− 2s

Since the latter holds, we are done with the case t/2 ≤ 1
q (t− s) and, thus, with

Case 2.
2

24.7. MORE ON Q 485

Theorem 24.7.2 Let t, l, s > 0 be three numbers such that t = l+ s and s ≤ l.
Let t̂ be an estimate for t with ||t̂/t||Q ≤ q for some q ≥ 1. Define the estimate

l̂ for l as l̂ = max(t̂/2, t− s). Then ||l̂/l||Q ≤ 2q.

Proof
Case 1. l̂ = t̂/2. Define

q∗ := || l̂
l
||Q = || t̂/2

t− s ||Q.

Case 1.1 t̂/2 ≥ t− s. Then

q∗ =
t̂/2

t− s

≤ t̂/2

t/2

≤ q

Case 1.2 t− s ≥ t̂/2. Then

q∗ =
t− s
t̂/2

≤ t

t̂/2

≤ 2q

Case 2. l̂ = t̂− s, t̂− s ≥ t̂/2. Define

q∗ := || l̂
l
||Q = || t̂− s

t− s ||Q.

Case 2.1 t̂− s ≥ t− s. Then

q∗ =
t̂− s
t− s

≤ t̂− t/2
t− t/2

≤ t̂− t/2
t/2

≤ 2q − 1

Case 2.2 t− s ≥ t̂− s. Then

q∗ =
t− s
t̂− s

≤ t− s
t̂/2

≤ t

t̂/2

≤ 2q

486 CHAPTER 24. CARDINALITY AND COST ESTIMATION

2

Note that if we make sure that we overestimate t, i.e., t̂ ≥ t, then only Case
2.1 applies and t̂ is quite precise.

Theorem 24.7.3 Let t, l, s > 0 be three numbers such that t = l+ s and s ≤ l.
Let t̂ be an estimate for t with ||t̂/t||Q ≤ qt for some qt ≥ 1. Let ŝ be an

estimate for s with ||ŝ/s||Q ≤ qs for some qs ≥ 1. Define l̂ := max(t̂/2, t̂ − ŝ).
Additionally, assume that (1/qt)− qss > 0. Then, ||l̂/l||Q ≤ max(2qt, q

2
t qs).

ProofToDo

Case 1. Consider the case where t̂/2 > t̂ − ŝ and, thus, l̂ = t̂/2. The first
condition implies that ŝ > t̂/2. Also, by our preconditions, t/2 ≤ t− s. Define

q∗ := || l̂
l
||Q = || t̂/2

t− s ||Q.

Case 1.1 Assume l̂ ≥ l. Then

q∗ =
t̂/2

t− s
≤ qtt/2

t/2

≤ qt

Case 1.2 Assume l̂ < l. Then

q∗ =
t− s
t̂/2

=
t− s

1/qtt/2

= qt
t− s
t/2

≤ 2qt

Case 2. Consider the case where t̂/2 ≤ t̂− ŝ and, thus, l̂ = t̂− ŝ. Define

q∗ := || l̂
l
||Q = || t̂− ŝ

t− s ||Q.

Case 2.1 Assume l̂ ≥ l. Then

q∗ =
t̂− ŝ
t− s

≤ qt
t

t− s −
1

qs

s

t− s
≤ 2qt −

1

qs

s

t− s
≤ 2qt

24.7. MORE ON Q 487

Also, we have that

q∗ =
t̂− ŝ
t− s

≤ qt
t− (1/qt)ŝ

t− s
≤ qt

t− ŝ
t− s

≤ qtqs

This is not too bad since qt will be close to 1 in our applications.
Also

q∗ =
t̂− ŝ
t− s

≤ t− ŝ+ (qt − 1)t

t− s
≤ qs +

(qt − 1)t

t− s
≤ qs + 2(qt − 1)

This is not too bad since qt will be close to 1 in our applications.
Case 2.2 Assume l̂ < l. Then

q∗ =
t− s
t̂− ŝ

≤ t− s
(1/qt)t− ŝ

≤ qt
t− s
t− qtŝ

≤ q2t qs

This holds if t− qtqss ≥ t/2.
If qtqs < 2 then

q∗ =
t− s
t̂− ŝ

≤ t− s
(1/qt)t− ŝ

≤ t/2

(1/qt)t− qs(t/2)
≤ t

(2/qt)t− qs(t)
≤ 1

(2/qt)− qs
≤ qt

1

2− qtqs

das ist doof.
2

488 CHAPTER 24. CARDINALITY AND COST ESTIMATION

24.7.2 Properties of Estimation Functions

Let R be a relation and A one of its attributes. We assume that ΠD
A (R) =

{x1, . . . , xd}, where d := ΠD
A (R) and xi ≤ xj for all 1 ≤ i ≤ j ≤ d.

We only treat range queries since exact match queries are simpler than range
queries and distinct value queries are similar.

An estimation function f̂+ is called monotonic on [l, u], if and only if for all
l ≤ c1 ≤ c′1 ≤ c′2 ≤ c2 ≤ u

f̂+(c′1, c
′
2) ≤ f̂+(c1, c2)

holds.
An estimation function f̂+ is called additive on [l, u], if and only if for all

l = c1 ≤ . . . ≤ ck = u

f̂+(c1, ck) =
k−1∑

i=1

f̂+(ci, ci+1)

holds. Note that every additive estimation function is monotonic.
Assume we have an additive linear estimation function

f̂+(x, y) = αx+ βy + γ.

Then, we must have for all x, y, z with x ≤ y ≤ z:
αx+ βz + γ = (αx+ βy + γ) + (αy + βz + γ)

≺≻ 0 = αy + βy + γ

This can only be achieved if γ = 0 and α = −β. Thus, every linear and additive
estimation function is of the form

f̂+(x, y) = α(y − x).
We typically wish the bucket’s estimation function to be precise for the

whole bucket. Thus, we demand that

||f̂+(lb, ub)/f+(lb, ub)||Q ≤ q
for some error bound q. With f+ := f+(lb,ub), we have

(1/q)f+ ≤ f̂+(lb,ub) ≤ qf+
(1/q)f+ ≤ α(ub− lb) ≤ qf+

(1/q)
f+

ub− lb
≤ α ≤ q f+

ub− lb

and the above holds if

|| α
f+

ub−lb
||Q = ||α(ub− lb)

f+
||Q ≤ q.

This clearly holds, if we use the usual estimation function

f̂+avg(x, y) =
y − x
ub− lb

f+

but we have the possibility to choose α within certain bounds.

24.7. MORE ON Q 489

24.7.3 θ,q-Acceptability

One problem occurs if the cardinality estimate for some query is f̂ ≥ 1 and the
true cardinality is zero. This happens, since we should never return an estimate
of zero, because this leads to query simplifications which may be wrong or in
reorderings which may not be appropriate. To solve this dilemma, there is
only a single solution: during query optimization time, we execute building
blocks and even access paths until the first tuple has been delivered. From
there on, we know for sure, wether the result will be empty or not. If there
is a tuple delivered, we buffer it, since we want to avoid its recalculation at
runtime. The overhead of this method should therefore be low. Now, assume
that we are willing to buffer more tuples (say 1000). Then, if there are less
than 1000 qualifying tuples, we now the exact answer after fetching them. If we
have to halt the evaluation of the build block since the buffer is full, we know
that there will be ≥ 1000 qualifying tuples. Let us denote by θbuf the number
of tuples we are willing to buffer. Since we interleave query optimization and
query execution, this can be considered a small step in the direction of adaptive
query optimization [232].

However, before we can evaluate a building block or access paths, we have to
determine an optimal one, which in turn requires cardinality estimates! Before
we proceed note that cardinality estimates may be imprecise as long as they do
not influence the decisions of the query optimizer badly. This means, as long
as the query optimizer produces the best plan, any estimate is o.k. Let’s for
example take the decision wether to exploit an index or not. Assume, an index
is better than a scan if less than 10% of the tuples qualify (This is a typical
value [591, 367]). If the relation has 10000 tuples, the threshold is at 1000
tuples. Thus, assume that for a given range query both, the estimate and the
true value do not exceed 500. Then, no matter what the estimate is, we should
use the index. Note that the q-error can be 500 (e.g., the estimate is 1 and the
true value is 500). Still it does not have any bad influence on our decision. The
important thing is that the estimate has to be precise around 1000. For a given
relation and one of its indices, we denote by θidx the number of tuples that, if
exceeded make a table scan more efficient than the index scan.

Let us now combine these two things. Assume we want to have a maximal q-
error of q. Define θ = min(θbuf−1, (1/q)θidx). Assume that f̂ is an estimate for
the true cardinality f . Further assume that if f̂ or f exeeds θ, then ||f̂/f ||Q ≤ q.
Now let’s go through the optimizer. In a first step, we define our building blocks
and access paths, which requires to decide on index usage. Clearly, the estimate
will be precise above (1/q)θidx, which includes the critical part. After evaluating
a building block or access path, we have precise cardinality estimates if fewer
than θbuf tuples are retrieved. Otherwise, our estimate will obey the given
q-error. Thus, we are as precise as necessary under all circumstances.

These simple observations motivate us to introduce the notion of θ, q-acceptability.
Let f ≥ 0 be a number and f̂ ≥ 0 be an estimate for f . Let q ≥ 1 and θ ≥ 1
be numbers. We say that f̂ is θ, q-acceptable if

1. f ≤ θ ∧ f̂ ≤ θ or

490 CHAPTER 24. CARDINALITY AND COST ESTIMATION

2. ||f̂/f ||Q ≤ q.

Let R be a relation and A be one of its attributes. Let ΠD
A (R) = {x1, . . . , xd}

with xi ≤ xi+1. Denote by fi the frequency of xi and by f+(c1, c2) :=
∑

c1≤x<c2
fi

the cumulated frequency. Let f̂+(x, y) be an estimation function for f+. We
say that f̂+ is θ, q-acceptable, if for all x1 ≤ c1 ≤ c2 ≤ xd the estimate f̂+(c1, c2)
is θ, q-acceptable.

Another way to look at θ is that it is a ’Bagatellgrenze’. If the cardinality is
below it, we do not really care how large it really is. The reason is that query
execution will be fast anyway, even if we pick the wrong plan.

24.7.4 Testing θ,q-Acceptability for Buckets

Let R be a relation and A one of its attributes. We assume that ΠD
A (R) =

{x1, . . . , xd}, where d := ΠD
A (R) and xi ≤ xj for all 1 ≤ i ≤ j ≤ d.

We only treat range queries since exact match queries are simpler than range
queries and distinct value queries are similar.

We assume left-open bucket boundaries and range queries of the form [a, b[.

Discretization

Testing θ,q-acceptability for a given bucket for a continous domain directly is
impossible since it would involve testing θ,q-acceptability of f̂+(c1, c2) for all
c1, c2 within the bucket. In this section, we show that a test quadratic in the
number of distinct values in the bucket suffices.

Let c1, c2 be a query interval. Assume i, j are chosen such that [xi, xj] ⊆
[c1, c2] ⊂ [xi−1, xj+1]. Since there is no distinct value between xi and xi−1 and
between xj and xj+1, we have that f+(c1, c2) = f+(xi, xj) < f+(xi−1, xj+1).
Assume the following conditions hold:

1. f̂+ is monotonic.

2. || f̂
+(xi,xj)

f+(c1,c2)
||Q ≤ q

3. || f̂
+(xi−1,xj+1)
f+(c1,c2)

||Q ≤ q

Since f̂+(xi, xj) = f̂+(c1, c2) ≤ f̂+(xi−1, xj+1), we then have || f̂+(c1,c2)
f+(c1,c2)

||Q ≤ q.
Exploiting this fact, we can develop the following quadratic test for some

given θ and q. If for all i, j such that xi and xj are in the bucket we have that

f̂+(xi−1, xj+1) ≤ θ ∧ f+(xi−1, xj+1) ≤ θ

or

|| f̂
+(xi, xj)

f+(xi, xj)
||Q ≤ q ∧ ||

f̂+(xi−1, xj+1)

f+(xi, xj)
||Q ≤ q

then the bucket is θ,q-acceptable.

24.7. MORE ON Q 491

Subtests

Still, after discretization, the number of tests is quadratic in the number of
distinct values contained in a bucket. We can restrict this even further for
monotonic and additive estimators f̂+. For a given, fixed θ and for any i
(1 ≤ i < d), we define i′ to be the index such that

1. f+(xi, xi′) ≤ θ

2. f̂+(xi, xi′) ≤ θ

3. f+(xi, xi′+1) > θ or f̂+(xi, xi′+1) > θ

This index i′ can be found by binary search.

For a given L, assume that for all l with 1 ≤ l ≤ L

• ||f̂+(xi, xi′+l)/f
+(xi, xi′+l)||Q ≤ q

and

• f+(xi, xi′+L) ≥ kθ and

• f̂+(xi, xi′+L) ≥ kθ.

That is, we stop after L tests.

Then, we will show that the bucket is θ, (q + 1
k)-acceptable.

Consider the range query [xi, xj [. If f̂
+(xi, xj) ≤ kθ, then it is θ, q-acceptable

for f+(xi, xj).

Otherwise, we can find i1, . . . , im such that

• xi = xi1 and

• xj = xim .

Also, we can achieve that (a)

• ∀ij < m− 1 f+(xij , xij+1) ≥ kθ and

• f+(xim−1 , xim) < θ

or (b)

• ∀ij < m− 1 f̂+(xij , xij+1) ≥ kθ.

• f̂+(xim−1 , xim) < θ.

In the worst case, we have m = 3.

492 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Case 1. f+(xi, xj) ≤ f̂+(xi, xj) imples

|| f̂
+(xi, xj)

f+(xi, xj)
||Q =

f̂+(xi, xj)

f+(xi, xj)

=
f̂+(xi1 , xil−1

) + f̂+(xil,xj

f+(xi1 , xil−1
) + f+(xil−1

, xil)

≤ qf+(xi1 , xil−1
) + θ

f+(xi1 , xil−1
) + 1

≤ qf+(xi1 , xil−1
) + θ

f+(xi1 , xil−1
)

≤ q +
θ

f+(xi1 , xil−1
)

≤ q +
θ

kθ

≤ q +
1

k

Case2. f̂+(xi, xj) < f+(xi, xj) implies

|| f̂
+(xi, xj)

f+(xi, xj)
||Q =

f+(xi, xj)

f̂+(xi, xj)

=
f+(xi1 , xil−1

) + f+(xil , xj)

f̂+(xi1 , xil−1
) + f̂+(xil−1

, xil)

≤ f+(xi1 , xil−1
) + θ

f̂+(xi1 , xil−1
) + 1

≤ f+(xi1 , xil−1
) + θ

f̂+(xi1 , xil−1
)

≤ q +
θ

f̂+(xi1 , xil−1
)

≤ q +
1

k

Summarizing, we are able to trade in accuracy for performance when testing
the θ, q-acceptability of some bucket.

A Cheap Pretest for Dense Buckets

If the domain of the attribute is discrete and every domain value within the
bucket has a frequency larger than zero, the bucket is dense. This is always
the case if dictionaries are used as in systems like Blink or Hana. In this case,
θ,q-acceptability is implied by either of the following conditions:

1. The cumulated frequency of the bucket is less than or equal to θ or

2. maxi fi/mini fi ≤ q2.

24.7. MORE ON Q 493

The first condition also holds for non-dense buckets. The last condition only
holds if we use our flexibility concerning the α in our approximation function.
If we use f̂+avg, we need to exchange it against

qf ≥ max
i
fi ∧ (1/q)f ≤ min

i
fi,

where f is the average frequency of the bucket.
If this cheap pretest fails, we need to apply the quadratic test or the subtest.

24.7.5 From Buckets To Histograms

As usual, let R be some relation and A be some of its attributes with ΠD
A =

{x1, . . . , xd}, where d := |ΠD
A (R)| and xi ≤ xj for 1 ≤ i ≤ j ≤ d.

In general, θ,q-acceptability does not carry over from buckets to histograms.
That is, even though all buckets maybe theta, q-acceptable, the histogram must
not be. Consider a histogram in which each bucket has the true cumulated
frequency θ and the estimate for each bucket is 1. Then, the estimate for a
range query comprising n buckets is n and the true value is nθ. Clearly, the
histogram is not θ,q-acceptable if q < θ.

Theorem 24.7.4 Let H be a histogram. Consider two neighbored buckets B1

and B2 spanning the intervals [bi, bi+1[for i = 0, 1. Let k ≥ 2 be a number.
If both buckets B1 and B2 are θ,q-acceptable then the histogram is kθ,q + q

k−1 -
acceptable.

Proof: Assume we have two buckets B1 = [b0, b1[and B2 = [b1, b2] and a
range query asking for the cumulated frequency in [c1, c2[with

b0 ≤ c1 ≤ b1 ≤ c2 ≤ b2.

For each bucket Bi, we denote by

f+i (x, y) =
∑

x≤xi<y

fi

the true cumulated frequency within an interval contained in the bucket. Fur-
ther, we assume that the approximation function f̂+i (x, y) of every bucket Bi is
θ,q-acceptable.

We introduce the following abbreviations:

f1 := f+(c1, b1)

f2 := f+(b1, c2)

f := f1 + f2

f̂1 := f̂+1 (c1, b1)

f̂2 := f̂+2 (b1, c2)

f̂ := f̂1 + f̂2

Now, we investigate the estimation error for our range query. We distinguish
several cases.

494 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Case 1. In the first case, we assume f ≤ kθ and f̂ ≤ kθ. In this case, the
estimate is kθ,q-acceptable.

Case 2. In the second case, we assume that (f1 > θ∨f̂1 > θ)∧(f2 > θ∨f̂2 > θ).
It follows that ||f̂/f ||Q ≤ q.
Case 3. We now assume that neither the condition of Case 1 nor the condition
of Case 2 holds. Thus,

¬(f ≤ kθ ∧ f̂ ≤ kθ) ∧ ¬((f1 > θ ∨ f̂1 > θ) ∧ (f2 > θ ∨ f̂2 > θ)),

which is equivalent to

(f > kθ ∨ f̂ > kθ) ∧ ((f1 ≤ θ ∧ f̂1 ≤ θ) ∨ (f2 ≤ θ ∧ f̂2 ≤ θ)).

We consider four subcases, where we denote by q∗ the q-error of f̂ , i.e.,

q∗ := || f̂
f
||Q = || f̂1 + f̂2

f1 + f2
||Q.

Case 3.1 Assume

f > kθ, f1 ≤ θ, f̂1 ≤ θ.

From this, it follows that

kθ < f = f1 + f2 ≤ θ + f2

and thus (k − 1)θ < f2 and, since k ≥ 2

|| f̂2
f2
||Q ≤ q.

Case 3.1.1 Assume f̂1 + f̂2 ≥ f1 + f2. A simple calculation gives us

q∗ =
f̂1 + f̂2
f1 + f2

=
f̂1

f1 + f2
+

f̂2
f1 + f2

<
θ

kθ
+
f̂2
f2

≤ q +
1

k

24.7. MORE ON Q 495

Case 3.1.2 Assume f1 + f2 > f̂1 + f̂2. A simple calculation gives us

q∗ =
f1 + f2

f̂1 + f̂2

≤ θ + qf̂2

f̂2

≤ q +
θ

f̂2

≤ q +
θ

(1/q)f2

≤ q +
θ

(1/q)(k − 1)θ

≤ q +
q

k − 1

Case 3.2 Assume

f > kθ, f2 ≤ θ, f̂2 ≤ θ.

This implies

kθ < f = f1 + f2 ≤ f1 + θ

and thus (k − 1)θ < f1 and, since k ≥ 2

|| f̂1
f1
||Q ≤ q.

Case 3.2.1 Assume f̂1 + f̂2 ≥ f1 + f2. Then, f̂1 + f̂2 > kθ.

A simple calculation gives us

q∗ =
f̂1 + f̂2
f1 + f2

=
f̂1

f1 + f2
+

f̂2
f1 + f2

≤ f̂1
f1

+
θ

kθ

≤ q +
1

k

496 CHAPTER 24. CARDINALITY AND COST ESTIMATION

‘ Case 3.2.2 Assume f1 + f2 > f̂1 + f̂2. A simple calculation gives us

q∗ =
f1 + f2

f̂1 + f̂2

≤ qf̂1 + θ

f̂2

≤ q +
θ

f̂2

≤ q +
θ

(1/q)f2

≤ q +
θ

(1/q)(k − 1)θ

≤ q +
q

k − 1

Case 3.3 Assume

f̂ > kθ, f1 ≤ θ, f̂1 ≤ θ.

From this, it follows that

kθ < f̂ = f̂1 + f̂2 ≤ θ + f̂2

and thus (k − 1)θ < f̂2 and, since k ≥ 2

|| f̂2
f2
||Q ≤ q.

Case 3.3.1 Assume f̂1 + f̂2 ≥ f1 + f2. A simple calculation gives us

q∗ =
f̂1 + f̂2
f1 + f2

≤ f̂1
f1 + f2

+
f̂2

f1 + f2

≤ θ

f2
+
f̂2
f2

≤ θ

(1/q)f̂2
+ q

≤ θ

(1/q)(k − 1)θ
+ q

≤ q +
q

k − 1

24.7. MORE ON Q 497

Case 3.3.2 Assume f1 + f2 > f̂1 + f̂2. A simple calculation gives us

q∗ =
f1 + f2

f̂1 + f̂2

≤ f1

f̂1 + f̂2
+

f2

f̂1 + f̂2

≤ θ

kθ
+
f2

f̂2

≤ q +
1

k

Case 3.4 Assume
f̂ > kθ, f2 ≤ θ, f̂2 ≤ θ.

From this, it follows that

kθ < f̂ = f̂1 + f̂2 ≤ f̂1 + θ

and thus (k − 1)θ < f̂1 and, since k ≥ 2

|| f̂1
f1
||Q ≤ q.

Case 3.4.1 Assume f̂1 + f̂2 ≥ f1 + f2.

q∗ =
f̂1 + f̂2
f1 + f2

≤ f̂1
f1 + f2

+
f̂2

f1 + f2

≤ f̂1
f1

+
θ

f1

≤ q +
θ

(1/q)f̂1

≤ q +
θ

(1/q)(k − 1)θ

≤ q +
q

k − 1

Case 3.4.2 Assume f1 + f2 > f̂1 + f̂2. A simple calculation gives us

q∗ =
f1 + f2

f̂1 + f̂2

≤ f1

f̂1 + f̂2
+

f2

f̂1 + f̂2

≤ f1

f̂1
+

θ

kθ

≤ q +
1

k

2

498 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Theorem 24.7.5 Let H be a histogram. Consider n ≥ 3 consecutive buckets
Bi in H spanning the intervals [bi, bi+1[for i = 0, . . . , n. Let k ≥ 3 be a number.
If every estimate for a range query spanning a whole bucket is q-acceptable and
every bucket Bi is θ,q-acceptable then the histogram is kθ,q + 2q

k−2 -acceptable.

Proof: Assume a query interval [c1, c2[spanning the n buckets of H. That
is b0 ≤ c1 ≤ b1 and bn−1 ≤ c2 ≤ bn.

We introduce the following abbreviations:

f1 := f+(c1, b1)

f2 := f+(b1, bn−1)

f3 := f+(bn−1, c2)

f := f1 + f2 + f3

f̂1 := f̂+1 (c1, b1)

f̂2 := f̂+2 (b1, bn−1)

f̂3 := f̂+3 (bn−1, c2)

f̂ := f̂+1 + f̂+2 + f̂+3

By assumption, we have ||f̂+2 /f+2 ||Q ≤ q.
We distinguish several cases.

Case 1. If f ≤ kθ and f̂ ≤ kθ, then the estimate is kθ, q-acceptable.

Case 2. If (f1 > θ ∨ f̂1 > θ) ∧ (f3 > θ ∨ f̂3 > θ), the estimate is q-acceptable.

Case 3. We now assume that neither the condition of Case 1 nor the condition
of Case 2 holds. Thus

¬(f ≤ kθ ∧ f̂ ≤ kθ) ∧ ¬((f1 > θ ∨ f̂1 > θ) ∧ (f3 > θ ∨ f̂3 > θ)),

which is equivalent to

(f > kθ ∨ f̂ > kθ) ∧ ((f1 ≤ θ ∧ f̂1 ≤ θ) ∨ (f3 ≤ θ ∧ f̂3 ≤ θ)).

We denote by q∗ the q-error of f̂ , i.e.,

q∗ := || f̂
f
||Q = || f̂1 + f̂2 + f̂3

f1 + f2 + f3
||Q.

Case 3.1 Assume f1 ≤ θ and f̂1 ≤ θ and f3 ≤ θ and f̂3 ≤ θ.
Case 3.1.1 Assume f > kθ. From f = f1 + f2 + f3 > kθ and f1 ≤ θ and
f3 ≤ θ, we get

f2 > (k − 2)θ

and

qf̂2 > (k − 2)θ.

24.7. MORE ON Q 499

If f ≤ f̂ we get

q∗ =
f̂

f

=
f̂1 + f̂2 + f̂3
f1 + f2 + f3

=
f̂1 + f̂3

f1 + f2 + f3
+

f̂2
f1 + f2 + f3

≤ 2θ

kθ
+ q

≤ q +
2

k

If f̂ ≤ f we get

q∗ =
f

f̂

=
f1 + f2 + f3

f̂1 + f̂2 + f̂3

≤ 2θ + f2

f̂2

≤ q +
2θ

f̂2

≤ q +
2θ

(1/q)(k − 2)θ

≤ q +
2q

k − 2

Case 3.1.2 Assume f̂ > kθ. From f̂ = f̂1 + f̂2 + f̂3 > kθ and f̂1 ≤ θ and
f̂3 ≤ θ, we get

f̂2 > (k − 2)θ

and
qf2 > (k − 2)θ.

If f ≤ f̂ we get

q∗ =
f̂

f

=
f̂1 + f̂2 + f̂3
f1 + f2 + f3

≤ q +
2θ

f2

≤ q +
2θ

(1/q)(k − 2)θ

≤ q +
2q

k − 2

500 CHAPTER 24. CARDINALITY AND COST ESTIMATION

If f̂ ≤ f we get

q∗ =
f

f̂

=
f1 + f2 + f3

f̂1 + f̂2 + f̂3

≤ f2 + 2θ

f̂1 + f̂2 + f̂3

≤ q +
2θ

kθ

≤ q +
2

k

Case 3.2 Assume f1 ≤ θ and f̂1 ≤ θ and f3 > θ ∨ f̂3 > θ.

Case 3.2.1 Assume f > kθ.

From f = f1 + f2 + f3 > kθ and f1 ≤ θ, we get

f2 + f3 > (k − 1)θ

and

q(f̂2 + f̂3) > (k − 1)θ

since || f̂2+f̂3
f2+f3

||Q ≤ q.
If f ≤ f̂ we get

q∗ =
f̂

f

=
f̂1 + f̂2 + f̂3
f1 + f2 + f3

≤ q +
θ

kθ

≤ q +
1

k

If f̂ ≤ f we get

q∗ =
f

f̂

=
f1 + f2 + f3

f̂1 + f̂2 + f̂3

≤ q +
θ

f̂2 + f̂3

≤ q +
θ

(1/q)(k − 1)θ

≤ q +
q

k − 1

24.7. MORE ON Q 501

Case 3.2.2 Assume f̂ > kθ.
From f̂ = f̂1 + f̂2 + f̂3 > kθ and f̂1 ≤ θ, we get

f̂2 + f̂3 > (k − 1)θ

and
q(f2 + f3) > (k − 1)θ.

since || f̂2+f̂3
f2+f3

||Q ≤ q.
If f ≤ f̂ we get

q∗ =
f̂

f

=
f̂1 + f̂2 + f̂3
f1 + f2 + f3

≤ q +
θ

f2 + f3

≤ q +
θ

(1/q)(k − 1)θ

≤ q +
q

k − 1

If f̂ ≤ f we get

q∗ =
f

f̂

=
f1 + f2 + f3

f̂1 + f̂2 + f̂3

≤ q +
θ

f̂1 + f̂2 + f̂3

≤ q +
θ

kθ

≤ q +
1

k

Case 3.3 Assume f1 > θ ∨ f̂1 > θ and f3 ≤ θ and f̂3 ≤ θ.
Case 3.3.1 Assume f > kθ. By Symmetry.
Case 3.3.2 Assume f̂ > kθ. By Symmetry.

2

In case the estimates for a whole bucket are precise, e.g., if we use f̂+avg, we
can refine the bounds.

Corollary 24.7.6 Let H be a histogram. Consider n ≥ 3 consecutive buckets
Bi in H spanning the intervals [bi, bi+1[for i = 0, . . . , n. Let k ≥ 3 be a number.
If every estimate for a range query spanning a whole bucket is 1-acceptable and
every bucket Bi is θ,q-acceptable then the histogram is kθ,q′-acceptable, where
q′ := 2

k−2q + 1.

To see that the corollary holds, simply reconsider the above proof. Let us
mention that for k ≥ 3, we never saw a q-error larger than q + 1/k.

502 CHAPTER 24. CARDINALITY AND COST ESTIMATION

qcompressb(x, b)
return (0 == x) ? 0 : ⌈logb(x)⌉+ 1⌉

qdecompressb(y, b)
return (0 == y) ? 0 : by−1+0.5

qcompressbase(x, k)
// x is the largest number to be compressed
// k is the number of bits used to store a compressed value

return x1/((1<<k)−1)

Figure 24.11: Q-compression, logb-based

24.7.6 Q-Compression

General Q-Compression

The goal of q-compression is to approximate a number x ≥ 1 with a small q-
error. Given some b > 0, let x be some number in the interval [b2l, b2(l+1)]. If we
approximate x by b2l+1 then ||b2l+1/x||Q ≤ b. Let xmax be the largest number to
be compressed. If xmax ≤ b2(k+1) for some k is the maximal occurring number,
we can approximate any x in [1, xmax] with ⌈log2(k)⌉ bits obeying a maximal
q-error of b. We can extend q-compression to allow for the compression of 0
as in the code in Fig. 24.11. There, we use the base b instead of b2 as above.
Thus, the error is at most

√
b. Let us consider a concrete example. Let b = 1.1.

Assume we use 8 bits to store a number. Then, since 1.1254 ≈ 32.6∗109, we can
approximate even huge numbers with a small q-error of at most

√
1.1 = 1.0488.

Other examples are given in Table 24.7.

There exists a small disadvantage of q-compression with a general base.
Though calculating the logarithm is quite cheap, since typically machine in-
structions to do so exist, calculating the power during decompression is quite
expensive. On our machine, compression takes roughly 54 ns whereas decom-
pression takes 158 ns. This is bad since in the context of cardinality estimation,
decompression is used far more often than compression. Thus, we introduce an
alternative called binary q-compression.

Binary Q-Compression

The idea of binary q-compression is simple. Let x be the number we want
to compress. If we take the base b = 2 then ⌈log2(x)⌉ = k, where k is the
index of the highest bit set. This calculation can be done by a rather efficient
machine instruction. This gives us a maximum q-error of

√
2. We can go

below this, by remembering not only the highest bit set, but the k highest
bits set. Additionally, we store the position of them (their shift) in s bits.
The pseudocode is given in Fig. 24.12, where we extended the scheme to allow
for the compression of zero. So far, this resembles a special floating point

24.7. MORE ON Q 503

#Bits Base Largest compressable number q-Error

4 2.5 372529 1.58
4 2.6 645099 1.61
4 2.7 1094189 1.64
5 1.7 8193465 1.30
5 1.8 45517159 1.34
5 1.9 230466617 1.38
6 1.2 81140 1.10
6 1.3 11600797 1.14
6 1.4 1147990282 1.18
7 1.1 164239 1.05
7 1.2 9480625727 1.10
8 1.1 32639389743 1.05

Table 24.7: Examples for q-compression

representation with only positiv mantissa and exponent.

The q-middle of 2n and 2n−1 − 1 is
√

2n ∗ (2n+1 − 1). This is the estimate
we should return for n. We do not want to compute the square root during
decompression, since this is too expensive. A little calculation helps.

√
2n ∗ (2n+1 − 1) ≈

√
2n ∗ 2n+1

=
√
22n ∗ 2

=
√
2 ∗ 2n

= 2n + (
√
2− 1) ∗ 2n

The second part can be calculated by a constant (
√
2 − 1) shifted by n to the

left. The pseudocode in Fig. 24.12 gives the calculation of this constant C in C.
The best theoretical q-error achievable with storing k bits is

√
1 + 21−k. With

our fast approximation, we get pretty close as the following table shows. The
observed maximal q-error column was obtained experimentally. The deviation
from the observed maximal q-error to the theoretical maximal q-error is due
to the fact that only a small portion of the digits of C are used. Further,
compression (2.7 ns) and decompression (2.8 ns) are fast.

504 CHAPTER 24. CARDINALITY AND COST ESTIMATION

qcompress2(x, k, s)
if 2s > x
then

bits = x
shift = 0

else
shift = index-of-highest-bit-set(x) - k + 1;
bits = (x >> shift)

return (bits << shift) | shift

qdecompress2(y, k, s)
shift = y & (2s − 1)
bits = y >> shift
x = bits << shift
– assume C = (int) ((sqrt((double) 2.0) - 1.0) * 4 * (1 << 30))
x |= (C >> (32 - shift))
return x

Figure 24.12: Binary Q-compression

k max q-error observed max q-error theoretical (
√
1 + 21−k)

1 1.5 1.41
2 1.25 1.22
3 1.13 1.12
4 1.07 1.06
5 1.036 1.03
6 1.018 1.016
7 1.0091 1.0078
8 1.0045 1.0039
9 1.0023 1.00195

10 1.0011 1.00098
11 1.00056 1.00048
12 1.00027 1.00024

Incremental Updates

It might come as a surprise that q-compressed numbers can be incrementally
updated. Already in 1978, Morris observed this fact [628]. Later, Flajolet
analyzed the probabilistic counting method thoroughly [284]. The main idea is
rather simple. For binary q-compressed numbers, the incrementing procedure
is defined as follows:

RandomIncrement(int& c)
// c: the counter

24.8. ONE DIMENSIONAL SYNOPSES 505

τ1,1: 100

–

τ̂1,1: 100

τ1,2: 52

m1,2: 33

τ̂1,2: 52

τ1,4: 30

m1,4: 18

τ̂1,4: 30

τ1,8: 12

m1,8: 6

τ̂1,8: 12

τ2,8: 18

–

τ̂2,8: 18

τ2,4: 22

–

τ̂2,4: 22

τ3,8: 16

m3,8: 11

τ̂3,8: 16

τ4,8: 6

–

τ̂4,8: 6

τ2,2: 48

–

τ̂2,2: 48

τ3,4: 20

m3,4: 13

τ̂3,4: 20

τ5,8: 6

m5,8: 5

τ̂5,8: 7

τ6,8: 14

–

τ̂6,8: 13

τ4,4: 28

–

τ̂4,4: 28

τ7,8: 13

m7,8: 7

τ̂7,8: 13

τ8,8: 15

–

τ̂8,8: 15

Figure 24.13: FLT example 1

let δ be a binary random variable which takes
value 1 with probability 2−c and
value 0 with probability 1− 2−c.

c += δ

To go to an arbitrary base, we have to modify the random variable δ such that
it takes the value 1 with probability a−c and 0 with probability 1− a−c.

24.8 One Dimensional Synopses

24.8.1 Four Level Tree and Variants

The Original Four Level Tree

Four level trees were introduced by Buccafurri, Pontieri, Rosaci, and Sacca
[117]. Later, Buccafurri, Lax, Sacca, Pontieri, and Rosaci discussed three, five,
and N-Level level trees [115, 116]. A concise description can also be found in
[210].

The basic idea is to divide a bucket into eight subbuckets (called bucklets)
of equal width. Consider the following sample bucket [116]:

xi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
fi 7 5 18 0 6 10 0 6 0 6 9 5 13 0 8 7

This bucket is divided into 8 bucklets of width 16/8 = 2. Every bucklet τi,8
summarizes the values in bucket i, 1 ≤ i ≤ 8. The next higher level of the four

506 CHAPTER 24. CARDINALITY AND COST ESTIMATION

level tree contains four values τi,4 (1 ≤ i ≤ 4) summing the frequencies in the
i-th quarter of the bucket. Thus, τi,4 = τ2i−1,8 + τ2i,8 for 1 ≤ i ≤ 4. The third
level of the four level tree defines the values τi,2 for i = 1, 2 summing up the
frequencies in each half of the bucket. The last level, τ1,1 contains the sum of
all frequencies fi in the bucket. This scheme is illustrated in Fig. 24.13 and
formally defined as

τi,2k := τ2i−1,2k+1 + τ2i,2k+1

for k = 0, . . . , 3.

The four level tree in Fig. 24.13 is compressed into 64 bits as follows. τ1,1 is
stored in the first 32 bits. Next, the τj,2k for k > 0 are only stored if j is odd.
For even j = 2i, τ2i,2k+1 can be calculated given τi,2k :

τ2i,2k+1 := τi,2k − τ2i−1,2k+1

for k = 1, . . . , 3. Further, since 7 numbers have to be compressed into 32 bits,
only an approximation thereof is stored. The number of bits bk used to store
the approximation of some τ2i−1,2k+1 decreases from top to bottom:

k 0 1 2 3
bk 32 6 5 4

The intention is that if we make a mistake at a higher level, all lower levels are
affected. Thus, we want to be precise at higher levels.

Instead of storing τ2i−1,2k+1 directly, the ratio τ2i−1,2k+1/τi,2k is approximat-
ed using bk bits:

m2i−1,2k+1 := round(
τ2i−1,2k+1

τi,2k
(2bk − 1)). (24.33)

The 7 mi,j values are stored in the second 32 bits:

m1,2 m1,4 m3,4 m1,8 m3,8 m5,8 m7,8

33 18 13 6 11 5 7
100001 10010 01101 0110 1011 0101 0111

The number of zeros and ones in the last line is 1 ∗ 6 + 2 ∗ 5 + 4 ∗ 4 = 32.

From m2i−1,2k , we can restore an estimate for τ̂2i,22k by calculating

τ̂2i,22k := round(
m2i−1,2k

2bk − 1
∗ τ̂i,2k). (24.34)

This recursion is possible, since we store τ1,1 explicitly. The τ̂ are also given in
Fig. 24.13.

Now, consider the example in Fig. 24.14. It shows the four level tree for a
frequency density where the eight bucklets have the following cumulated fre-
quencies:

i 1 2 3 4 5 6 7 8
f+i 1.000.000 100.000 10.000 1000 100 10 1 10.000

24.8. ONE DIMENSIONAL SYNOPSES 507

τ1,1: 1121111
–

τ̂1,1: 1121111

τ1,2: 1111000
m1,2: 62

τ̂1,2: 1103316

τ1,4: 1100000
m1,4: 31

τ̂1,4: 1103316

τ1,8: 1000000
m1,8: 14

τ̂1,8: 1029762

τ2,8: 100000
–

τ̂2,8: 73554

τ2,4: 11000
–

τ̂2,4: 0

τ3,8: 10000
m3,8: 14
τ̂3,8: 0

τ4,8: 1000
–

τ̂4,8: 0

τ2,2: 10111
–

τ̂2,2: 17795

τ3,4: 110
m3,4: 0
τ̂3,4: 0

τ5,8: 100
m5,8: 14
τ̂5,8: 0

τ6,8: 10
–

τ̂6,8: 0

τ4,4: 10001
–

τ̂4,4: 17795

τ7,8: 1
m7,8: 0
τ̂7,8: 0

τ8,8: 10000
–

τ̂8,8: 17795

Figure 24.14: FLT example 2

As we can see, the error for last bucketlet 8,8 is quite large. The reason is that
we substract an estimate of larger number from a smaller number, which is not
a good idea (see Sec. 24.7.1). Although, the four level tree is an excellent idea,
it has two major problems:

1. Whenever the fraction in Formula 24.33 is smaller than 1/2bk+1, rounding
takes place towards zero.

2. Always the left child’s τ is subtracted from the right child’s τ . This results
in uncontrollable errors if the right child’s τ is smaller than the left child’s
τ (see Sec. 24.7.1).

Thus, we will modify the four level tree.

Variants of the Four Level Tree

Exploiting the techniques of (binary) q-compression, we can easily come up
with several variants of the four level tree. All variants we discuss here use 7
indicator bits to remember whether the left or the right child node contained
the smaller τi,j .

The variant FLT2 stores τ1,1 in 11 bits using binary q-compression. For the
other τi,j , the original compression scheme is used. At level 2, 8 instead of 6
bits are used, at level 3, 7 bits instead of 5 bits are used and at level 4, 6 instead
of 4 bits are used.

The variant qFLT also stores τ1,1 in 11 bits using binary q-compression.
However, instead of deriving the other τi,j from estimates of their parents, it
directly stores these values in q-compressed form. The number of bits used at
each level is the same as in FLT2. The base used is derived from the estimate
τ̂1,1 for τ1,1. At level i, the minimal base for the number ⌈τ̂1,1/2i−1⌉ is chosen.

508 CHAPTER 24. CARDINALITY AND COST ESTIMATION

24.8.2 Q-Histograms (Type I)

So far, every bucket contains the same information. Loosening this restriction
results in heterogeneous histograms. This leads to heterogeneous histograms
which contain different kinds of buckets. However, there are a few disadvan-
tages: higher cpu and memory consumption. Further, with every bucket type
considered, histogram construction costs increase. Besides the bucket bound-
aries and the bucket contents a bucket header has to be stored. Since this is
typically only a single byte per bucket, the increased flexibility by using differ-
ent bucket types by far outways the price of this byte, leading to more compact
and precise histograms.

Simple Bucket Types

We now briefly summarize some possible bucket types.

standard bucket A standard bucket contains the cumulated frequency and
the number of distinct values.

standard bucket with boundary frequency Microsoft SQL Server stores
for every bucket the frequency of the lower bucket boundary [226, p208].

poly2dim, exppoly2dim Assume (xi, fi) is the frequency density of our
attribute A. For given bucket boundaries b1, b2, we can approximate the set

RGE := {(xi, xj , f+(xi, xj))|b1 ≤ xi ≤ xj ≤ b2}

by a 2-dimensional polynomial. It is advantageous to use only low degrees (one
or two) and find the best approximation under lq. Approximation by a ep for a
polynomial p leads to another alternative.

poly1dim, exppoly1dim

Histogram Construction by Dynamic Programming

A Heuristic for Histogram Construction

24.8.3 Q-Histogram (Type II)

24.9 Sketches For Counting The Number of Distinct
Values

Histograms are used to overcome deficiencies of the uniform distribution as-
sumption. So far, the only way we discussed to combine selectivities derived for
serveral predicates from different attributes has to be done under the attribute
value independence assumption. In this section, we discuss an approach to
avoid the attribute value independence assumption. This can be done by pro-
viding precise estimates on the number of distinct values in a set of attributes

24.9. SKETCHES FOR COUNTING THE NUMBEROF DISTINCT VALUES509

(sometimes called column group). Although the number of distinct values for a
set of attributes is rather interesting at different points in cardinality estimation
(see our simple profile), we show how to provide selectivity estimates under the
uniform distribution assumption but without relying on the attribute value in-
dependence assumption. The number of distinct values for a column group can
be calculated by sorting or hashing, but this is often far to expensive. Thus,
we provide a set of techniques based on sketches. Sketches are small summaries
of data typically calculated online, i.e., with a single scan over the data. We
concentrate on sketches for the count distinct case. A general introduction and
an overview is contained in [210] and a recent evaluation of different sketches
can be found in [406].

The problem we look at in this section is to approximately answer a query
of the form

select count(distinct A1,. . . ,An)
from R

Standard techniques like hashtables or red-black trees can be used to collect
the distinct values contained in the attributes A1, . . . , An of R. However, the
space consumption is linear in the number of distinct values. Sketches require
far less space.

Before we delve into the details of the algorithms, let us recall an observation
made by Ilyas, Markl, Haas, Brown, and Aboulnaga [442]. They observed
that sometimes assuming uniformity is not as bad as assuming attribute value
independence. In this case, keeping the number of distinct values for a set of
attributes helps to make estimates more precise. Consider their example of
a car database repeated in Fig. 24.15. Assume that we want to provide an
estimate for

select count(*)
from Car
where Make = Honda and Model = Accord

Denote by p1 (p2) the first (second) predidate in the query. The selectivities are
s(p1) = 1/7 and s(p2) = 1/8. Assuming AVI yields ŝ(p1 ∧ p2) = s(p1) ∗ s(p2) =
1/56. The true selectivity is 1/10. The number of distinct values in the attribute
group (Make,Model) is calculated by the following query

select count(distinct Make, Model)
from Car

and results in #DV = 9. Assuming that all distinct values occur equally often
(uniformity assumption) results in the selectivity estimate ŝ(p1 ∧ p2) = 1/9,
which is much better.

Throughout the rest of this section, we assume that we want to produce
an estimate d̂ for the number of distinct values d of a multiset (bag) X =
{x1, . . . , xd}.

510 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Car

ID Make Model

1 Honda Accord
2 Honda Civic
3 Toyota Camry
4 Nissan Sentra
5 Toyota Corolla
6 BMW 323
7 Mazda 323
8 Saab 95i
9 Ford F150

10 Mazda 323

Figure 24.15: Car database example

24.9.1 Linear Counting

The first algorithm we look at is Linear Counting by Astrahan, Schkolnick,
and Whang [40]. Later, Whang, Vander-Zanden, and Taylor analyzed the al-
gorithm and proposed a slight improvement [924]. Further, they showed ana-
lytically and experimentally, that linear counting still yields good results even
if the fill factor goes up to 5-12. The algorithm is rather simple: Initialize a
bitvector B of length b to contain only zeros. Then, for each member x in the
given multiset X, set B[h(x)] to one, where h is a hash function. Finally, the
number of zeros z in B is counted and the resulting estimate for the number of
distinct values in X is d̂ = −b ln(z/b) (or d̂ = b ln(b/z)). If the number of ones
in the bitvector is rather small, this number can be used as the estimate. The
pseudocode of LinearCounting is given in Fig. 24.16. A problem occurs, if the
bitvector becomes full, i.e., all bits are set. In this case, Whang et al. propose
to run the algorithm a second time with another hash function. Further, they
show how to keep the probability of running into a full bitvector a second time
low. However, it is better to integrate LinearCounting into other algorithms
that are capable of counting large numbers of distinct values in far less than
linear space.

24.9.2 DvByKMinVal

Assume the hash function h hashes the elements of our set X to the interval
[0, 1[. Further, let H = {hi|hi = h(xi), xi ∈ X} and assume that 0 ≤ hi ≤
hi+1 < 1. If the hash function spreads out the elements evenly, we expect
an average distance of δ = 1/(d + 1) ≈ 1/d between two neighbored hash
values. For some given k, consider hk, i.e., the k-th smallest value in H. This
value can easily be calculated exploiting a heap to keep the lowest k distinct
values while scanning X. Clearly, we expect the value of hk to be around kδ.
Thus, δ = hk/k. If we plug this into the former equation, we get hk/k = 1/d̂
and hence d̂ = k/hk. This very simple algorithm (see Fig.24.17), which we

24.9. SKETCHES FOR COUNTING THE NUMBEROF DISTINCT VALUES511

LinearCounting(X, h, B)
X: bag of elements
h: hash function in [0, b− 1]
B: bitvector of length bk
initialize B with zeros
for all x ∈ X do B[h(i] = 1
for all i ∈ [0,m[do

if 0 =M [i] then z := z + 1
if 0 = z then z := 1
o := m− z // number of ones in the bitvector corresponding to M
if o <

√
m

then return o
else return m ∗ ln(m/z)

Figure 24.16: Linear Counting

DvByKMinVal(X,h)
input: a bag X, a hashfunction h : X → [0, 1]

output: estimtate for the number d̂ for the number of distinct values in X
using,e.g., a heap calculate the k-th minimal value hk in {h(x)|x ∈ X}
d̂ := (k − 1)/hk
return d̂

Figure 24.17: Algorithm DvByKMinVal

call DvByKMinVal, was developed and analyzed by Bar-Yossef, Jayram, Kumar,
Sivikumar, Trevisan [52]. Later Beyer, Haas, Reinwald, Sismanis, and Gemulla
showed that this estimator is biased. They found that an unbiased estimator is
d̂ = (k−1)/hk [84]. As the hash function they recommend using the golden-ratio
multiplicative hashing method [505].

24.9.3 Logarithmic Counting

In a series of papers, Flajolet and Martin introduced three different probabilistic
counting algorithms [286, 287, 288]. For these algorithms, the hash function
must map the elements of X to some bit pattern of a fixed length (say 32 or 64
bits).

Let us start with the simplest one called LogarithmicCounting. The idea
behind this algorithm is the observation that the probability that the first bit in
a bit pattern produced by the hash function being zero is 1/2. The probability
that the first two bits are zero is 1/4, and so on. The algorithm calculates
now the smallest index R, such that among the bitvectors h(xi) the R-th bit is
never set. The estimate then roughly is 2R. However, this estimate is biased.

512 CHAPTER 24. CARDINALITY AND COST ESTIMATION

LogarithmicCounting(X, b)
// X: bag of elements
// h: hash function
// b: length of bitvector
// constant ϕ = 0.7735162909
// indices for bitvectors start with 0
let B be a bitvector of length b, with all bits set to zero
for each x ∈ X do B | = lowest-bit-set(h(x))
R = index-of-lowest-zero-bit in B
return (1/ϕ) ∗ 2R

Figure 24.18: Algorithm LogarithmicCounting

A factor 1/ϕ corrects this. Fig. 24.18 shows the full algorithm including ϕ.

LogarithmicCounting produces rather rough estimates. This is remedied
by a first alternative called Multiple Probabilistic Counting. The idea is to
calculate m estimates for m independent hash functions and average these.
However, using m different hash function is expensive and it may prove difficult
to find these [24]. As a variant, Flajolet and Martin suggest to use several
predetermined permutations and only one hash function [287]. However, both
alternatives are still quite expensive. Hence, we don’t detail on this algorithm.

The third variant, Probabilistic Counting with Stochastic Averaging (PC-
SA), also averages several estimates, but it does so without applying multiple
hash functions. The idea is to split the bitvector of the hashed value into two
parts. The first k bits give an index into an array of bitvectors of size b − k.
Then, for every input value xi, only the bitvector determined by the first k bits
of h(xi) is manipulated by remembering its lowest bit set. Instead of one R,
we now have several Rj for 1 ≤ j ≤ 2k. These are averaged and the resulting
estimate is produced. Fig. 24.19 shows the full pseudocode, where we also in-
tegrated the unbiasing presented in [287]. The standard deviation of PCSA is
0.78/

√
m.

24.9.4 SuperLogLog Counting

Durand and Flajolet introduce two more space efficient probabilistic counting
algorithms called LogLogCounting and SuperLogLogCounting [250]. The core
idea of both algorithms is to remember the maximum of all indices i such that
i corresponds to the lowest bit set for some x ∈ X. Note that this requires far
less space: less than a byte suffices. As before, not only one such maximum
is retained but m = 2k for some k. Fig. 24.20 shows how to fill an array M
of m such maxima. The filled array M is the basis for LogLogCounting and
SuperLogLogCounting. The algorithms just differ in how they produce their
estimates of d̂ from M .

In order to produce the LogLogCounting estimate, the maxima in M are
averaged. Raising 2 by the power of this average and multiplying it by m yields

24.9. SKETCHES FOR COUNTING THE NUMBEROF DISTINCT VALUES513

PCSA(X, h, b, k)
// X: bag of elements
// h: hash function
// b: length of bitvector produced by h
// k: length of prefix used to index array
// constant ϕ = 0.7735162909
// constant ψ = 1 + (0.31/m)
// indices for bitvectors start with zero
m := 2k

let B be an array of size m containing bitvectors of size b− k
for each x ∈ X do

// i, r = split h(x) into k and b− k bits:
i = h(x)&((1 << k)− 1)
r = h(x) >> k
B[i] | = lowest-bit-set(r)

for each B[j], (1 ≤ j ≤ m) do
Rj = index-of-lowest-zero-bit(B[j])

S =
∑

j Rj

return (m/(ϕ ∗ ψ)) ∗ 2(S/m)

Figure 24.19: Algorithm PCSA

the estimate. Again, it is biased. To unbias it, a constant αm, for a given m, is
used. Summarizing, the LogLogCounting estimate is calculated as follows:

LogLogCounting(M)

αm := (Γ(−1/m)1−2
1/m

ln 2)−m // Γ is the gamma function

d̂loglog := αmm2(1/m)
∑

j M [j]

return d̂

The standard deviation of LogLogCounting is 1.3√
m
.

There are three major improvements in SuperLogLogCounting. For small
numbers, LogLogCounting yields bad estimates. Thus, SuperLogLogCounting
includes LinearCounting for this case. Second, instead of averaging all maxima
in M , only a fraction of size ⌊0.7m⌋ is averaged, where the highest 30% are left
out. Thus, we average only the ⌊0.7m⌋ smallest maxima in M . Third, some
correction for hash collisions is performed.

The integration of LinearCounting usesM as its ’bitmap’. First, the num-
ber of zeros z is determined by counting the entries in M which are zero. The
estimate is than produced as in LinearCounting (see Fig. 24.16).

As the details of SuperLogLogCounting cannot be found in [250]. we refer
the reader to Durand’s thesis [249]. We review SuperLogLogCounting here to
allow the reader to implement it. First, as already mentioned, the average of the
⌊0.7m⌋ smallest maxima in M is calculated. Let us call this value apartial. This

514 CHAPTER 24. CARDINALITY AND COST ESTIMATION

FillM(X, h, M)
// X: bag of elements
// h: hash function
// M: array of integers of size m = 2k

// k: length of prefix used to index array M of maxima
// indices for bitvectors start with one
initialize M to 0
for each x ∈ X do

y = h(x)
if 0 == y

then
M[0] := max(M [0], 33− k) // if the length of hash value is 32 bits

else
i := y & ((1 << k) - 1)
j := idx-lowest-bit-set(y >> k)
M [i] = max(M [i], j)

Figure 24.20: Filling M for LogLogCounting, SuperLogLogCounting, and Hy-
perLogLogCounting

SuperLogLog(M)

d̂linc := LinearCounting(M)

d̂loglog := LogLogCounting(M)

d̂supll := α̃(d̂loglog)m2apartial

L := 10m/5
case

when d̂supll < L ∧ d̂linc < L do N := d̂linc
when d̂supll > L ∧ d̂linc > L do N := d̂supll
else N := (d̂linc + d̂supll)/2

esac
H = 232 // if 32 bit is the length of a hash value

return −H ln(1− N
H) // correction of hash collisions

Figure 24.21: SuperLogLog Counting

eliminates bad accidental outliers. Then, three estimates are calculated. The
first is d̂linc produced by LinearCounting. The second is d̂loglog produced by
LogLogCounting. This estimate is only used to produce the next estimate via
some function α̃. The third is d̂supll. The estimate produced by SuperLogLog

is then calculated as shown in Fig. 24.21.

The only missing piece is the calculation of the unbiasing function α̃ given
in Fig. 24.22. As one can see, a polynomial of degree 4 is evaluated if k exceeds

24.9. SKETCHES FOR COUNTING THE NUMBEROF DISTINCT VALUES515

α̃(x)
// x is the estimate produced by LogLogCounting

// remember: k is the number of bits used for indexing M
κ := ⌊ln(x/m)/ln(2) + 1.48⌋+ 1− ln(x/m)/ln(2)
if k < 4

then r := 0.74
else r := c4κ

4 + c3κ
3 + c2κ

2 + c1κ
1 + c0

return r
Coefficents ci:

c4 c3 c2 c1 c0
k = 4 0.003497 −0.03555 0.1999 −0.4812 1.139000
k = 5 0.00324250 −0.0346687 0.19794194 −0.47555735320 1.140732
k = 6 0.0031390489 −0.0343776755 0.197295 −0.4730536 1.141759
k = 7 0.0030924632 −0.0342657653 0.197045 −0.4718622 1.142318
k = 8 0.0030709 −0.034219 0.19694 −0.47129 1.142600
k ∈ [9, 12] 0.0030517 −0.034180 0.19685 −0.47077 1.142870
k > 12 0.0030504 −0.034177 0.19685 −0.47073 1.142880

Figure 24.22: Calculation of α̃

3. The coefficients differ for different k. They are also given in the figure. The
standard deviation of SuperLogLogCounting is 1.05/

√
m. For hashing strings,

Flajolet and co-workers suggest to use the hash function proposed by Lum,
Yuen, Dodd [572].

24.9.5 HyperLogLog Counting

The algorithm HyperLogLog Counting developed by Flajolet, Fusy, Gandouet,
and Meunier uses the same procedure FillM but, instead of using the geometric
means as LogLogCounting and successors, it relies on harmonic means [285].
Its pseudocode is given in Fig. 24.23. Again, for few entries in M , the linear
counting estimate is returned. For large ranges, a correction for hash collisions
is performed. The unbiasing factor αm is dependent on m and is calculated as
follows: α16 = 0.673, α32 = 0.697, α64 = 0.709, and αm = 0.7213/(1+1.079/m)
if m ≥ 128.

24.9.6 DvByMinAvg

Whereas DvByKMinVal calculates the k-th smallest value, Lumbroso proposed to
calculatem minima and average them [573]. This is done by splitting the values
in the bag X into m partitions using the first l bits of the hash values. The
remaining bits are then used to calculate the minima. The code of DvByMinAvg
is shown in Fig. 24.24. The average of the minima contained in M is then
calculated as the estimate E. As before, linear counting is used to estimate
small numbers of distinct values. For the medium range, Lumbroso showed
that the expected value of the estimate d̂ of the algorithm is (see Theorem 4 in

516 CHAPTER 24. CARDINALITY AND COST ESTIMATION

HyperLogLog(X, h, m)
X: bag of elements
h: hash function to {0, 1}32
m: number of entries in matrix M , m = 2l for some l
FillM(X,h, M)

E := αmm
2(
∑

i=0 i < m2−M [i])−1 // ’raw’ estimate

if E < 5/2
m

then V := number of empty entries in M
E∗ := (V = 0) ? E∗ : m log(m/V)

else if E ≤ 1
302

32

then E∗ := E
else E∗ := −232 log(1− E/232)
return E∗

Figure 24.23: HyperLogLog Counting

[573]):

E(d̂) ≈ d

1− e−λ ,

where d is the true number of distinct values in X and λ = d/m. In order to
correct this bias, we set y = d̂/m and solve

y =
λ

λ− e−λ

for λ. Let us denote this inverse function by f−1(λ). The best quadratic
approximation under lq is f

−1(x) ≈ −0.0329046x2+1.34703∗x−0.932685 with
a maximal q-error of 1.0035.

24.9.7 DvByKMinAvg

Giroire proposed and algorithm we call DvByKMinAvg [331]. Alghough older
than the approach by Lumbroso, DvByKMinAvg can easiest be understood as
a combination of DvByKMin and DvByMinAvg. As can be seen in Fig. 24.25,
we maintain an array M of buckets. Each bucket holds the k minimal values
assigned to it, where k is a parameter pragmatically chosen to be 3 [331]. This
combines relatively low overhead with relatively high precision. After the array
M has been filled with the minimal values of the actual estimate is calculated in
two steps. First, the sum of the negative logarithms of the k-th minimal values
is calculated. In the algorithm, we denote by Mk[i] the k-th smallest value in
bucket i. Then, the actual estimate is calculated from this sum. The estimate
found in the algorithm corresponds ot the logarithm family algorithm. Giroire
presented two more estimators, namely the inverse family algorithm and the
square root family algorithm [331].

24.10. MULTIDIMENSIONAL SYNOPSIS 517

DvByMinAvg(X, h, m)
X: bag of elements
h: hash function to [0, 1].
m: number of entries in array matrix M , m = 2l for some l
// calculate m minima
for all x ∈ X do

a := h(x)
i := ⌊am⌋
M [i] := min(M [i], am− ⌊am⌋)

od

d̂ := m(m−1)
M [0]+...+M [m−1]

V := number of empty entries in M
if V ≤ 0.86m

then E∗ := m log(m/V)
else if V < m

then E∗ := mf−a(d̂/m)
else

E∗ := d̂
return E∗

Figure 24.24: DvByMinAvg

24.9.8 Pointers to the Literature

A general introduction and an overview is contained in [210]. A recent evalu-
ation of different sketches can be found in [406]. Gelenbe and Gardy discuss a
direct estimation approach to estimate the size of a projection [325] (see also
the simple profile). In another paper, they do so in the presence of functional
dependencies [324], which is an issue also investigated by Richard [730]. Ora-
cle’s approatch to counting distinct values is described in [137]. Beyer, Haas,
Reinwald, Sismanis, Gemulla show how to augment DvByKMinVal sketches with
counters such that sketches for different bags can be combined such that esti-
mates for unions/intersections/difference of these bags can be derived [84]. It
is left as an exercise to the reader to show that any of the algorithms present-
ed here can be used to efficiently estimate the number of distinct elements of
disjoint unions of bags. This issue is important since large relations are often
partitioned.

24.10 Multidimensional Synopsis

In the headerline we cheated a little. We only discuss 2-dimensional synopsis.
This has the advantages that on the one hand it is already sufficiently complex
but on the other hand 2-dimensional figures are still drawable. Nonetheless,
most of the approaches presented here can be elevated to more than two di-

518 CHAPTER 24. CARDINALITY AND COST ESTIMATION

DvByKMinAvg(X, h, m)
X: bag of elements
h: hash function to [0, 1].
m: number of entries in array M of buckets, m = 2l for some l
every bucket in M holds the k smallest values assigned to this bucket
// calculate m times k smallest values
for all x ∈ X do

if i−1
m ≤ h(x) ≤ 1

m
then actualize the k minima of bucket i with h(x)

od
s :=

∑m
i=1(ln(M

k[i])

d̂ := m · (Γ(k−
1
m
)

Γ(k))1 · e− s
m

return d̂

Figure 24.25: DvByKMinAvg

mensions.

24.10.1 Introductory Example

To see why correlations happen, consider a very simple example with just one
relation named Orders, which contains orders a sample company processes.
We are only interested in two attributes: orderdate (od) and shipdate (sd).
Assume every day 10 orders arrive. 5 are shipped the same day, 4 are shipped
the next day and 1 is shipped the day after. Our database contains the orders
for days 1 to 9. Thus, the cardinality of Orders is 90. The orders that are not
yet shipped contain a NULL value in shipdate. Hence, there exist 6 tuples
with null values in shipdate.

Define the frequency matrix F as

F (i, j) := |σod=i∧sd=j(Orders)|.

Then, for our example we get the frequency matrix

1 2 3 4 5 6 7 8 9

1 5 4 1 0 0 0 0 0 0
2 0 5 4 1 0 0 0 0 0
3 0 0 5 4 1 0 0 0 0
4 0 0 0 5 4 1 0 0 0
5 0 0 0 0 5 4 1 0 0
6 0 0 0 0 0 5 4 1 0
7 0 0 0 0 0 0 5 4 1
8 0 0 0 0 0 0 0 5 4
9 0 0 0 0 0 0 0 0 5

This frequency matrix is highly correlated. Let us look at the consequences.

24.10. MULTIDIMENSIONAL SYNOPSIS 519

Example 1 Assume we have a query

σod≤4∧sd≤4(Orders)

and we wish to estimate the result cardinality using the independence assump-
tion. Since the selectivity of od ≤ 4 is 40/84 and the selectivity of sd ≤ 4 is
34/84, the total selectivity under independence is 40/84 ∗ 34/84 = 0.19, and
thus an estimate of 0.19 ∗ 84 ≈ 16 for our result cardinality. The true result
cardinality is 34.

Example 2 Assume we have a query

σod≤4∧sd≥6(Orders)

and we wish to estimate the result cardinality using the independence assump-
tion. Since the selectivity of od ≤ 4 is 40/84 and the selectivity of sd ≥ 6 is
40/84, we get that the total selectivity is 40/84 ∗ 40/84 = 0.23, and thus an
estimate of 0.23 ∗ 84 = 19 for our result cardinality. The true result cardinality
is 1.

Two dimensional synopses are meant to avoid these inaccuracies.

24.10.2 Solving the Introductory Problem without 2-Dimensional
Synopsis

For the example above, a special solution exploiting one dimensional histograms
exists. Instead of building a two-dimensional histogram on the attributes od

and sd, we build a one-dimensional histogram on the difference (sd− od). The
exact histogram for the introductory example looks as follows:

(sd− od) frequency

0 45
1 32
2 7

To see why this is a useful statistics to calculate estimates for the result sizes
of our example queries, consider the general case of a conjunction of two range
predicates

(c1 ≤ A ≤ c2) ∧ (d1 ≤ B ≤ d2) (24.35)

on attributes A and B. This predicate implies

A−B ≤ c2 − d1
B −A ≤ d2 − c1

which is equivalent to

A−B ≥ c1 − d2
A−B ≤ c2 − d1

520 CHAPTER 24. CARDINALITY AND COST ESTIMATION

and thus
(c1 − d2) ≤ (A−B) ≤ (c2 − d1). (24.36)

Using the one-dimensional histogram, we can derive an estimate for the selec-
tivity of Eq. 24.36. Call this selectivity s(Eq.24.36). Additionally, denote by
s(c1 ≤ A ≤ c2) and s(d1 ≤ B ≤ c2) the selectivities of the two range predi-
cates. Under the independence assumption, we would calculate the selectivity
of Eq.24.35 as

s(Eq.24.35) = s(c1 ≤ A ≤ c2) ∗ s(d1 ≤ B ≤ c2),

which results in the problems illustrated by the introductory example. Now,
let us take the minimum of the two terms and multiply it with the selectivity
of the predicate in Eq. 24.36. Thus, the estimate for the conjunct in Eq.24.35
becomes

s(Eq.24.35) = min(s(c1 ≤ A ≤ c2), s(d1 ≤ B ≤ c2)) ∗ s(Eq.24.36).

Let us see how this works for our example queries. In order to determine
s(od ≤ 4∧sd ≤ 4), we have to determine the selectivities of the single predicates,
which are s(od ≤ 4) = 40/84 and s(sd ≤ 4) = 34/84. Instantiating Eq.24.36
with c1 = d1 = 0 and c2 = d2 = 4 gives us −4 ≤ (sd − od) ≤ 4. Thus, all
tuples qualify and the selectivity of this predicate is 1. Hence, we derive the
cardinality estimate

min(40/84, 34/84) ∗ 1 ∗ 84 = 34,

which is accidentally perfect. Now consider the predicate (od ≤ 4 ∧ sd ≥ 6).
The selectivity of (sd ≥ 6) is 40/84. The selectivity of 2 ≤ (sd − od) ≤ 4 is
7/84. Thus, the cardinality estimate is

min(40/84, 40/84) ∗ 7/84 ∗ 84 = 3,

which is closer to the truth than the estimate produced under independence.

24.10.3 Statistical Views

The above histogram is easily created, since both attributes come from the same
relation. In reality, things can be a little more complex. Consider for example
the following query against the TPC-H schema:

SELECT count(*)

FROM Lineitem l, Orders o

WHERE o.orderdate >= 1995.03.01 AND

l.shipdate <= 1995.03.07 AND

l.orderno = o.orderno

Here, the two date attributes come from different relations. The solution to this
problem is rather simple: define a statistical view. Although the exact syntax
may differ, it is simply a view definition as in

24.10. MULTIDIMENSIONAL SYNOPSIS 521

[1, 3]
30

[4, 6]
30

[7, 9]
24

, ,

[1, 2]
14

[3, 5]
16

, [4, 5]
14

[6, 8]
16

, [7, 8]
14

[9, 9]
10

,

od

sd

Figure 24.26: Example for Equi-Depth Tree

CREATE STATISTICAL VIEW statview_lo_date AS

SELECT o.shipdate - o.orderdate

FROM Lineitem l, Orders o

WHERE l.orderno = o.orderno

together with some specification what kind of synopsis should be created on
the projected attributes. If more than a single attribute is projected, any of the
following multi-dimensional synopsis can be used. One major advantage of this
approach is that is covers the correlations introduced by the join predicate.

24.10.4 Regular Partitioning: equi-width

[603]

[1, 3] [4, 6] [7, 9]

[1, 3] 24 6 0
[4, 6] 0 24 6
[7, 9] 0 0 24

24.10.5 Equi-Depth Histogram

[634]

24.10.6 2-Dimensional Synopsis based on SVD

24.10.7 PHASED

24.10.8 MHIST

24.10.9 GENHIST

24.10.10 HiRed

24.10.11 VI Histograms

24.10.12 Grid Trees

24.10.13 More

STHoles to organize query feedback.

522 CHAPTER 24. CARDINALITY AND COST ESTIMATION

24.11 Iterative Selectivity Combination

In this approach, independence is assumed and selectivities are simply multi-
plied. There is only one minor complication. Consider the query

select *
from R, S, T
where R.A = S.B and S.B = T.C

The query compiler uses transitivity to derive more predicates to increase the
search space and make it more indendent of the actual query formulation chosen
by the user (Sec. 11.2.2). Thus, the query is rewritten to

select *
from R, S, T
where R.A = S.B and S.B = T.C and R.A = T.C

and all of {R.A, S.B, T.C} are within the same equivalence class. All of the
three equality predicates have an associated selectivity. However, after two of
the predicates have been applied and their selectivities have been multiplied, the
third predicate is implied by the other two and, accordingly its selectivity should
not be used. This can easily be prevented by using a union find datastructure
[209] associated with each plan class. It contains only those variables that
contain in equivalence classes with cardinality greater than two. Initially, each
of these variables is in its own class. Then, whenever an equality predicate
is about to be applied, we check whether the two variables on the left and
right are already in the same equivalence class. If so, we ignore the predicate.
Otherwise, we apply the predicate and union the two equivalence classes of the
variables. There remains only one open question. Assume the plan generator
has generated the partial plan RBR.A=S.BS. Then, there are two predicates left
to join T : S.B = T.C and R.A = T.C. For this case, where several predicates
that can be applied, Swami and Schiefer [864] showed that the following rule
(called LS) is the correct way to do it:

”Given a choice of join selectivities for a single equivalence class,
always pick the largest join selectivity.

Thus, to make things more efficient, we sort the equality predicates whose vari-
ables belong to equivalence classes with more than two elements by decreasing
selectivity. Then, we can proceed as indicated above.

24.12 Maximum Entropy

[589, 590]

(useless) theoretical discussions: [480, 721, 722]

24.13. SELECTED ISSUES 523

level 2

level 1

level 0

Figure 24.27: Sample B+-Tree

24.13 Selected Issues

24.13.1 Exploiting and Augmenting Existing DBMS Data Struc-
tures

Index Structures

Assume we have an attribute A of some relation R and a B+- or B∗-Tree on A.
The goal of this subsection is to show that we can use as simple procedure to
produce a cardinality estimate for a given range query A ∈ Iq, where Iq = [a, b]
is some query intervall.

Let us start with some notation. Denote a node in the B+-Tree by N. We
assign a level to every node in the B+-Tree, increasing level numbers from leaf
nodes up to the root whereby we start with level 0 for the leaf nodes (see
Fig. 24.27). By N, we denote an arbitrary node in the B+-Tree. An arbitrary
node at level l is denoted by N[l]. By N[l].I[j] we denote the j-th interval within
which all tuples R fall and by N[l].S[j] we denote the correspond child (subtree
root). For an interval I = [a, b], we denote by len(I) := b− a its length.

Roughly, there are two alternatives. In the first alternative, we maintain as
little extra information in the or about the B-tree as possible. In the second
alternative, we can maintain counters N[l].C to remember the number of ele-
ments in the subtree. The resulting enhanced B+-Tree is called a ranked tree
[32]. Reading out these counters for a given query and producing an estimate
is rather simple and we will not detail on it here. However, maintaining these
counters may not always be affordable in a transactional system. Thus, we
concentrate on the first approach.

The leaf nodes store either tuples (e.g., for an index only table) or tuple
identifiers (TIDs). In either case, there is a certain number of tuples stored
in every leaf node. For indices on non-key attributes, and values with high
frequency, overflow pages may exist. We ignore this fact by simply assuming
that we are given the minimum and the maximum number of (referenced) tuples
in a leaf page (possibly including overflow pages. We denote these numbers by
min[0] and max[0]. Similarily, we denote the minimum and maximum fanout at
level l > 0 by min[i] and max[i]. For fixed length keys, the B+-Trees guarantee

that these two numbers are at most a factor of two apart, i.e., ||min[i]
max[i] ||Q ≤ 2

and that these numbers are the same at all internal nodes except the root node.

524 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Further, these numbers can be derived from the sizes of the nodes, keys, and
page pointers. For B+-Trees on attributes with domains of variable size (e.g.,
varchar), these numbers have to be maintained explicitly or estimates have to
be produced. The same is true for the min[0] and max[0] values of the leaf
nodes. Let us first assume that the min[i] and max[i] values are given. This
then results in pseudo-ranked trees [32].

For the true number of tuples f [0] in a leaf node min[0] ≤ f [0] ≤ max[0]
holds. For an arbitrary node N[1] at level 1 the number of tuples f [1] in any
of its subtrees j satisfies min[0] ∗min[1] ≤ f [1] ≤ max[0] ∗max[1]. In general,
for an arbitrary non-root node at level l, the number of tuples f [l] stored in its
subtree satisfies

∏l
i=1min[l] ≤ f [l] ≤ ∏l

i=1max[i]. Denote by MIN[l] the first
product and by MAX[l] the second. Then, the most accurate estimate we can
return is

q-middle(MIN[i],MAX[i])

with a maximal q-error of
√
(2l) if ||min[i]

max[i] ||Q ≤ 2 holds at all levels including
the leaf node level.

Given a node N[l, k] at an arbitrary level l > 0 with J child nodes, we can
estimate its contribution to a range query with query interval Iq as in

J∑

j=1

len(Iq ∩ N[l, k].I[j])
len(N[l, k].I[j])

q-middle(MIN[l],MAX[l]).

This procedure can now be applied to the root node only, However, it maybe
beneficial to descend into child nodes for better estimates. This is especially
true for those child nodes, that are not fully contained in the query interval.
Thus, the questions arise (1) which nodes to descend and (2) when to stop.
Several traversal strategies have been defined (see [36]).

This is not too bad, but there are certain problems. As indicated above,
variable length keys and overflow pages due to high skew result in certain prob-
lems. Concerning the former problem. One possibility to overcome the former
problem is to explicitly maintain the minimal and maximal fanout for each lev-
el. If this is too expensive, we could maintain the number of nodes n[l] at every
level l and use this to calculate the average fanout at level l as n[l + 1]/n[l]
and use this number instead of the minmal and maximal fanout. Definitely, we
loose any error bounds in this case. Consider the latter problem. The simplest
solution is to maintain the number of leaf nodes explicitly and to derive an
average number avg[0] of tuples in the leaf nodes, which is then used instead of
min[0] and max[0]. Obviously, we lose precision, which can only be restored by
maintaing explicit cardinality counters.

Dictionaries

Introduction Many main memory database management systems designed
for OLAP are column stores. Further, they often use ordered dictionaries to
facilitate compression of columns. Two commercial systems following these
lines are Hana [?], DB2 Blue [?] SQL Server [?].

24.13. SELECTED ISSUES 525

Let A be an attribute of some relation R. Assume that the active domain
DA = {x1, . . . , xn} with xi < xj if i < j. A dictionary then comprises two
mappings:

1. a mapping of i to xi and

2. a mapping from xi to i.

We call the i dictionary indexes and the xi dictionary values. No matter
whether the domain of A is discrete or continous, the dictionary indexes are
positive integers. In a column store, the column for A then contains the (com-
pressed) dictionary indexes of the original values.

If the dictionary is ordered, a range query

Q := σlq≤A≤uq(R) (24.37)

with values lq and uq can be mapped to a range query on dictionary indexes.
Depending on the use of ≤ vs. <, the lower and upper query bounds are mapped
to lower (lidx) and upper (uidx) bounds on dictionary indexes as follows:

lq ≤ A → lidx := max({i|xi ≥ lq})
lq < A → lidx := max({i|xi > lq})
A ≤ uq → uidx := min({i|xi ≤ uq})
A < uq → uidx := min({i|xi < uq})

Any range query (open or half-open or open) is then mapped to the closed
range query

Qidx := σlidx≤A≤uidx
(R). (24.38)

The mapping itself can be carried out by rather efficiently by a binary search
within the dictionary.

Since Q and Qidx are equivalent, estimation problems can now be carried
out on Qidx. This task is simplified by the very structure of a dictionary.

Distinct Values Since the dictionary is typically dense, that is no values that
do not occur in the active domain are stored, the number of distinct values of
A in Q can be calculated exactly:

|ΠD
A (σlidx≤A≤uidx

(R))| = uidx − lidx + 1. (24.39)

Cardinality Assume that every dictionary value xi occurs with frequency fi.
Then, we have

|ΠA(σlidx≤A≤uidx
(R))| =

uidx∑

i=lidx

fi. (24.40)

This requires that the fi (4 bytes) are stored for every dictionary entry.
At the expense of CPU time, we can use q-compression on the fi to diminish
memory consumption to one byte per dictionary entry. Thereby, we can be
very precise, since, e.g., 1.1255 ≈ 36 ∗ 109.

526 CHAPTER 24. CARDINALITY AND COST ESTIMATION

If I := (uidx − lidx + 1) is small, the above summation yields acceptable
performance. Assume, that we are willing to add 2δ frequencies. (If δ = 50,
this means we are willing to add 100 frequencies.) If I > 2δ, we have to rely
on alternative mechanisms. We have several options. Among the most obvious
are:

• build a tree-like structure with fan out δ and height ⌈logδ(n)⌉, where n is
the number of dictionary entries, or

• build some kind of histogram on the dictionary index, where, within every
bucket, we have to be precise only for ranges comprising more than δ
values (see Sec. 24.8.3).

24.13.2 Sampling

[210]

24.13.3 Query Feedback

24.13.4 Combining Data Summaries with Sampling

24.13.5 Wavelets

24.13.6 Selectivity of String-Valued Attributes

24.14 Cost Functions

24.14.1 Disk-based Joins

24.14.2 Main Memory Joins

24.14.3 Additional Pointers to the Literature

[963] bit-valued attributes, top-k queries.
[227] Cardinality estimation at the calculus level.
[177] Estimating Block Transfers and Join Sizes
[178] parametric: Pearson Type 2 and 7 for symmetric, unimodal distribu-

tions.
[274] Inverted files, multiple regression for Zipf distributions.
[275] also gives details cost model for inverted file retrieval.
[479] models relations as arrays of bits. Defines similarity function between

bitmaps, lusters homogeneous rectangles using a pyramidal scheme.
[583] overview article summarizing the eighties up to 1986.
[318] uses generating functions.
[54] overview article (New Jersey data reduction report), several techniques.
[447] Overvies article, several techniques.
[699] application of histograms to load balancing for parallel joins.
[698] M-dimension Histograms (MHIST)
[461] optimal histograms with quality guarantees: minimum error under

given space, minimal space under given maximal error, construction algo: O(n2)
if n is the number of distinct values contained in the histogram

24.14. COST FUNCTIONS 527

[313] cost model for parallel query optimization
[513] application of SVD to time series data
[508] piecewise approximation, rough, with linear functions
[96] kernel estimators
[448] applies histograms to approximate query answers.
[516] optimal histograms for hierarchical range queries (OLAP)
[245] split and merge buckets to capture changes in variance (gives dynamic

v-optimal histograms (DVO histograms)
[110, 111] STHoles multidimension histograms constructed from query feed-

back
[460] constructs many histograms at once to meet global storage bounds.

this allows to give more memory to histograms for more skewed (less easy
approximatable) attributes

[376] histograms for data streams
[374] discovery and application of check constraints
[332] exploiting soft constraints
[377] fast algorithm for histogram construction for hierarchical range queries

(OLAP)
[874] dynamic multidimensional histograms (for data streams)
[117] 4byte encoding of 4-level tree to allow refinement estimates within a

histogram bucket. (very nice idea)
[509] automatic tuning of data synopsis
[115] uses N-Level Tree Histograms (again bit encodings) to estimate range

queries
[442, 443, 441] automatic relationship discovery: correlations and soft func-

tional dependencies
[965] HASE: combines synopses-based selectivity estimation with sampling-

based sel. est.
[30] fast comp. of approx. statistics
[262] just-in-time statistics (todo)
[642] approximation of CDF with splines
Teorey, Das: [870] physical database design
Spyratos: [826] operational approach, database updates, views
Yu, Luk, Siu: [963] Estimation Number of Desired Records with Respect to

a given query
Piatetsky-Shapiro [688]: Distribution Steps [635]: DDSM
Architecture of Cardinality and Cost Estimation: Parameter systems [730];

[582]

528 CHAPTER 24. CARDINALITY AND COST ESTIMATION

Part V

Implementation

529

Chapter 25

Architecture of a Query
Compiler

25.1 Compilation process

25.2 Architecture

Figure 25.1 a path of a query through the optimizer. For every step, a single
component is responsible. Providing a facade for the components results in the
overall architecture (Fig. 25.2). Every component is reentrant and stateless.
The information necessary for a component to process a query is passed via
references to control blocks. Control blocks are discussed next, then we discuss
memory management. Subsequent sections describe the components in some
detail.

25.3 Control Blocks

It is very convenient to have a hierarchy of control blocks within the optimizer.
Figure 25.3 shows some of the control blocks. For simplification, those blocks
concerned with session handling and transaction handling are omitted. Every
routine call within the optimizer has a control block pointer as a parameter.
The routines belonging to a specific phase have a pointer to the phase’ specific
control block as a parameter. For example, the routines in NFST have a NFST CB

pointer as a parameter. We now discuss the purpose of the different control
blocks.

The global control block governs the behavior of the query compiler. It
contains boolean variables indicating which phases to perform and which phases
of the compilation process are to be traced. It also contains indicators for the
individual phases. For example, for the first rewrite phase it contains indicators
which rules to apply, which rules to trace and so on. These control indicators
are manipulated by the driver which also allows to step through the different
phases. This is very important for debugging purposes. Besides this overall
control of the query compilers behavior, the global control block also contains

531

532 CHAPTER 25. ARCHITECTURE OF A QUERY COMPILER

parsing

nfst

rewrite I

plan generation

rewrite II

code generation

abstract syntax tree

internal representation

internal representation

internal representation

internal representation

execution plan

query

query

optimizer

CTS

Figure 25.1: The compilation process

a pointer to the schema cache. The schema cache itself allows to look up type
names, relations, extensions, indexes, and so on.

The query control block contains all the information gathered for the current
query so far. It contains the abstract syntax tree, after its construction, the
analyzed and translated query after NFST has been applied, the rewritten plan

25.4. MEMORY MANAGEMENT 533

after the Rewrite I phase, and so on. It also contains a link to the memory
manager that manages memory for this specific query. After the control block
for a query is created, the memory manager is initialized. During the destructor
call, the memory manager is destroyed and memory released.

Some components need helpers. These are also associated with the control
blocks. We discuss them together with the components.

25.4 Memory Management

There are three approaches to memory management in query optimizers. The
first approach is to use an automatic garbage collector if the language provides
one. This is not necessarily the most efficient approach but by far the most
convenient one. This approach can be imitated by an implementation based on
smart pointers. I would not recommend doing so since the treatment of cycles
can be quite tricky and it is inefficient. Another approach would be to collect all
references to newly created objects and release these after the query has been
processed. This approach is easy to implement, very convenient (transparent to
the implementor), but inefficient. A better approach is to allocate bigger areas
of memory by a memory manager. Factories1 then use these memory chunks to
generate objects as necessary. After the query has been processed, the chunks
are freed.

Here, we consider only memory whose duration lasts for the processing of a
single query. In general, we have more kinds of memory whose validity conforms
to sessions and transactions.

25.5 Tracing and Plan Visualization

25.6 Driver

25.7 Bibliography

1Design pattern.

534 CHAPTER 25. ARCHITECTURE OF A QUERY COMPILER

PlanGenerator

run(PlanGenerator_CB*)

Rewrite_I

run(Rewrite_I_CB*)

Rewrite_II

run(Rewrite_II_CB*)

CodeGenerator

run(CodeGenerator_CB*)

NFST

run(NFST_CB*)

QueryCompilerParser

parse(Query_CB*)

11..* 11..*

Scanner

Singleton,
Facade

Figure 25.2: Class Architecture of the Query Compiler

25.7. BIBLIOGRAPHY 535

SchemaCache

Global_CB Rewrite_I_CB

Rewrite_II_CB

Factorizer

BlockHandler

NFST_CB

MemoryManager

BitMapHandlerPlanGenerator_CBQuery_CB

RegisterManager

CodeGenerator_CB OperatorFactory

OpCodeMapper

Figure 25.3: Control Block Structure

536 CHAPTER 25. ARCHITECTURE OF A QUERY COMPILER

Chapter 26

Internal Representations

26.1 Requirements

easy access to information

query representation: overall design goal: methods/functions with semantic
meaning, not only syntactic meaning.

relationships: consumer/producer (occurrance) precedence order informa-
tion equivalence of expressions (transitivity of equality) see also expr.h fuer
andere funktionen/beziehungen die gebraucht werden

2-ebenen repraesentation. 2. ebene materialisiert einige beziehungen und
funktionen, die haeufig gebraucht werden und kompliziert zu berechnen sind an-
derer grund fuer materialisierung: vermeide zuviele geschachtelte forschleifen.
bsp: keycheck: gegeben eine menge von attributen und eine menge von schlues-
seln, ist die menge ein schluessel? teste jeden schluessel, kommt jedes element
in schluessel in menge von attributen vor? (schon drei schleifen!!!)

modellierungsdetail: ein grosser struct mit dicken case oder feine klassen-
hierarchie. wann splitten: nur wenn innerhalb des optimierers verschiedene
abarbeitung erfordert.

Representation: info captured: 1) 1st class information (information ob-
vious in original query+(standard)semantic analysis) 2) 2nd class information
(derived information) 3) historic information (during query optimization itself)
- modified (original expression, modifier) - copied (original expression, copi-
er) 4) information about the expression itselt: (e.g.: is function call, is select)
5) specific representations for specific purposes (optimization algorithms, code
generation, semantic analysis) beziehungen zwischen diesen repraesentationen

info captured for 1) different parts of the optimizer

syntactic/semantic information

garbage collection: 1) manually 2) automatic 3) semi-automatic (collect
references, free at end of query)

26.2 Algebraic Representations

relational algebra in: [197].

537

538 CHAPTER 26. INTERNAL REPRESENTATIONS

26.2.1 Graph Representations

26.2.2 Query Graph

also called object graph: [79, 962]

26.2.3 Operator Graph

used in: [823], [957]

enhanced to represent physical properties: [739]

with outerjoins: [736], [309]

graph representation and equivalence to calculus: [661]

26.3 Query Graph Model (QGM)

26.4 Classification of Predicates

klassifikation von praedikaten

• nach stelligkeit,wertigkeit (selektion, join, nasty)

• nach funktor(=,¡,..., between, oder boolsche funktion)

• nach funktion: fuer keys in index: start/stop/range/exact/enum range(in-
predicate)

• nach sel-wert: simple (col = const), komplex (col = expr) cheap/expensive

• nach join wert: fuer hj, smj, hbnlj,...

• korrelationspraedikate

26.5 Treatment of Distinct

26.6 Query Analysis and Materialization of Analysis
Results

Questions:

1. was materialisieren wir

2. was packen wir in die 1. repraesentation?

• bsp: properties: zeiger auf property oder besser inline properties

• bsp: unique number: entweder in expr oder getrennter dictionary
struktur

26.7. QUERY AND PLAN PROPERTIES 539

query analysis (purpose, determine optimization algorithm)

#input relations, #predicates, #ex-quantifiers, #all-quantifiers,

#conjunctions, #disjunctions, #joingraphkind(star,chain,tree,cyclic)

#strongly-connected-components (for crossproduct indication)

#false aggregates in projection list clause (implies grouping required)

/* remark: typical query optimizes should at least have two algorithms:

- exhaustive (for large queries)

- heuristic (for small queries)

*/

for blocks: indicator whether they should produce a null-tuple, in case they
do not produce any tuple. this is nice for some rewrite rules. other possibility:
if-statement in algebra.

26.7 Query and Plan Properties

Logical and Physical Properties of Plans
Ausführungsplänen können eine Reihe von Eigenschaften zugeordnet wer-

den. Diese Eigenschaften fallen in drei Klassen

1. logische Eigenschaften, also beispielsweise

(a) beinhaltete Relationen

(b) beinhaltete Attribute

(c) angewendete Prädikate

2. physische Eigenschaften, also beispielsweise

(a) Ordnung der Tupel

(b) Strom oder Materialisierung des Ergebnisses

(c) Materialisierung im Hauptspeicher oder Hintergrundspeicher

(d) Zugriffspfade auf das Ergebnis

(e) Rechnerknoten des Ergebnis (im verteilten Fall)

(f) Kompression

3. quantitative Eigenschaften, also beispielsweise

(a) Anzahl der Elemente im Ergebnis

(b) Größe des Ergebnisses oder eines Ergebniselementes

(c) Auswertungskosten aufgeschlüsselt nach I/O, CPU und Kommunika-
tionskosten

kosten: diese sind zu berechnen und dienen als grundlage fuer die planbe-
wertung ges-kosten /* gesamt kosten (ressourcenverbrauch) */ ges-kosten +=
cpu-instr / inst/sek ges-kosten += seek-kosten * overhead (waiting/cpu) ges-
kosten += i/o-kosten * io-weight cpu-kosten /* reine cpu-kosten */ i/o-kosten
/* hintergrundspeicherzugriff (warten auf platte + cpu fuer seitenzugriffe) */

540 CHAPTER 26. INTERNAL REPRESENTATIONS

com-kosten /* kommunikation */ com-init /* initialisierungskosten fuer kom-
munikationsvorgang */ com-exit /* exitkosten fuer kommunikationsvorgang */
com-cptu /* kosten fuer jede transfereinheit (z.b. byte) waehrend eines kom-
munikationsvorgangs */

kostenstruktur koennte etwas sein, dass ges/cpu/io kosten enthaelt. ausser-
dem waeren kosten fuer rescanning interessant, falls dies notwendig ist (puffer-
probleme, indexscan und dann faellt seite raus) weiteres interessantes kosten-
mass sind die kosten, bis das erste tupel berechnet wird.

dies sind die konstanten, die system-abhaengig sind. am besten sind, sie wer-
den gemessen. Hardware: #cpu-instruktionen pro sekunde #cpu-instruktionen
fuer block zugriff/transfer lesen/schreiben #cpu-instruktionen pro transfer init/send/exit
init/receive/exit ms fuer seek/latency/transfer pro nK block

RTS-kosten #cpu-instruktionen fuer open/next/close fuer scan operatoren
unter verschiedenen voraussetzungen:mit/ohne praedikat, mit/ohne projektion
(entsprechend den avm programmen) #cpu-instruktionen fuer open/next/close
fuer jeden alg operator, #cpu-instruktionen fuer funktionen/operationen/praedikate/avm-
befehle

statistics: first/large physical page of a relation number of pages of a relation
-¿ to estimate scan cost measured sequential scan cost (no interference/plenty
interference)

–properties:

• menge der quns

• menge der attribute

• menge der praedikate

• ordnung

• boolean properties

• globale menge der gepipelineten quns

• kostenvektor

• cardinalitaeten bewiesen/geschaetzt

• gewuenschter puffer

• schluessel, fds

• #seiten, die durch ein fetch gelesen werden sollen

• menge der objekte, von denen der plan (der ja teilplan sein kann) abhaengt

• eigenschaften fuer parallele plaene

• eigenschaften fuer smp plaene

26.8. CONVERSION TO THE INTERNAL REPRESENTATION 541

das folgende ist alles blabla. aber es weisst auf den punkt hin,

das in dieser beziehung etwas getan werden muss.

--index: determine degree of clustering

- lese_rate = #gelesene_seiten / seiten_fuer_relation

ein praedikate erniedrigt die lesen_rate, ein erneutes lesen aufgrund einer verdraengung im puffer erhoeht die lese_rate

falls TIDs sortiert werden, muss fetch_ration erneut berechnet werden

- seiten koennen in gruppen z.b. auf einem zylinder zusammengefasst werden

und mit einem prefetch befehl geholt werden. anzahl seeks abschaetzen

- cluster_ration(CR)

CR = P(read(t) ohne page read) = (card - anzahl pagefetch)/card

= (card - (#pagefetch - #page))/card

das ist besonderer quark

- cluster_factor(CF)

CF = P(avoid unnecessary pagefetch) = (pagefetch/maxpagefetch)

= card -#fetch / card - #pageinrel

das ist besonderer quark

index retrieval on full key => beide faktoren auf 100% setzen, da

innerhalb eines index die TIDs pro key-eintrag sortiert werden.

Speicherung von Properties unter dynamischem Programmieren und Mem-
oization: Kosten und andere Eigenschaften, die nicht vom Plan abhängen,
können pro Planklasse gespeichert werden und brauchen nicht pro Plan gespe-
ichert zu werden.

26.8 Conversion to the Internal Representation

26.8.1 Preprocessing

26.8.2 Translation into the Internal Representation

26.9 Bibliography

542 CHAPTER 26. INTERNAL REPRESENTATIONS

Chapter 27

Details on the Phases of
Query Compilation

27.1 Parsing

Lexical analysis is pretty much the same as for traditional compilers. However,
it is convenient to treat keywords as soft. This allows for example for relation
names like order which is a keyword in SQL. This might be very convenient for
users since SQL has plenty (several hundreds) of keywords. For some keywords
like select there is less danger of it being a relation name. A solution for group
and order would be to lex them as a single token together with the following
by .

Parsing again is very similar to parsing in compiler construction. For both,
lexing and parsing, generators can be used to generate these components. The
parser specification of SQL is quite lengthy while the one for OQL is pretty
compact. In both cases, a LALR(2) grammar suffices. The outcome of the
parser should be an abstract syntax tree. Again the data structure for abstract
syntax trees (ast) as well as operations to deal with them (allocation, deletion,
traversal) can be generated from an according ast specification.

During parsing already some of the basic rewriting techniques can be ap-
plied. For example, between can be eliminated.

In BD II, there are currently four parsers (for SQL, OQL, NQL (a clean
version of XQuery), XQuery). The driver allows to step through the query
compiler and allows to influence its overall behavior. For example, several trace
levels can be switched on and off while within the driver. Single rewrites can
be enabled and disabled. Further, the driver allows to switch to a different
query language. This is quite convenient for debugging purposes. We used the
Cocktail tools to generate the lexer, parser, ast, and NFST component.

27.2 Semantic Analysis, Normalization, Factoriza-
tion, Constant Folding, and Translation

The NFST component performs (at least) four different tasks:

543

544CHAPTER 27. DETAILS ON THE PHASES OF QUERY COMPILATION

/

IU:salary IU:budget 100

*

Figure 27.1: Expression

1. normalization of expressions,

2. factorization of common subexpressions,

3. semantic analysis, and

4. translation into the internal algebra-based query representation.

Although these are different tasks, a single pass over the abstract syntax tree
suffices to perform all these tasks in one step.

Consider the following example query:

select e.name, (d.salary / d.budget) * 100
from Employee e, Department d
where e.salary > 100000 and e.dno = d.dno

The internal representation of the expression (d.salary / d.budget) * 100 in the
query is shown in Fig. 27.1. It contains two operator nodes for the operations
“∗” and “/”. At the bottom, we find IU nodes. IU stands for Information
Unit. A single IU corresponds to a variable that can be bound to a value.
Sample IUs are attributes of a relation or, as we will see, intermediate results.
In the query representation, there are three IUs. The first two IUs are bound
to attribute values for the attributes salary and budget . The third IU is bound
to the constant 100.

NFST routines can be implemented using a typical compiler generator tool.
It is implemented in a rule-based language. Every rule matches a specific kind
of AST nodes and performs an action. The ast tree is processed in post order.

The hierarchy for organizing different kinds of expressions is shown in Fig 27.2.
Here is a list of useful functions:

• occurrance of expressions in another expression

27.3. NORMALIZATION 545

Expression

Constant IU DB I term Function Call Bolean Aggregat

Relation Extent Variable Attribute Access AND OR NOT

Figure 27.2: Expression hierarchy

• for a given expression: compute the set of occurring (consumed, free) IUs

• for a given expression: compute the set of produced IUs

• for a given IU, retrieve the block producing the IU

• determine whether some block returns a single value only

• computation of the transivitity of predicates, especially equality to derive
its equivalence classes.

• determine whether some expression produces a subset of another expres-
sion

• constant folding

• merge and/or (from e.g. binary to n-ary) and push not operations

• replace a certain expression by another one

• deep and shallow copy

These functions can be implemented either as member functions of expressions
or according to visitor/collector/mutator patterns. For more complex functions
(consumer/producer) we recommend the latter.

Some of these functions will be called quite frequently, e.g. the consumer/producer,
precedence ordering, equivalence (transivitity of equality) functions. So it might
be convenient to compute these relationships only once and then materialize
them. Since some transformation in the rewrite phases are quite complex, a
recomputation of these materialized functions should be possible since their
direct maintenance might be too complex.

27.3 Normalization

Fig. 27.3 shows the result after normalization. The idea of normalization is to
introduce intermediate IUs such that all operators take only IUs as arguments.
This representation is quite useful.

27.4 Factorization

Common subexpressions are factorized by replacing them with references to
some IU. For the expressions in TPCD query 1, the result is shown in Fig. 27.4.

546CHAPTER 27. DETAILS ON THE PHASES OF QUERY COMPILATION

/

IU:salary IU:budget

IU:− IU:−

100

IU:−

*

Figure 27.3: Expression

Factorization is enabled by a factorization component that takes care of all
expressions seen so far and the IUs representing these expressions. Every ex-
pression encountered by some NFST routine is passed to the factorization. The
result is a reference to an IU. This IU can be a new IU in case of a new expres-
sion, or an existing IU in case of a common subexpression. The factorization
component is available to the NFST routines via the NFST control block which
is associated with a factorization component (Fig.25.3).

27.5 Constant Folding

27.6 Semantic analysis

The main purpose of semantic analysis is to attach a type to every expres-
sion. For simple expressions it is very similar to traditional semantic analysis
in compiler construction. The only difference occurs for references to schema
constructs. The schema is persistence and references to e.g. relations or named
objects have to be looked up there. For performance reasons it is convenient
to have a schema cache in order to cache frequently used references. Another
aspect complicating semantic analysis a little is that collection types are fre-
quently used in the database context. Their incorporation is rather straight
forward but the different collection types should be handled with care.

As programming languages, query languages provide a block structure. Con-
sider for example the SQL query

. . .
select a, b, c
from A, B
where d > e and f = g

. . .

27.6. SEMANTIC ANALYSIS 547

*

IU: �

IU: � IU: �IU: �

IU: �

IU: �

IU:Extended Price IU:Discount IU:Tax

SUM SUMSUM

IU: �

IU: �

*

+-

1

Figure 27.4: Query 1

Consider the semantic analysis of d . Since SQL provides implicit name look up,
we have to check (formerly analyzed) relations A and B whether they provide
an attribute called d . If none of them provides an attribute d , then we must
check the next upper SFW-block. If at least one of the relations A or B provides
an attribute d, we just check that only one of them provides such an attribute.
Otherwise, there would be an unallowed ambiguity. The blockwise look up is
handled by block handler. For every newly encounterd block (e.g. SFW block),
a new block is opened. All identifiers analyzed within that block are pushed
into the list of identifiers for that block. In case the query language allows for
implicit name resolution, it might also be convenient to push all the attributes
of an analyzed relation into the blocks list. The lookup is then performed
blockwise. Within every block, we have to check for ambiguities. If the lookup
fails, we have to proceed looking up the identifier in the schema. The handling
of blocks and lookups is performed by the BlockHandler component attached
to the control block of the NFST component (Fig. 25.3).

548CHAPTER 27. DETAILS ON THE PHASES OF QUERY COMPILATION

Another departure from standard semantic analysis are false aggregates as
provided by SQL.

select avg(age)
from Students

I call count(age) a false aggregate since a true aggregate function operators on
a collection of values and returns a single value. Here, the situation is different.
The attribute age is of type integer. Hence, for the average function whith
signature avg : {int} −−→ int the semantic analysis would detect a typing
error. The result is that we have to treat these false aggregates as special cases.
This is (mostly) not necessary for query languages like OQL.

27.7 Translation

The translation step translates the original AST representation into an internal
representation. There are as many internal query representations as there are
query compiler. They all build on calculus expressions, operator graphs build
over some algebra, or tableaux representations [886, 887]. A very powerful
representation that also captures the subtleties of duplicate handling is the
query graph model (QGM) [689].

The representation we use here is a mixture of a typed algebra and calcu-
lus. Algebraic expressions are simple operator trees with algebraic operators
like selection, join, etc. as nodes. These operator trees must be correctly typed.
For example, we are very picky about whether a selection operator returns a
set or a bag. The expression that more resemble a calculus representation than
an algebraic expression is the SFWD block used in the internal representation.
We first clarify our notion of block within the query representation described
here and then give an example of an SFWD block. A block is everything that
produces variable bindings. For example a SFWD-block that pretty directly
corresponds to a SFW-block in SQL or OQL. Other examples of blocks are
quantifier expressions and grouping operators. A block has the following ingre-
dients:

• a list of inputs of type collection of tuples1 (labeled from)

• a set of expressions whose top is an IU (labeled define)

• a selection predicate of type bool (labeled where)

For quantifier blocks and group blocks, the list of inputs is restricted to length
one. The SFWD-block and the grouping block additionally have a projection
list (labeled select) that indicates which IUs are to be projected (i.e. passed to
subsequent operators). Blocks are typed (algebraic) expressions and can thus
be mixed with other expressions and algebraic operator trees.

An example of a SFWD-block is shown in Fig. 27.5 where dashed lines
indicate the produced-by relationship. The graph corresponds to the internal

1We use a quite general notion of tuple: a tuple is a set of variable (IU) bindings.

27.7. TRANSLATION 549

IU:e

IU: name IU: salary IU: budget

IU:d

Attr. Acces�
"budget"

Attr. Acces�
"salary"

Attr. Acces�
"name"

scan scan

select

where

define

from

key IUkey IU

Relation/Extent�
"Employee"

Relation/Extent�
"Department"

IU: �IU: � IU: � IU: �

100 100.000/

>

*

Figure 27.5: Internal representation

representation of our example query. The semantics of a SFWD-block can be
described as follows. First, take the cross product of the collections of tuples
found in the list of inputs. (If this is not possible, due to dependencies, d-joins
have to be used.) Then, for every resulting tuple, compute the bindings for all
the IUs mentioned in the define clause, apply the selection predicate and return
all the bindings for the IUs mentioned in the select clause.

Although the SFWD-block looks neat, it lacks certain information that must
be represented. This information concerns the role of the entries in the from
clause and duplicate elimination. Let us start with the latter. There are three
views relevant to duplicate processing:

1. the user view: did the user specify distinct?

2. the context view: does the occurrence or elimination of duplicates make

550CHAPTER 27. DETAILS ON THE PHASES OF QUERY COMPILATION

a difference for the query result?

3. the processing view: does the block produce duplicates?

All this information is attached to a block. This information can then be
summarized to one of three values representing

• eliminate duplicates

• preserve duplicates

• don’t care about duplicates
(The optimizer can feel free to do whatever is more efficient.)

This summary is also attached to every block. Let us illustrate this by a simple
example:

select distinct ssno
from Employee
where . . .and

exists(select . . . from . . .where)

For the inner block, the user specifies that duplicates are to be preserved. How-
ever, duplicates or not does not modify the outcome of exists. Hence, the
contextual information indicates that the outcome for the inner block is a don’t
care. The processing view can determine whether the block produces dupli-
cates. If for all the entries in the from clause, a key is projected in the select
clause, then the query does not produce duplicates. Hence, no special care has
to be taken to remove duplicates produced by the outer block if we assume that
ssno is the key of Employee.

No let us consider the annotations for the arguments in the from clause.
The query

select distinct e.name
from Employee e, Department d
where e.dno = d.dno

retrieves only Employee attributes. Such a query is most efficiently evaluated by
a semi-join. Hence, we can add a semi-join (SJ) annotation to the Department
d clause.

For queries without a distinct, the result may be wrong (e.g. in case an
employee works in several departments) since a typical semi-join just checks for
existence. A special semi-join that preserves duplicates should be used. The
according annotation is (SJ,PD). Another annotation occurs whenever an outer-
join is used. Outer joins can (in SQL) be part of the from clause. Typically
they have to be fully parenthesized since outer joins and regular joins not always
commute. But under special circumstances, they commute and hence a list of
entries in the from clause suffices [308]. Then, the entry to be preserved (the

27.7. TRANSLATION 551

outer part) should be annotated by (OJ). We use (AJ) as the anti-join annota-
tion, and (DJ) for a d-join. To complete annotation, the case of a regular join
can be annotated by (J). If the query language also supports all-quantifications,
that translate to divisions, then the annotation (D) should be supported.

Since the graphical representation of a query is quite complex, we also use
text representations of the result of the NFST phase. Consider the following
OQL query:

select distinct s.name, s.age, s.supervisor.name, s.supervisor.age
from s in Student
where s.gpa > 8 and s.supervisor.age < 30

The annotated result (without duplicate annotations) of the normalization and
factorization steps is

select distinct sn, sa, ssn, ssa
from s in Student (J)
where sg > 8 and ssa< 30
define sn = s.name

sg = s.gpa
sa = s.age
ss = s.supervisor
ssn= ss.name
ssa= ss.age

Semantic analysis just adds type information (which we never show).
In standard relational query processing multiple entries in the from clause

are translated into a cross product. This is not always possible in object-
oriented query processing. Consider the following query

select distinct s
from s in Student, c in s.courses
where c.name = “Database”

which after normalization yields

select distinct s
from s in Student, c in s.courses
where cn = “Database”
define cn = c.name

The evaluation of c in s.courses is dependend on s and cannot be evaluated if
no s is given. Hence, a cross product would not make much sense. To deal with
this situation, the d-join has been introduced [189]. It is a binary operator that
evaluates for every input tuple from its left input its right input and flattens the
result. Consider the algebraic expression given in Fig. 27.6. For every student

552CHAPTER 27. DETAILS ON THE PHASES OF QUERY COMPILATION

D-JOIN [c:s.courses]SCAN [s:student]

EXPAND [cn:c.name]

SELECT [cn=”Database”]

PROJECT [s]

Figure 27.6: An algebraic operator tree with a d-join

s from its left input, the d-join computes the set s.courses. For every course
c in s.courses an output tuple containing the original student s and a single
course c is produced. If the evaluation of the right argument of the d-join is not
dependend on the left argument, the d-join is equivalent with a cross product.
The first optimization is to replace d-joins by cross products whenever possible.

Queries with a group by clause must be translated using the unary grouping
operator GROUP which we denote by Γ. It is defined as

Γg;θA;f (e) = {y.A ◦ [g : G]|y ∈ e,
G = f({x|x ∈ e, x.Aθy.A})}

where the subscripts have the following semantics: (i) g is a new attribute
that will hold the elements of the group (ii) θA is the grouping criterion for a
sequence of comparison operators θ and a sequence of attribute names A, and
(iii) the function f will be applied to each group after it has been formed. We
often use some abbreviations. If the comparison operator θ is equal to “=”, we
don’t write it. If the function f is identity, we omit it. Hence, Γg;A abbreviates
Γg;=A;id.

Let us complete the discussion on internal query representation. We already
mentioned algebraic operators like selection and join. These are called logical
algebraic operators. There implementations are called physical algebraic opera-
tors. Typically, there exist several possible implementations for a single logical
algebraic operator. The most prominent example being the join operator with
implementations like Grace join, sort-merge join, nested-loop join etc. All the
operators can be modelled as objects. To do so, we extend the expression hi-
erarchy by an algebra hierarchy. Although not shown in Fig 27.7, the algebra
class should be a subclass of the expression class. This is not necessary for SQL
but is a requirement for more orthogonal query languages like OQL.

27.8. REWRITE I 553

Expression

AlgUnary AlgBinary AlgNary AlgScan Group SFWD�
block

Algebraic Operator

Dup�
Elim

SortUnnestSelectChiProjection AlgIfDivisionJoin AlgSetop

Union Intersection Difference

Figure 27.7: Algebra

27.8 Rewrite I

27.9 Plan Generation

27.10 Rewrite II

27.11 Code generation

In order to discuss the tasks of code generation, it is necessary to have a little
understanding of the interface to the runtime system that interpretes the exe-
cution plan. I have chosen AODB as an example runtime system since this is
one I know. The interface to AODB is defined by the AODB Virtual Machine
(AVM). For simple operations, like arithmetic operations, comparisons and so
on, AVM provides assembler-like operations that are interpreted at runtime.
Simple AVM operations work on registers. A single register is able to hold the
contents of exactly one IU. Additionally, AVM provides physical algebraic oper-
ators. These operators take AVM programs (possibly with algebraic operators)
as arguments. There is one specialty about AVM programs though. In order to
efficiently support factorization of common subexpressions involving arithmetic
operations (as needed in aggregations like avg, sum), arithmetic operators in
AVM can have two side effects. They are able to store the result of the opera-
tion into a register and they are able to add the result of the operation to the
contents of another register. This is denoted by the result mode. If the result
mode is A, they just add the result to some register, if it is C, they copy (store)
the result to some register, if it is B, they do both. This is explored in the code
for Query 1 of the TPC-D benchmark (Fig. 1.6).

Code generation has the following tasks. First it must map the physical op-
erators in a plan to the operators of the AVM code. This mapping is a straight
forward 1:1 mapping. Then, the code for the subscripts of the operators has
to be generated. Subscripts are for example the predicate expressions for the
selection and join operators. For grouping, several AVM programs have to be

554CHAPTER 27. DETAILS ON THE PHASES OF QUERY COMPILATION

generated. First program is the init program. It initializes the registers that
will hold the results for the aggregate functions. For example, for an average
operation, the register is initalized with 0. The advance program is executed
once for every tuple to advance the aggregate computation. For example, for
an average operations, the value of some register of the input tuple is added
to the result register holding the average. The finalize program performs post-
processing for aggregate functions. For example for the average, it devides the
sum by the number of tuples. For hash-based grouping, the last two programs
(see Fig.1.6) compute the hash value of the input register set and compare the
group-by attributes of the input registers with those of every group in the hash
bucket.

During the code generation for the subscripts factorization of common subex-
pression has to take place. Another task is register allocation and deallocation.
This task is performed by the register manager. It uses subroutines to de-
termine whether some registers are no longer needed. The register manager
must also keep track in which register some IU is stored (if at all). Another
component used during code generation is a factory that generates new AVM
operations. This factory is associated with a table driven component that maps
the operations used in the internal query representation to AVM opcodes.

27.12 Bibliography

Chapter 28

Hard-Wired Algorithms

28.1 Hard-wired Dynamic Programming

28.1.1 Introduction

Plan generation is performed block-wise. The goal is to generate a plan for
every block. Typically, not all possible plans are generated. For example, the
group operator (if necessary for the query) is mostly performed last (see also
Sec. ??). This mainly leaves ordering joins and selections as the task of plan
generation. A plan is an operator tree whose node consist of physical algebraic
operators, e.g. selection, sort-operator, sort-merge and other joins, relation and
index scans. The process of plan generation has received a lot of attention.
Often, the term query optimization is used synonymous for the plan generation
phase.

Figure 28.1 shows a plan for the block

select e.name
from Employee e, Department d
where e.dno = d.dno and d.name = “shoe”

The bottom level contains two table scans that scan the base tables Employee
and Department . Then, a selection operator is applied to restrict the depart-
ments to those named “shoe”. A nested-loop join is used to select those employ-
ees that work in the selected departments. The projection restricts the output
to the name of the employees, as required by the query block. For such a plan,
a cost function is used to estimate its cost. The goal of plan generation is to
generate the cheapest possible plan. Costing is briefly sketched in Section ??.

The foundation of plan generation are algebraic equivalences. For e, e1, e2, . . .
being algebraic expressions and p, q predicates, here are some example equiva-

555

556 CHAPTER 28. HARD-WIRED ALGORITHMS

Table Scan (Employee[e]) Table Scan (Department[d])

Select (d.name = "shoe")

NL−Join (e.dno = d.dno)

Project (e.name)

Figure 28.1: A sample execution plan

lences:

σp(σq(e)) ≡ σq(σp(e))

σp(e1 1q e2) ≡ (σp(e1)) 1q e2 if p is applicable to e1

e1 1p e2 ≡ e2 1p e1

(e1 1p e2) 1q e3 ≡ e1 1p (e2 1q e3)

e1 ∪ e2 ≡ e2 ∪ e1
(e1 ∪ e2) ∪ e3 ≡ e1 ∪ (e2 ∪ e3)

e1 ∩ e2 ≡ e2 ∩ e1
(e1 ∩ e2) ∩ e3 ≡ e1 ∩ (e2 ∩ e3)
σp(e1 ∩ e2) ≡ σp(e1) ∩ e2

For more equivalences and conditions that ought to be attached to the equiva-
lences see the appendix ??. Note that commutativity and associativity of the
join operator allow an arbitrary ordering. Since the join operator is the most
expensive operation, ordering joins is the most prominent problem in plan gen-
eration.

These equivalences are of course independent of the actual implementation
of the algebraic operators. The total number of plans equivalent to the original
query block is called the potential search space. However, not always is the
total search space considered. The set of plans equivalent to the original query
considered by the plan generator is the actual search space. Since the System R
plan generator [784], certain restrictions are applied. The most prominent are:

• Generate only plans where selections are pushed down as far as possible.

• Do not consider cross products if not absolutely necessary.

• Generate only left-deep trees.

28.1. HARD-WIRED DYNAMIC PROGRAMMING 557

R1

R3

R4

R1 R2 R3 R4

bushy tree

R2

left−deep tree

B

B

B B

B

B

Figure 28.2: Different join operator trees

• If the query block contains a grouping operation, the group operator is
performed last.

Some comments are in order. Cross products are only necessary, if the query
graph is unconnected where a query graph is defined as follows: the nodes
are the relations and the edges correspond to the predicates (boolean factors1)
found in the where clause. More precisely, the query graph is a hypergraph,
since a boolean factor may involve more than two relations. A left-deep tree is
an operator tree where the right argument of a join operator always is a base
relation. A plan with join operators whose both arguments are derived by other
join operators is called bushy tree. Figure 28.2 gives an example of a left-deep
tree and a bushy tree.

If we take all the above restrictions together, the problem boils down to
ordering the join operators or relations. This problem has been studied exten-
sively. The complexity of finding the best (according to some cost function)
ordering (operator tree) was first studied by Ibaraki and Kameda [438]. They
proved that the problem of generating optimal left-deep trees with no cross
products is NP-hard for a special block-wise nested loop join cost function.
This cost function applied in the proof is quite complex. Later is was shown
that even if the cost function is very simple, the problem remains NP-hard
[194]. The cost function (Cout) used there just adds up intermediate results
sizes. This cost function is interesting in that it is the kernel of many other cost
functions and it fulfills the ASI property of which we now the following: If the
cost function fulfills the ASI property and the query graph is acyclic, then the
problem can be solved in polynomial time [438, 520]. Ono and Lohman gave ex-
amples that considering cross products can substantially improve performance
[653]. However, generating optimal left-deep trees with cross products even
for Cout makes the problem NP-hard [194]. Generating optimal bushy trees is

1A boolean factor is a disjunction of basic predicates in a conjunctive normal form.

558 CHAPTER 28. HARD-WIRED ALGORITHMS

even harder. Even if there is no predicate, that is only cross products have
to be used, the problem is NP-hard [768]. This is surprising since generating
left-deep trees with cross products as the only operation is very simple: just
sort the relations by increasing sizes.

Given the complexity of the problem, there are only two alternatives to
generate plans: either explore the total search space or use heuristics. The
former can be quite expensive. This is the reason why the above mentioned
restrictions to the search space have traditionally been applied. The latter
approach risks missing good plans. The best-known heuristics is to join the
relation next, that results in the smallest next intermediate result. Estimating
the cardinality of such results is discussed in Section ??.

Traditionally, selections where pushed as far down as possible. However,
for expensive selection predicates (e.g. user defined predicates, those involving
user-defined functions, predicates with subqueries) this does not suffice. For
example, if a computer vision application has to compute the percentage of
snow coverage for a given set of satellite images, this is not going to be cheap. In
fact, it can be more expensive than a join operation. In these cases, pushing the
expensive selection down misses good plans. That is why lately research started
to take expensive predicates into account. However, some of the proposed
solutions do not guarantee to find the optimal plans. Some approaches and their
bugs are discussed in [156, 415, 413, 767, 769]. Although we will subsequently
give an algorithm that incorporates correct predicate placement, not all plan
generators do so. An alternative approach (though less good) is to pull-up
expensive predicates in the Rewrite-II-phase.

There are several approaches to explore the search space. The original ap-
proach is to use dynamic programming [784]. The dynamic programming algo-
rithm is typically hard-coded. Figure 28.3 illustrates the principle of bottom-up
plan generation as applied in dynamic programming. The bottom level consists
of the original relations to be joined. The next level consists of all plans that
join a subset of cardiniality two of the original relations. The next level con-
tains all plans for subsets of cardinality three, and so on. With the advent
of new query optimization techniques, new data models, extensible database
systems, researchers where no longer satisfied with the hard-wired approach.
Instead, they aimed for rule-based plan generation. There exist two differ-
ent approaches for rule-based query optimizers. In the first approach, the al-
gebraic equivalences that span the search space are used to transform some
initial query plan derived from the query block into alternatives. As search
strategies either exhaustive search is used or some stochastic approach such as
simulated annealing, iterative improvement, genetic algorrithms and the like
[74, 446, 452, 453, 834, 860, 859, 862]. This is the transformation-based ap-
proach. This approach is quite inefficient. Another approach is to generate
plans by rules in a bottom-up fashion. This is the generation-based approach.
In this approach, either a dynamic programming algorithm [565] is used or
memoization [360]. It is convenient to classify the rules used into logical and
physical rules. The logical rules directly reflect the algebraic equivalences. The
physical rules or implementation rules transform a logical algebraic operator
into a physical algebraic operator. For example, a join-node becomes a nested-

28.1. HARD-WIRED DYNAMIC PROGRAMMING 559

R1 R2 R3

R12 R23R13

R123R123R123 <== 2 alternatives pruned

<== input relations

<== first set of partial plans generated

Figure 28.3: Bottom up plan generation

loop join node.

28.1.2 A plan generator for bushy trees

Within the brief discussion in the last subsection, we enumerated plans such
that first all 1-relation plans are generated, then all 2-relation plans and so on.
This enumeration order is not the most efficient one. Let us consider the simple
problem where we have to generate exactly one best plan for the subsets of the
n element set of relations to be joined. The empty subset is not meaningful,
leaving the number of subsets to be investigated at 2n − 1. Enumerating these
subsets can be done most efficient by enumerating them in counting order . That
is, we initialize a n bit counter with 1 and count until have reached 2n−1. The
n bits represent the subsets. Note that with this enumeration order, plans are
still generated bottom up. For a given subset R of the relations (encoded as the
bit pattern a), we have to generate a plan from subsets of this subset (encoded
as the bit pattern s). For example, if we only want to generate left-deep trees,
then we must consider 1 element subsets and their complements. If we want
to generate bushy trees, all subsets must be considered. We can generate these
subsets by a very fast algorithm developed by Vance and Maier [898]:

s = a & -a;

while(s) {

s = a & (s - a);

process(s);

}

The meaning of process(s) depends on the kinds of plans we generate. If we
concentrate on join ordering neglecting selection operations (i.e. pushing them)
This step essentially looks up the plans for s and its complement s and then
joins the plans found there. Lookup is best implemented via an array with s as
an index.

560 CHAPTER 28. HARD-WIRED ALGORITHMS

28.1.3 A plan generator for bushy trees and expensive selec-
tions

Figure 28.4 shows the pseudocode of a dynamic programming algorithm that
generates plans with cross products, selections, and joins. It generates optimal
bushy trees. Efficient implementation technique for the algorithm can be found
in [898, 769]. As input parameters, the algorithm takes a set of relations R and
a set of predicates P . The set of relations for which a selection predicate exists
is denoted by RS . We identify relations and predicates that apply to these
relations. For all subsets Mk of the relations and subsets Pl of the predicates,
an optimal plan is constructed and entered into the table T . The loops range
over all Mk and Pl. Thereby, the set Mk is split into two disjoint subsets L
and L′, and the set Pl is split into three parts (line 7). The first part (V)
contains those predicates that apply to relations in L only. The second part
(V ′) contains those predicates that apply to relations in L′ only. The third part
(p) is a conjunction of all the join predicates connecting relations in L and L′

(line 8). Line 9 constructs a plan by joining the two plans found for the pairs
[L, V] and [L′, V ′] in the table T . If this plan has so far the best costs, it is
memoized in the table (lines 10-12). Last, different possibilities of not pushing
predicates in Pl are investigated (lines 15-19).

Another issue that complicates the application of dynamic programming are
certain properties of plans. The most prominent such properties are interesting
orders [784, 818, 819]. Take a look at the following query:

select d.no, e.name
from Employee e, Department d
where e.dno = d.dno
order by d.dno

Here, the user requests the result to be order on d.dno. Incidentally, this is also a
join attribute. During bottom up plan generation, we might think that a Grace
hash join is more efficient than a sort-merge join since the cost of sorting the
relations is too high. However, the result has to be sorted anyway so that this
sort may pay off. Hence, we have have to keep both plans. The approach is the
following. In the example, an ordering on d.dno is called an interesting order.
In general, any order that is helpful for ordering the output as requested by the
user, for a join operator, for a grouping operator, or for duplicate elimination
is called an interesting order . The dymamic programming algorithm is then
modified such that plans are not pruned, if they produce different interesting
orders.

28.1.4 A plan generator for bushy trees, expensive selections
and functions

28.2 Bibliography

28.2. BIBLIOGRAPHY 561

proc Optimal-Bushy-Tree(R,P)
1 for k = 1 to n do
2 for all k-subsets Mk of R do
3 for l = 0 to min(k,m) do
4 for all l-subsets Pl of Mk ∩RS do
5 best cost so far =∞;
6 for all subsets L of Mk with 0 < |L| < k do
7 L′ =Mk \ L, V = Pl ∩ L, V ′ = Pl ∩ L′;
8 p =

∧{pi,j | pi,j ∈ P, Ri ∈ V, Rj ∈ V ′}; // p=true might hold
9 T = (T [L, V] 1p T [L

′, V ′]);
10 if Cost(T) < best cost so far then
11 best cost so far = Cost(T);
12 T [Mk, Pl] = T ;
13 fi;
14 od;
15 for all R ∈ Pl do
16 T = σR(T [Mk, Pl \ {R}]);
17 if Cost(T) < best cost so far then
18 best cost so far = Cost(T);
19 T [Mk, Pl] = T ;
20 fi;
21 od;
22 od;
23 od;
24 od;
25 od;
26 return T [R,S];

Figure 28.4: A Dynamic Programming Optimization Algorithm

562 CHAPTER 28. HARD-WIRED ALGORITHMS

Chapter 29

Rule-Based Algorithms

29.1 Rule-based Dynamic Programming

The section is beyond the scope of the paper and the reader is refered to the
starburst papers, especially [388, 541, 540, 565, 567].

29.2 Rule-based Memoization

This section is beyond the scope of the paper and the reader is refered to
the Volcano and Cascade papers [345, 350, 356, 359, 360]. Both optimizer
frameworks derived from the earlier Exodus query optimizer generator [343,
357].

29.3 Bibliography

563

564 CHAPTER 29. RULE-BASED ALGORITHMS

Chapter 30

Example Query Compiler

30.1 Research Prototypes

30.1.1 AQUA and COLA

30.1.2 Black Dahlia II

30.1.3 Epoq

Für das objektorientierte Datenmodell Encore [969] wurde die Anfragesprache
Equal [802, 801, 803], eine objektorientierte Algebra, die die Erzeugung von Ob-
jekten erlaubt, entwickelt. Zur Optimierung von Equal-Algebra-Ausdrücken
soll der Optimierer Epoq dienen. Eine Realisierung von Epoq steht noch
aus. Konkretisiert wurden jedoch bereits der Architekturansatz [612] und die
Kontrolle der Alternativenerzeugung [611] innerhalb dieser Architektur. Einen
Gesamtüberblick gibt die Dissertation von Mitchell [610].

Der Architekturvorschlag besteht aus einer generischen Architektur, die
an einem Beispieloptimierer konkretisiert wurde [610, 611]. Die elementaren
Bausteine der Architektur sind Regionen. Sie bestehen aus einer Kontrol-
lkomponente und wiederum Regionen beziehungsweise Transformationen. Die
einfachste Region ist dabei eine Transformation/Regel, die einen Algebraaus-
druck in einen äquivalenten Algebraausdruck umformt. Jede Region selbst wird
wiederum als eine Transformation aufgefaßt. Innerhalb der Architektur werden
nun diese Regionen in einer Hierarchie oder auch einem gerichteten azyklis-
chen Graphen, organisiert. Abbildung 30.1 zeigt eine solche Beispielorganisa-
tion. Regionen selbst können bis auf die Kontrolle als Module im Sinne von
Sciore und Sieg [780] aufgefaßt werden. Sie weisen sehr ähnliche Parameter und
Schnittstellen auf. Während jedoch bei Sciore und Sieg die Kontrollstrategie
eines Moduls aus einer festen Menge von gegebenen Kontrollstrategien aus-
gewählt werden muß, kann sie hier freier spezifiziert werden.

Unabhängig davon, ob die Transformationen einer Region wiederum Regio-
nen sind oder elementare Transformationen, wird ihre Anwendung einheitlich
von der Kontrolle der Region bestimmt. Die Aufgabe dieser Kontrolle besteht
darin, eine Folge von Transformationen zu finden, die die gegebene Anfrage
in eine äquivalente überführen. Sinngebend ist hierbei ein gewisses Ziel, das
es zu erreichen gilt. Beispielsweise kann dieses Ziel lauten: Optimiere eine

565

566 CHAPTER 30. EXAMPLE QUERY COMPILER

Regionen

Globale Kontrolle

? ? ?

Kontrolle Kontrolle Kontrolle

Transformation Transformation Transformation

? ?

Kontrolle Kontrolle

Transformation Transformation

Figure 30.1: Beispiel einer Epoq-Architektur

geschachtelte Anfrage. Um dieses Ziel zu erreichen, sind zwei grobe Schritte
notwendig. Zunächst muß die Anfrage entschachtelt werden und als nächstes
die entschachtelte Anfrage optimiert werden. Man sieht sofort, daß die Folge der
Transformationen, die die Kontrolle auszuwählen hat, sowohl von den Eigen-
schaften der Anfrage selbst wie auch vom zu erfüllenden Ziel abhängt. Basierend
auf dieser Beobachtung wird die Kontrolle nicht als Suchfunktion implemen-
tiert, sondern es wird das Planungsparadigma zur Realisierung gewählt. Die
Kontrolle selbst wird mit Hilfe eines Satzes von Regeln spezifiziert, die aus
Vorbedingung und Aktion bestehen.

Da es nicht möglich ist, im Vorfeld einen Plan, also eine Sequenz von Trans-
formationen/Regionen, zu erstellen, der in garantierter Weise das Ziel erreicht,
wird erlaubt, daß die Ausführung einer Transformation/Region fehlschlägt. In
diesem Fall kann dann ein alternativer Plan erzeugt werden, der aber auf dem
bisher Erreichten aufsetzt. Hierzu werden die Regeln, die die Kontrolle spezi-
fizieren in Gruppen eingeteilt, wobei jeder Gruppe eine einheitliche Vorbedin-
gung zugeordnet ist. Zu jeder Gruppe gehört dann eine Sequenz von Aktionen,
die der Reihe nach ausprobiert werden. Schlägt eine vorangehende Aktion fehl,
so wird die nächste in der Reihe der Aktionen angewendet. Schlagen alle Ak-

30.1. RESEARCH PROTOTYPES 567

tionen fehl, so schlägt auch die Anwendung der Region fehl.

Jede Aktion selbst ist wiederum eine Sequenz von elementaren Aktionen.
Jede dieser elementaren Aktionen ist entweder die Anwendung einer elementaren
Transformation, der Aufruf einer Region oder der rekursive Aufruf des Planers
mit einem neuformulierten Ziel, dessen Teilplan dann an entsprechender Stelle
in die Aktion eingebaut wird.

Die Erweiterbarkeit dieses Ansatzes um neue Regionen scheint einfach möglich,
da die Schnittstelle der Regionen genormt ist. Probleme könnte es lediglich bei
den Kontrollstrategien geben, da nicht klar ist, ob die benutzte Regelsprache
mächtig genug ist, um alle wünschenswerten Kontrollstrategien zu verwirk-
lichen.

Die Frage, ob die einzelnen Komponenten des Optimierers, also die Re-
gionen, evaluiert werden können, ist schwierig zu beantworten. Dafür spricht
jedoch, daß jede Region in einem gewissen Kontext aufgerufen wird, also zur Er-
reichung eines bestimmten Zieles bei der Optimierung einer Anfrage mit ebenso
bestimmten Eigenschaften. Beurteilen kann man daher die Erfolgsquote einer
Region innerhalb ihrer verschiedenen Anwendungen. Da jede Region lediglich
eine Alternative erzeugen darf, aufgrund des eine Region ist eine Transforma-
tion-Paradigmas, ist schwer zu sagen, in wieweit sich die durch die beschriebene
Bewertung gewonnene Information zur Verbesserung der Regionen oder des
Gesamtoptimierers einsetzen läßt.

Da auch hier der transformierende Ansatz zugrunde liegt, treffen die bereits
diskutierten Probleme auch für den Optimierer für Straube zu.

Einen stetigen Leistungsabfall könnte man durch die Realisierung von al-
ternativen Regionen erreichen, indem man ein Ziel OptimiereSchnell einführt,
das dann entsprechend weniger sorgfältige, aber schnellere Regionen aufruft.
Vorhersagen über der Güte (bei gegebener Optimierungszeit) scheinen aber
schwerlich möglich.

30.1.4 Ereq

A primary goal of the EREQ project is to define a common architecture for the
next generation of database managers. This architecture now includes

* the query language OQL (a la ODMG), * the logical algebra AQUA (a la
Brown), and * the physical algebra OPA (a la OGI/PSU).

It also includes

* software to parse OQL into AQUA (a la Bolo)

and query optimizers:

* OPT++ (Wisconsin), * EPOQ (Brown), * Cascades (PSU/OGI), and *
Reflective Optimizer (OGI).

In order to test this architecture, we hope to conduct a ”bakeoff” in which
the four query optimizers will participate. The primary goal of this bakeoff is
to determine whether optimizers written in different contexts can accommodate
the architecture we have defined. Secondarily, we hope to collect enough per-
formance statistics to draw some conclusions about the four optimizers, which
have been written using significantly different paradigms.

568 CHAPTER 30. EXAMPLE QUERY COMPILER

Anfrage - Synt. Analyse -

Anfrage Graph

Optimierer -

Auswertungsplan

Interpreter - Antwort

C-Compiler

?

Optimierergenerator

?

Modellbeschreibung

?

Figure 30.2: Exodus Optimierer Generator

At present, OGI and PSU are testing their optimizers on the bakeoff queries.
Here is the prototype bakeoff optimizer developed at OGI. This set of Web
pages is meant to report on the current progress of their effort, and to define
the bakeoff rules. Please email your suggestions for improvement to Leo Fegaras
fegaras@cse.ogi.edu. Leo will route comments to the appropriate author.

http://www.cse.ogi.edu/DISC/projects/ereq/bakeoff/bakeoff.html

30.1.5 Exodus/Volcano/Cascade

Im Rahmen des Exodus-Projektes wurde ein Optimierergenerator entwickelt
[357]. Einen Überblick über den Exodus-Optimierergenerator gibt Abbildung 30.2.
Ein Model description file enthält alle Angaben, die für einen Optimierer nötig
sind. Da der Exodus-Optimierergenerator verschiedene Datenmodelle unter-
stützen soll, enthält dieses File zunächst einmal die Definition der verfügbaren
Operatoren und Methoden. Dabei werden mit Operatoren die Operatoren der
logischen Algebra bezeichnet und mit Methoden diejenigen der physischen Al-
gebra, also die Implementierungen der Operatoren. Das Model description file
enthält weiterhin zwei Klassen von Regeln. Transformationen basieren auf alge-
braischen Gleichungen und führen einen Operatorbaum in einen anderen über.
Implementierungsregeln wählen für einen gegebenen Operator eine Methode
aus. Beide Klassen von Regeln haben einen linken Teil, der mit einem Teil des
aktuellen Operatorgraphen übereinstimmen muß, einen rechten Teil, der den
Operatorgraphen nach Anwendung der Regel beschreibt, und eine Bedingung,
die erfüllt sein muß, damit die Regel angewendet werden kann. Während die
linke und rechte Seite der Regel als Muster angegeben werden, wird die Be-
dingung durch C-Code beschrieben. Auch für die Tranformation lassen sich
C-Routinen verwenden. In einer abschließenden Sektion des Model description
files finden sich dann die benötigten C-Routinen.

30.1. RESEARCH PROTOTYPES 569

Aus dem Model description file wird durch den Optimierergenerator ein
C-Programm erzeugt, das anschließend übersetzt und gebunden wird. Das
Ergebnis ist dann der Anfrageoptimierer, der in der herkömmlichen Art und
Weise verwendet werden kann. Es wurde ein übersetzender Ansatz für die
Regeln gewählt und kein interpretierender, da in einem von den Autoren vorher
durchgeführten Experiment sich die Regelinterpretation als zu langsam erwiesen
hat.

Die Regelabarbeitung im generierten Optimierer verwaltet eine Liste OPEN,
in der alle anwendbaren Regeln gehalten werden. Ein Auswahlmechanismus
bestimmt dann die nächste anzuwendende Regel und entfernt sie aus OPEN.
Nach deren Anwendung werden die hierdurch ermöglichten Regelanwendungen
detektiert und in OPEN vermerkt. Zur Implementierung des Auswahlmecha-
nismus werden sowohl die Kosten eines aktuellen Ausdrucks als auch eine Ab-
schätzung des Potentials einer Regel in Betracht gezogen. Diese Abschätzung
des Potentials berechnet sich aus dem Quotienten der Kosten für einen Opera-
torbaum vor und nach Regelanwendung für eine Reihe von vorher durchgeführten
Regelanwendungen. Mit Hilfe dieser beiden Angaben, den Kosten des aktuellen
Operatorgraphen, auf den die Regel angewendet werden soll, und ihres Poten-
tials können dann Abschätzungen über die Kosten des erzeugten Operator-
graphen berechnet werden. Die Suchstrategie ist Hill climbing.

Der von den Autoren vermerkte Hauptnachteil ihres Optimierergenerators,
den sie jedoch für alle transformierenden regelbasierten Optimerer geltend machen,
ist die Unmöglichkeit der Abschätzung der absoluten Güte eines Operator-
baumes und des Potentials eines Operatorbaumes im Hinblick auf zukünftige
Optimierungen. Dadurch kann niemals abgeschätzt werden, ob der optimale
Operatorbaum bereits erreicht wurde. Erst nach Generierung aller Alternativ-
en ist die Auswahl des optimalen Operatorbaumes möglich. Weiter bedauern es
die Autoren, daß es nicht möglich ist, den A∗-Algorithmus als Suchfunktion zu
verwenden, da die Abschätzung des Potentials oder der Distanz zum optimalen
Operatorgraphen nicht möglich ist.

Zumindest kritisch gegenüberstehen sollte man auch der Bewertung einzel-
ner Regeln, da diese, basierend auf algebraischen Gleichungen, von zu feiner
Granularität sind, als daß eine allgemeine Bewertung möglich wäre. Die erfol-
greiche Verwendung des Vertauschens zweier Verbundoperationen in einer An-
frage bedeutet noch lange nicht, daß diese Vertauschung auch in der nächsten
Anfrage die Kosten verringert. Die Hauptursache für die kritische Einstel-
lung gegenüber dieser recht ansprechenden Idee ist, daß eine Regelanwendung
zu wenig Information/Kontext berücksichtigt. Würde dieses Manko beseitigt,
wären Regeln also von entschieden gröberer Granularität, so erschiene dieser
Ansatz vielversprechend. Ein Beispiel wäre eine Regel, die alle Verbundoper-
ationen gemäß einer gegebenen Heuristik ordnet, also ein komplexer Algorith-
mus, der mehr Wissen in seine Entscheidungen einbezieht.

Graefe selbst führt einige weitere Nachteile des Exodus-Optimierergenerators
an, die dann zur Entwicklung des Volcano-Optimierergenerators führten [359,
360]. Unzureichend unterstützt werden

• nicht-triviale Kostenmodelle,

570 CHAPTER 30. EXAMPLE QUERY COMPILER

• Eigenschaften,

• Heuristiken und

• Transformationen von Subskripten von algebraischen Operatoren in alge-
braische Operatoren.

Der letzte Punkt ist insbesondere im Bereich der Objektbanken wesentlich, um
beispielsweise Pfadausdrücke in eine Folge von Verbundoperationen umwandeln
zu können.

Im Volcano-Optimierergenerator werden algebraische Ausdrücke wieder in
einen Operatorbaum umgewandelt. Wie im Exodus-Optimierergenerator wird
der Optimierer wieder mit einer Menge von transformierenden und implemen-
tierenden Regeln beschrieben. Die Nachteile des transformierenden Ansatz
werden somit geerbt. Eine Trennung in zwei Phasen, wie bei vielen Opti-
mierern anzutreffen, ist für den Volcano-Optimierergenerator nicht notwendig.
Der Entwickler des Optimierers hat die Freiheit, die Phasen selbst festzulegen.
Die Probleme, die sonst bei der Kopplung der algebraischen mit der nicht-
algebraischen Optimierung auftreten, können also vermieden werden. Die Be-
handlung der Eigenschaften erfolgt zielorientiert. Die in der Anfrage geforderten
Eigenschaften (bspw. Sortierung), werden der Suchfunktion als Parameter übergeben,
damit gezielt Pläne erstellt werden, die diese erfüllen. Wenn ein Operator oder
eine Methode eingebaut wird, so wird darauf geachtet, daß diese noch nicht
erfüllten Eigenschaften durch den Operator oder die Methode erzielt werden.
Die geforderten Eigenschaften dienen wieder als Zielbeschreibung für die nach-
folgenden Aufrufe der Suchfunktion. Zu diesen Eigenschaften gehören auch
Kostengrenzen, mit denen die Suchfunktion dann einen Branch-and-bound-
Algorithmus implementiert. Bevor ein Plan für einen algebraischen Ausdruck
generiert wird, wird in einer Hash-Tabelle nachgeschaut, ob ein entsprechen-
der Ausdruck mit den geforderten Eigenschaften bereits existiert. Dadurch
wird Doppeltarbeit vermieden. Bei beiden Optimierergeneratoren werden die
Forderungen nach stetigem Leistungsabfall, früher Bewertung von Alternativen
und Evaluierbarkeit einzelner Komponenten nicht erfüllt.

30.1.6 Freytags regelbasierte System R-Emulation

[295] zeigt, wie man mit Hilfe eines regelbasierten Ansatzes den Optimierer von
System R [784] emulieren kann. Die Eingabe besteht aus einem Lisp-ähnlichen
Ausdruck:

(select <proj-list>
<sel-pred-list>
<join-pred-list>
<table-list>)

Die Projektionsliste besteht aus Attributspezifikationen der Form

<rel-name>.<attr-name>

30.1. RESEARCH PROTOTYPES 571

Anfrage

?

Generierung des
allg. Ausdrucks

?

Zugriffsplan-
generierung

?

Join-
Reihenfolge und

-Methoden

?
Auswertungsplan

Figure 30.3: Organisation der Optimierung

Diese werden auch für die Selektionsprädikate und Joinprädikate verwendet.
Die Algebra beinhaltet sowohl Operatoren der logischen als auch der physischen
Algebra. Im einzelnen gibt es Scan-, Sort-, Projektions, Verbundoperatoren in
einer logischen und verschiedenen physischen Ausprägungen. Die Erzeugung
der Auswertungspläne wird in verschiedene Schritte unterteilt, die wiederum in
Teilschritte zerlegt sind (siehe Abb. 30.3). Zunächst erfolgt die Übersetztung in
die logische Algebra. Hier werden Scan-Operatoren um die Relationen gebaut
und Selektionen, die nur eine Relation betreffen, in die Scan-Opertoren einge-
baut. Der zweite Schritt generiert Zugriffspläne, indem der Scan-Operator
durch einen einfachen File-Scan (FSCAN) ersetzt wird, oder falls möglich, durch
einen Index-Scan (ISCAN). Der dritte Schritt generiert zunächst verschiedene
Verbund-Reihenfolgen und bestimmt anschließend die Verbund-Methoden. Sie
in System R wird zwischen Sort-merge- und Nested-loop-join unterschieden.

Es werden keinerlei Aussagen über die Auswahl einer Suchstrategie gemacht.
Ziel ist es vielmehr, durch die Modellierung des System R Optimierers mit Hilfe
eines Regelsystems die prinzipielle Brauchbarkeit des regelbasierten Ansatzes
nachzuweisen.

30.1.7 Genesis

Das globale Ziel des Genesisprojektes [59, 60, 61, 64] war es, die gesamte Daten-
banksoftware zu modularisieren und eine erhöhte Wiederverwendbarkeit von
Datenbankmodulen zu erreichen. Zwei Teilziele wurden hierbei angestrebt:

572 CHAPTER 30. EXAMPLE QUERY COMPILER

1. Standardisierung der Schnittstellen und

2. Formulierung der Algorithmen unabhängig von der DBMS-Implementierung.

Wir interessieren uns hier lediglich für die Erreichung der Ziele beim Bau von
Optimierern [57, 62].

Die Standardisierung der Schnittstellen wird durch eine Verallgemeinerung
von Anfragegraphen erreicht. Die Algorithmen selbst werden durch Transfor-
mationen auf Anfragegraphen beschrieben. Man beachte, daß dies nicht be-
deutet, daß die Algorithmen auch durch Transformationregeln implementiert
werden. Regeln werden lediglich als Beschreibungsmittel benutzt, um die Natur
der Wiederverwendbarkeit von Optimierungsalgorithmen zu verstehen.

Die Optimierung wird in zwei Phasen eingeteilt, die Reduktionsphase und
die Verbundphase. Die Reduktionsphase bildet Anfragegraphen, die auf nicht
reduzierten Datenmengen arbeiten, auf solche ab, die auf reduzierten Daten-
mengen arbeiten. Die Reduktionsphase orientiert sich also deutlich an den
Heuristiken zum Durchschieben von Selektionen und Projektionen. Die zweite
Phase bestimmt Verbundordnungen. Damit ist die in den Papieren beschriebene
Ausprägung des Ansatzes sehr konservativ in dem Sinne, daß nur klassische
Datenmodelle betrachtet werden. Eine Anwendung der Methodik auf objekto-
rientierte oder deduktive Datenmodelle steht noch aus.

Folglich lassen sich nur die existierenden klassischen Optimierungsansätze
mit diesen Mitteln hinreichend gut beschreiben. Ebenso lassen sich die ex-
istierenden klassischen Optimierer mit den vorgestellten Mitteln als Zusam-
mensetzung der ebenfalls im Formalismus erfaßten Algorithmen beschreiben.
Die Zusammensetzung selbst wird mit algebraischen Termersetzungen beschrieben.
Durch neue Kompositionsregeln lassen sich dann auch neue Optimierer beschreiben,
die andere Kombinationen von Algorithmen verwenden.

Durch die formale, implementierungsunabhängige Beschreibung sowohl der
einzelnen Optimierungsalgorithmen als auch der Zusammensetzung eines Opti-
mierers wird die Wiederverwendbarkeit von bestehenden Algorithmen optimal
unterstützt. Wichtig dabei ist auch die Verwendung der standardisierten An-
fragegraphen. Dieser Punkt wird allerdings aufgeweicht, da auch vorgesehen ist,
verschiedene Darstellungen von Anfragegraphen zu verwenden [60]. Hierdurch
wird die Wiederverwendung von Implementierungen von Optimierungsalgorith-
men natürlich in Frage gestellt, da diese üblicherweise nur auf einer bestimmten
Darstellung der Anfragegraphen arbeiten.

Wenn neue Optimierungsansätze entwickelt werden, so lassen sie sich eben-
falls im vorgestellten Formalismus beschreiben. Gleiches gilt auch für neue In-
dexstrukturen, da auch diese formal beschrieben werden [58, 63]. Nicht abzuse-
hen ist, in wieweit der standardisierte Anfragegraph Erweiterungen standhält.
Dies ist jedoch kein spezifisches Problem des Genesisansatzes, sondern gilt für
alle Optimierer. Es ist noch offen, ob es gelingt, die Optimierungsalgorithmen
so zu spezifizieren und zu implementieren, daß sie unabhängig von der konkreten
Darstellung oder Implementierung der Anfragegraphen arbeiten. Der objekto-
rientierte Ansatz kann hier nützlich sein. Es erhebt sich jedoch die Frage, ob bei
Einführung eines neuen Operators die bestehenden Algorithmen so implemen-

30.1. RESEARCH PROTOTYPES 573

tierbar sind, daß sie diesen ignorieren können und trotzdem sinnvolle Arbeit
leisten.

Die Beschränkung auf zwei Optimierungsphasen, die Reduktions- und die
Verbundphase, ist keine Einschränkung, da auch sie mittels Termersetzungsregeln
festgelegt wurde, und somit leicht geändert werden kann.

Da die Beschreibungen des Optimierers und der einzelnen Algorithmen un-
abhängig von der tatsächlichen Implementierung sind, sind auch die globale
Kontrolle des Optimierers und die lokalen Kontrollen der einzelnen Algorithmen
voneinander losgelöst. Dieses ist eine wichtige Forderung, um Erweiterbarkeit
zu erreichen. Sie wird oft bei regelbasierten Optimierern verletzt und schränkt
somit deren Erweiterbarkeit ein.

Die Evaluierbarkeit, die Vorhersagbarkeit und die frühe Bewertung von Al-
ternativen sind mit dem vorgestellten Ansatz nicht möglich, da die einzelnen
Algorithmen als Transformationen auf dem Anfragegraphen aufgefaßt werden.
Dieser Nachteil gilt jedoch nicht allein für den hier vorgestellten Genesisansatz,
sondern generell für alle bis auf einen Optimierer. Es ist allerdings nicht ab-
sehbar, ob dieser Nachteil aus dem verwendeten Formalismus resultiert oder
lediglich aus deren Konkretisierung bei der Modellierung bestehender Optimier-
er. Es ist durchaus möglich, daß der Formalismus mit leichten Erweiterungen
auch andere Ansätze, insbesondere den generierenden, beschreiben kann.

Insgesamt handelt es sich beim Genesisansatz um einen sehr brauchbaren
Ansatz. Leider hat er, im Gegensatz zur Regelbasierung, nicht genug Wider-
hall gefunden hat. Er hat höchst wahrscheinlich mehr Möglichkeiten, die An-
forderungen zu erfüllen, als bisher ausgelotet wurde.

30.1.8 GOMbgo

574 CHAPTER 30. EXAMPLE QUERY COMPILER

ASR-Schema

Code Generator

Selektion und Polierung

Regelanwendung

Übersetzung und Vorverarbeitung

GOMql-Anfrage

Kostenmodell

Regelbasis

Heuristik

Auswertungsplan

(QEP)

optimierter Term

Liste der optimierten Terme

Termrepräsentation

-

?

?

?

?

?

�

HH
HHHHY

�
���

���

Figure 30.4: Ablauf der Optimierung

30.1. RESEARCH PROTOTYPES 575

optimized

query alternatives

box

tool−

pattern

matcher

cond

mgr

rule

application

transf

mgr

environment manager

Schema Manager

 − access support relations

 − types

heuristics transformation rules

query

heuristic

evaluator

Figure 30.5: Architektur von GOMrbo

576 CHAPTER 30. EXAMPLE QUERY COMPILER

?

Normalisierung

?

Algebraische-
optimierung

?

Konstante u.
gemeinsame
Teilausdrücke

?

Übersetzung in
Ausdrucksalgebra

?

nicht-algebr.
Optimierung

?

X

1

�
��

@
@@

π

@
@@

χ

�
��

sort
�

��

@
@@

σ head
�

��

@
@@

REL

Figure 30.6: a) Architektur des Gral-Optimierers; b) Operatorhierarchie nach
Kosten

30.1.9 Gral

Gral ist ein erweiterbares geometrisches Datenbanksystem. Der für dieses Sys-
tem entwickelte Optimierer, ein regelbasierter Optimierer in Reinkultur, erzeugt
aus einer gegebenen Anfrage in fünf Schritten einen Ausführungsplan (s. Abb. 30.6
a) [67]. Die Anfragesprache ist gleich der verwendeten deskriptiven Algebra
(descriptive algebra). Diese ist eine um geometrische Operatoren erweiterte
relationale Algebra. Als zusätzliche Erweiterung enthält sie die Möglichkeit,
Ausdrücke an Variablen zu binden. Ein Auswertungsplan wird durch einen Aus-
druck der Ausführungsalgebra (executable algebra) dargestellt. Die Ausführungsalgebra
beinhaltet im wesentlichen verschiedene Implementierungen der deskriptiven
Algebra und Scan-Operationen. Die Trennung zwischen deskriptiver Algebra
und Ausführungsalgebra ist strikt, das heißt, es kommen keine gemischten Aus-
drücke vor (außer während der expliziten Konvertierung (Schritt 4)).

Die Schritte 1 und 3 sind durch feste Algorithmen implementiert. Während

30.1. RESEARCH PROTOTYPES 577

der Normalisierung (Schritt 1) werden Variablenvorkommen durch die an sie
gebundenen Ausdrücke ersetzt. Dies ist notwendig, um das Optimierungspo-
tential vollständig erschließen zu können. Schritt 3 führt für konstante Aus-
drücke Variablen ein. Die entspricht der Entschachtelung von Anfragen vom
Typ N und A (s. Kapitel ?? und [494]). Die Behandlung von gemeinsamen
Teilausdrücken ist noch nicht implementiert, aber für Schritt 3 vorgesehen.

Die Schritte 2, 4 und 5 sind regelbasiert. Zur Formulierung der Regeln wird
eine Regelbeschreibungssprache (rule description language) verwendet. Die
Beschreibungen der Regeln werden in einer Datei abgelegt. Innerhalb der Datei
werden Regeln zu Gruppen (sections) zusammengefaßt. Diese Gruppen werden
nacheinander angewandt. Daraus ergeben sich auch für einen Schritt mehrere
kleinere Schritte. Beispielsweise ist der Schritt 2 im OPTEX-Optimierer für
Gral in vier Teilschritte unterteilt:

1. Dekomposition von Selektionen mit komplexen Selektionsprädikaten in
eine Folge von Selektionen mit einfachen Selektionsprädikaten und Zer-
legung von Verbundoperationen in eine Folge von Selektionen und Kreuzpro-
dukten.

2. Eigentlicher IMPROVING Schritt (siehe unten).

3. Teilausdrücke bestehend aus einer Selektion und einem unmittelbar fol-
genden Kreuzprodukt werden in Verbundoperationen umgewandelt.

4. Bestimmung einer Ordnung zwischen den Verbundoperationen und Kreuzpro-
dukten. Dabei werden Kreuzprodukte zum Schluß ausgeführt und kleine
Relationen zuerst verbunden.

Jeder Gruppe wird eine von drei in Gral implementierten Suchstrategien zuge-
ordnet.

STANDARD Führt solange alle Regeln einer Gruppe aus, bis keine Regel
mehr anwendbar ist. Es werden keine Vorkehrungen getroffen, um End-
losschleifen zu verhindern. Die Regeln müssen also dementsprechend for-
muliert werden. Diese Strategie kann für Schritte 2 und 5 verwendet
werden.

IMPROVING Diese Strategie unterstützt algebraische Optimierung in der
deskriptiven Algebra (Schritt 2). Das Ziel ist hierbei eine gute Ord-
nung der algebraischen Operatoren zu erlangen. Hierzu wird eine partielle
Ordnung der algebraischen Operatoren gemäß ihrer Kosten definiert (s.
Abb. 30.6 b) für ein Beispiel). Die IMPROVING-Strategie versucht dann
die hierdurch definierte Ordnung in einem gegebenen Ausdruck zu erre-
ichen. Hierzu wird sie zunächst rekursiv auf alle Teilausdrücke eines Aus-
drucks angewendet. Regeln zur Umformung werden dann angewendet,
wenn dadurch eine höhere Kohärenz der Operatorfolge im Ausdruck mit
der der Operatorkostenhierarchie erreicht werden kann. Dies entspricht
einem Bubble-sort auf dem Ausdruck. Ausdrücke mit der kleinsten An-
zahl von runs werden bevorzugt. Dabei ist ein run eine Folge von Op-
eratoren innerhalb des zu optimierenden Ausdrucks, dessen Operatoren
gemäß der Operatorkostenhierarchie geordnet sind.

578 CHAPTER 30. EXAMPLE QUERY COMPILER

TRANSLATION Regelgruppen mit dieser Strategie werden während der
Übersetzung von der deskriptiven Algebra in die Ausführungsalgebra angewen-
det (Schritt 4). Jede Regel beschreibt dabei die Übersetzung eines einzel-
nen deskriptiven Operators in einen Ausdruck der Ausführungsalgebra, al-
so einen, der keine deskriptiven Operatoren enthalten darf. Die Übersetzung
erfolgt lokal. Für Parameter, also beispielsweise Selektions- und Ver-
bundprädikate, können Regeln angegeben werden, die einen Suchraum für
die Reorganisation des Parameters erlauben. Hiermit kann man beispiel-
sweise alle Permutationen einer Konjunktion erzeugen. Die Suchstrate-
gie für die Parameterbestimmung ist erschöpfend und trägt Vorsorge, daß
keine Zyklen auftreten. Eine Auswahl kann mittels des valuation-Eintrags
in den Regeln getroffen werden. Dieser kann beispielsweise Kosten repräsentieren.
Dementsprechend werden dann Regeln mit der kleinsten valuation bevorzugt.
Jede für einen Parameter generierte Darstellung wird übersetzt.

Die Syntax für eine Regel ist

specification
definition
RULE

pattern
→ result1 valuation1 if condition1
· · ·
→ resultn valuationn if conditionn

wobei

specification von der Form

SPEC spec1,. . . ,specn

ist. Dabei sind die speci Range-Spezifikationen wie beispielsweise opi in <
OpSet >.

definition Variablen definiert (bspw. für Attributsequenzen). In Gral ex-
istieren verschiedene Sorten von Variablen für Attribute, Operationen,
Relationen etc.

pattern ein Muster in Form eines Ausdrucks ist, der Variablen und Konstan-
ten enthalten kann. Der Ausdruck kann ein Ausdruck der deskriptiven
Algebra oder der Ausführungsalgebra sein.

conditioni eine Bedingung ist. Diese Bedingung ist ein allgemeiner boolescher
Ausdruck. Spezielle Prädikate wie ExistsIndex (existiert ein Index für eine
Relation?) werden von Gral zur Verfügung gestellt.

resulti wiederum ein Ausdruck ist, der das Ergebnis der Regel beschreibt.

valuationi ist ein arithmetischer Ausdruck, der einen numerischenWert zurückliefert.
Dieser kann in einer (Gral unterstützt mehrere) Auswahlstrategie herange-
zogen werden: Es wird die Regel mit der kleinsten valuation bevorzugt.

30.1. RESEARCH PROTOTYPES 579

Die Auswertung einer Regel erfolgt standardmäßig. Sei E der Ausdruck auf
den die Regel angewendet werden soll.

if ∃ Substitution σ, Unterausdruck E′ von E mit E′σ = pattern
and ∀1 ≤ i ≤ j: ¬ conditioni
and conditionj

then ersetzte E′ in E durch resultjσ

Der Gral-Optimierer ist ein reiner regelbasierter Optimierer, der den Trans-
formationsansatz verfolgt. Dementsprechend treffen alle vorher identifizierten
Nachteile derselben zu.

Zu bemängeln sind im einzelnen folgende Punkte:

• Es erfolgt keine frühzeitige Bewertung der Alternativen.

• Die Suchstrategien sind fest eingebaut und nicht sonderlich ausgefeilt.

• Der Einbau von hochspezialisierten Algorithmen, die besondere Opti-
mierungstechniken repräsentieren, ist schwierig, wenn nicht unmöglich.

• Eine Bestimmung der Verbundreihenfolge gemäß eines komplexeren Al-
gorithmus ist nicht möglich.

• Da die Übersetzung in die Ausführungsalgebra lokal ist und keine An-
notationen zugelassen sind, können vorhandene Sortierreihenfolgen nur
schwer ausgenutzt werden.

Es wird nur eine Alternative der algebraischen Optimierung zur physischen
Optimierung übergeben. Das kann zu Fällen führen, in denen der Optimierer
niemals das Optimum finden kann. Wenngleich dies auch im allgemeinen nicht
immer möglich ist, so sollte jedoch diese Eigenschaft nicht inhärent sein.

Positiv zu vermerken ist, daß für IMPROVING und TRANSLATION der
Aufwand für das Pattern-matching vermutlich gering gehalten werden kann.

30.1.10 Lambda-DB

http://lambda.uta.edu/lambda-DB/manual/overview.html

30.1.11 Lanzelotte in short

Query Language Der Lanzelotte-Optimierer verwendet keine spezielle An-
fragesprache. Ausgangspunkt der Betrachtungen sind sog. Anfragegraphen
(request graphs, query graphs). Einzelheiten stehen in meiner Ausar-
beitung. In einem Papier ([529]) wird gezeigt wie man von einer Regel-
sprache (RDL) zu Anfragegraphen kommt.

Internal Representation Die interne Repraesentation einer Anfrage ist der
Class Connection Graph. Dort enthalten sind die Datenbankobjekte (Ex-
tensionen), die in der Anfrage referenziert werden aus der Sicht des physikalis-
chen Schemas und die in der Anfrage bedeutsamen Beziehungen zwischen
diesen Extensionen (Joins, Attributpfade, Selektionen).

580 CHAPTER 30. EXAMPLE QUERY COMPILER

Query Execution Plans QEPs werden als (deep) processing trees repraesen-
tiert.

Architecture Der Lanzelotte-Optimierer ist regelbasiert.

Transformation versus generation Lanzelotte bietet Regeln fuer beide Spielarten.
Sie unterscheidet enumerative search (Generierung), randomized search
(Transformation) und genetic search (Transformation).

Control/Search-Strategy Lanzelotte versucht von den Einzelheiten der ver-
wendeten Stategien zu abstrahieren und stellt eine erweiterbare Opti-
mierung vor, die die Einzelheiten ueberdeckt. Die tatsaechlich zu einem
bestimmten Zeitpunkt verwendete Strategie wird durch “assertions” bes-
timmt. (Dazu steht nicht viel in den Papieren, vielleicht meint sie auch
die Bedingungsteile der Regeln)

Cost Model Ziemlich aehnlich dem, das wir verwenden. Sie benutzt auch
solche Sachen wie card(C), size(C), ndist(Ai), fan(Ai), share(Ai). Einzel-
heiten stehen in meiner Ausarbeitung.

30.1.12 Opt++

wisconsin

30.1.13 Postgres

Postgres ist kein Objektbanksystem sondern fällt in die Klasse der erweiterten
relationalen Systeme [844]. Die wesentlichen Erweiterungen sind

• berechenbare Attribute, die als Quel-Anfragen formuliert werden [842],

• Operationen [840],

• abstrakte Datentypen [839] und

• Regeln [843].

Diese beiden Punkte sollen uns jedoch an dieser Stelle nicht interessieren. Die
dort entwickelten Optimierungstechniken, insbesondere die Materialisierung der
berechenbaren Attribute, sind in der Literatur beschrieben [469, 400, 398, 399].
Unser Interesse richtet sich vielmehr auf eine neuere Publikation, in der eine
Vorschlag für die Reihenfolgebestimmung von Selektionen und Verbundopera-
tionen unterbreitet wird [415]. Diese soll im folgenden kurz vorgestellt werden.
Zunächst jedoch einige Vorbemerkungen.

Wenn man eine Selektion verzögert, also nach einem Verbund ausführt,
obwohl dies nicht notwendig wäre, so kann es passieren, daß das Selektion-
sprädikat auf mehr Tupeln ausgewertet werden muß. Es kann jedoch nicht
passieren, daß es auf mehr verschiedenen Werten ausgeführt werden muß. Im
Gegenteil, die Anzahl der Argumentewerte wird durch einen Verbund im allge-
meinen verkleinert. Cached man also die bereits errechneten Werte des Selek-
tionsprädikates, so wird die Anzahl der Auswertungen des Selektionsprädikates

30.1. RESEARCH PROTOTYPES 581

nach einem Verbund zumindest nicht größer. Die Auswertung wird dann durch
ein Nachschlagen ersetzt. Da wir hier nur teure Selektionsprädikate betrachten,
ist ein Nachschlagen sehr billig gegenüber der Auswertung. Die Kosten für das
Nachschlagen können sogar vernachläßigt werden. Es bleibt das Problem der
größe des Caches. Liegt Eingabe sortiert nach den Argumenten des Selektion-
sprädikates vor, so kann der die größe des Caches unter Umständen auf 1 re-
duziert werden. Er erübrigt sich ganz, wenn man eine indirekte Repräsentation
des Verbundergebnisses verwendet. Eine mögliche indirekte Repräsentation ist
in Abbildung ?? dargestellt, wobei die linke der abgebildeten Relationen die
Argumente für das betrachtete Selektionsprädikat enthalte.

Für jedes Selektionsprädikat p(a1, . . . , an) mit Argumenten ai bezeichne cp
die Kosten der Auswertung auf einem Tupel. Diese setzen sich aus CPU-
und I/O-Kosten zusammen (s. [415]). Ein Plan ist ein Baum, dessen Blätter
scan-Knoten enthalten und dessen innere Knoten mit Selektions- und Verbund-
prädikaten markiert sind. Ein Strom in einem Plan ist ein Pfad von einem Blatt
zur Wurzel. Die zentrale Ide ist nun die Selektions- und Verbundprädikate nicht
zu unterscheiden, sondern gleich zu behandeln. Dabei wird angenommen, daß
alle diese Prädikate auf dem Kreuzprodukt aller Relationen der betrachteten
Anfrage arbeiten. Dies erfordert eine Anpassung der Kosten. Seien a1, . . . , an
die Relationen der betrachteten Anfrage und p ein Prädikat über den Relationen
a1, . . . , ak. Dann sind die globalen Kosten von p wie folgt definiert:

C(p) =
cp∏n

i=k+1 |ai|

Die globalen Kosten berechnen die Kosten der Auswertung des Prädikates über
der gesamten Anfrage. Hierbei müssen natürlich diejenigen Relationen her-
ausgenommen werden, die das Prädikat nicht beeinflussen. Zur Illustration
nehme man an, p sei ein Selektionsprädikat auf nur einer Relation a1. Wendet
man p direkt auf a1 an, so entstehen die Kosten cp ∗ |a1|. Im vereinheitlicht-
en Modell wird angenommen, daß jedes Prädikat auf dem Kreuzprodukt aller
in der Anfrage beteiligten Relationen ausgewertet wird. Es entstehen also die
Kosten C(p)∗|a1|∗|a2|∗. . .∗|an|. Diese sind aber gleich cp∗|a1|. Dies ist natürlich
nur unter der Verwendung eines Caches für die Werte der Selektionsprädikate
korrekt. Man beachte weiter, daß die Selektivität s(p) eines Prädikates p un-
abhängig von der Lage innerhalb eines Stroms ist.

Der globale Rang eines Prädikates p ist definiert als

rank(p) = s(p)
C(p)

Man beachte, daß die Prädikate innerhalb eines Stroms nicht beliebig umord-
bar sind, da wir gewährleisten müssen, daß die von einem Prädikat benutzten
Argumente auch vorhanden sein müssen. In [415] wir noch eine weitere Ein-
schränkung vorgenommen: Die Verbundreihenfolge darf nicht angetastet wer-
den. Es wird also vorausgesetzt, daß eine optimale Verbundreihenfolge bereits
bestimmt wurde und nur noch die reinen Selektionsprädikate verschoben wer-
den dürfen.

Betrachtet man zunächst einmal nur die Umordnung der Prädikate auf
einem Strom, so erhält man bedingt durch die Umordbarkeitseinschränkungen

582 CHAPTER 30. EXAMPLE QUERY COMPILER

das Sequentialisierungsproblem mit Vorrangbedingungen für das Algorithmus
mit Laufzeit O(nlogn) (n ist die Stromlänge) eine optimale Lösung bekannt ist
[627].

Das in [415] vorgeschlagene Verfahren wendet diesen Algorithmus solange
auf jeden Strom an, bis keine Verbesserung mehr erzielt werden kann. Das
Ergebnis ist ein polynomialer Algorithmus, der die optimale Lösung garantiert.
Dies jedoch nur unter der Einschränkung, daß die Kosten des Joins linear sind.

Damit sind wir bereits bei einem der Nachteile des Verfahrens: Die Kosten
der Verbundoperation nicht mitunter nicht linear sondern sogar quadratisch.
Ein weiterer Nachteil liegt in der Voraussetzung, daß die optimale Verbun-
dreihenfolge schon bestimmt wurde, denn diese hängt wesentlich davon ab, an
welcher Stelle die Selektionen eingebaut werden. Üblicherweise wird bei der Bes-
timmung der optimalen Verbundreihenfolge vorausgesetzt, daß alle Selektion-
sprädikate soweit wie möglich nach unten verschoben werden. Dies ist jedoch
jetzt nicht mehr der Fall. Es ist also notwendig die Selektionsprädikatmigration
in die Joinreihenfolgebestimmung zu integrieren. Nur dann kann man auf gute
Ergebnisse hoffen. Die Integration mit einem Ansatz des dynamischen Pro-
grammierens ist problematisch, da dort Lösungen verworfen werden, die unter
Umständen zur Optimalen Lösung führen, wenn ein Selektionsprädikat nicht
ganz nach unten durchgeschoben wird [415].

Eine Teillösung wird dort auch angedeutet. Ist der Rang eines Selektion-
sprädikates größer als jeder Rang jedes Plans einer Menge von Verbunden, so
ist das Selektionsprädikat in einem optimalen Baum oberhalb all dieser Ver-
bundoperationen plaziert. Ein entsprechender Algorithmus hat aber, wenn
er beispielsweise nur Left-deep-trees erzeugt, eine Worst-case-Komplexität von
O(n4n!).

30.1.14 Sciore & Sieg

Die Hauptidee von Sciore und Sieg ist es, die Regelmenge in Module zu or-
ganisieren und jedem Modul eine eigene Suchstrategie, Kostenberechnung und
Regelmenge zuzuordnen. Module können andere Module explizit aufrufen, oder
implizit ihre Ausgabemenge an das nächste Modul weiterleiten.

30.1.15 Secondo

Gueting

30.1.16 Squiral

Der erste Ansatz eines regelbasierten Optimierers, Squiral, kann auf das Jahr
1975 zurückgeführt werden [823]. Man beachte, daß dieses Papier vier Jahre
älter ist als das vielleicht am häufigsten zitierte Papier über den System R
Optimierer [784], der jedoch nicht regelbasiert, sondern fest verdrahtet ist.

Abbildung 30.7 gibt einen Überblick über den Aufbau von Squiral. Nach
der syntaktischen Analyse liegt ein Operatorgraph vor. Dieser ist in Squiral
zunächst auf einen Operatorbaum beschränkt. Zur Behandlung von gemein-
samen Teilausdrücken wird das Anlegen von temporären Relationen, die den

30.1. RESEARCH PROTOTYPES 583

graph
transformations

parsing

operator

construction

database

machine

query

result

rules
transformation

cooperative
concurrent
programs

optimized
operator graph

transformations

procedures
base

operator graph

Figure 30.7: Die Squiralarchitektur

gemeinsamen Teilausdrücken entsprechen, vorgeschlagen. Diese temporären
Relationen ersetzen dann die gemeinsamen Teilausdrücke. Dadurch ist es möglich,
sich auf Operatorbäume zu beschränken.

Der Operatorbaum wird dann in einen optimierten Operatorbaum trans-
formiert. Hierzu werden Regeln, die den algebraischen Gleichungen entsprechen,
verwendet. Die Anwendung dieser Transformationsregeln ist rein heuristisch
gesteuert. Die Heuristik selber ist in den Transformationsanwendungsregeln
abgelegt. Eine dieser Regeln sagt beispielsweise, daß Projektionen nur dann
nach unten geschoben werden, wenn die Operation, über die die Projektion
als nächstes geschoben werden soll, keine Verbundoperation ist. Neben den
Standardregeln, die das Vertauschen von relationalen Operatoren ermöglichen,
gibt es Regeln, die es erlauben, relationale Ausdrücke in komplexe boolesche
Ausdrücke, die dann als Selektionsprädikate Verwendung finden, zu überführen.
Dies ist der erste Vorschlag, nicht nur primitive Selektionsprädikate in Form von
Literalen, sondern auch komplexere Ausdrücke mit booleschen Verknüpfungen
zu verwenden. Auf die Optimierung dieser Ausdrücke wird jedoch nicht weiter

584 CHAPTER 30. EXAMPLE QUERY COMPILER

eingegangen.

Die wesentliche Aufgabe der Operatorkonstruktion ist die Auswahl der tatsächlichen
Implementierungen der Operatoren im Operatorgraph unter optimaler Aus-
nutzung gegebener Sortierreihenfolgen. Auch diese Phase der Optimierung ist
in Squiral nicht kostenbasiert. Sie wird durch zwei Durchläufe durch den Op-
eratorgraphen realisiert. Der erste Durchlauf berechnet von unten nach oben
die möglichen Sortierungen, die ohne zusätzlichen Aufwand möglich sind, da
beispielsweise Relationen schon sortiert sind, und vorhandene Sortierungen
durch Operatoren nicht zerstört werden. Im zweiten Durchlauf, von oben nach
unten, werden Umsortierungen nur dann vorgenommen, wenn keine der im er-
sten Durchlauf berechneten Sortierungen eine effiziente Implementierung des
zu konvertierenden Operators erlaubt. Beide Durchläufe sind mit Regelsätzen
spezifiziert. Es ist bemerkenswert, daß die Anzahl der Regeln, 32 für den
Aufwärtspaß und 34 für den Abwärtspaß, die Anzahl der Regeln für die Trans-
formationsphase (insgesamt 7 Regeln), bei weitem übertrifft. Auch die Kom-
plexität der Regeln ist erheblich höher.

Beide für uns interessante Phasen, die Operatorgraphtransformation und
Operatorkonstruktion, sind mit Regeln spezifiziert. Es ist jedoch in beiden
Phasen kein Suchprozeß nötig, da die Regeln alle Fälle sehr gezielt auflisten
und somit einen eindeutigen Entscheidungsbaum beschreiben. Eine noch minu-
tiösere Unterscheidung für die Erzeugung von Ausführungsplänen in der Oper-
atorkonstruktionsphase gibt es nur noch bei Yao [957]. Diese haben auch den
Vorteil, durch Kostenrechnungen belegt zu sein.

Da die Regeln in ihren Prämissen die Heuristik ihrer Anwendung mit kodieren
und keine eigene Suchfunktion zur Anwendung der Regeln existiert, ist die Er-
weiterbarkeit sehr schwierig. Das Fehlen jeglicher Kostenbewertung macht eine
Evaluation der Alternativen unmöglich. Daher ist es auch schwer, die einzel-
nen Komponenten des Optimierers, nämlich die Regeln, zu bewerten, zumal der
transformierende Ansatz gewählt wurde. Der Forderung nach Vorhersagbarkeit
und stetiger Leistungsabfall wird in diesem Ansatz ebenfalls nicht nachgegan-
gen.

30.1.17 System R and System R∗

30.1.18 Starburst and DB2

Starburst [267, 387] liegt ein erweiterbares relationales Datenmodell zugrunde.
Die Anfragebearbeitung ist wie in System R und System R* in die zwei Schritte
Anfrageübersetzung und -ausführung zergliedert [388]. Wir interessieren uns
für den ersten Schritt, die Anfrageübersetzung. Einen Überblick gibt Abbil-
dung 30.8. Nach der standardmäßigen Zerteilung liegt die Anfrage in der
internen Darstellung QGM (Query Graph Model) vor. QGM ist an die An-
fragesprache Hydrogen (ähnlich SQL) von Starburst angelehnt. Der wichtigste
Grundbaustein von QGM ist der select-Operator. Dieser enthält eine Projek-
tionsliste und das Anfrageprädikat in Graphform. Die Knoten sind markiert
und referenzieren (gespeicherte) Relationen oder weitere QGM-Operatoren. Die
Markierung ist entweder ein Quantor (∀, ∃) oder die Mengenerzeugermarkierung

30.1. RESEARCH PROTOTYPES 585

Anfrage

?

Zerteilung

?

Anfrage-
transformation

?

Planoptimierung

?

Planverfeinerung

?

Auswertungsplan

Figure 30.8: Starburst Optimierer

(F). Knoten, die mit F markiert sind, tragen zur Erzeugung des Ergebnisses
eines Operators bei, die Quantorenmarkierungen zu dessen Einschränkung. Die
Kanten sind mit den Prädikaten markiert. Es ergeben sich also Schleifen für nur
eine Relation betreffende Prädikate. Weitere Operatoren sind insert, update,
intersection, union und group-by . Daneben wird die QGM-Repräsentation ein-
er Anfrage mit Schemainformation und statistischen Daten angereichert. Sie
dient also auch als Sammelbecken für alle die Anfrage betreffende Information.

Die QGM-Repräsentation dient der Anfragetransformation (Abb. 30.8) als
Ausgangspunkt. Die Anfragetransformation generiert zu einer QGM-Repräsentation
verschiedene äquivalente QGM-Repräsentationen. Die Anfragetransformation
läßt sich, abgesehen von den Darstellungsunterschieden von QGM und Hydro-
gen, als eine Variante der Source-level-Transformationen ansehen. Sie wird
regelbasiert implementiert, wobei C die Regelsprache ist. Eine Regel besteht
aus 2 Teilen, einer Bedingung und einer Aktion. Jeder Teil wird durch eine
C-Prozedur beschrieben. Dadurch erübrigt sich die Implementierung eines all-
gemeinen Regelinterpreters mit Pattern-matching. Regeln können in Gruppen
zusammengefaßt werden. Der aktuelle Optimierer umfaßt drei Klassen von
Regeln:

1. Migration von Prädikaten

586 CHAPTER 30. EXAMPLE QUERY COMPILER

2. Migration von Projektionen

3. Verschmelzung von Operationen

Für die Ausführung der Regeln stehen drei verschiedene Suchstrategien zur
Verfügung:

1. sequentiell,

2. prioritätsgesteuert und

3. zufällig, gemäß einer gegebenen Verteilung.

Die Teilgraphen der QGM-Repräsentation, auf die Regeln anwendbar sind,
können entweder durch eine depth-first oder eine breadth-first Suche bestimmt
werden. Falls mehrere alternative QGM-Repräsentationen existieren (was meis-
tens der Fall ist), wird ein Choose-Operator [361] verwendet, der die verschiede-
nen QGMs in einen QGM zusammenbaut. Die nachfolgende Phase wählt dann
kostenbasiert einen dieser alternativen QGMs aus. Dies ist nicht zwingend,
die Auswahl kann auch erst zur Auswertungszeit stattfinden. Begründet wird
dieses Vorgehen damit, daß keine Kosten für QGMs berechnet werden können,
und somit keine Bewertung eines QGMs stattfinden kann. Wie die Autoren
selbst anmerken, ist dieser Umstand sehr mißlich, da keine Alternativen ver-
worfen werden können. Sie kündigen daher Untersuchungen an, die Transfor-
mation (Schritt 2) mit der Planoptimierung (Schritt 3) zu verschmelzen. Um
eine gewisse Kontrolle über das Verhalten der Transformation zu haben, kann
diesem Schritt ein “budget” mitgegeben werden, nach dessen Ablauf der Schritt
beendet wird. Die genaue Funktionsweise des “budget” ist leider nicht erläutert.

Der Schritt der Planoptimierung (s. Abb. 30.8) kann mit der bisherigen Op-
timierung verglichen werden. Sie arbeitet regelbasiert, benutzt aber nicht den
transformierenden, sondern den generierenden Ansatz [567]. Aus Basisopera-
tionen – LOLEPOPs (LOw-LEvel Plan OPerator) genannt – werden mit (gram-
matischen) Regeln – STARs (strategy alternative rules) genannt – (alternative)
Auswertungspläne erzeugt. LOLEPOPs entstammen der um SCAN, SORT
und ähnliche physische Operatoren angereicherten relationalen Algebra. Ein
Auswertungsplan ist dann ein Ausdruck von geschachtelten Funktionsaufrufen,
wobei die Funktionen den LOLEPOPs entsprechen.

Ein STAR definiert ein benanntes parametrisiertes Objekt, das einem Nicht-
terminalsymbol entspricht. Er besteht aus einer Menge von alternativen Defi-
nitionen, die jede aus einer Bedingung für die Anwendbarkeit und der Defini-
tion eines Plans bestehen. Der generierte Plan kann LOLEPOPs (entsprechen
Terminalsymbolen) und STARs referenzieren. Ein rootSTAR entspricht dem
Startsymbol der Grammatik. STARs ähneln den Regeln, die in Genesis nicht
nur für den Optimierer, sondern für das ganze DBMS eingesetzt werden, um
alternative Implementierungen zu erhalten [59, 57, 61, 60, 62]. Um erzeugte
Alternativen für einen Plan zusammenzusetzen und zu verhindern, daß diese
Alternativen die Anzahl der Pläne in denen diese vorkommen, vervielfachen,
wird ein Glue-Mechanismus eingesetzt. Dieser hat den Choose-Operator als
Wurzel. Darunter hängen dann Alternativen, die beispielsweise einen Strom

30.1. RESEARCH PROTOTYPES 587

Alternative
Ausf”uhrungs-

pl”ane

optimierter
Algebraausdruck

typkonsistenter
Ausdruck

Objektalgebra-
ausdruck

normalisierter
Kalk”ulausdruck

deklarative
Anfrage

Generierung
Ausf”uhrungs-

plan

Algebra-
optimierung

Typ-
”uberpr”ufung

Übers. von
Kalk”ul in
Algebra

Übers. in
Kalk”ul

??????- - - - - -

Figure 30.9: Der Optimierer von Straube

mit gewissen Eigenschaften (Sortierung, Lokation) erzeugen. Von diesen Alter-
nativen werden nur diejenigen betrachten, die die geringsten Kosten bei gleichen
Eigenschaften haben [541]. Die Kosten beziehen sich dabei immer nur auf den
bisher erreichten Teilplan.

Der Aufbau eines Auswertungsplanes erfolgt Bottom-up. Die Menge der
anwendbaren STARs wird in einer ToDo-Liste gehalten. Diese ist eine sortierte
Liste. Hiermit können dann verschiedene Suchstrategien implementiert werden,
indem verschiedene Sortierungen für die ToDo-Liste Verwendung finden [541].
Ein Vorteil des STAR-Ansatzes ist die Vermeidung von Pattern-matching. Dies
erlaubt es, die STARs zu interpretieren [541].

Die Beurteilung der Erweiterbarkeit ist sehr schwierig. Zum einen handelt es
sich um einen erweiterbaren Optimierer, da sowohl LOLEPOPs als auch STARs
hinzugefügt werden können. Der Glue-Mechanismus kann ebenfalls spezifiziert
werden, ohne in die Implementierung einzugreifen. Das Problem ist lediglich
die Komplexität dieser Änderungen. Man kann diesen Ansatz daher vielleicht
als bedingt erweiterbar kennzeichnen.

Eine Trennung der Optimierung in verschiedene Phasen wirft die damit
verbundenen Probleme auf. Wie oben bereits angeführt, kündigen die Autoren
weitere Untersuchungen an, um eine Verschmelzung der Phasen zu ermöglichen.
Da keine Alternativen verworfen werden, ist es potentiell möglich, den opti-
malen Auswertungsplan zu errechnen. Schwer zu sehen ist jedoch, wie ein
stetiger Leistungsabfall zu realisieren ist. Gleiches gilt für die Evaluierbarkeit
der einzelnen Komponenten (STARs).

More on Starburst can be found in [689, 690].

30.1.19 Der Optimierer von Straube

In seiner Dissertation stellt Straube den von ihm entwickelten Optimierer dar
[850]. Die Ergebnisse dieser Arbeit flossen in eine Reihe von Veröffentlichungen
ein [889, 847, 848, 846, 849]. Der Aufbau des Optimierers ist in Abbildung 30.9
skizziert. Eine Anfrage wird zunächst in den Objektkalkül übersetzt und von
dort in die Objektalgebra. Hier findet dann zunächst eine Typüberprüfung
statt. Danach beginnt die eigentliche Optimierung. Diese besteht aus zwei
Phasen, der algebraischen Optimierung und der Generierung des Ausführungsplans.

Die erste Phase, die algebraische Optimierung, folgt dem Tranformation-
sparadigma. Die algebraischen Ausdrücke werden mit Hilfe von Regeln in

588 CHAPTER 30. EXAMPLE QUERY COMPILER

äquivalente algebraische Ausdrücke transformiert. Straube beschränkt sich
dabei im wesentlichen auf die Formulierung der Regeln. Für die Abarbeitung
der Regeln schlägt er lediglich die Verwendung des Exodus-Optimierergenerators
[357] oder des Anfrageumformers von Starburst [409] vor.

Die zweite Phase, die Generierung der Ausführungspläne, ist nicht regel-
basiert. Ihr liegt eine sogenannte Ausführungsplanschablone zu Grunde. Sie ist
vergleichbar mit einem Und/Oder-Baum, der alle möglichen Ausführungspläne
implizit beinhaltet. Zur Generierung eines konkreten Ausführungsplans wird
der durch die Ausführungsschablone aufgespannte Suchraum vollständig durch-
sucht. Der billigste Ausführungsplan kommt dann zur Abarbeitung.

Da ein regelbasierten Ansatz für die erste Phase gewählt wurde und die Ver-
wendung des Exodus-Optimierergenerators oder des Starburst-Anfrageumformers
vorgeschlagen wird, verweisen wir für die Bewertung dieser Phase auf die entsprechen-
den Abschnitte.

Die zweite Phase ist voll auskodiert und damit schlecht erweiterbar. Eine
frühe Bewertung der Alternativen ist nicht ausgeschlossen, wird aber nicht
vorgenommen. Ein vollständiges Durchsuchen verhindert natürlich auch den
stetigen Leistungsabfall des Optimierers.

Erschwerend für den gewählten Ansatz kommt die Zweiphasigkeit hinzu.
Es ist schwierig zu sehen, wie eine phasenübergreifende Kontrolle auszusehen
hat, die zumindest potentiell Optimalität gewährleistet. Die Evaluierbarkeit
einzelner Komponenten des Optimierers ist nicht möglich.

30.1.20 Other Query Optimizer

Neben den in den vorangehenden Abschnitten erwähnten Optimierern gibt es
noch eine ganze Reihe anderer, die aber nicht im einzelnen vorgestellt werden
sollen. Erwähnt werden sollen noch die Systeme Probe [223, 222, 655] und
Prima [404, 402]. Der Schwerpunkt bei der Optimierung liegt im Primasys-
tem auf dem dynamischen Zusammenbau von Molekülen. Es wäre zu unter-
suchen, ob ein Assembly-Operator (s. [483]) hier von Nutzen wäre. Beson-
ders erwähnenswert ist noch eine Arbeit, die Optimierungsmöglichkeiten für
die Datenbankprogrammiersprache FAD vorstellt [894]. Diese Arbeit stellt
einen ersten Schritt in Richtung eines Optimierers für eine General-purpose-
Programmiersprache dar. Ein wesentlicher Punkt ist dabei, daß auch ändernde
Operationen optimiert werden. Der Optimierer ist in zwei Module (RWR and
OPT) eingeteilt. RWR ist ein Sprachmodul, das die Übersetzung von FAD in
ein internes FAD vornimmt. Immer wenn RWR einen Ausdruck erkennt, der
in der vom Optimierer OPT bearbeitbaren Sprache ausgedrückt werden kann,
so wird dieser an den Optimierer weitergegeben und dort optimiert. Es wird
Exhaustive search als Suchstrategie für den Optimierer vorgeschlagen.

Im erweiterten O2-Kontext wurde das Zerteilen von Pfadausdrücken weit-
er untersucht [187]. Es werden die Vorteile einer typisierten Algebra für diese
Zwecke herausgearbeitet. Eine graphische Notation sorgt für eine anschauliche
Darstellung. Ihr besonderes Augenmerk richten die Autoren auf die Faktorisierung
gemeinsamer Teilausdrücke. Einige der Ersetzungsregeln sind aus [802] und
[801] entnommen und werden gewinnbringend eingesetzt, so beispielsweise die

30.1. RESEARCH PROTOTYPES 589

Ersetzung von Selektionen durch Verbundoperatoren.
Ebenfalls erwähnt wurden bereits die Arbeiten im Orion-Kontext [50, 51,

493], die sich auf die Behandlung von Pfadausdrücken konzentrieren. Auch hier
wurde ein funktionsfähiger Optimierer entwickelt.

Wie bereits erwähnt, stammt der erste regelbasierte Optimierer von Smith
und Chang [823]. Doch erst die neueren Arbeiten führten zu einer Blüte
des regelbasierten Ansatzes. Hier ist insbesondere die Arbeit von Freytag zu
erwähnen, die diese Blüte mit initiierte [295]. Dort wird gezeigt, wie man mit
Hilfe eines regelbasierten Ansatzes den Optimierer von System R [784] emulieren
kann. Die Eingabe besteht aus einem Lisp-ähnlichen Ausdruck:

(select <proj-list>
<sel-pred-list>
<join-pred-list>
<table-list>)

Die Projektionsliste besteht aus Attributspezifikationen der Form

<rel-name>.<attr-name>

Diese werden auch für die Selektionsprädikate und Joinprädikate verwendet.
Die Algebra beinhaltet sowohl Operatoren der logischen als auch der physischen
Algebra. Im einzelnen gibt es Scan-, Sort-, Projektions, Verbundoperatoren in
einer logischen und verschiedenen physischen Ausprägungen. Die Erzeugung
der Auswertungspläne wird in verschiedene Schritte unterteilt, die wiederum in
Teilschritte zerlegt sind (siehe Abb. 30.3).

Zunächst erfolgt die Übersetztung in die logische Algebra. Hier werden
Scan-Operatoren um die Relationen gebaut und Selektionen, die nur eine Re-
lation betreffen, in die Scan-Operatoren eingebaut. Der zweite Schritt gener-
iert Zugriffspläne, indem der Scan-Operator durch einen einfachen File-Scan
(FSCAN) ersetzt wird oder falls möglich, durch einen Index-Scan (ISCAN).
Der dritte Schritt generiert zunächst verschiedene Verbundreihenfolgen und
bestimmt anschließend die Verbundmethoden. Wie in System R wird zwis-
chen dem Sortiere-und-Mische-Verbund und dem Verbund durch geschachtelte
Schleifen unterschieden. Es werden keinerlei Aussagen über die Auswahl einer
Suchstrategie gemacht. Ziel ist es vielmehr, durch die Modellierung des System
R Optimierers mit Hilfe eines Regelsystems die prinzipielle Brauchbarkeit des
regelbasierten Ansatzes nachzuweisen.

Man beachte auch die erwähnte Arbeit von Sciore und Sieg zur Modular-
isierung von regelbasierten Optimierern [780]. Die Hauptidee von Sciore und
Sieg ist es, die Regelmenge in Module zu organisieren und jedem Modul eine
eigene Suchstrategie, Kostenberechnung und Regelmenge zuzuordnen. Mod-
ule können andere Module explizit aufrufen oder implizit ihre Ausgabemenge
an das nächste Modul weiterleiten. Der erste Optimierer des GOM-Systems
ist ebenfalls regelbasiert [486, 485]. Die gesamte Regelmenge wurde hier in
Teilmengen ähnlich zu den Modulen organisiert. Die Steuerung zwischen den
Teilmengen erfolgt durch ein heuristisches Netz, das angibt in welchen Fällen zu
welcher weiteren Teilmenge von Regeln zu verzweigen ist. Die Strukturierung
des Optimiererwissens steht auch in [580] im Vordergrund.

590 CHAPTER 30. EXAMPLE QUERY COMPILER

In diesem Zusammenhang, der Strukturierung von Optimierern und der
Wiederverwendbarkeit einzelner Teile, sei noch einmal ausdrücklich auf die
Arbeiten von Batory [60] aus dem Genesiskontext hingewiesen (s. auch Ab-
schnitt 30.1.7). Der dort leider ein wenig zu kurz kommende Aspekt der
Wiederverwendbarkeit von Suchfunktionen wird in einer Arbeit von Lanzelotte
und Valduriez [530] ausführlicher behandelt. Hier wurde eine Typhierarchie ex-
istierender Suchfunktionen entworfen und deren Schnittstellen vereinheitlicht.
Die Suchfunktionen selbst wurden modularisiert. Weitere Arbeiten aus der-
selben Gruppe beschäftigen sich mit der Optimierung von objektorientierten
Anfragen [529, 533], wobei hier die Behandlung von Pfaden im Vordergrund
steht. Eine neuere Arbeit beschäftigt sich mit der Optimierung von rekursiven
Anfragen im objektorientierten Kontext [531].

Viele kommerzielle Systeme besitzen eine Anfragesprache und einen Opti-
mierer. Einer der wenigen Optimierer, die auch in der Literatur beschrieben
werden, ist der von ObjectStore [654]. Durch die einfache Anfragesprache,
die nur Teilmengenbestimmung erlaubt, und die strikte Verwendung von C-
Semantik für boolesche Ausdrücke sind die meisten Optimierungsmöglichkeiten
jedoch ausgeschlossen, und der “Optimierer” ist daher sehr einfach.

30.2 Commercial Query Compiler

30.2.1 The DB 2 Query Compiler

30.2.2 The Oracle Query Compiler

Oracle still provides two modes for its optimizer. Dependent on the user spec-
ified optimizer mode, a query is optimized either by the rule-based optimizer
(RBO) or by the cost-based optimizer (CBO). The RBO is a heuristic optimizer
that resembles the simple optimizer of chapter 2. Here we concentrate on the
more powerful CBO. The user can also determine whether the optimizer should
optimize for throughput or response time.

• nested loop join, nested loop outer join, index nested loop joins, sort merge
join, sort merge outer join, hash joins, hash outer join, cartesian join, full
outer join, cluster join, anti-joins, semi-joins, uses bitmap indexes for star
queries

• sort group-by,

• bitmap indexes, bitmap join indexes

• index skip scans

• partitioned tables and indexes

• index-organized tables

• reverse key indexes

• function-based indexes

30.2. COMMERCIAL QUERY COMPILER 591

• SAMPLE clause in SELECT statement

• parallel query and parallel DML

• star transformations and star joins

• query rewrite with materialized views

• cost: considers CPU, I/O, memory

• access path: table scan, fast full index scan, index scan, ROWID scans
(access ROW by ROWID), cluster scans, hash scans. [former two with
prefetching] index scans:

– index unique scan (UNIQUE or PRIMARY KEY constraints)

– index range scan (one or more leading columns or key)

– index range scan descending

– index skip scan (> 1 leading key values not given)

– index full scan, index fast full scan

– index joins (joins indexes with hash join, resembles index anding)

– bitmap joins (index anding/oring)

– cluster scan: for indexed cluster to retrieve rows with the same clus-
ter id

– hash scan: to locate rows in a hash cluster

CBO: parsed quer –¿ [query transformer] –¿ [estimator] –¿ [plan generator]
1-16.

after parser: nested query blocks
simple rewrites:

• eliminate between

• elminate x in (c1 . . . cn) (also uses IN-LIST iterator as outer table con-
structor in a d-join or nested-loop join like operation.

query transformer:

• view merging

• predicate pushing

• subquery unnesting

• query rewrite using materialized views (cost based)

remaining subplans for nested query blocks are ordered in an efficient manner
plan generator:

• choose access path, join order (upper limit on number of permutations
considered), join method.

592 CHAPTER 30. EXAMPLE QUERY COMPILER

• generate subplan for every block in a bottom-up fashion

• (> 1 for still nested queries and unmerged views)

• stop generating more plans if there already exists a cheap plan

• starting plan: order by their effective cardinality

• considers normally only left-deep (zig-zag) trees.

• single row joins are placed first (based on unique and key constraints.

• join statement with outer join: table with outer join operator must come
after the other table in the condition in the join order. optimizer does
not consider join orders that violate this rule.

• NOT IN (SELECT . . .) becomes a anti-join that is executed as a nested-
loop join by default unless hints are given and various conditions are met
which allow the transformation of the NOT IN uncorrelated subquery into
a sort-merge or hash anti-join.

• EXISTS (SELECT . . .) becomes a semi-join. execution as index nested
loops, if there is an index. otherwise a nested-loop join is used by default
for EXISTS and IN subqueries that cannot be merged with the containing
query unless a hint specifies otherwise and conditions are met to allos the
transformation of the subquery into a sort-merge or hash semi-join.

• star query detection

cost:

• takes unique/key constraints into consideration

• low/high values and uniform distribution

• host variables: guess small selectivity value to favor index access

• histograms

• common subexpression optimization

• complex view merging

• push-join predicate

• bitmap access paths for tables with only B-tree indexes

• subquery unnesting

• index joins

rest:

• Oracle allows user hints in SQL statements to influence the Optimizer.
for example join methods can be given explicitly

30.2. COMMERCIAL QUERY COMPILER 593

parameters:

• HASH AREA SIZE

• SORT AREA SIZE

• DB FILE MULTIBLOCK READ COUNT (number of prefetched pages)

statistics:

• table statistics
number of rows, number of blocks, average row length

• column statistics
number of distinct values, number of nulls, data distribution

• index statistics
number of keys, (from column statistics?) number of leaf blocks, levels,
clustering factor (collocation amount of the index block/data blocks, 3-17)

• system statistics
I/O performance and utilization, cpu performance and utilization

generating statistics:

• estimation based on random data sampling
(row sampling, block sampling)

• exact computation

• user-defined statistics collection methods

histograms:

• height-based histograms (approx. equal number of values per bucket)

• value-based histograms
used for number of distinct values ≤ number of buckets

• support of index-only queries

• index-organized tables

• bitmap indexes (auch fuer null-werte x <> const)

• convert b-tree result RID lists to bitmaps for further bitmap anding

• bitmaps and count

• bitmap join index

• cluster tables (cluster rows of different tables on the same block)

• hash clusters

594 CHAPTER 30. EXAMPLE QUERY COMPILER

• hint: USE CONCAT: OR ::= UNION ALL

• hint: STAR TRANSFORMATION: see Oracle9i Database Concepts

• NOT IN ::= anti-join

• EXISTS ::= special join preserving duplicates and adding no phantom
duplicates (semi-join) (5-27)

• continue 5-35

30.2.3 The SQL Server Query Compiler

Part VI

Selected Topics

595

Chapter 31

Generating Plans for
Top-N-Queries?

31.1 Motivation and Introduction

motivation:

• first by user (ordered)

• optimize for n rows (user/cursor)

• exist(subquery) optimize for 1 row

• having count(*) <= n

31.2 Optimizing for the First Tuple

31.3 Optimizing for the First N Tuples

• nl-join instead of sm/hash join

• index access over table scan

• disable prefetching

[127, 128, 129] [150, 246] [268, 269, 433] [554]
[379] (also contains inverted list algorithms under frequent updates)
[554]

597

598 CHAPTER 31. GENERATING PLANS FOR TOP-N-QUERIES?

Chapter 32

Recursive Queries

599

600 CHAPTER 32. RECURSIVE QUERIES

Chapter 33

Issues Introduced by OQL

33.1 Type-Based Rewriting and Pointer Chasing Elim-
ination

The first rewrite technique especially tailored for the object-oriented context is
type-based rewriting . Consider the query

select distinct sn, ssn, ssa
from s in Student

SCAN [s:student]

EXPAND [ssn:ss.name, ssa:ss.age]

EXPAND [sn:s.name, sg:s.gpa, ss:s.supervisor]

SELECT [sg >8 and ssa <30]

PROJECT [sn, sa, ssn, ssa]

Figure 33.1: Algebraic representation of a query

601

602 CHAPTER 33. ISSUES INTRODUCED BY OQL

where sg > 8 and ssa < 30
define sn = s.name

sg = s.gpa
ss = s.supervisor
ssn= ss.name
ssa= ss.age

The algebraic expression in Fig. 33.1 implies a scan of all students and a sub-
sequent dereferentiation of the supervisor attribute in order to access the su-
pervisors. If not all supervisors fit into main memory, this may result in many
page accesses. Further, if there exists an index on the supervisor’s age, and
the selection condition ssa < 30 is highly selective, the index should be applied
in order to retrieve only those supervisors required for answering the query.
Type-based rewriting enables this kind of optimization. For any expression of
certain type with an associated extent, the extent is introduced in the from
clause. For our query this results in

select distinct sn, pn, pa
from s in Student, p in Professor
where sg > 8 and pa < 30 and ss = p
define sn = s.name

sg = s.gpa
ss = s.supervisor
pn= ss.name
pa = ss.age

As a side-effect, the attribute traversal from students via supervisor to professor
is replaced by a join. Now, join-ordering allows for several new plans that could
not be investigated otherwise. For example, we could exploit the above men-
tioned index to retrieve the young professors and join them with the students
having a gpa greater than 8. The according plan is given in Fig. 33.2. Turning
implicit joins or pointer chasing into explicit joins which can be freely reordered
is an original query optimization technique for object-oriented queries. Note
that the plan generation component is still allowed to turn the explicit join into
an implicit join again.

Consider the query

select distinct p
from p in Professor
where p.room.number = 209

Straight forward evaluation of this query would scan all professors. For every
professor, the room relationship would be traversed to find the room where the
professor resides. Last, the room’s number would be retrieved and tested to be
209. Using the inverse relationship, the query could as well be rewritten to

33.2. CLASS HIERARCHIES 603

HHH
HHH

HH

���
���

��

PROJECT [sn, pn, pa]

JOIN [ss=p]

SELECT [sg>8]

EXPAND [pa:p.age, pn:p.name]

Professor [p]Student [s]

SELECT [pa<30]

EXPAND [sg:s.gpa
ss:s.supervisor
sn:s.name]

Figure 33.2: A join replacing pointer chasing

select distinct r.occupiedBy
from r in Room
where r.number = 209

The evaluation of this query can be much more efficient, especially if there
exists an index on the room number. Rewriting queries by exploiting inverse
relationships is another rewrite technique to be applied during Rewrite Phase
I.

33.2 Class Hierarchies

Another set of equivalences known from the relational context involves the
UNION operator (∪) and plays a vital role in dealing with class/extent hier-
archies. Consider the simple class hierarchy given in Figure 33.3. Obviously,
for the user, it must appear that the extent of Employee contains all Manag-
ers. However, the system has different alternatives to implement extents. Most
OBMSs organize an object base into areas or volumes. Each area or volume is
then further organized into several files. A file is a logical grouping of objects
not necessarily consisting of subsequent physical pages on disk. Files don’t
share pages.

The simplest possible implementation to scan all objects belonging to a cer-
tain extent is to perform an area scan and select those objects belonging to the
extent in question. Obviously, this is far to expensive. Therefore, some more so-

604 CHAPTER 33. ISSUES INTRODUCED BY OQL

Employee name: string
salary: int
boss: Manager6

Manager
boss: CEO

6

CEO

Figure 33.3: A Sample Class Hierarchy

phisticated possibilities to realize extents and scans over them are needed. The
different possible implementations can be classified along two dimensions. The
first dimension distinguishes between logical and physical extents, the second
distinguishes between strict and (non-strict) extents.

Logical vs. Physical Extents
An extent can be realized as a collection of object identifiers. A scan over
the extent is then implemented by a scan over all the object identifiers
contained in the collection. Subsequently, the object identifiers are deref-
erenced to yield the objects themselves. This approach leads to logical
extents. Another possibility is to implement extent membership by phys-
ical containment. The best alternative is to store all objects of an extent
in a file. This results in physical extents. A scan over a physical extent is
then implemented by a file scan.

Extents vs. Strict Extents
A strict extent contains the objects (or their OIDs) of a class excluding
those of its subclasses. A non-strict extent contains the objects of a class
and all objects of its subclasses.

Given a class C, any strict extent of a subclass C ′ of C is called a subextent
of C.

Obviously, the two classifications are orthogonal. Applying them both re-
sults in the four possibilities presented graphically in Fig. 33.4. [195] strongly
argues that strict extents are the method of choice. The reason is that only
this way the query optimizer might exploit differences for extents. For example,
there might be an index on the age of Manager but not for Employee. This
difference can only be exploited for a query including a restriction on age, if we
have strict extents.

However, strict extents result in initial query plans including UNION oper-
ators. Consider the query

select e
from e in Employee
where e.salary > 100.000

33.3. CARDINALITIES AND COST FUNCTIONS 605

ob1C:

ob2C1: ob3C2:

C1: {id2} C1: {id1, id2}C2: {id3} {id1, id3}

excluding

C1: C2:

C:

ob1, ob2

ob1

ob1, ob3

including

physical

C: {id1} C: {id1}
logical

Figure 33.4: Implementation of Extents

The initial plan is

σsa>100.000(χsa:x.salary((Employee[x] ∪Manager[x]) ∪ CEO[x]))

Hence, algebraic equivalences are needed to reorder UNION operators with
other algebraic operators. The most important equivalences are

e1 ∪ e2 ≡ e2 ∪ e1 (33.1)

e1 ∪ (e2 ∪ e3) ≡ (e1 ∪ e2) ∪ e3 (33.2)

σp(e1 ∪ e2) ≡ σp(e1) ∪ σp(e2) (33.3)

χa:e(e1 ∪ e2) ≡ χa:e(e1) ∪ χa:e(e2) (33.4)

(e1 ∪ e2) 1p e3 ≡ (e1 1p e3) ∪ (e2 1p e3) (33.5)

Equivalences containing the UNION operator sometimes involve tricky typing
constraints. These go beyond the current chapter and the reader is refered to
[613].

33.3 Cardinalities and Cost Functions

606 CHAPTER 33. ISSUES INTRODUCED BY OQL

Chapter 34

Issues Introduced by XPath

34.1 A Naive XPath-Interpreter and its Problems

34.2 Dynamic Programming and Memoization

[338, 340, 339]

34.3 Naive Translation of XPath to Algebra

34.4 Pushing Duplicate Elimination

34.5 Avoiding Duplicate Work

34.6 Avoiding Duplicate Generation

[416]

34.7 Index Usage and Materialized Views

[48]

34.8 Cardinalities and Costs

34.9 Bibliography

607

608 CHAPTER 34. ISSUES INTRODUCED BY XPATH

Chapter 35

Issues Introduced by XQuery

35.1 Reordering in Ordered Context

35.2 Result Construction

[281, 282] [797]

35.3 Unnesting Nested XQueries

Unnesting with error: [673]
[593, 595, 594, 596]

35.4 Cardinalities and Cost Functions

cardinality: [168, 941, 942, 761] [7]
XPathLearner: [560]
Polyzotis et al (XSKETCH): [695, 696, 693], [697]

35.5 Bibliography

[599] [883] [233]
Numbering: [280] Timber [459] TAX Algebra [462], physical algebra of Tim-

ber [674]
Structural Joins [20, 827]
SAL: [70], TAX: [462], XAL: [293]

• XML Statistics for hidden web: [8]

• XPath selectivity for internet scale: [7]

• StatiX: [294]

• IMAX: incremental statistics [711]

• Metrics for XML Document Collections: [499]

609

610 CHAPTER 35. ISSUES INTRODUCED BY XQUERY

• output size containment join: [909]

• Bloom Histogram: [910]

View and XML: [2]
Quilt: [141]
Timber: [459] Monet: [774] Natix: NoK: [970]
Correlated XPath: [971]
Wood: [933, 934, 935]
Path based approach to Storage (XRel): [961]
Grust: [370, 372, 371, 373, 873]
Liefke: Loop fusion etc.: [559]
Benchmarking: XMach-1: [98], MBench: [751] XBench: [667, 952, 953],

XMark: [775] XOO7: [108]
Rewriting: [237, 363, 364]
[236, 428]
Incremental Schema Validation: [102, 672]
Franklin (filtering): [240]

Chapter 36

Outlook

What we did not talk about: multiple query optimization, semantic query
optimization, special techniques for optimization in OBMSs, multi-media data
bases, object-relational databases, spatial databases, temporal databases, and
query optimization for parallel and distributed database systems.

Multi Query Optimization? [787]

Parametric/Dynamic/Adaptive Query Optimization? [33, 34, 35, 29,
361, 354] [455, 456, 474, 890]

[45]

Parallel Database Systems?

Distributed Database Systems? [514]

Recursive Queries?

Multi Database Systems?

Temporal Database Systems?

Spatial Database Systems?

Translation of Triggers and Updates?

Online Queries (Streams)?

Approximate Answers? [330]

611

612 CHAPTER 36. OUTLOOK

Appendix A

Query Languages?

A.1 Designing a query language

requirements
design principles for object-oriented query languages: [427] [83]

A.2 SQL

A.3 OQL

A.4 XPath

A.5 XQuery

A.6 Datalog

613

614 APPENDIX A. QUERY LANGUAGES?

Appendix B

Query Execution Engine (?)

• Overview Books: [403, 316]

• Overview: Graefe [347, 348]

• Implementation of Division [344, 353, 355]

• Implementation of Division and set-containment joins [708]

• Hash vs. Sort: [349, 358]

• Heap-Filter Merge Join: [346]

• Hash-Teams

615

616 APPENDIX B. QUERY EXECUTION ENGINE (?)

Appendix C

Glossary of Rewrite and
Optimization Techniques

trivopt Triviale Auswertungen bspw. solche für widersprüchliche Prädikate
werden sofort vorgenommen. Dies ist eine Optimierungstechnik, die oft
bereits auf der Quellebene durchgeführt wird.

pareval Falls ein Glied einer Konjunktion zu false evaluiert, werden die restlichen
Glieder nicht mehr evaluiert. Dies ergibt sich automatisch durch die Ver-
wendung von hintereinanderausgeführten Selektionen.

pushnot Falls ein Prädikat die Form ¬(p1 ∧ p2) hat, so ist pareval nicht an-
wendbar. Daher werden Negationen nach innen gezogen. Auf ¬p1 ∨ ¬p2
ist pareval dann wieder anwendbar. Das Durchschieben von Negationen
ist auch im Kontext von NULL-Werten unabdingbar für die Korrektheit.
Dies ist eine Optimierungstechnik, die oft bereits auf der Quellebene
durchgeführt wird.

bxp Verallgemeinert man die in pareval und notpush angesprochene Prob-
lematik, so führt dies auf die Optimierung von allgemeinen booleschen
Prädikaten.

trans Durch Ausnutzen der Transitivität von Vergleichsoperationen können
neue Selektionsprädikate gewonnen und Konstanten propagiert werden.
Diese Optimierungstechnik erweitert den Suchraum und wird ebenfalls auf
der Quellebene durchgeführt. Bei manchen Systemen wir dieser Schritt
nicht durchgeführt, falls sehr viele Relationen zu joinen sind, um den
Suchraum nicht noch weiter zu vergrößern [322, 323].

selpush Selektionen werden so früh wie möglich durchgeführt. Diese Technik
führt nicht immer zu optimalen Auswertungsplänen und stellt somit eine
Heuristik dar. Diese Optimierungstechnik schränkt den Suchraum ein.

projpush Die Technik zur Behandlung von Projektionen ist nicht ganz so ein-
fach wie die der Selektion. Zu unterscheiden ist hier, ob es sich um eine
Projektion mit Duplikateliminierung handelt oder nicht. Je nach dem

617

618APPENDIX C. GLOSSARYOF REWRITE ANDOPTIMIZATION TECHNIQUES

ist es sinnvoll, die Projektion zur Wurzel des Operatorgraphen zu ver-
schieben oder zu den Blättern hin. Die Projektion verringert den Spe-
icherbedarf von Zwischenergebnissen, da die Tupel weniger Attribute en-
thalten. Handelt es sich um eine duplikateliminierende Projektion, so wird
möglicherweise auch die Anzahl der Tupel verringert. Duplikatelimina-
tion als solche ist aber eine sehr teure Operation. Diese wird üblicherweise
durch Sortieren implementiert. Bei großen Datenmengen gibt es allerdings
bessere Alternativen. Auch Hash-basierte Verfahren eignen sich zur Du-
plikateliminierung. Diese Optimierungstechnik schränkt den Suchraum
ein.

grouppush Pushing a grouping operation past a join can lead to better plans.

crossjoin Ein Kreuzprodukt, das von einer Selektion gefolgt wird, wird wenn
immer möglich in eine Verbundoperation umgewandelt. Diese Optimierung-
stechnik schränkt den Suchraum ein, da Pläne mit Kreuzprodukten ver-
mieden werden.

nocross Kreuzprodukte werden wenn immer möglich vermieden oder, wenn
dies nicht möglich ist, erst so spät wie möglich durchgeführt. Diese
Technik verringert den Suchraum, führt aber nicht immer zu optimalen
Auswertungsplänen.

semjoin Eine Verbundoperation kann durch eine Semiverbundoperation erset-
zt werden, wenn nur die Attribute einer Relation weitere Verwendung
finden.

joinor Die Auswertungsreihenfolge von Verbundoperationen ist kritisch. Da-
her wurden eine Reihe von Verfahren entwickelt, die optimale oder quasi-
optimale Reihenfolge von Verbundoperationen zu bestimmen. Oft wird
dabei der Suchraum auf Listen von Verbundoperationen beschränkt. Die
Motivation hierbei ist das Verkleinern des Suchraums und die Beschränkung
auf nur eine zu erzeugenden Zwischenrelation. Dieses Verfahren garantiert
nicht mehr ein optimales Ergebnis.

joinpush Tables that are guaranteed to produce a single tuple are always
pushed to be joined first. This reduces the search space. The single tuple
condition can be evaluated by determining whether all key attributes of
a relation are fully qualified. [322, 323].

elimredjoin Eliminate redundant join operations. See Sections. . . XXX

indnest Eine direkte Evaluierung von geschachtelten Anfragen wird durch
geschachtelte Schleifen vorgenommen. Dabei wird eine Unteranfrage für
jede erzielte Bindung der äußeren Anfrage evaluiert. Dies erfordert quadratis-
chen Aufwand und ist deshalb sehr ineffizient. Falls die innere Anfrage
unabhängig von der äußeren Anfrage evaluiert werden kann, so wird diese
herausgezogen und getrennt evaluiert. Weitere Optimierungen geschachtel-
ter Anfragen sind möglich.

619

unnest Entschachtelung von Anfragen [189, 191, 314, 494, 500, 501, 689, 830,
832, 833]

compop Oft ist es sinnvoll, mehrere Operationen zu einer komplexeren zusam-
menzufassen. Beispielsweise können zwei hintereinander ausgeführte Se-
lektionen durch eine Selektion mit einem komplexeren Prädikat ersetzt
werden. Ebenso kann auch das Zusammenfassen von Verbundoperatio-
nen, Selektionen und Projektionen sinnvoll sein.

comsubexpr Gemeinsame Teilausdrücke werden nur einfach evaluiert. Hierunter
fallen zum einen Techniken, die das mehrmalige Lesen vom Hintergrund-
speicher verhindern, und zum anderen Techniken, die Zwischenergebnisse
von Teilausdrücken materialisieren. Letzteres sollte nur dann angewen-
det werden, falls die k-malige Auswertung teurer ist als das einmalige
Auswerten und das Erzeugen des Ergebnisses mit k-maligem Lesen, wobei
k die Anzahl der Vorkommen im Plan ist.

dynminmax Dynamisch gewonnene Minima und Maxima von Attributwerten
können für die Erzeugung von zusätzlichen Restriktionen herangezogen
werden. Diese Technik funktioniert auch sehr gut für unkorrelierte An-
fragen. Dabei werden min- und max-Werte herangezogen um zusätzliche
Restriktionen für die Anfrage zu gewinnen. [500, 322, 323]

pma Predicate Move around moves predicates between queries and subqueries.
Mostly they are duplicated in order to yield as many restrictions in a block
as possible [551]. As a special case, predicates will be pushed into view
definitions if they have to be materialized temporarily [322, 323].

exproj For subqueries with exist prune unnecessary entries in the select clause.
The intention behind is that attributes projected unnecessarily might in-
fluence the optimizer’s decision on the optimal access path [322, 323].

vm View merging expands the view definition within the query such that is
can be optimized together with the query. Thereby, duplicate accesses to
the view are resolved by different copies of the views definition in order
to facilitate unnesting [322, 323, 689].

inConstSet2Or A predicate of the form x ∈ {a1, . . . , an} is transformed into
a sequence of disjunctions x = a1 ∨ . . . ∨ x = an if the ai are constants in
order to allow index or-ing (TID list operations or bitvector operations)
[322, 323].

like1 If the like predicate does not start with %, then a prefix index can be
used.

like2 The pattern is analyzed to see whether a range of values can be extracted
such that the pattern does not have to be evaluated on all tuples. The
result is either a pretest or an index access. [322, 323].

like3 Special indexes supporting like predicates are introduced.

620APPENDIX C. GLOSSARYOF REWRITE ANDOPTIMIZATION TECHNIQUES

sort Vorhandene Sortierungen können für verschiedene Operatoren ausgenutzt
werden. Falls keine Sortierung vorhanden ist, kann es sinnvoll sein, diese
zu erzeugen [818]. Z.B. aufeinanderfolgende joins, joins und gruppierun-
gen. Dabei kann man die Gruppierungsattribute permutieren, um sie mit
einer gegebenen Sortierreihenfolge in Einklang zu bringen [322, 323].

aps Zugriffspfade werden eingesetzt, wann immer dies gewinnbringend möglich
ist. Beispielsweise kann die Anfrage

select count(*) from R;

durch einen Indexscan effizient ausgewertet werden [171].

tmpidx Manchmal kann es sinnvoll sein, temporäre Zugriffspfade anzulegen.

optimpl Für algebraische Operatoren existieren im allgemeinen mehrere Im-
plementierungen. Es sollte hier immer die für einen Operator im vorliegen-
den Fall billigste Lösung ausgewählt werden. Ebenfalls von Bedeutung ist
die Darstellung des Zwischenergebnisses. Beispielsweise können Relatio-
nen explizit oder implizit dargestellt werden, wobei letztere Darstellung
nur Zeiger auf Tupel oder Surrogate der Tupel enthält. Weitergedacht
führt diese Technik zu den TID-Listen-basierten Operatoren.

setpipe Die Evaluation eines algebraischen Ausdrucks kann entweder mengenori-
entiert oder nebenläufig (pipelining) erfolgen. Letzteres erspart das Erzeu-
gen von großen Zwischenergebnissen.

tmplay Das temporäre Ändern eines Layouts eines Objektes kann durchaus
sinnvoll sein, wenn die Kosten, die durch diese Änderung entstehen, durch
den Gewinn der mehrmaligen Verwendung dieses Layouts mehr als kom-
pensiert werden. Ein typisches Beispiel ist Pointer-swizzling .

matSubQ If a query is not unnested, then for every argument combination
passed to the subquery, the result is materialized in order to avoid du-
plicate computation of the same subquery expression for the same argu-
ment combination [322, 323]. This technique is favorable for detachment
[845, 931, 962]

AggrJoin Joins with non-equi join predicates based on ≤ or <, can be pro-
cessed more efficiently than by a cross product with a subsequent selection
[193].

ClassHier Class hierarchies involve the computation of queries over a union
of extents (if implemented that way). Pushing algebraic operations past
unions allows often for more efficient plans [195].

AggrIDX Use an index to determine aggregate values like min/max/avg/count.

rid/tidsort When several tuples qualify during an index scan, the resulting
TIDs can be sorted in order to guarantee sequential access to the base
relation.

621

multIDX Perform operations like union and disjunction on the outcome of an
index scan.

multIDXsplit If two ranges are queried within the same query ([1-10],[20-30])
consider multIDX or use a single scan through the index [1-30] with an
additional qualification predicate.

multIDXor Queries with more conditions on indexed attributes can be evalu-
ated by more complex combinations of index scans and tid-list/bitvector
operations. (A = 5 and (B = 3 or B = 4)).

scanDirChange During multiple sequential scans of relation (e.g. for a block-
wise nested loop join), the direction of the scan can be changed in order
to reuse as much of the pages in the buffer as possible.

lock The optimizer should chose the correct locks to set on tables. For example,
if a whole table is scanned, a table lock should be set.

expFunMat Expensive functions can be cached during query evaluation in
order to avoid their multiple evaluation for the same arguments [414].

expFunFil Easiser to evaluate predicates that are implied by more expensive
predicates can serve as filters in order to avoid the evaluation of the ex-
pensive predicate on all tuples.

stop Stop evaluation after the first tuple qualifies. This is good for existential
subqueries, universal subqueries (disqualify), semi-joins for distinct results
and the like.

expensive projections 1. zum Schluss, da dort am wenigsten verschiedene
Werte

2. durchschieben, falls cache fuer Funktionsergebnisse dadurch vermieden
werden kann

OO-Kontext: problematisch: objekte muessen fuer funktionen/methoden
als ganzes vorhanden sein. daher ist eine einfache strategie nicht moeglich.

distinct/sorting select distinct a,b,c

...

order by a,b

kann auch nach a,b,c sortiert werden. stoert gar nicht, vereinfacht aber
die duplikateliminierung. nur ein sortieren notwendig.

index access • by key

• by key range

• by dashed key range (set of keys/key ranges)

• index anding/oring

622APPENDIX C. GLOSSARYOF REWRITE ANDOPTIMIZATION TECHNIQUES

alternative operator implementations e.g. join: nlj bnlj hj grace-hash
hybrid-hash smj diag-join star-join

distpd Push-down or Pull-up distinct.

aggregate with distinct select a, agg(distinct b)

...

group by a

===>

sort on a,b

dup elim

group a,sum(b)

alternative: aggr(distinct *) is implemented such that it uses a hashtable
to eliminate duplicates this is only good, if the number of groups is smal-
land the number of distinct values in each group is small.

XXX - use keys, inclusion dependencies, fds etc. (all user specified and de-
rived) (propagate keys over joins as fds), (for a function call: derived IU is
functional dependend on arguments of the function call if function is de-
terministic) (keys can be represented as sets of IUs or as bitvectors(given
numbering of IUs)) (numbering inprecise: bitvectors can be used as filters
(like for signatures))

Appendix D

Useful Formulas

The following identities can be found in the book by Graham, Knuth, and
Patashnik [362].

We use the following definition of binomial coefficients:

(
n

k

)
=

{
n!

k!(n−k)! if 0 ≤ k ≤ n
0 else

(D.1)

We start with some simple identities.

(
n

k

)
=

(
n

n− k

)
(D.2)

(
n

k

)
=

n

k

(
n− 1

k − 1

)
(D.3)

k

(
n

k

)
= n

(
n− 1

k − 1

)
(D.4)

(n− k)
(
n

k

)
= n

(
n− 1

k

)
(D.5)

(n− k)
(
n

k

)
= n

(
n− 1

n− k − 1

)
(D.6)

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
(D.7)

(
r

m

)(
m

k

)
=

(
r

k

)(
r − k
m− k

)
(D.8)

623

624 APPENDIX D. USEFUL FORMULAS

The following identities are good for sums of binomial coefficients.

n∑

k=0

(
n

k

)
= 2n (D.9)

n∑

k=0

(
k

m

)
=

(
n+ 1

m+ 1

)
(D.10)

n∑

k=0

(
m+ k

k

)
=

(
m+ n+ 1

m+ 1

)
=

(
m+ n+ 1

n

)
(D.11)

n∑

k=0

(
m− n+ k

k

)
=

(
m+ 1

n

)
(D.12)

From Identities D.2 and D.11 it follows that

m∑

k=0

(
k + r

r

)
=

(
m+ r + 1

r + 1

)
(D.13)

For sums of products, we have

n∑

k=0

(
r

m+ k

)(
s

n− k

)
=

(
r + s

m+ n

)
(D.14)

n∑

k=0

(
l − k
m

)(
q + k

n

)
=

(
l + q + 1

m+ n+ 1

)
(D.15)

n∑

k=0

(
l

m+ k

)(
s

n+ k

)
=

(
l + s

l −m+ n

)
(D.16)

Last,
n∑

k=0

k

(
n

k

)
= n2n−1

Bibliography

[1] K. Aberer and G. Fischer. Semantic query optimization for methods in
object-oriented database systems. In Proc. IEEE Conference on Data
Engineering, pages 70–79, 1995.

[2] S. Abiteboul. On Views and XML. In Proc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS), pages 1–9, 1999.

[3] S. Abiteboul, C. Beeri, M. Gyssens, and D. Van Gucht. An introduction
to the completeness of languages for complex objects and nested relations.
In S. Abiteboul, P.C. Fischer, and H.-J. Schek, editors, Nested Relations
and Complex Objects in Databases, pages 117–138. Lecture PAGESs in
Computer Science 361, Springer, 1987.

[4] S. Abiteboul and N. Bidoit. Non first normal form relations: An alge-
bra allowing restructuring. Journal of Computer Science and Systems,
33(3):361, 1986.

[5] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and
J. Simeon. Querying documents in object databases. International Jour-
nal on Digital Libraries, 1(1):5–19, April 1997.

[6] S. Abiteboul and O. Duschka. Complexity of answering queries using
materialized views. In Proc. ACM SIGMOD/SIGACT Conf. on Princ.
of Database Syst. (PODS), pages 254–263, 1998.

[7] A. Aboulnaga, A. Alameldeen, and J. Naughton. Estimating the selectiv-
ity of XML path expressions for internet scale applications. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 591–600, 2001.

[8] A. Aboulnaga and J. Naughton. Building XML statistics for the hidden
web. In Int. Conference on Information and Knowledge Management
(CIKM), pages 358–365, 2003.

[9] W. Abu-Sufah, D. J. Kuch, and D. H. Lawrie. On the performance en-
hancement of paging systems through program analysis and transforma-
tions. IEEE Trans. on Computers, C-50(5):341–355, 1981.

[10] B. Adelberg, H. Garcia-Molina, and J. Widom. The STRIP rule system
for efficiently maintaining derived data. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 147–158, 1997.

625

626 BIBLIOGRAPHY

[11] F. Afrati, M. Gergatsoulis, and T. Kavalieros. Answering queries using
materialized views with disjunctions. In Proc. Int. Conf. on Database
Theory (ICDT), pages 435–452, 1999.

[12] F. Afrati, C. Li, and J. Ullman. Generating efficient plans for queries
using views. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 319–330, 2001.

[13] F. Afrati and C. Papadimitriou. The parallel complexity of simple chain
queries. In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of Database
Syst. (PODS), pages 210–?, 1987.

[14] V. Aggelis and S. Cosmadakis. Optimization of nested sql queries by
tableau equivalence. In Int. Workshop on Database Programming Lan-
guages, pages 31–42, 1999.

[15] D. Agrawal, A. Abbadi, A. Singh, and T. Yurek. Efficient view main-
tenance at data warehouses. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 417–427, 1997.

[16] A. Aho, P. Denning, and J. Ullman. Principles of optimal page replace-
ment. Journal of the ACM, 18(1):80–93, 1971.

[17] A. Aho, Y. Sagiv, and J. Ullman. Efficient optimization of a class of
relational expressions. ACM Trans. on Database Systems, 4(4):435–454,
1979.

[18] A. Aho, Y. Sagiv, and J. Ullman. Equivalence of relational expressions.
SIAM J. on Computing, 8(2):218–246, 1979.

[19] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational
databases. ACM Trans. on Database Systems, 4(3):297–314, 1979.

[20] S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava, and Y. Wu.
Structural joins: A primitive for efficient XML query pattern matching.
In Proc. IEEE Conference on Data Engineering, pages 141–152, 2002.

[21] J. Albert. Algebraic properties of bag data types. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 211–219, 1991.

[22] F. E. Allen and J. Cocke. A catalogue of optimizing transformations.
In R. Rustin, editor, Design and optimization of compilers, pages 1–30.
Prentice Hall, 1971.

[23] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-
join sizes in limited storage. J. Comput System Sciences, 35(4):391–432,
2002.

[24] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approx-
imating the frequency moments. J. of Computer and System Sciences,
58(1):137–147, 1999.

BIBLIOGRAPHY 627

[25] J. Alsabbagh and V. Rahavan. Analysis of common subexpression ex-
ploitation models in multiple-query processing. In Proc. IEEE Conference
on Data Engineering, pages 488–497, 1994.

[26] P. Alsberg. Space and time savings through large database compression
and dynamic restructuring. In Proc IEEE 63,8, Aug. 1975.

[27] D. Donoho amd M. Elad. Optimally sparse representation in general
(non-orthogonal) dictionaries via ℓ1 minimization. Proc. of the National
Academy of Sciences, 100(5):2197–2202, 2003.

[28] S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava. Efficient
algorithms for minimizing tree pattern queries. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 497–508, 2001.

[29] L. Amsaleg, M. Franklin, A. Tomasic, and T. Urhan. Scrambling query
plans to cope with unexpected delay. In 4th Int. Conference on Parallel
and Distributed Information Systems (PDIS), Palm Beach, Fl, 1996.

[30] C. Zuzarte an X. Yu. Fast approximate computation of statistics on views.
In Proc. of the ACM SIGMOD Conf. on Management of Data, page 724,
2006.

[31] O. Anfindsen. A study of access path selection in DB2. Technical report,
Norwegian Telecommunication Administration and University of Oslo,
Norway, Oct. 1989.

[32] G. Antoshenkov. Random sampling from pseudo-ranked b+-trees. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 375–382, 1992.

[33] G. Antoshenkov. Dynamic query optimization in RDB/VMS. In Proc.
IEEE Conference on Data Engineering, pages 538–547, Vienna, Apr.
1993.

[34] G. Antoshenkov. Query processing in DEC Rdb: Major issues and future
challenges. IEEE Data Engineering Bulletin, 16:42–52, Dec. 1993.

[35] G. Antoshenkov. Dynamic optimization of index scans restricted by
booleans. In Proc. IEEE Conference on Data Engineering, pages 430–
440, 1996.

[36] P. Aoki. Algorithms for index-assisted selectivity estimation. Technical
Report UCB/CSD-98-1021, University of California, Berkeley, Oct 1998.

[37] P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization algorithms for
distributed queries. IEEE Trans. on Software Eng., 9(1):57–68, 1983.

[38] P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization algorithms for
distributed queries. IEEE Trans. on Software Eng., 9(1):57–68, 1983.

[39] R. Ashenhurst. Acm forum. Communications of the ACM, 20(8):609–612,
1977.

628 BIBLIOGRAPHY

[40] M. Astrahan, M. Schkolnick, and K. Whang. Counting unique values of
an attribute without sorting. Information Systems, 12(1):11–15, 1987.

[41] M. M. Astrahan and D. D. Chamberlin. Implementation of a structured
English query language. Communications of the ACM, 18(10):580–588,
1975.

[42] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran, J.N.
Gray, P.P. Griffiths, W.F. King, R.A. Lorie, P.R. Mc Jones, J.W. Mehl,
G.R. Putzolu, I.L. Traiger, B.W. Wade, and V. Watson. System R:
relational approach to database management. ACM Transactions on
Database Systems, 1(2):97–137, June 1976.

[43] R. Avnur and J. Hellerstein. Eddies: Continiously adaptive query opti-
mization. In Proc. of the ACM SIGMOD Conf. on Management of Data,
2000.

[44] B. Babcock and S. Chaudhuri. Towards a robust query optimizer: A
principled and practical approach. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 119–130, 2005.

[45] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-optimization. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 107–118,
2005.

[46] L. Baekgaard and L. Mark. Incremental computation of nested relational
query expressions. ACM Trans. on Database Systems, 20(2):111–148,
1995.

[47] T. Baer. Iperfex: A hardware performance monitor for Linux/IA32 sys-
tems. perform internet search for this or similar tools.

[48] A. Balmin, F. Özcan, K. Beyer, R. Cochrane, and H. Pirahesh. A frame-
work for using materialized XPath views in XML query processing. In
Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 60–71, 2004.

[49] F. Bancilhon and K. Koshafian. A calculus for complex objects. In ACM
Symp. on Principles of Database Systems, pages 53–59, 1986.

[50] J. Banerjee, W. Kim, and K.-C. Kim. Queries in object-oriented databas-
es. MCC Technical Report DB-188-87, MCC, Austin, TX 78759, June
1987.

[51] J. Banerjee, W. Kim, and K.-C. Kim. Queries in object-oriented databas-
es. In Proc. IEEE Conference on Data Engineering, pages 31–38, 1988.

[52] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivikumar, and L. Trevisan.
Counting distinct elements in a data stream. In 6th Int. Workshop RAN-
DOM 2002, pages 1–10, 2002.

BIBLIOGRAPHY 629

[53] E. Baralis, S. Paraboschi, and E. Teniente. Materialized views selection
in a multidimensional database. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 156–165, 1997.

[54] D. Barbar‘a, W. DuMouchel, C. Faloutsos, P. Haas, J. Hellerstein,
Y. Ioannidis, H. Jagadish, T. Johnson, R. Ng, V. Poosala, K. Ross, and
K. Sevcik. The New Jersey data reduction report. IEEE Data Engineering
Bulletin, 20(4):3–45, 1997.

[55] M. Bassiouni. Data compression in scientific and statistical databases.
IEEE Trans. on Software Eng., 11(10):1047–1058, 1985.

[56] D. Batory. On searching transposed files. ACM Trans. on Database
Systems, 4(4):531–544, 1979.

[57] D. Batory. Extensible cost models and query optimization in Genesis.
IEEE Database Engineering, 9(4), Nov 1986.

[58] D. S. Batory. Modeling the storage architecture of commercial database
systems. ACM Trans. on Database Systems, 10(4):463–528, Dec. 1985.

[59] D. S. Batory. A molecular database systems technology. Tech. Report
TR-87-23, University of Austin, 1987.

[60] D. S. Batory. Building blocks of database management systems. Technical
Report TR-87-23, University of Texas, Austin, TX, Feb. 1988.

[61] D. S. Batory. Concepts for a database system compiler. In Proc. of the
17nth ACM SIGMOD, pages 184–192, 1988.

[62] D. S. Batory. On the reusability of query optimization algorithms. Infor-
mation Sciences, 49:177–202, 1989.

[63] D. S. Batory and C. Gotlieb. A unifying model of physical databases.
ACM Trans. on Database Systems, 7(4):509–539, Dec. 1982.

[64] D. S. Batory, T. Y. Leung, and T. E. Wise. Implementation concepts for
an extensible data model and data language. ACM Trans. on Database
Systems, 13(3):231–262, Sep 1988.

[65] L. Baxter. TheComplexity of Unification. PhD thesis, University of Wa-
terloo, 1976.

[66] L. Becker and R. H. Güting. Rule-based optimization and query process-
ing in an extensible geometric database system. ACM Trans. on Database
Systems (to appear), 1991.

[67] L. Becker and R. H. Güting. Rule-based optimization and query process-
ing in an extensible geometric database system. ACM Trans. on Database
Systems, 17(2):247–303, June 1992.

630 BIBLIOGRAPHY

[68] C. Beeri and Y. Kornatzky. Algebraic optimization of object-oriented
query languages. In Proc. Int. Conf. on Database Theory (ICDT), pages
72–88, 1990.

[69] C. Beeri and Y. Kornatzky. Algebraic optimization of object-oriented
query languages. Theoretical Computer Science, 116(1):59–94, 1993.

[70] C. Beeri and Y. Tzaban. SAL: An algebra for semistructured data and
XML. In ACM SIGMOD Workshop on the Web and Databases (WebDB),
1999.

[71] L. A. Belady. A study of replacement algorithms for virtual storage com-
puters. IBM Systems Journal, 5(2):78–101, 1966.

[72] S. Bellamkonda, R. Ahmed, A. Witkowski, A. Amor, M. Zait, and C.-C.
Lin. Enhanced subquery optimization in Oracle. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 1366–1377, 2009.

[73] D. Beneventano, S. Bergamaschi, and C. Sartori. Description logic for
semantic query optimization in object-oriented database systems. ACM
Trans. on Database Systems, 28(1):1–50, 2003.

[74] K. Bennett, M. Ferris, and Y. Ioannidis. A genetic algorithm for database
query optimization. Technical Report Tech. Report 1004, University of
Wisconsin, 1990.

[75] K. Bennett, M. Ferris, and Y. Ioannidis. A genetic algorithm for database
query optimization. In Proc. 4th Int. Conf. on Genetic Algorithms, pages
400–407, 1991.

[76] J.L̃. Bentley and A. C.-C. Yao. An almost optimal algorithm for un-
bounded searching. Inf. Proc. Lett., 5(3):82–87, 1976.

[77] A. Bernasconi and B. Codenetti. Measures of boolean function complexity
based on harmonic analysis. In M. Bonuccelli, P. Crescenzi, and R. Pe-
treschi, editors, Algorithms and Complexity (2nd. Italien Converence),
pages 63–72, Rome, Feb. 1994. Springer (Lecture Notes in Computer Sci-
ence 778).

[78] P. Bernstein, E. Wong, C. Reeve, and J. Rothnie. Query processing in
a system for distributed databases (sdd-1). ACM Trans. on Database
Systems, 6(4):603–625, 1981.

[79] P. A. Bernstein and D. M. W. Chiu. Using semi-joins to solve relational
queries. Journal of the ACM, 28(1):25–40, 1981.

[80] P. A. Bernstein and N. Goodman. The power of inequality semijoin.
Information Systems, 6(4):255–265, 1981.

[81] P. A. Bernstein and N. Goodman. The power of natural semijoin. SIAM
J. Comp., 10(4):751–771, 1981.

BIBLIOGRAPHY 631

[82] E. Bertino and D. Musto. Query optimization by using knowledge about
data semantics. Data & Knowledge Engineering, 9(2):121–155, 1992.

[83] E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella. Object-oriented
query languages: The notion and the issues. IEEE Trans. on Knowledge
and Data Eng., 4(3):223–237, June 1992.

[84] K. Beyer, P. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. On syn-
opses for distinct-value estimation under multiset operations. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 199–210, 2007.

[85] G. Bhargava, P. Goel, and B. Iyer. Hypergraph based reorderings of outer
join queries with complex predicates. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 304–315, 1995.

[86] G. Bhargava, P. Goel, and B. Iyer. No regression algorithm for the enu-
meration of projections in SQL queries with joins and outer joins. In IBM
Centre for Advanced Studies Conference (CASCOM), 1995.

[87] G. Bhargava, P. Goel, and B. Iyer. Simplification of outer joins. In IBM
Centre for Advanced Studies Conference (CASCOM), 1995.

[88] G. Bhargava, P. Goel, and B. Iyer. Efficient processing of outer joins and
aggregate functions. In Proc. IEEE Conference on Data Engineering,
pages 441–449, 1996.

[89] A. Biliris. An efficient database storage structure for large dynamic ob-
jects. In Proc. IEEE Conference on Data Engineering, pages 301–308,
1992.

[90] J. Biskup. A formal approach to null values in database relations. In
Advances in Database Theory, 1981.

[91] D. Bitton and D. DeWitt. Duplicate record elimination in large data files.
ACM Trans. on Database Systems, 8(2):255–265, 1983.

[92] S. Bitzer. Design and implementation of a query unnesting module in
natix. Master’s thesis, University of Mannheim, 2007.

[93] J. Blakeley and N. Martin. Join index, materialized view, and hybrid
hash-join: a performance analysis. In Proc. IEEE Conference on Data
Engineering, pages 256–236, 1990.

[94] J. Blakeley, W. McKenna, and G. Graefe. Experiences building the Open
OODB query optimizer. In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 287–295, 1993.

[95] J. A. Blakeley, P. A. Larson, and F. W. Tompa. Efficiently updating
materialized views. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 61–71, Washington, D.C., 1986.

632 BIBLIOGRAPHY

[96] B. Blohsfeld, D. Korus, and B. Seeger. A comparison of selectivity es-
timators for range queries on metric attributes. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 239–250, 1999.

[97] P. Bodorik and J.S. Riordon. Distributed query processing optimization
objectives. In Proc. IEEE Conference on Data Engineering, pages 320–
329, 1988.

[98] T. Böhme and E. Rahm. Xmach-1: A benchmark for XML data manage-
ment. In BTW, pages 264–273, 2001.

[99] A. Bolour. Optimal retrieval for small range queries. SIAM J. of Comput.,
10(4):721–741, 1981.

[100] P. Bonatti. On the decidability of containment of recursive datalog queries
- preliminary report. In Proc. ACM SIGMOD/SIGACT Conf. on Princ.
of Database Syst. (PODS), pages 297–306, 2004.

[101] P. Boncz, A. Wilschut, and M. Kersten. Flattening an object algebra to
provide performance. In Proc. IEEE Conference on Data Engineering,
pages 568–577, 1998.

[102] B. Bouchou, M. Halfeld, and F. Alves. Updates and incremental vali-
dation of XML documents. In Int. Workshop on Database Programming
Languages, pages 216–232, 2003.

[103] M. Brantner, S. Helmer, C.-C. Kanne, and G. Moerkotte. Full-fledged
algebraic XPath processing in Natix. In Proc. IEEE Conference on Data
Engineering, pages 705–716, 2005.

[104] M. Brantner, N. May, and G. Moerkotte. Unnesting SQL queries in the
presence of disjunction. Technical Report TR-2006-013, University of
Mannheim, 2006.

[105] M. Brantner, N. May, and G. Moerkotte. Unnesting scalar SQL queries
in the presence of disjunction. In Proc. IEEE Conference on Data Engi-
neering, 2007. 46-55.

[106] K. Bratbergsengen and K. Norvag. Improved and optimized partitioning
techniques in database query procesing. In Advances in Databases, 15th
British National Conference on Databases, pages 69–83, 1997.

[107] Y. Breitbart and A. Reiter. Algorithms for fast evaluation of boolean
expressions. Acta Informatica, 4:107–116, 1975.

[108] S. Bressan, M. Lee, Y. Li, Z. Lacroix, and U. Nambiar. The XOO7 XML
Management System Benchmark. Technical Report TR21/00, National
University of Singapore, 2001.

[109] K. Brown, M. Carey, and M. Livny. Goal-oriented buffer management
revisited. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 353–364, Montreal, Canada, Jun 1996.

BIBLIOGRAPHY 633

[110] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: a multidimension-
al workload-aware histogram. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 211–222, 2001.

[111] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: a multidimension-
al workload-aware histogram. Technical Report MSR-TR-2001-36, Mi-
crosoft Research, 2001.

[112] N. Bruno, C. Galindo-Legaria, and M. Joshi. Polynomial heuristics for
query optimization. In Proc. IEEE Conference on Data Engineering,
pages 589–600, 2010.

[113] F. Bry. Logical rewritings for improving the evaluation of quantified
queries. In 2nd. Symp. on Mathematical Fundamentals of Database Sys-
tems, pages 100–116, June 1989, Visegrad, Hungary, 1989.

[114] F. Bry. Towards an efficient evaluation of general queries: Quantifiers and
disjunction processing revisited. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 193–204, 1989.

[115] F. Buccafurri and G. Lax. Fast range query estimation by n-level tree
histograms. Data & Knowledge Engineering, 51:257–275, 2004.

[116] F. Buccafurri, G. Lax, D. Sacca, L. Pontieri, and D. Rosaci. Enhancing
histograms by tree-like bucket indices. The VLDB Journal, 17:1041–1061,
2008.

[117] F. Buccafurri, L. Pontieri, D. Rosaci, and D. Sacca. Improving range
query estimation on histograms. In Proc. IEEE Conference on Data En-
gineering, pages 628–638, 2002.

[118] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XML.
In WWW Conference, pages 201–210, 2001.

[119] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and L. Wong. Comprehen-
sion syntax. SIGMOD Record, 23(1):87–96, 1994.

[120] L. Cabibbo and R. Torlone. A framework for the investigation of aggregate
functions in database queries. In Proc. Int. Conf. on Database Theory
(ICDT), pages 383–397, 1999.

[121] J.-Y. Cai, V. Chakaravarthy, R. Kaushik, and J. Naughton. On the com-
plexity of join predicates. In Proc. ACM SIGMOD/SIGACT Conf. on
Princ. of Database Syst. (PODS), pages 207–214, 2001.

[122] D. Calvanese, G. DeGiacomo, M. Lenzerini, and M. Vardi. View-based
query answering and query containment over semistructured data. In Int.
Workshop on Database Programming Languages, pages 40–61, 2001.

[123] B. Cao and A. Badia. A nested relational approach to processing sql
subqueries. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 191–202, 2005.

634 BIBLIOGRAPHY

[124] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. JOURNAL of the ACM, Computing Surveys:471–
522, 1985.

[125] A. F. Cardenas. Analysis and performance of inverted data base struc-
tures. Communications of the ACM, 18(5):253–263, 1975.

[126] M. Carey, D. DeWitt, J. Richardson, and E. Shikita. Object and file
management in the EXODUS extensible database system. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 91–100, 1986.

[127] M. Carey and D. Kossmann. On saying “enough already!” in SQL. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 219–
230, 1997.

[128] M. Carey and D. Kossmann. Processing top N and bottom N queries.
IEEE Data Engineering Bulletin, 20(3):12–19, 1997.

[129] M. Carey and D. Kossmann. Reducing the braking distance of an SQL
query engine. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 158–169, 1998.

[130] J. Carlis. HAS: A relational algebra operator, or devide is not to conquer.
In Proc. IEEE Conference on Data Engineering, pages 254–261, 1986.

[131] L. Carlitz, D. Roselle, and R. Scoville. Some remarks on ballot-type
sequences of positive integers. Journal of Combinatorial Theory, 11:258–
271, 1971.

[132] C. R. Carlson and R. S. Kaplan. A generalized access path model and
its application to a relational database system. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 143–154, 1976.

[133] R. Cattell, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russel,
O. Schadow, T. Stanienda, and F. Velez, editors. The Object Database
Standard: ODMG 3.0. Morgan Kaufmann, 1999. Release 3.0.

[134] S. Ceri and G. Gottlob. Translating SQL into relational algebra: Op-
timization, semantics and equivalence of SQL queries. IEEE Trans. on
Software Eng., 11(4):324–345, Apr 1985.

[135] S. Ceri and G. Pelagatti. Correctness of query execution strategies in
distributed databases. ACM Trans. on Database Systems, 8(4):577–607,
Dec. 1983.

[136] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems.
McGraw-Hill, 1985.

[137] S. Chakkappen, T. Curanes, B. Dageville, L. Jiang, U. Shaft, H. Su, and
M. Zait. Efficient statistics gathering for large databases in Oracle 11g.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
1053–1064, 2008.

BIBLIOGRAPHY 635

[138] S. Chakravarthy. Devide and conquer: a basis for augmenting a con-
ventional query optimizer with multiple query processing capabilities. In
Proc. IEEE Conference on Data Engineering, 1991.

[139] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to se-
mantic query optimization. ACM Trans. on Database Systems, 15(2):162–
207, 1990.

[140] U. S. Chakravarthy and J. Minker. Multiple query processing in deductive
databases using query graphs. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages ?–?, 1986.

[141] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML query language
for heterogeneous data sources. In ACM SIGMOD Workshop on the Web
and Databases (WebDB), 2000.

[142] C. Chan and B. Ooi. Efficient scheduling of page accesses in index-based
join processing. IEEE Trans. on Knowledge and Data Eng., 9(6):1005–
1011, 1997.

[143] A. Chandra and P. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proc. ACM SIGACT Symp. on the Theory of
Computing, pages 77–90, 1977.

[144] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Proc. 9th ACM Symposium on Theory
of Computing, pages 77–90, 1976.

[145] S. Chatterji, S. Evani, S. Ganguly, and M. Yemmanuru. On the complexi-
ty of approximate query optimization. In Proc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS), pages 282–292, 2002.

[146] D. Chatziantoniou, M. Akinde, T. Johnson, and S. Kim. The MD-Join:
An Operator for Complex OLAP. In Proc. IEEE Conference on Data
Engineering, pages 524–533, 2001.

[147] D. Chatziantoniou and K. Ross. Querying multiple features in relational
databases. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
295–306, 1996.

[148] D. Chatziantoniou and K. Ross. Groupwise processing of relational
queries. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
476–485, 1997.

[149] S. Chaudhuri, P. Ganesan, and S. Sarawagi. Factorizing complex predi-
cates in queries to exploit indexes. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 361–372, 2003.

[150] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 397–410, 1999.

636 BIBLIOGRAPHY

[151] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimiz-
ing queries with materialized views. In Proc. IEEE Conference on Data
Engineering, pages 190–200, 1995.

[152] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimiz-
ing Queries with Materialized Views, pages 77–92. MIT Press, 1999.

[153] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating progress
of long running sql queries. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 803–814, 2004.

[154] S. Chaudhuri and K. Shim. Query optimization in the presence of foreign
functions. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
529–542, 1993.

[155] S. Chaudhuri and K. Shim. Including group-by in query optimization.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 354–366,
1994.

[156] S. Chaudhuri and K. Shim. Optimization of queries with user-defined
predicates. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
87–98, 1996.

[157] S. Chaudhuri and K. Shim. Optimizing queries with aggregate views. In
Proc. of the Int. Conf. on Extending Database Technology (EDBT), pages
167–182, 1996.

[158] S. Chaudhuri and M. Vardi. On the equivalence of recursive and nonre-
cursive datalog programs. In Proc. ACM SIGMOD/SIGACT Conf. on
Princ. of Database Syst. (PODS), pages 55–66, 1992.

[159] S. Chaudhuri and M. Vardi. Optimization of real conjunctive queries.
In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst.
(PODS), pages 59–70, 1993.

[160] S. Chaudhuri and M. Vardi. Optimization of real conjunctive queries.
Technical Report HPL-93-26, HP Software Technology Laboratory, 1993.

[161] S. Chaudhuri and M. Vardi. On the complexity of equivalence be-
tween recursive and nonrecursive datalog programs. In Proc. ACM SIG-
MOD/SIGACT Conf. on Princ. of Database Syst. (PODS), pages 55–66,
1994.

[162] P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard prob-
lems are. In Int. Joint Conf. on Artificial Intelligence (IJCAI), pages
331–337, 1991.

[163] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited.
In Proc. Int. Conf. on Database Theory (ICDT), pages 56–70, 1997.

[164] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited.
Theoretical Computer Science, 239:211–229, 2000.

BIBLIOGRAPHY 637

[165] A.L.P. Chen. Outerjoin optimization in multidatabase systems. In Proc.
2nd. Int. Symp. on Databases in Parallel and Distributed Systems, pages
211–218, 1990.

[166] C. Chen and N. Roussopoulos. The implementation and performance
evaluation of the ADMS query optimizer: Integrating query result caching
and matching. In Proc. of the Int. Conf. on Extending Database Technol-
ogy (EDBT), pages 323–336, 1994.

[167] Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed
database systems. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 271–282, 2001.

[168] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. Ng,
and D. Srivastava. Counting twig matches in a tree. In Proc. IEEE
Conference on Data Engineering, pages 595–604, 2001.

[169] Z. Chen and V. Narasayya. Efficient computation of multiple group by
queries. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 263–274, 2005.

[170] J. Cheng, D. Haderle, R. Hedges, B. Iyer, T. Messenger, C. Mohan, and
Y. Wang. An efficient hybrid join algorithm: A DB2 prototype. In Proc.
IEEE Conference on Data Engineering, pages 171–180, 1991.

[171] J. Cheng, C. Loosley, A. Shibamiya, and P. Worthington. IBM DB2 Per-
formance: design, implementation, and tuning. IBM Sys. J., 23(2):189–
210, 1984.

[172] Q. Cheng, J. Gryz, F. Koo, T. Y. Cliff Leung, L. Liu, X. Quian, and
B. Schiefer. Implementation of two semantic query optimization tech-
niques in DB2 universal database. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 687–698, 1999.

[173] M. Cherniack and S. Zdonik. Rule languages and internal algebras for
rule-based optimizers. In Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 401–412, 1996.

[174] T.-Y. Cheung. Estimating block accesses and number of records in file
management. Communications of the ACM, 25(7):484–487, 1982.

[175] D. M. Chiu and Y. C. Ho. A methodology for interpreting tree queries
into optimal semi-join expressions. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 169–178, 1980.

[176] H.-T. Chou and D. DeWitt. An evaluation of buffer management strate-
gies for relational database systems. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 127–141, 1985.

[177] S. Christodoulakis. Estimating block transfers and join sizes. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 40–54, 1983.

638 BIBLIOGRAPHY

[178] S. Christodoulakis. Estimating record selectivities. Information Systems,
8(2):105–115, 1983.

[179] S. Christodoulakis. Implications of certain assumptions in database per-
formance evaluation. ACM Trans. on Database Systems, 9(2):163–186,
1984.

[180] S. Christodoulakis. Analysis of retrieval performance for records and
objects using optical disk technology. ACM Trans. on Database Systems,
12(2):137–169, 1987.

[181] V. Christophides, S. Cluet, and G. Moerkotte. Evaluating queries with
generalized path expressions. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 413–422, 1996.

[182] C. Clarke, G. Cormack, and F. Burkowski. An algebra for structured text
search and a framework for its implementation. The Computer Journal,
38(1):43–56, 1995.

[183] J. Claussen, A. Kemper, and D. Kossmann. Order-preserving hash joins:
Sorting (almost) for free. Technical Report MIP-9810, University of Pas-
sau, 1998.

[184] J. Claussen, A. Kemper, G. Moerkotte, and K. Peithner. Optimiz-
ing queries with universal quantification in object-oriented and object-
relational databases. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 286–295, 1997.

[185] J. Claussen, A. Kemper, G. Moerkotte, and K. Peithner. Optimiz-
ing queries with universal quantification in object-oriented and object-
relational databases. Technical Report MIP–9706, University of Passau,
Fak. f. Mathematik u. Informatik, Mar 1997.

[186] J. Claussen, A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn.
Optimization and evaluation of disjunctive queries. IEEE Trans. on
Knowledge and Data Eng., 12(2):238–260, 2000.

[187] S. Cluet and C. Delobel. A general framework for the optimization of
object-oriented queries. In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 383–392, 1992.

[188] S. Cluet, C. Delobel, C. Lecluse, and P. Richard. Reloop, an algebra
based query language for an object-oriented database system. In Proc.
Int. Conf. on Deductive and Object-Oriented Databases (DOOD), 1989.

[189] S. Cluet and G. Moerkotte. Nested queries in object bases. In Proc. Int.
Workshop on Database Programming Languages, pages 226–242, 1993.

[190] S. Cluet and G. Moerkotte. Classification and optimization of nested
queries in object bases. In BDA, pages 331–349, 1994.

BIBLIOGRAPHY 639

[191] S. Cluet and G. Moerkotte. Classification and optimization of nested
queries in object bases. Technical Report 95-6, RWTH Aachen, 1995.

[192] S. Cluet and G. Moerkotte. Efficient evaluation of aggregates on bulk
types. Technical Report 95-5, RWTH-Aachen, 1995.

[193] S. Cluet and G. Moerkotte. Efficient evaluation of aggregates on bulk
types. In Proc. Int. Workshop on Database Programming Languages,
1995.

[194] S. Cluet and G. Moerkotte. On the complexity of generating optimal
left-deep processing trees with cross products. In Proc. Int. Conf. on
Database Theory (ICDT), pages 54–67, 1995.

[195] S. Cluet and G. Moerkotte. Query optimization techniques exploiting
class hierarchies. Technical Report 95-7, RWTH-Aachen, 1995.

[196] E. Codd. A relational model of data for large shared data banks. Com-
munications of the ACM, 13(6):377–387, 1970.

[197] E. Codd. Database Systems - Courant Computer Science Symposium.
Prentice Hall, 1972.

[198] E. F. Codd. A database sublanguage founded on the relational calculus. In
Proc. ACM-SIGFIDET Workshop, Datadescription, Access, and Control,
pages 35–68, San Diego, Calif., 1971. ACM.

[199] E. F. Codd. Relational completeness of data base sublanguages. In
Courant Computer Science Symposia No. 6: Data Base Systems, pages
67–101, New York, 1972. Prentice Hall.

[200] E. F. Codd. Extending the relational database model to capture more
meaning. ACM Trans. on Database Systems, 4(4):397–434, Dec. 1979.

[201] S. Cohen, W. Nutt, and Y. Sagiv. Equivalences among aggregate queries
with negation. In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of
Database Syst. (PODS), pages 215–226, 2001.

[202] S. Cohen, W. Nutt, and Y. Sagiv. Containment of aggregate queries (ex-
tended version). Technical report, Hebrew University of Jerusalem, 2002.
available at www.cs.huji.ac.il/ sarina/papers/agg-containment-long.ps.

[203] S. Cohen, W. Nutt, and Y. Sagiv. Containment of aggregate queries. In
Proc. Int. Conf. on Database Theory (ICDT), pages 111–125, 2003.

[204] L. Colby. A recursive algebra and query optimization for nested relational
algebra. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 273–283, 1989.

[205] L. Colby, A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Supporting
multiple view maintenance policies. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 405–416, 1997.

640 BIBLIOGRAPHY

[206] G. Copeland and S. Khoshafian. A decomposition storage model. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 268–
279, Austin, TX, 1985.

[207] G. Cormack. Data compression on a database system. Communications
of the ACM, 28(12):1336–1342, 1985.

[208] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[209] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2001. 2nd Edition.

[210] G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine. Synopses for
Massive Data: Samples, Histograms, Wavelets, Sketches. NOW Press,
2012.

[211] D. Cornell and P. Yu. Integration of buffer management and query op-
timization in relational database environments. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 247–255, 1989.

[212] J. Crawford and L. Auton. Experimental results on the crossover point
in satisfiability problems. In Proc. National Conference on Artificial In-
telligence, pages 21–27, 1993.

[213] K. Culik, T. Ottmann, and D. Wood. Dense multiway trees. ACM Trans.
on Database Systems, 6(3):486–512, 1981.

[214] C. Cunningham, G. Graefe, and C. Galindo-Legaria. Pivot and unpivot:
Optimization and execution strategies in an rdbms. In Proc. Int. Conf.
on Very Large Data Bases (VLDB), pages 998–1009, 2004.

[215] M. Dadashzadeh. An improved division operator for relational algebra.
Information Systems, 14(5):431–437, 1989.

[216] D. Daniels. Query compilation in a distributed database system. Technical
Report RJ 3432, IBM Research Laboratory, San Jose, CA, 1982.

[217] D. Das and D. Batory. Praire: A rule specification framework for query
optimizers. In Proc. IEEE Conference on Data Engineering, pages 201–
210, 1995.

[218] C. J. Date. The outer join. In Proc. of the Int. Conf. on Databases,
Cambridge, England, 1983.

[219] U. Dayal. Processing queries with quantifiers: A horticultural approach.
In ACM Symp. on Principles of Database Systems, pages 125–136, 1983.

[220] U. Dayal. Of nests and trees: A unified approach to processing queries
that contain nested subqueries, aggregates, and quantifiers. In VLDB,
pages 197–208, 1987.

BIBLIOGRAPHY 641

[221] U. Dayal, N. Goodman, and R.H. Katz. An extended relational al-
gebra with control over duplicate elimination. In Proc. ACM SIG-
MOD/SIGACT Conf. on Princ. of Database Syst. (PODS), pages 117–
123, 1982.

[222] U. Dayal, F. Manola, A. Buchman, U. Chakravarthy, D. Goldhirsch,
S. Heiler, J. Orenstein, and A. Rosenthal. Simplifying complex object:
The PROBE approach to modelling and querying them. In H.J. Schek
and G. Schlageter (eds.) Proc. BTW, pages 17–37, 1987.

[223] U. Dayal and J. Smith. PROBE: A knowledge-oriented database manage-
ment system. In Proc. Islamorada Workshop on Large Scale Knowledge
Base and Reasoning Systems, 1985.

[224] G. de Balbine. Note on random permutations. Mathematics of Compu-
tation, 21:710–712, 1967.

[225] D. DeHaan, P.-A. Larson, and J. Zhou. Stacked indexed views in Mi-
crosoft SQL server. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 179–190, 2005.

[226] K. Delaney. Inside Microsoft SQL Server 2005: Query Tuning and Opti-
mization. Microsoft Press, 2008.

[227] R. Demolombe. Estimation of the number of tuples satisfying a query
expressed in predicate calculus language. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 55–63, 1980.

[228] P. Denning. Effects of scheduling on file memory operations. In Proc.
AFIPS, pages 9–21, 1967.

[229] N. Derrett and M.-C. Shan. Rule-based query optimization in IRIS. Tech-
nical report, Hewlard-Packard Laboratories, 1501 Page Mill Road, Palo
Alto, CA94303, 1990.

[230] B. Desai. Performance of a composite attribute and join index. IEEE
Trans. on Software Eng., 15(2):142–152, Feb. 1989.

[231] A. Deshpande, M. Garofalakis, and R. Rastogi. Independence is good:
Dependency-based histogram synopses for high-dimensional data. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 199–
210, 2001.

[232] A. Deshpande, Z. Ives, and V. Raman. Adaptive Query Optimization.
NOW, 2007.

[233] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Maier, and D. Suciu.
Querying XML data. IEEE Data Engineering Bulletin, 22(3):10–18, 1999.

[234] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting queries using views
with access patterns under integrity constraints. In Proc. Int. Conf. on
Database Theory (ICDT), pages 352–367, 2005.

642 BIBLIOGRAPHY

[235] A. Deutsch and V. Tannen. Containment and integrity constraints for
XPath. In Int. Workshop on Knowledge Representation meets Databases
(KRDB), 2001.

[236] A. Deutsch and V. Tannen. Optimization properties for classes of con-
junctive regular path queries. In Int. Workshop on Database Programming
Languages, pages 21–39, 2001.

[237] A. Deutsch and V. Tannen. Reformulation of XML queries and con-
straints. In Proc. Int. Conf. on Database Theory (ICDT), pages 225–241,
2003.

[238] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood.
Implementation techniques for main memory database systems. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 151–1??, 1984.

[239] D. DeWitt, J. Naughton, and D. Schneider. An evaluation of non-equijoin
algorithms. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
443–452, 1991.

[240] Y. Diao, M. Altinel, M. Franklin, H. Zhang, and P. Fischer. Path sharing
and predicate evaluation for high-performance xml filtering. ACM Trans.
on Database Systems, 28(4):367–516, 2003.

[241] G. Diehr and A. Saharia. Estimating block accesses in database organi-
zations. IEEE Trans. on Knowledge and Data Engineering, 6(3):497–499,
1994.

[242] P. Dietz. Optimal algorithms for list indexing and subset ranking. In
Workshop on Algorithms and Data Structures (LNCS 382), pages 39–46,
1989.

[243] Z. Dimitrijevic, R. Rangaswami, E. Chang, D. Watson, and A. Acharya.
Diskbench: User-level disk feature extraction tool. Technical report, Uni-
versity of California, Santa Barbara, 2004.

[244] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra. Using
PAPI for hardware performance monitoring on Linux systems. perform
internet search for this or similar tools.

[245] D. Donjerkovic, Y. Ioannidis, and R. Ramakrishnan. Dynamic his-
tograms: Capturing evolving data sets. In Proc. IEEE Conference on
Data Engineering, page 86, 2000.

[246] D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of Top
n queries. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
411–422, 1999.

[247] J. Donovan. Database system approach to management of decision sup-
port. ACM Trans. on Database Systems, 1(4):344–368, 1976.

BIBLIOGRAPHY 643

[248] M. Drmota, D. Gardy, and B. Gittenberger. A unified presentation of
some urn models. Algorithmica, 29:120–147, 2001.

[249] M. Durand. Combinatoire analytique et algorithmique des ensembles de
données. PhD thesis, Ecole Polytechnique, 2004.

[250] M. Durand and P. Flajolet. Loglog counting of large cardinalities. In
Algorithms - ESA 2003, Annual European Symposium, pages 605–617.
Springer LNCS 2832, 2003.

[251] R. Durstenfeld. Algorithm 235: Random permutation. Communications
of the ACM, 7(7):420, 1964.

[252] O. Duschka. Query Planning and Optimization in Information Integra-
tion. PhD thesis, Stanford University, 1997.

[253] O. Duschka and M. Genesereth. Answering recursive queries using views.
In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst.
(PODS), pages 109–116, 1997.

[254] O. Duschka and M. Genesereth. Query planning with disjunctive sources.
In AAAI Workshop on AI and Information Integration, 1998.

[255] O. Duschka and M. Gensereth. Answering recursive queries using views.
In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst.
(PODS), pages 109–116, 1997.

[256] O. Duschka and A. Levy. Recursive plans for information gathering. In
Int. Joint Conf. on Artificial Intelligence (IJCAI), 1997.

[257] W. Effelsberg and T. Härder. Principles of database buffer management.
ACM Trans. on Database Systems, 9(4):560–595, 1984.

[258] S. Eggers, F. Olken, and A. Shoshani. A compression technique for large
statistical data bases. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 424–434, 1981.

[259] S. Eggers and A. Shoshani. Efficient access of compressed data. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 205–211, 1980.

[260] J. F. Egler. A procedure for converting logic table conditions into an
efficient sequence of test instructions. Communications of the ACM,
6(9):510–514, 1963.

[261] M. Eisner and D. Severance. Mathematical techniques for efficient record
segmentation in large shared databases. Journal of the ACM, 23(4):619–
635, 1976.

[262] A. El-Helw, I. Ilyas, W. Lau, V. Markl, and C. Zuzarte. Collecting and
maintaining just-in-time statistics. In Proc. IEEE Conference on Data
Engineering, pages 516–525, 2007.

644 BIBLIOGRAPHY

[263] Ml Elhemali, C. Galindo-Legaria, T. Grabs, and M. Joshi. Execution
strategies for SQL subqueries. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 993–1003, 2007.

[264] R. Elmasri and S. Navathe. Fundamentals of Database Systems. Addison-
Wesley, 2000. 3rd Edition.

[265] G. Lohman et al. Optimization of nested queries in a distributed relational
database. In Proc. Int. Conf. on Very Large Data Bases (VLDB), 1984.

[266] N. Roussopoulos et al. The maryland ADMS project: Views R Us. IEEE
Data Engineering Bulletin, 18(2), 1995.

[267] P. Schwarz et al. Extensibility in the starburst database system. In Proc.
Int. Workshop on Object-Oriented Database Systems, 1986.

[268] R. Fagin. Combining fuzzy information from multiple systems. In Proc.
ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst. (PODS),
pages 216–226, 1996.

[269] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of
Database Syst. (PODS), pages 102–113, 2001.

[270] C. Farr’e, E. Teniente, and T. Urp’i. Query containment checking as a
view updating problem. In Inf. Conf. on Database and Expert Systems
Applications (DEXA), pages 310–321, 1998.

[271] C. Farr’e, E. Teniente, and T. Urp’i. The constructive method for query
containment checking. In Inf. Conf. on Database and Expert Systems
Applications (DEXA), pages 583–593, 1999.

[272] C. Farr’e, E. Teniente, and T. Urp’i. Query containment with negated
IDB predicates. In ABDIS, pages 583–593, 2003.

[273] C. Farr’e, E. Teniente, and T. Urp’i. Checking query containment with
the cqc method. Data & Knowledge Engineering, 53:163–223, 2005.

[274] J. Fedorowicz. Database evaluation using multiple regression techniques.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
70–76, 1984.

[275] J. Fedorowicz. Database performance evaluation in an indexed file envi-
ronment. ACM Trans. on Database Systems, 12(1):85–110, 1987.

[276] L. Fegaras. Optimizing large OODB queries. In Proc. Int. Conf. on
Deductive and Object-Oriented Databases (DOOD), pages 421–422, 1997.

[277] L. Fegaras. A new heuristic for optimizing large queries. In DEXA, pages
726–735, 1998.

BIBLIOGRAPHY 645

[278] L. Fegaras and D. Maier. Towards an effective calculus for object query
languages. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 47–58, 1995.

[279] L. Fegaras and D. Maier. Optimizing object queries using an effective
calculus. ACM Trans. on Database Systems, 25(4):457–516, 2000.

[280] T. Fiebig and G. Moerkotte. Evaluating Queries on Structure with eX-
tended Access Support Relations. In WebDB 2000, 2000.

[281] T. Fiebig and G. Moerkotte. Algebraic XML construction in Natix. In
Proc. Int. Conf. on Web Information Systems Engineering (WISE), pages
212–221, 2001.

[282] T. Fiebig and G. Moerkotte. Algebraic XML construction and its opti-
mization in Natix. World Wide Web Journal, 4(3):167–187, 2002.

[283] S. Finkelstein. Common expression analysis in database applications. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 235–
245, 1982.

[284] P. Flajolet. Approximate counting: A detailed analysis. BIT, 25(1):113–
134, 1985.

[285] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm. In Conf.
on Analysis of Algorithms (AofA). Discrete Mathematics and Theoretical
Computer Science, pages 127–146, 2007.

[286] P. Flajolet and G. Martin. Probabilistic counting. In Annual Symposium
on Foundations of Computer Science (FOCS), pages 76j–82, 1983.

[287] P. Flajolet and G. Martin. Probabilistic counting algorithms for data base
applications. Rapports de Recherche 313, INRIA Rocquencourt, 1984.

[288] P. Flajolet and G. Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

[289] D. Florescu. Espaces de Recherche pour l’Optimisation de Requêtes Objet
(Search Spaces for Query Optimization). PhD thesis, Université de Paris
VI, 1996. in French.

[290] D. Florescu, A. Levy, and D. Suciu. Query containment for conjunctive
queries with regular expressions. In Proc. ACM SIGMOD/SIGACT Conf.
on Princ. of Database Syst. (PODS), pages 139–148, 1998.

[291] P. Fortier. SQL-3, Implementing the SQL Foundation Standard. McGraw
Hill, 1999.

[292] F. Fotouhi and S. Pramanik. Optimal secondary storage access sequence
for performing relational join. IEEE Trans. on Knowledge and Data Eng.,
1(3):318–328, 1989.

646 BIBLIOGRAPHY

[293] F. Frasincar, G.-J. Houben, and C. Pau. XAL: An algebra for XML query
optimization. In Australasian Database Conference (ADC), 2002.

[294] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Simeon. StatiX: making
XML count. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 181–191, 2002.

[295] J. C. Freytag. A rule-based view of query optimization. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 173–180, 1987.

[296] J. C. Freytag and N. Goodman. On the translation of relational queries
into iterative programs. ACM Trans. on Database Systems, 14(1):1–27,
1989.

[297] C. Galindo-Legaria. Outerjoin Simplification and Reordering for Query
Optimization. PhD thesis, Harvard University, 1992.

[298] C. Galindo-Legaria. Outerjoins as disjunctions. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 348–358, 1994.

[299] C. Galindo-Legaria. Outerjoins as disjunctions. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 348–538, 1994.

[300] C. Galindo-Legaria and M. Joshi. Orthogonal optimization of subqueries
and aggregation. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 571–581, 2001.

[301] C. Galindo-Legaria, M. Joshi, F. Waas, and M.-C. Wu. Statistics on
views. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
952–962, 2003.

[302] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Cost distribution of
search spaces in query optimization. Technical Report CS-R9432, CWI,
Amsterdam, NL, 1994.

[303] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Fact, randomized
join-order selection — why use transformations? In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 85–95, 1994.

[304] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Fast, randomized
join-order selection — why use transformations? Technical Report CS-
R–9416, CWI, Amsterdam, NL, 1994.

[305] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. The impact of cat-
alogs and join algorithms on probabilistic query optimization. Technical
Report CS-R9459, CWI, Amsterdam, NL, 1994.

[306] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Uniformly-distributed
random generation of join orders. Technical Report CS-R9431, CWI,
Amsterdam, NL, 1994.

BIBLIOGRAPHY 647

[307] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Cost distribution of
search spaces in query optimization. In Proc. Int. Conf. on Database
Theory (ICDT), pages 280–293, 1995.

[308] C. Galindo-Legaria and A. Rosenthal. Outerjoin simplification and re-
ordering for query optimization. ACM Trans. on Database Systems,
22(1):43–73, Marc 1997.

[309] C. Galindo-Legaria, A. Rosenthal, and E. Kortright. Expressions, graphs,
and algebraic identities for joins, 1991. working paper.

[310] S. Ganapathy and V. Rajaraman. Information theory applied to the
conversion of decision tables to computer programs. Communications of
the ACM, 16:532–539, 1973.

[311] S. Gandeharizadeh, J. Stone, and R. Zimmermann. Techniques to quanti-
fy SCSI-2 disk subsystem specifications for multimedia. Technical Report
95-610, University of Southern California, 1995.

[312] S. Ganguly. On the complexity of finding optimal join order sequence for
star queries without cross products. personal correspondance, 2000.

[313] S. Ganguly, A. Goel, and A. Silberschatz. Efficient and accurate cost
model for parallel query optimization. In Proc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS), pages 172–181, 1996.

[314] R. Ganski and H. Wong. Optimization of nested SQL queries revisited. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 23–33,
1987.

[315] G. Garani and R. Johnson. Joining nested relations and subrelations.
Information Systems, 25(4):287–307, 2000.

[316] H. Garcia-Molina, J. Ullman, and J. Widom. Database System Imple-
mentation. Prentice Hall, 2000.

[317] D. Gardy and L. Nemirovski. Urn models and yao’s formula. In Proc.
Int. Conf. on Database Theory (ICDT), pages 100–112, 1999.

[318] D. Gardy and C. Puech. On the effect of join operations on relation sizes.
ACM Trans. on Database Systems, 14(4):574–603, 1989.

[319] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1978.

[320] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide
to the Theory of NP-Completeness. Freeman, San Francisco, 1979.

[321] M. Garofalakis and P. Gibbons. Wavelet synopses with error guarantees.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
476–487, 2002.

648 BIBLIOGRAPHY

[322] P. Gassner, G. Lohman, and K. Schiefer. Query optimization in the IBM
DB2 family. IEEE Data Engineering Bulletin, 16:4–18, Dec. 1993.

[323] P. Gassner, G. Lohman, K. Schiefer, and Y. Wang. Query optimization
in the IBM DB2 family. Technical report rj 9734, IBM, 1994.

[324] E. Gelenbe and D. Gardy. On the size of projections: I. Information
Processing Letters, 14:1, 1982.

[325] E. Gelenbe and D. Gardy. The size of projections of relations satisfying
a functional dependency. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 325–333, 1982.

[326] I. Gent and T. Walsh. Towards an understanding of hill-climbing proce-
dures for SAT. In Proc. National Conference on Artificial Intelligence,
pages 28–33, 1993.

[327] A. Gheazal, R. Bhashyam, and A. Crolotte. Block optimization in the
Teradata RDBMS. In Inf. Conf. on Database and Expert Systems Appli-
cations (DEXA), pages 782–791, 2003.

[328] A. Gheazal, A. Crolotte, and R. Bhashyam. Outer join elimination in
the Teradata RDBMS. In Inf. Conf. on Database and Expert Systems
Applications (DEXA), pages 730–740, 2004.

[329] L. Giakoumakis and C. Galinda-Legaria. Testing sql server’s query opti-
mizer: Challenges, techniques and experiences. IEEE Data Engineering
Bulletin, 31(1):36–43, 2008.

[330] P. Gibbons and Y. Matias. New sampling-based summary statistics for
improving approximate query answers. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 331–342, 1998.

[331] F. Giroire. Order statistics and estimating cardinalities of massive data
sets. Discrete Applied Mathematics, 157:406–427, 2009.

[332] P. Godfrey, J. Gryz, and C. Zuzarte. Exploiting constraint-like data
characterizations in query optimization. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 582–592, 2001.

[333] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[334] J. Goldstein and P. Larson. Optimizing queries using materialized views:
A practical, scalable solution. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 331–342, 2001.

[335] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and
indexes. In Proc. IEEE Conference on Data Engineering, 1998. to appear.

[336] G. Golub and C. van Loan. Matrix Computations. The John Hopkins
University Press, 1996. Third Edition.

BIBLIOGRAPHY 649

[337] G. Gorry and S. Morton. A framework for management information sys-
tems. Sloan Management Review, 13(1):55–70, 1971.

[338] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing
XPath queries. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 95–106, 2002.

[339] G. Gottlob, C. Koch, and R. Pichler. XPath processing in a nutshell.
SIGMOD Record, 2003.

[340] G. Gottlob, C. Koch, and R. Pichler. XPath query evaluation: Improving
time and space efficiency. In Proc. IEEE Conference on Data Engineering,
page to appear, 2003.

[341] M. Gouda and U. Dayal. Optimal semijoin schedules for query processing
in local distributed database systems. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 164–175, 1981.

[342] P. Goyal. Coding methods for text string search on compressed databases.
Information Systems, 8(3):231–233, 1983.

[343] G. Graefe. Software modularization with the exodus optimizer generator.
IEEE Database Engineering, 9(4):37–45, 1986.

[344] G. Graefe. Relational division: Four algorithms and their performance.
In Proc. IEEE Conference on Data Engineering, pages 94–101, 1989.

[345] G. Graefe. Encapsulation of parallelism in the Volcano query processing
system. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages ?–?, 1990.

[346] G. Graefe. Heap-filter merge join: A new algorithm for joining medium-
size inputs. IEEE Trans. on Software Eng., 17(9):979–982, 1991.

[347] G. Graefe. Query evaluation techniques for large databases. ACM Com-
puting Surveys, 25(2), June 1993.

[348] G. Graefe. Query evaluation techniques for large databases. Shortened
version: [347], July 1993.

[349] G. Graefe. Sort-merge-join: An idea whose time has(h) passed? In Proc.
IEEE Conference on Data Engineering, pages 406–417, 1994.

[350] G. Graefe. The cascades framework for query optimization. IEEE Data
Engineering Bulletin, 18(3):19–29, Sept 1995.

[351] G. Graefe. Executing nested queries. In BTW, pages 58–77, 2003.

[352] G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash teams in
Microsoft SQL Server. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 86–97, 1998.

650 BIBLIOGRAPHY

[353] G. Graefe and R. Cole. Fast algorithms for universal quantification in
large databases. Internal report, Portland State University and University
of Colorado at Boulder, 19??

[354] G. Graefe and R. Cole. Dynamic query evaluation plans. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages ?–?, 1994.

[355] G. Graefe and R. Cole. Fast algorithms for universal quantification in
large databases. ACM Trans. on Database Systems, ?(?):?–?, ? 1995?

[356] G. Graefe, R. Cole, D. Davison, W. McKenna, and R. Wolniewicz. Exten-
sible query optimization and parallel execution in Volcano. In Dagstuhl
Query Processing Workshop, pages 337–380, 1991.

[357] G. Graefe and D. DeWitt. The EXODUS optimizer generator. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 160–172, 1987.

[358] G. Graefe, A. Linville, and L. Shapiro. Sort versus hash revisited. IEEE
Trans. on Knowledge and Data Eng., 6(6):934–944, Dec. 1994.

[359] G. Graefe and W. McKenna. The Volcano optimizer generator. Tech.
Report 563, University of Colorado, Boulder, 1991.

[360] G. Graefe and W. McKenna. Extensibility and search efficiency in the
volcano optimizer generator. In Proc. IEEE Conference on Data Engi-
neering, pages 209–218, 1993.

[361] G. Graefe and K. Ward. Dynamic query evaluation plans. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 358–366, 1989.

[362] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, 2002.

[363] G. Grahne and A. Thomo. Algebraic rewritings for optimizing regular
path queries. In Proc. Int. Conf. on Database Theory (ICDT), pages
301–315, 2001.

[364] G. Grahne and A. Thomo. New rewritings and optimizations for regular
path queries. In Proc. Int. Conf. on Database Theory (ICDT), pages
242–258, 2003.

[365] J. Grant, J. Gryz, J. Minker, and L. Raschid. Semantic query optimization
for object databases. In Proc. IEEE Conference on Data Engineering,
pages 444–453, 1997.

[366] J. Gray, editor. The Benchmark Handbook. Morgan Kaufmann Publishers,
San Mateo, CA, 1991.

[367] J. Gray and G. Graefe. The five-minute rule ten years later, and other
computer storage rules of thumb. ACM SIGMOD Record, 26(4):63–68,
1997.

BIBLIOGRAPHY 651

[368] J. Gray and F. Putzolu. The 5 minute rule for trading memory for disk
accesses and the 10 byte rule for trading memory for CPU time. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 395–398,
1987.

[369] P. Grefen and R. de By. A multi-set extended relational algebra – a
formal approach to a practical issue. In Proc. IEEE Conference on Data
Engineering, pages 80–88, 1994.

[370] T. Grust. Accelerating XPath location steps. In Proc. of the ACM SIG-
MOD Conf. on Management of Data, pages 109–120, 2002.

[371] T. Grust and M. Van Keulen. Tree awareness for relational database
kernels: Staircase join. In Intelligent Search on XML Data, pages 231–
245, 2003.

[372] T. Grust, M. Van Keulen, and J. Teubner. Staircase join: Teach a rela-
tional dbms to watch its (axis) steps. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 524–525, 2003.

[373] T. Grust, M. Van Keulen, and J. Teubner. Accelerating XPath evaluation
in any RDBMS. ACM Trans. on Database Systems, 29(1):91–131, 2004.

[374] J. Gryz, B. Schiefer, J. Zheng, and C. Zuzarte. Discovery and applica-
tion of check constraints in DB2. In Proc. IEEE Conference on Data
Engineering, pages 551–556, 2001.

[375] E. Gudes and A. Reiter. On evaluating boolean expression. Software
Practice and Experience, 3:345–350, 1973.

[376] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In
Annual ACM Symposium on Theory of Computing (STOC), pages 471–
475, 2001.

[377] S. Guha, N. Koudas, and D. Srivastava. Fast algorithms for hierarchical
range histogram construction. In Proc. ACM SIGMOD/SIGACT Conf.
on Princ. of Database Syst. (PODS), pages 180–187, 2002.

[378] H. Gunadhi and A. Segev. Query processing algorithms for temporal
intersection joins. In Proc. IEEE Conference on Data Engineering, pages
336–344, 1991.

[379] L. Guo, K. Beyer, J. Shanmugasundaram, and E. Shekita. Efficient in-
verted lists and query algorithms for structured value ranking in update-
intense relational databases. In Proc. IEEE Conference on Data Engi-
neering, pages 298–309, 2005.

[380] M. Guo, S. Y. W. Su, and H. Lam. An association algebra for processing
object-oriented databases. In Proc. IEEE Conference on Data Engineer-
ing, pages ?–?, 1991.

652 BIBLIOGRAPHY

[381] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in
data warehousing environments. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 358–369, 1995.

[382] A. Gupta, V. Harinarayan, and D. Quass. Generalized projections: A
powerful approach to aggregation. Technical Report, 1995.

[383] A. Gupta and I. Mumick. Maintenance of materialized views: problems,
techniques and applications. IEEE Data Engineering Bulletin, 18(2):3–19,
1995.

[384] R. Güting, R. Zicari, and D. Choy. An algebra for structured office doc-
uments. ACM Trans. on Information Systems, 7(4):123–157, 1989.

[385] R. H. Güting. Geo-relational algebra: A model and query language for
geometric database systems. In J. W. Schmidt, S. Ceri, and M. Missikoff,
editors, Proc. of the Intl. Conf. on Extending Database Technology, pages
506–527, Venice, Italy, Mar 1988. Springer-Verlag, Lecture Notes in Com-
puter Science No. 303.

[386] R. H. Güting. Second-order signature: A tool for specifying data models,
query processing, and optimization. Informatik-Bericht 12/1992, ETH
Zürich, 1992.

[387] L. Haas, W. Chang, G. Lohman, J. McPherson, P. Wilms, G. Lapis,
B. Lindsay, H. Pirahesh, M. Carey, and E. Shekita. Starbust mid-flight:
As the dust clears. IEEE Trans. on Knowledge and Data Eng., 2(1):143–
160, 1990.

[388] L. Haas, J. Freytag, G. Lohman, and H. Pirahesh. Extensible query pro-
cessing in starburst. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 377–388, 1989.

[389] A. Hadi. Matrix Algebra as a Tool. Duxbury Press, 1996.

[390] A. Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, Dec. 2001.

[391] P. A. V. Hall. Common subexpression identification in general algebra-
ic systems. Tech. rep. uksc 0060, IBM UK Scientific Center, Peterlee,
England, 1974.

[392] P. A. V. Hall. Optimization of single expressions in a relational database
system. IBM J. Res. Devel., 20(3):244–257, 1976.

[393] P. A. V. Hall and S. Todd. Factorization of algebraic expressions. Tech.
Report UKSC 0055, IBM UK Scientific Center, Peterlee, England, 1974.

[394] C. Hamalainen. Complexity of query optimisation and evaluation. Mas-
ter’s thesis, Griffith University, Queensland, Australia, 2002.

BIBLIOGRAPHY 653

[395] M. Hammer and B. Niamir. A heuristic approach to attribute partition-
ing. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
93–101, 1979.

[396] J. Han. Smallest-first query evaluation for database systems. In Australian
Database Conference, pages ?–?, Christchurch, New Zealand, Jan. 1994.

[397] M. Z. Hanani. An optimal evaluation of boolean expressions in an online
query system. Communications of the ACM, 20(5):344–347, 1977.

[398] E. Hanson. A performance analysis of view materialization strategies.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
440–453, 1987.

[399] E. Hanson. Processing queries against database procedures. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages ?–?, 1988.

[400] E.N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A predi-
cate matching algorithm for database rule systems. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 271–?, 1990.

[401] T. Härder. Implementing a generalized access path structure for a rela-
tional database system. ACM Trans. on Database Systems, 3(3):285–298,
1978.

[402] T. Härder, B. Mitschang, and H. Schöning. Query processing for complex
objects. Data and Knowledge Engineering, 7(3):181–200, 1992.

[403] T. Härder and E. Rahm. Datenbanksysteme. Springer, 1999.

[404] T. Härder, H. Schöning, and A. Sikeler. Parallelism in processing queries
on complex objects. In International Symposium on Databases in Parallel
and Distributed Systems, Ausgin, TX, August 1988.

[405] V. Harinarayan and A. Gupta. Generalized projections: a powerful query
optimization technique. Technical Report STAN-CS-TN-94-14, Stanford
University, 1994.

[406] H. Harmouch and F. Naumann. Cardinality estimation: An experimental
survey. Proc. of the VLDB Endowment (PVLDB), 11(4):499–512, 2017.

[407] E. Harris and K. Ramamohanarao. Join algorithm costs revisited. The
VLDB Journal, 5(1):?–?, Jan 1996.

[408] D. Harville. Matrix Algebra from a Statistician’s Perspective. Springer,
2008.

[409] W. Hasan and H. Pirahesh. Query rewrite optimization in starburst.
Research Report RJ6367, IBM, 1988.

[410] Z. He, B. Lee, and R. Snapp. Self-tuning cost modeling of user-defined
functions in an object-relational DBMS. ACM Trans. on Database Sys-
tems, 30(3):812–853, 2005.

654 BIBLIOGRAPHY

[411] M. Heimel, M. Kiefer, and V. Markl. Self-tuning, GPU-accelerated kernel
density models for multidimensional selectivity estimation. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 1477–1492, 2015.

[412] Heller. Rabbit: A performance counter library for Intel/AMD processors
and Linux. perform internet search for this or similar tools.

[413] J. Hellerstein. Practical predicate placement. In Proc. of the ACM SIG-
MOD Conf. on Management of Data, pages 325–335, 1994.

[414] J. Hellerstein and J. Naughton. Query execution techniques for caching
expensive methods. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 423–434, 1996.

[415] J. Hellerstein and M. Stonebraker. Predicate migration: Optimizing
queries with expensive predicates. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 267–277, 1993.

[416] S. Helmer, C.-C. Kanne, and G. Moerkotte. Optimized translation of
XPath expressions into algebraic expressions parameterized by programs
containing navigational primitives. In Proc. Int. Conf. on Web Informa-
tion Systems Engineering (WISE), 2002. 215-224.

[417] S. Helmer, C.-C. Kanne, and G. Moerkotte. Optimized translation of
XPath expressions into algebraic expressions parameterized by programs
containing navigational primitives. Technical Report 11, University of
Mannheim, 2002.

[418] S. Helmer, B. König-Ries, and G. Moerkotte. The relational difference
calculus and applications. Technical report, Universität Karlsruhe, 1993.
(unpublished manuscript).

[419] S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms
for joins with set comparison join predicates. Technical Report 13/96,
University of Mannheim, Mannheim, Germany, 1996.

[420] S. Helmer and G. Moerkotte. Evaluation of main memory join algorithms
for joins with set comparison join predicates. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 386–395, 1997.

[421] S. Helmer and G. Moerkotte. Index structures for databases containing
data items with set-valued attributes. Technical Report 2/97, University
of Mannheim, 1997.

[422] S. Helmer and G. Moerkotte. A study of four index structures for set-
valued attributes of low cardinality. Technical Report 02/99, University
of Mannheim, 1999.

[423] S. Helmer and G. Moerkotte. Compiling away set containment and inter-
section joins. Technical Report 4, University of Mannheim, 2002.

BIBLIOGRAPHY 655

[424] S. Helmer and G. Moerkotte. A performance study of four index structures
for set-valued attributes of low cardinality. VLDB Journal, 12(3):244–261,
2003.

[425] S. Helmer, T. Neumann, and G. Moerkotte. Early grouping gets the skew.
Technical Report 9, University of Mannheim, 2002.

[426] M. Henderson and R. Lawrence. An evaluation of multi-way joins for
relational database systems. In ICEIS, pages 37–50, 2013.

[427] A. Heuer and M. H. Scholl. Principles of object-oriented query languages.
In Proc. der GI-Fachtagung Datenbanksysteme für Büro, Technik und
Wissenschaft (BTW). Springer, 1991.

[428] J. Hidders and P. Michiels. Avoiding unnecessary ordering operations in
XPath. In Int. Workshop on Database Programming Languages, pages
54–70, 2003.

[429] D. Hirschberg. On the complexity of searching a set of vectors. SIAM J.
Computing, 9(1):126–129, 1980.

[430] T. Hogg and C. Williams. Solving the really hard problems with coopera-
tive search. In Proc. National Conference on Artificial Intelligence, pages
231–236, 1993.

[431] L. Hong-Cheu and K. Ramamohanarao. Algebraic equivalences among
nested relational expressions. In CIKM, pages 234–243, 1994.

[432] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press,
2007.

[433] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A system
for the efficient execution of multi-parametric ranked queries. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages ?–?, 2001.

[434] N. Huyn. Multiple-view self-maintenance in data warehousing environ-
ments. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
26–35, 1997.

[435] F. Hwang and G. Chang. Enumerating consecutive and nested partitions
for graphs. Technical Report DIMACS Technical Report 93-15, Rutgers
University, 1993.

[436] H.-Y. Hwang and Y.-T. Yu. An analytical method for estimating and
interpreting query time. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 347–358, 1987.

[437] L. Hyafil and R. Rivest. Constructing optimal binary decision trees is
NP-complete. Information Processing Letters, 5(1):15–17, 1976.

[438] T. Ibaraki and T. Kameda. Optimal nesting for computing n-relational
joins. ACM Trans. on Database Systems, 9(3):482–502, 1984.

656 BIBLIOGRAPHY

[439] O. Ibarra and J. Su. On the containment and equivalence of database
queries with linear constraints. In Proc. ACM SIGMOD/SIGACT Conf.
on Princ. of Database Syst. (PODS), pages 32–43, 1997.

[440] A. IJbema and H. Blanken. Estimating bucket accesses: A practical
approach. In Proc. IEEE Conference on Data Engineering, pages 30–37,
1986.

[441] I. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Automatic
relationship discovery in self-managing database systems. In Proc. Int.
Conf. on Automatic Computing (ICAC), pages 340–341, 2004.

[442] I. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords: Auto-
matic discovery of correlations and soft functional dependencies. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 647–658,
2004.

[443] I. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. Cords: Auto-
matic generation of correlation statistics in db2. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), 2004.

[444] I. Ilyas, J. Rao, G. Lohman, D. Gao, and E. Lin. Estimating compilation
time of a query optimizer. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 373–384, 2003.

[445] Y. Ioannidis. Query optimization. ACM Computing Surveys, 28(1):121–
123, 1996.

[446] Y. Ioannidis. A. Tucker (ed.): The Computer Science and Engineering
Handbook, chapter Query Optimization, pages 1038–1057. CRC Press,
1997.

[447] Y. Ioannidis. The history of histograms (abridged). In Proc. Int. Conf.
on Very Large Data Bases (VLDB), pages 19–30, 2003.

[448] Y. Ioannidis and V. Poosala. Histogram-based approximation of set-
valued query answers. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 174–185, 1999.

[449] Y. Ioannidis and R. Ramakrishnan. Generalized containment of conjunc-
tive queries. Technical report, U. Wisconsin, Madison, 1992.

[450] Y. Ioannidis and R. Ramakrishnan. Containment of conjunctive queries:
Beyond relations and sets. ACM Trans. on Database Systems, 20(3):288–
324, 1995.

[451] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the
size of join results. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 268–277, 1991.

BIBLIOGRAPHY 657

[452] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for optimizing
large join queries. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 312–321, 1990.

[453] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: An analysis
of strategy spaces and its implications for query optimization. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 168–177, 1991.

[454] Y. E. Ioannidis, Y. C. Kang, and T. Zhang. Cost wells in random graphs.
personal communication, Dec. 1996.

[455] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query
optimization. Tech. report, University of Wisconsin, Madison, 1992.

[456] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query
optimization. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 103–114, 1992.

[457] Y. E. Ioannidis and E. Wong. Query optimization by simulated annealing.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 9–
22, 1987.

[458] D. Jacobsen and J. Wilkes. Disk scheduling algorithms based on rota-
tional position. Technical Report HPL-CSP-91-7, Hewlett-Packard Lab-
oratories, 1991.

[459] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakshmanan, A. Nier-
man, S. Paparizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and
C. Yu. TIMBER: A Native XML Database. VLDB Journal, 2003. to ap-
pear.

[460] H. V. Jagadish, H. Jin, B. C. Ooi, and K.-L. Tan. Global optimization
of histograms. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 223–234, 2001.

[461] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik,
and T. Suel. Optimal histograms with quality guarantees. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 275–286, 1998.

[462] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K. Thompson.
TAX: A tree algebra for XML. In Proc. Int. Workshop on Database
Programming Languages, pages 149–164, 2001.

[463] C. Janssen. The visual profiler. perform internet search for this or similar
tools.

[464] M. Jarke. Common subexpression isolation in multiple query optimiza-
tion. In W. Kim, D. Reiner, and D. Batory, editors, Topics in Information
Systems. Query Processing in Database Systems, pages 191–205, 1985.

658 BIBLIOGRAPHY

[465] M. Jarke. Common subexpression isolation in multiple query optimiza-
tion. In Query Processing in Database Systems, W. Kim, D. Reiner, D.
Batory (Eds.), pages 191–205, 1985.

[466] M. Jarke, J. Clifford, and Y. Vassiliou. An optimizing PROLOG front-
end to a relational query system. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 296–306, 1984.

[467] M. Jarke and J.Koch. Range nesting: A fast method to evaluate quantified
queries. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 196–206, 1983.

[468] M. Jarke and J. Koch. Query optimization in database systems. ACM
Computing Surveys, pages 111–152, Jun 1984.

[469] A. Jhingran. A performance study of query optimization algorithms on
a database system supporting procedures. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 88–99, 1988.

[470] D. Johnson and A. Klug. Testing containment of conjunctive queries
under functional and inclusion dependencies. In Proc. ACM SIG-
MOD/SIGACT Conf. on Princ. of Database Syst. (PODS), pages 164–
168, 1982.

[471] D. Johnson and A. Klug. Testing containment of conjunctive queries un-
der functional and inclusion dependencies. J. Comp. Sys. Sci., 28(1):167–
189, 1984.

[472] D. S. Johnson and A. Klug. Optimizing conjunctive queries that contain
untyped variables. SIAM J. Comput., 12(4):616–640, 1983.

[473] B. Jonsson, M. Franklin, and D. Srivastava. Interaction of query evalu-
ation and buffer management for information retrieval. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 118–129, 1998.

[474] N. Kabra and D. DeWitt. Efficient mid-query re-optimization of sub-
optimal query execution plans. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 106–117, 1998.

[475] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean
functions. In IEEE ???, pages 68–80, 1988.

[476] M. Kamath and K. Ramamritham. Bucket skip merge join: A scalable
algorithm for join processing in very large databases using indexes. Tech-
nical Report 20, University of Massachusetts at Amherst, Amherst, MA,
1996.

[477] Y. Kambayashi. Processing cyclic queries. In W. Kim, D. Reiner, and
D. Batory, editors, Query Processing in Database Systems, pages 62–78,
1985.

BIBLIOGRAPHY 659

[478] Y. Kambayashi and M. Yoshikawa. Query processing utilizing dependen-
cies and horizontal decomposition. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 55–68, 1983.

[479] N. Kamel and R. King. A model of data distribution based on texture
analysis. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 319–325, 1985.

[480] R. Kaushik, C. R’e, and D. Suciu. General database statistics using
entropy maximization. In Proc. Int. Workshop on Database Programming
Languages, pages 84–99, 2009.

[481] A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Implementing incre-
mental view maintenance in nested data models. In Proc. Int. Workshop
on Database Programming Languages, 1997.

[482] A. Keller and J. Basu. A predicate-based caching scheme for client-server
database architectures. In PDIS, pages 229–238, 1994.

[483] T. Keller, G. Graefe, and D. Maier. Efficient assembly of complex objects.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 148–
157, 1991.

[484] A. Kemper and A. Eickler. Datenbanksysteme. Oldenbourg, 2001. 4th
Edition.

[485] A. Kemper and G. Moerkotte. Advanced query processing in object bases:
A comprehensive approach to access support, query transformation and
evaluation. Technical Report 27/90, University of Karlsruhe, 1990.

[486] A. Kemper and G. Moerkotte. Advanced query processing in object bases
using access support relations. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 294–305, 1990.

[487] A. Kemper and G. Moerkotte. Query optimization in object bases: Ex-
ploiting relational techniques. In Proc. Dagstuhl Workshop on Query
Optimization (J.-C. Freytag, D. Maier und G. Vossen (eds.)). Morgan-
Kaufman, 1993.

[488] A. Kemper, G. Moerkotte, and K. Peithner. A blackboard architecture
for query optimization in object bases. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 543–554, 1993.

[489] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn. Optimiz-
ing disjunctive queries with expensive predicates. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 336–347, 1994.

[490] A. Kemper, G. Moerkotte, and M. Steinbrunn. Optimierung Boolescher
Ausdrücke in Objektbanken. In Grundlagen von Datenbanken (Eds. U.
Lipeck, R. Manthey), pages 91–95, 1992.

660 BIBLIOGRAPHY

[491] A. Kemper, G. Moerkotte, and M. Steinbrunn. Optimization of boolean
expressions in object bases. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 79–90, 1992.

[492] W. Kiessling. On semantic reefs and efficient processing of correlation
queries with aggregates. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 241–250, 1985.

[493] K. C. Kim, W. Kim, D. Woelk, and A. Dale. Acyclic query processing
in object-oriented databases. In Proc. of the Entity Relationship Conf.,
1988.

[494] W. Kim. On optimizing an SQL-like nested query. ACM Trans. on
Database Systems, 7(3):443–469, Sep 82.

[495] J. J. King. Exploring the use of domain knowledge for query processing
efficiency. Technical Report STAN-CS-79-781, Computer Science Depart-
ment, Stanford University, 1979.

[496] J. J. King. Quist: A system for semantik query optimization in relational
databases. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
510–517, 1981.

[497] A. Klausner. Multirelations in Relational Databases. PhD thesis, Harvard
University, Cambridge, 1986.

[498] A. Klausner and N. Goodman. Multirelations – semantics and languages.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 251–258,
1985.

[499] M. Klettke, L. Schneider, and A. Heuer. Metrics for XML Document Col-
lections. In EDBT Workshop XML-Based Data Management (XMLDM),
pages 15–28, 2002.

[500] A. Klug. Calculating constraints on relational expressions. ACM Trans.
on Database Systems, 5(3):260–290, 1980.

[501] A. Klug. Access paths in the “ABE” statistical query facility. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 161–173, 1982.

[502] A. Klug. Equivalence of relational algebra and relational calculus query
languages having aggregate functions. Journal of the ACM, 29(3):699–
717, 1982.

[503] A. Klug. On conjunctive queries containing inequalities. Journal of the
ACM, 35(1):146–160, 1988. Written 1982 and published posthumously.

[504] D. Knuth. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley, 1997.

[505] D. Knuth. The Art of Computer Programming; Volume 3: Sorting and
Searching. Addison Wesley, 2000.

BIBLIOGRAPHY 661

[506] J. Koch. Relationale Anfragen: Zerlegung und Optimierung. Informatik-
Fachberichte 101. Springer-Verlag, 1985.

[507] J. Kollias. An estimate for seek time for batched searching of random or
index sequential structured files. The Computer Journal, 21(2):132–133,
1978.

[508] A. König and G. Weikum. Combining histograms and parametric curve
fitting for feedback-driven query result-size estimation. In Proc. Int. Conf.
on Very Large Data Bases (VLDB), pages 423–434, 1999.

[509] A. König and G. Weikum. Automatic tuning of data synopsis. Informa-
tion Systems, 28:85–109, 2003.

[510] B. König-Ries, S. Helmer, and G. Moerkotte. An experimental study
on the complexity of left-deep join ordering problems for cyclic queries.
Working Draft, 1994.

[511] B. König-Ries, S. Helmer, and G. Moerkotte. An experimental study
on the complexity of left-deep join ordering problems for cyclic queries.
Technical Report 95-4, RWTH-Aachen, 1995.

[512] R. Kooi. The Optimization of Queries in Relational Databases. PhD
thesis, Case Western Reserve University, 1980.

[513] F. Korn, H.V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc
queries in large datasets of time sequences. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 289–300, 1997.

[514] D. Kossmann. The state of the art in distributed query processing. ACM
Computing Surveys, 32(4):422–469, 2000.

[515] D. Kossmann and K. Stocker. Iterative dynamic programming: a new
class of query optimization algorithms. ACM Trans. on Database Systems,
25(1):43–82, 2000.

[516] N. Koudas, S. Muthukrishnan, and D. Srivastava. Optimal histograms
for hierarchical range queries. In Proc. ACM SIGMOD/SIGACT Conf.
on Princ. of Database Syst. (PODS), pages 196–204, 2000.

[517] W. Kowarschick. Semantic optimization: What are disjunctive residues
useful for? SIGMOD Record, 21(3):26–32, September 1992.

[518] R. Krauthgamer, A. Mehta, V. Raman, and A. Rudra. Greedy list inter-
section. In Proc. IEEE Conference on Data Engineering, pages 1033–1042,
2008.

[519] D. Kreher and D. Stinson. Combinatorial Algorithms: Generation, Enu-
meration, and Search. CRC Press, 1999.

[520] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecur-
sive queries. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
128–137, 1986.

662 BIBLIOGRAPHY

[521] A. Kumar and M. Stonebraker. The effect of join selectivities on optimal
nesting order. SIGMOD Record, 16(1):28–41, 1987.

[522] I. Kunen and D. Suciu. A scalable algorithm for query minimization. ask
Dan for more information, year.

[523] S. Kwan and H. Strong. Index path length evaluation for the research
storage system of system r. Technical Report RJ2736, IBM Research
Laboratory, San Jose, 1980.

[524] M. Lacroix and A. Pirotte. Generalized joins. SIGMOD Record, 8(3):14–
15, 1976.

[525] L. Lakshman and R. Missaoui. Pushing semantics inside recursion: A
general framework for semantic optimization of recursive queries. In Proc.
IEEE Conference on Data Engineering, pages 211–220, 1995.

[526] S. Lang and Y. Manolopoulos. Efficient expressions for completely and
partly unsuccessful batched search of tree-structured files. IEEE Trans.
on Software Eng., 16(12):1433–1435, 1990.

[527] S.-D. Lang, J. Driscoll, and J. Jou. A unified analysis of batched searching
of sequential and tree-structured files. ACM Trans. on Database Systems,
14(4):604–618, 1989.

[528] T. Lang, C. Wood, and I. Fernandez. Database buffer paging in virtual
storage systems. ACM Trans. on Database Systems, 2(4):339–351, 1977.

[529] R. Lanzelotte and J.-P. Cheiney. Adapting relational optimisation tech-
nology for deductive and object-oriented declarative database languages.
In Proc. Int. Workshop on Database Programming Languages, pages 322–
336, 1991.

[530] R. Lanzelotte and P. Valduriez. Extending the search strategy in a query
optimizer. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
363–373, 1991.

[531] R. Lanzelotte, P. Valduriez, and M. Zait. Optimization of object-oriented
recursive queries using cost-controlled stragegies. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 256–265, 1992.

[532] R. Lanzelotte, P. Valduriez, and M. Zäit. On the effectiveness of opti-
mization search strategies for parallel execution. In Proc. Int. Conf. on
Very Large Data Bases (VLDB), pages 493–504, 1993.

[533] R. Lanzelotte, P. Valduriez, M. Ziane, and J.-P. Cheiney. Optimization
of nonrecursive queries in OODBMs. In Proc. Int. Conf. on Deductive
and Object-Oriented Databases (DOOD), pages 1–21, 1991.

[534] P.-A. Larson. Data reduction by partial preaggregation. In Proc. IEEE
Conference on Data Engineering, pages 706–715, 2002.

BIBLIOGRAPHY 663

[535] P.-Å. Larson and H. Yang. Computing queries from derived relations.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 259–269,
1985.

[536] Y.-N. Law, H. Wang, and C. Zaniolo. Query languages and data models
for database sequences and data streams. In VLDB, pages 492–503, 2004.

[537] E. Lawler. Sequencing jobs to minimize total weighted completion time
subject to precedence constraints. Ann. Discrete Math., 2:75–90, 1978.

[538] B. S. Lee and G. Wiederhold. Outer joins and filters for instantiating ob-
jects from relational databases through views. IEEE Trans. on Knowledge
and Data Engineering, 6(1):108–119, 1994.

[539] C. Lee, C.-S. Shih, and Y.-H. Chen. Optimizing large join queries using
a graph-based approach. IEEE Trans. on Knowledge and Data Eng.,
13(2):298–315, 2001.

[540] M. K. Lee, J. C. Freytag, and G. M. Lohman. Implementing an interpreter
for functional rules in a query optimizer. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 218–239, 1988.

[541] M. K. Lee, J. C. Freytag, and G. M. Lohman. Implementing an optimizer
for functional rules in a query optimizer. Technical Report RJ 6125, IBM
Almaden Research Center, San Jose, CA, 1988.

[542] T. Lehman and B. Lindsay. The Starburst long field manager. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 375–383, 1989.

[543] K. Lehnert. Regelbasierte Beschreibung von Optimierungsverfahren für re-
lationale Datenbankanfragesprachen. PhD thesis, Technische Universität
München, 8000 München, West Germany, Dec 1988.

[544] A. Lerner and D. Shasha. AQuery: query language for ordered data,
optimization techniques, and experiments. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 345–356, 2003.

[545] H. Leslie, R. Jain, D. Birdsall, and H. Yaghmai. Efficient search of
multi-dimensional B-trees. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 710–719, 1995.

[546] M. Levene and G. Loizou. Correction to null values in nested relational
databases by m. roth and h. korth and a. silberschatz. Acta Informatica,
28(6):603–605, 1991.

[547] M. Levene and G. Loizou. A fully precise null extended nested relational
algebra. Fundamenta Informaticae, 19(3/4):303–342, 1993.

[548] A. Levy, A. Mendelzon, and Y. Sagiv. Answering queries using views.
In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst.
(PODS), pages ?–?, 1995.

664 BIBLIOGRAPHY

[549] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering Queries
Using Views, pages 93–106. MIT Press, 1999.

[550] A. Levy, A. Mendelzon, D. Srivastava, and Y. Sagiv. Answering queries
using views. In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of
Database Syst. (PODS), pages 95–104, 1995.

[551] A. Levy, I. Mumick, and Y. Sagiv. Query optimization by predicate move-
around. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
96–107, 1994.

[552] A.Y. Levy and I.S. Mumick. Reasoning with aggregation constraints. In
P. Apers, M. Bouzeghoub, and G. Gardarin, editors, Proc. European Conf.
on Extending Database Technology (EDBT), Lecture Notes in Computer
Science, pages 514–534. Springer, March 1996.

[553] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, 1981.

[554] C. Li, K. Chang, I. Ilyas, and S. Song. Ranksql: Query algebra and
optimization for relational top-k queries. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 131–142, 2005.

[555] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comp.,
11(2):329–343, 1982.

[556] J. Liebehenschel. Ranking and unranking of lexicographically ordered
words: An average-case analysis. J. of Automata, Languages, and Com-
binatorics, 2:227–268, 1997.

[557] J. Liebehenschel. Lexicographical generation of a generalized dyck lan-
guage. Technical Report 5/98, University of Frankfurt, 1998.

[558] J. Liebehenschel. Lexikographische Generierung, Ranking und Unranking
kombinatorisher Objekt: Eine Average-Case Analyse. PhD thesis, Uni-
versity of Frankfurt, 2000.

[559] H. Liefke. Horizontal query optimization on ordered semistructured data.
In ACM SIGMOD Workshop on the Web and Databases (WebDB), 1999.

[560] L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. Parr. XPathLearn-
er: An on-line self-tuning Markov histogram for XML path selectivity
estimation. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
442–453, 2002.

[561] J. Lin and M. Ozsoyoglu. Processing OODB queries by O-algebra. In Int.
Conference on Information and Knowledge Management (CIKM), pages
134–142, 1996.

[562] J. W. S. Liu. Algorithms for parsing search queries in systems with in-
verted file organization. ACM Trans. on Database Systems, 1(4):299–316,
1976.

BIBLIOGRAPHY 665

[563] M.-L. Lo and C. Ravishankar. Towards eliminating random I/O in hash
joins. In Proc. IEEE Conference on Data Engineering, pages 422–429,
1996.

[564] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of
second-order cone programming. Linear Algebra and its Applications,
284:192–228, 1998.

[565] G. Lohman. Grammar-like functional rules for representing query opti-
mization alternatives. Research report rj 5992, IBM, 1987.

[566] G. Lohman. Heuristic method for joining relational database tables. IBM
Technical Disclosure Bulletin, 30(9):8–10, 1988.

[567] G. M. Lohman. Grammar-like functional rules for representing query
optimization alternatives. In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 18–27, 1988.

[568] D. Lomet. B-tree page size when caching is considered. ACM SIGMOD
Record, 27(3):28–32, 1998.

[569] R. Lorie. XRM - an extended (N-ary) relational model. Technical Report
320-2096, IBM Cambridge Scientific Center, 1974.

[570] H. Lu and K.-L. Tan. On sort-merge algorithms for band joins. IEEE
Trans. on Knowledge and Data Eng., 7(3):508–510, Jun 1995.

[571] W. S. Luk. On estimating block accesses in database organizations. Com-
munications of the ACM, 26(11):945–947, 1983.

[572] V. Lum, P. Yuen, and M. Dodd. Key-to-address transform techniques.
Communications of the ACM, 14:228–239, 1971.

[573] J. Lumbroso. An optimal cardinality estimation algorithm based on order
statistics and its full analysis. In Conf. on Analysis of Algorithms (AofA).
Discrete Mathematics and Theoretical Computer Science, pages 491–506,
2010.

[574] G. Luo, J. Naughton, C. Ellmann, and M. Watzke. Toward a progress
indicator for database queries. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 791–802, 2004.

[575] G. Luo, J. Naughton, C. Ellmann, and M. Watzke. Increasing the accu-
racy and coverage of SQL progress indicators. In Proc. IEEE Conference
on Data Engineering, pages 853–864, 2005.

[576] D. Maier and D. S. Warren. Incorporating computed relations in relational
databases. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 176–187, 1981.

[577] M. Majster-Cederbaum. Elimination of redundant operations in relational
queries with general selection operators. Computing, 34(4):303–323, 1984.

666 BIBLIOGRAPHY

[578] A. Makinouchi, M. Tezuka, H. Kitakami, and S. Adachi. The optimization
strategy for query evaluation in RDB/V1. In Proc. IEEE Conference on
Data Engineering, pages 518–529, 1981.

[579] T. Malkemus, S. Padmanabhan, and B. Bhattacharjee. Predicate deriva-
tion and monotonicity detection in DB2 UDB. In Proc. IEEE Conference
on Data Engineering, pages ?–?, 2005.

[580] C. V. Malley and S. B. Zdonik. A knowledge-based approach to query
optimization. In Proc. Int. Conf. on Expert Database Systems, pages
329–344, 1987.

[581] N. Mamoulis. Efficient processing of joins on set-valued attributes. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 157–
168, 2003.

[582] M. Mannino and A. Rivera. An extensible model of selectivity estimation.
Information Sciences, 49:225–247, 1989.

[583] M. V. Mannino, P. Chu, and T. Sager. Statistical profile estimation in
database systems. ACM Computing Surveys, 20(3):191–221, 1988.

[584] Y. Manolopoulos and J. Kollias. Estimating disk head movement in
batched searching. BIT, 28:27–36, 1988.

[585] Y. Manolopoulos, J. Kollias, and M. Hatzopoulos. Sequential vs. binary
batched search. The Computer Journal, 29(4):368–372, 1986.

[586] Y. Manopoulos and J. Kollias. Performance of a two-headed disk system
when serving database queries under the scan policy. ACM Trans. on
Database Systems, 14(3):425–442, 1989.

[587] S. March and D. Severence. The determination of efficient record segmen-
tation and blocking factors for shared data files. ACM Trans. on Database
Systems, 2(3):279–296, 1977.

[588] R. Marek and E. Rahm. TID hash joins. In Int. Conference on Informa-
tion and Knowledge Management (CIKM), pages 42–49, 1994.

[589] V. Markl, P. Haas, M. Kutsch, N. Meggido, U. Srivastava, and T. Tran.
Consistent selectivity estimation via maximum entropy. The VLDB Jour-
nal, 16:55–76, 2007.

[590] V. Markl, N. Megiddo, M. Kutsch, T. Tran, P. Haas, and U. Srivastava.
Consistently estimating the selectivity of conjuncts of predicates. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 373–384, 2005.

[591] N. May, M. Brantner, A. Böhm, C.-C. Kanne, and G. Moerkotte. Index
vs. navigation in XPath evaluation. In Int. XML Database Symp. (XSym),
pages 16–30, 2006.

BIBLIOGRAPHY 667

[592] N. May, S. Helmer, C.-C. Kanne, and G. Moerkotte. Xquery process-
ing in natix with an emphasis on join ordering. In Int. Workshop on
XQuery Implementation, Experience and Perspectives (XIME-P), pages
49–54, 2004.

[593] N. May, S. Helmer, and G. Moerkotte. Nested queries and quantifiers in
an ordered context. Technical report, University of Mannheim, 2003.

[594] N. May, S. Helmer, and G. Moerkotte. Quantifiers in XQuery. In Proc.
Int. Conf. on Web Information Systems Engineering (WISE), pages 313–
316, 2003.

[595] N. May, S. Helmer, and G. Moerkotte. Three Cases for Query Decorre-
lation in XQuery. In Int. XML Database Symp. (XSym), pages 70–84,
2003.

[596] N. May, S. Helmer, and G. Moerkotte. Nested queries and quantifiers
in an ordered context. In Proc. IEEE Conference on Data Engineering,
pages 239–250, 2004.

[597] N. May, S. Helmer, and G. Moerkotte. Strategies for query unnesting
in XML databases. ACM Trans. on Database Systems, 31(3):968–1013,
2006.

[598] N. May and G. Moerkotte. Main memory implementations for binary
grouping. In Int. XML Database Symp. (XSym), pages 162–176, 2005.

[599] J. McHugh and J. Widom. Query optimization for XML. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 315–326, 1999.

[600] N. Megiddo and D. Modha. Outperforming LRU with an adpative re-
placement cache algorithm. IEEE Computer, 37(4):58–65, 2004.

[601] S. Melnik and H. Garcia-Molina. Divide-and-conquer algorithm for com-
puting set containment joins. In Proc. of the Int. Conf. on Extending
Database Technology (EDBT), pages 427–444, 2002.

[602] S. Melnik and H. Garcia-Molina. Adaptive algorithms for set containment
joins. ACM Trans. on Database Systems, 28(1):56–99, 2003.

[603] T. Merrett and E. Otoo. Distribution models of relations. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 418–425, 1979.

[604] T. H. Merrett, Y. Kambayashi, and H. Yasuura. Scheduling of page-
fetches in join operations. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 488–498, 1981.

[605] R. Van Meter. Observing the effects of multi-zone disks. In USENIX
Annual Technical Conference, 1997.

[606] G. Miklau and D. Suciu. Containment and equivalence of XPath expres-
sions. Journal of the ACM, 51(1):2–45, 2002.

668 BIBLIOGRAPHY

[607] T. Milo and D. Suciu. Index structures for path expressions. In Proc. Int.
Conf. on Database Theory (ICDT), pages 277–295, 1999.

[608] M. Minoux. Mathematical Programming. Theory and Algorithms. Wiley,
1986.

[609] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of
SAT problems. In Proc. National Conference on Artificial Intelligence,
pages 459–465, 1992.

[610] G. Mitchell. Extensible Query Processing in an Object-Oriented Database.
PhD thesis, Brown University, Providence, RI 02912, 1993.

[611] G. Mitchell, U. Dayal, and S. Zdonik. Control of an extensible query
optimizer: A planning-based approach. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages ?–?, 1993.

[612] G. Mitchell, S. Zdonik, and U. Dayal. An architecture for query processing
in persistent object stores. In Proc. of the Hawaiian Conf. on Computer
and System Sciences, pages 787–798, 1992.

[613] G. Mitchell, S. Zdonik, and U. Dayal. A. Dogac and M. T. Özsu and A.
Biliris, and T. Sellis: Object-Oriented Database Systems, chapter Opti-
mization of Object-Oriented Queries: Problems and Applications, pages
119–146. NATO ASI Series F: Computer and Systems Sciences, Vol. 130.
Springer, 1994.

[614] G. Moerkotte. Small materialized aggregates: A light weight index struc-
ture for data warehousing. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 476–487, 1998.

[615] G. Moerkotte. Constructing Optimal Bushy Trees Possibly Containing
Cross Products for Order Preserving Joins is in P. Technical Report 12,
University of Mannheim, 2003.

[616] G. Moerkotte. Dp-counter analytics. Technical Report 2, University of
Mannheim, 2006.

[617] G. Moerkotte. Best approximation under a convex paranorm. Technical
Report MA-08-07, University of Mannheim, 2008.

[618] G. Moerkotte and T. Neumann. Analysis of two existing and one new
dynamic programming algorithm for the generation of optimal bushy trees
without cross products. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 930–941, 2006.

[619] G. Moerkotte and T. Neumann. Dynamic programming strikes back. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 539–
552, 2008.

BIBLIOGRAPHY 669

[620] G. Moerkotte and T. Neumann. Faster join enumeration for complex
queries. In Proc. IEEE Conference on Data Engineering, pages 1430–
1432, 2008.

[621] G. Moerkotte and T. Neumann. Accelerating queries with group-by and
join by groupjoin. In Proc. of the VLDB Endowment (PVLDB), pages
843–851, 2011.

[622] G. Moerkotte, T. Neumann, and G. Steidl. Preventing bad plans by
bounding the impact of cardinality estimation errors. Proc. of the VLDB
Endowment (PVLDB), 2(1):982–993, 2009.

[623] G. Moerkotte and G. Steidl. Best approximation with respect to a quo-
tient functional. Technical Report X, University of Mannheim, 2008.

[624] C. Mohan. Interactions between query optimization and concurrency
control. In Int. Workshop on RIDE, 1992.

[625] C. Mohan, D. Haderle, Y. Wang, and J. Cheng. Single table access using
multiple indexes: Optimization, execution, and concurrency control tech-
niques. In Int. Conf. on Extended Database Technology (EDBT), pages
29–43, 1990.

[626] J. Monk and R. Bonnett, editors. Handbook of Boolean Algebras. North
Holland, 1989.

[627] C. Monma and J. Sidney. Sequencing with series-parallel precedence con-
straints. Math. Oper. Res., 4:215–224, 1979.

[628] R. Morris. Counting large numbers of events in small registers. Commu-
nications of the ACM, 21(10):840–842, 1978.

[629] T. Morzy, M. Matyasiak, and S. Salza. Tabu search optimization of large
join queries. In Proc. of the Int. Conf. on Extending Database Technology
(EDBT), pages 309–322, 1994.

[630] L. Moses and R. Oakland. Tables of Random Permutations. Stanford
University Press, 1963.

[631] I. Mumick, S. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic is
relevant. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 247–258, 1990.

[632] I. Mumick and H. Pirahesh. Implementation of magic sets in a relational
database system. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 103–114, 1994.

[633] I. Mumick, H. Pirahesh, and R. Ramakrishnan. The magic of duplicates
and aggregates. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 264–277, 1990.

670 BIBLIOGRAPHY

[634] M. Muralikrishna and D.J. DeWitt. Equi-depth histograms for estimating
selectivity factors for multi-dimensional queries. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 28–36, 1988.

[635] B. Muthuswamy and L. Kerschberg. A detailed statistical model for re-
lational query optimization. In ACM Annual Conference - The range of
computing: mid-80’s perspective, pages 439–447, 1985.

[636] W. Myrvold and F. Ruskey. Ranking and unranking permutations in
linear time. Information Processing Letters, 79(6):281–284, 2001.

[637] R. Nakano. Translation with optimization from relational calculus to
relational algebra having aggregate funktions. ACM Trans. on Database
Systems, 15(4):518–557, 1990.

[638] K. Seppia nd J. Barnes and C. Morris. A bayesian approach to database
query optimization. ORSA J. on Computing, 5(4):410–419, 1993.

[639] T. Neumann. Query simplification: graceful degradation for join-order
optimization. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 403–414, 2009.

[640] T. Neumann and C. Galindo-Legaria. Taking the edge off cardinality es-
timation errors using incremental execution. In Proc. der GI-Fachtagung
Datenbanksysteme für Büro, Technik und Wissenschaft (BTW), pages
73–92, 2013.

[641] T. Neumann and A. Kemper. Unnesting arbitrary queries. In BTW,
pages 383–402, 2015.

[642] T. Neumann and S. Michel. Smooth interpolation histograms with er-
ror guarantees. In British National Conference on Databases (BNCOD),
pages ?–?, 2008.

[643] T. Neumann and G. Moerkotte. A combined framework for grouping
and order optimization. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 960–971, 2004.

[644] T. Neumann and G. Moerkotte. An efficient framework for order opti-
mization. In Proc. IEEE Conference on Data Engineering, pages 461–472,
2004.

[645] F. Neven and T. Schwentick. XPath containment in the presence of dis-
junction, dtds, and variables. In Proc. Int. Conf. on Database Theory
(ICDT), pages 315–329, 2003.

[646] S. Ng. Advances in disk technology: Performance issues. IEEE Computer,
31(5):75–81, 1998.

[647] W. Ng and C. Ravishankar. Relational database compression using aug-
mented vector quantization. In Proc. IEEE Conference on Data Engi-
neering, pages 540–549, 1995.

BIBLIOGRAPHY 671

[648] S. Nigam and K. Davis. A semantic query optimization algorithm for
object-oriented databases. In Second International Workshop on Con-
straint Database Systems, pages 329–344, 1997.

[649] E. Omicienski. Heuristics for join processing using nonclustered indexes.
IEEE Trans. on Software Eng., 15(1):18–25, Feb. 1989.

[650] P. O’Neil. Database Principles, Programming, Performance. Morgan
Kaufmann, 1994.

[651] P. O’Neil and D. Quass. Improved query performance with variant index-
es. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
38–49, 1997.

[652] K. Ono and G. Lohman. Extensible enumeration of feasible joins for
relational query optimization. Technical Report RJ 6625, IBM Almaden
Research Center, 1988.

[653] K. Ono and G. Lohman. Measuring the complexity of join enumeration
in query optimization. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 314–325, 1990.

[654] J. A. Orenstein, S. Haradhvala, B. Margulies, and D. Sakahara. Query
processing in the ObjectStore database system. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 403–412, 1992.

[655] J. A. Orenstein and F. A. Manola. PROBE spatial data modeling and
query processing in an image database application. IEEE Trans. on Soft-
ware Eng., 14(5):611–629, 1988.

[656] M. Ortega-Binderberger, K. Chakrabarti, and S. Mehrotra. An approach
to integrating query refinement in sql. In Proc. of the Int. Conf. on
Extending Database Technology (EDBT), pages 15–33, 2002.

[657] S. Osborn. Identity, equality and query optimization. In Proc. OODB,
1989.

[658] N. Ott. On the problem of removing redundant join operations. Technical
Report TR 80.01.002, IBM Scientific Center, Heidelberg, 1980.

[659] N. Ott and K. Horlaender. Removing redundant joins in queries involving
views. Technical Report TR-82.03.003, IBM Scientific Center, Heidelberg,
1982.

[660] G. Ozsoyoglu, V. Matos, and Z. M. Ozsoyoglu. Query processing
techniques in the Summary-Table-by-Example database query language.
ACM Trans. on Database Systems, 14(4):526–573, 1989.

[661] G. Ozsoyoglu and H. Wang. A relational calculus with set operators, its
safety and equivalent graphical languages. IEEE Trans. on Software Eng.,
SE-15(9):1038–1052, 1989.

672 BIBLIOGRAPHY

[662] T. Özsu and J. Blakeley. W. Kim (ed.): Modern Database Systems, chap-
ter Query Processing in Object-Oriented Database Systems, pages 146–
174. Addison Wesley, 1995.

[663] T. Özsu and D. Meechan. Finding heuristics for processing selection
queries in relational database systems. Information Systems, 15(3):359–
373, 1990.

[664] T. Özsu and D. Meechan. Join processing heuristics in relational database
systems. Information Systems, 15(4):429–444, 1990.

[665] T. Özsu and P. Valduriez. Principles of Distributed Database Systems.
Prentice-Hall, 1999.

[666] T. Özsu and P. Valduriez. Principles of Distributed Database Systems.
Springer, 2011.

[667] T. Özsu and B. Yao. Evaluation of DBMSs using XBench benchmark.
Technical Report CS-2003-24, University of Waterloo, 2003.

[668] P. Palvia. Expressions for batched searching of sequential and hierarchical
files. ACM Trans. on Database Systems, 10(1):97–106, 1985.

[669] P. Palvia and S. March. Approximating block accesses in database orga-
nizations. Information Processing Letters, 19:75–79, 1984.

[670] S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos. LOCI:
Fast outlier detection using local correlation integral. In ICDE, pages
315–, 2003.

[671] V. Papadimos and D. Maier. Mutant query plans. Information & Software
Technology, 44(4):197–206, 2002.

[672] Y. Papakonstantinou and V. Vianu. Incremental validation of XML doc-
uments. In Proc. Int. Conf. on Database Theory (ICDT), pages 47–63,
2003.

[673] S. Paparizos, S. Al-Khalifa, H. V. Jagadish, L. V. S. Lakshmanan, A. Nier-
man, D. Srivastava, and Y. Wu. Grouping in XML. In EDBT Workshops,
pages 128–147, 2002.

[674] S. Paparizos, S. Al-Khalifa, H. V. Jagadish, A. Niermann, and Y. Wu.
A physical algebra for XML. Technical report, University of Michigan,
2002.

[675] J. Paredaens and D. Van Gucht. Converting nested algebra expressions
into flat algebra expressions. ACM Trans. on Database Systems, 17(1):65–
93, Mar 1992.

[676] C.-S. Park, M. Kim, and Y.-J. Lee. Rewriting OLAP queries using materi-
alized views and dimension hierarchies in data. In Proc. IEEE Conference
on Data Engineering, pages 515–523, 2001.

BIBLIOGRAPHY 673

[677] J. Patel, M. Carey, and M. Vernon. Accurate modeling of the hybrid hash
join algorithm. In Proc. ACM SIGMETRICS Conf. on Measurement and
Modeling of Computer Systems, pages 56–66, 1994.

[678] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.
Informed prefetching and caching. Technical Report CMU-CS-95-134,
Carnegie Mellon University, 1995.

[679] R. Patterson, G. Gibson, and M. Sayanarayanan. A status report on
research in transparent informed prefetching. Technical Report CMU-
CS-93-113, Carnegie Mellon University, 1993.

[680] G. Paulley. Exploiting Functional Dependence in Query Optimization.
PhD thesis, University of Waterloo, 2000.

[681] G. Paulley and P.-A. Larson. Exploiting uniqueness in query optimization.
In Proc. IEEE Conference on Data Engineering, pages 68–79, 1994.

[682] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison Wesley, 1984.

[683] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten. Complexity of
transformation-based optimizers and duplicate-free generation of alter-
natives. Technical Report CS-R9639, CWI, 1996.

[684] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten. The complexity of
transformation-based join enumeration. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 306–315, 1997.

[685] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten. Duplicate-free gener-
ation of alternatives in transformation-based optimizers. In Proceedings
of the International Conference on Database Systems for Advanced Ap-
plications (DASFAA), pages 117–124, 1997.

[686] M. Pettersson. Linux x86 performance monitoring counters driver. per-
form internet search for this or similar tools.

[687] M. Pezarro. A note on estimating hit ratios for direct-access storage
devices. The Computer Journal, 19(3):271–272, 1976.

[688] B. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number
of tuples satisfying a condition. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 256–276, 1984.

[689] H. Pirahesh, J. Hellerstein, and W. Hasan. Extensible/rule-based query
rewrite optimization in Starburst. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 39–48, 1992.

[690] H. Pirahesh, T. Leung, and W. Hassan. A rule engine for query transfor-
mation in Starburst and IBM DB2 C/S DBMS. In Proc. IEEE Conference
on Data Engineering, pages 391–400, 1997.

674 BIBLIOGRAPHY

[691] A. Pirotte. Fundamental and secondary issues in the design of non-
procedural relational languages. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 239–250, 1979.

[692] M. Piwowarski. Comments on batched searching of sequential and tree-
structured files. ACM Trans. on Database Systems, 10(2):285–287, 1985.

[693] N. Plyzotis and M. Garofalakis. XSKETCH synopsis for XML. In Hellenic
Data Management Symposium 02, 2002.

[694] S. L. Pollack. Conversion of limited entry decision tables to computer
programs. Communications of the ACM, 8(11):677–682, 1965.

[695] N. Polyzotis and M. Garofalakis. Statistical synopses for graph-structured
XML databases. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 358–369, 2002.

[696] N. Polyzotis and M. Garofalakis. Structure and value synopsis for XML
data graphs. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 466–477, 2002.

[697] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Selectivity estimation
for XML twigs. In Proc. IEEE Conference on Data Engineering, pages
264–275, 2002.

[698] V. Poosala and Y. Ioannidis. Selectivity estimation without the attribute
value independence assumption. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 486–495, 1997.

[699] V. Poosola and Y. Ioannidis. Estimation of query-result distribution and
its application to parallel-join load balancing. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 448–459, 1996.

[700] V. Poosola, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms
for selectivity estimates of range predicates. In Proc. of the ACM SIG-
MOD Conf. on Management of Data, pages 294–305, 1996.

[701] S. Pramanik and D. Ittner. Use of graph-theoretic models for optimal
relational database accesses to perform joins. ACM Trans. on Database
Systems, 10(1):57–74, 1985.

[702] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical
Recipes. Cambridge University Press, 2007. Third Edition.

[703] X. Qian. Query folding. In Proc. IEEE Conference on Data Engineering,
pages 48–55, 1996.

[704] D. Quass and J. Widom. On-line warehouse view maintenance. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 393–404,
1997.

BIBLIOGRAPHY 675

[705] Y.-J. Qyang. A tight upper bound for the lumped disk seek time for the
SCAN disk scheduling policy. Information Processing Letters, 54:355–358,
1995.

[706] E. Rahm. Mehrrechner-Datenbanksysteme: Grundlagen der verteilten und
parallelen Datenbankverwaltung. Addison-Wesley, 1994.

[707] A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answering queries using tem-
plates with binding patterns. In Proc. ACM SIGMOD/SIGACT Conf.
on Princ. of Database Syst. (PODS), PODS, 1995.

[708] Bernhard Mitschang Ralf Rantzau, Leonard D. Shapiro and Quan Wang.
Algorithms and applications for universal quantification in relational
databases. Information Systems, 28(1-2):3–32, 2003.

[709] R. Ramakrishnan and J. Gehrke. Database Management Systems. Mc-
Graw Hill, 2000. 2nd Edition.

[710] K. Ramamohanarao, J. Lloyd, and J. Thom. Partial-match retrieval using
hashing descriptors. ACM Trans. on Database Systems, 8(4):552–576,
1983.

[711] M. Ramanath, L. Zhang, J. Freire, and J. Haritsa. IMAX: Incremental
maintenance of schema-based xXML statistics. In Proc. IEEE Conference
on Data Engineering, pages 273–284, 2005.

[712] K. Ramasamy, J. Naughton, and D. Maier. High performance implemen-
tation techniques for set-valued attributes. Technical report, University
of Wisconsin, Wisconsin, 2000.

[713] K. Ramasamy, J. Patel, J. Naughton, and R. Kaushik. Set containment
joins: The good, the bad, and the ugly. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 351–362, 2000.

[714] S. Ramaswamy and P. Kanellakis. OODB indexing by class division. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 139–
150, 1995.

[715] R. Rantzau, L. Shapiro, B. Mitschang, and Q. Wang. Universal quantifi-
cation in relational databases: A classification of data and algorithms. In
Proc. of the Int. Conf. on Extending Database Technology (EDBT), pages
445–463, 2002.

[716] J. Rao, B. Lindsay, G. Lohman, H.Pirahesh, and D. Simmen. Using EELs:
A practical approach to outerjoin and antijoin reordering. Technical Re-
port RJ 10203, IBM, 2000.

[717] J. Rao, B. Lindsay, G. Lohman, H. Pirahesh, and D. Simmen. Using
EELs: A practical approach to outerjoin and antijoin reordering. In Proc.
IEEE Conference on Data Engineering, pages 595–606, 2001.

676 BIBLIOGRAPHY

[718] J. Rao and K. Ross. Reusing invariants: A new strategy for correlated
queries. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 37–48, Seattle, WA, 1998.

[719] S. Rao, A. Badia, and D. Van Gucht. Providing better support for a
class of decision support queries. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 217–227, 1996.

[720] G. Ray, J. Haritsa, and S. Seshadri. Database compression: A perfor-
mance enhancement tool. In COMAD, 1995.

[721] C. R’e and D. Suciu. Understanding cardinality estimation using entropy
maximization. In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of
Database Syst. (PODS), pages 53–64, 2010.

[722] C. R’e and D. Suciu. Understanding cardinality estimation using entropy
maximization. ACM Trans. on Database Systems, 37(1):6, 2012.

[723] D. Reiner and A. Rosenthal. Strategy spaces and abstract target machines
for query optimization. Database Engineering, 5(3):56–60, Sept. 1982.

[724] D. Reiner and A. Rosenthal. Querying relational views of networks. In
W. Kim, D. Reiner, and D. Batory, editors, Query Processing in Database
Systems, pages 109–124, 1985.

[725] E. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: The-
ory and Practice. Prentice Hall, 1977.

[726] L. T. Reinwald and R. M. Soland. Conversion of limited entry decision
tables to optimal computer programs I: minimum average processing time.
Journal of the ACM, 13(3):339–358, 1966.

[727] F. Reiss and T. Kanungo. A characterization of the sensitivity of query
optimization to storage access cost parameters. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 385–396, 2003.

[728] A. Reiter, A. Clute, and J. Tenenbaum. Representation and execution of
searches over large tree-structured data bases. In Proc. IFIP Congress,
Booklet TA-3, pages 134–144, 1971.

[729] C. Rich, A. Rosenthal, and M. Scholl. Reducing duplicate work in rela-
tional join(s): A unified approach. In CISMOD, pages 87–102, 1993.

[730] P. Richard. Evaluation of the size of a query expressed in relational
algebra. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 155–163, 1981.

[731] R. Van De Riet, A. Wassermann, M. Kersten, and W. De Jonge. High-
level programming features for improving the efficiency of a relational
database system. ACM Trans. on Database Systems, 6(3):464–485, 1981.

[732] R. Rockafellar. Convex Analysis. Princeton University Press, 1970.

BIBLIOGRAPHY 677

[733] D.J. Rosenkrantz and M.B. Hunt. Processing conjunctive predicates and
queries. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
64–74, 1980.

[734] A. Rosenthal. Note on the expected size of a join. SIGMOD Record,
11(4):19–25, 1981.

[735] A. Rosenthal and U. S. Chakravarthy. Anatomy of a modular multiple
query optimizer. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 230–239, 1988.

[736] A. Rosenthal and C. Galindo-Legaria. Query graphs, implementing trees,
and freely-reorderable outerjoins. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 291–299, 1990.

[737] A. Rosenthal, S. Heiler, U. Dayal, and F. Manola. Traversal recursion: a
practical approach to supporting recursive applications. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 166–167, 1986.

[738] A. Rosenthal and P. Helman. Understanding and extending
transformation-based optimizers. IEEE Data Engineering, 9(4):44–51,
1986.

[739] A. Rosenthal and D. Reiner. An architecture for query optimization. In
Proc. of the ACM SIGMOD Conf. on Management of Data, pages 246–
255, 1982.

[740] A. Rosenthal and D. Reiner. Extending the algebraic framework of query
processing to handle outerjoins. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 334–343, 1984.

[741] A. Rosenthal and D. Reiner. Querying relational views of networks. In
W. Kim, D. Reiner, and D. Batory, editors, Query Processing in Database
Systems, New York, 1984. Springer.

[742] A. Rosenthal, C. Rich, and M. Scholl. Reducing duplicate work in re-
lational join(s): a modular approach using nested relations. Technical
report, ETH Zürich, 1991.

[743] K. Ross. Conjunctive selection conditions in main memory. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 108–120, 2002.

[744] K. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at
multiple granularities. In Proc. of the Int. Conf. on Extending Database
Technology (EDBT), pages 263–278, 1998.

[745] M. Roth and S. Horn. Database compression. SIGMOD Record, 22(3):31–
39, 1993.

[746] M. Roth, H. Korth, and A. Silberschatz. Extended algebra and calcu-
lus for nested relational databases. ACM Trans. on Database Systems,
13(4):389–417, 1988. see also [868].

678 BIBLIOGRAPHY

[747] M. Roth, H. Korth, and A. Silberschatz. Null values in nested relational
databases. Acta Informatica, 26(7):615–642, 1989.

[748] M. Roth, H. Korth, and A. Silberschatz. Addendum to null values in
nested relational databases. Acta Informatica, 28(6):607–610, 1991.

[749] N. Roussopoulos. View indexing in relational databases. ACM Trans. on
Database Systems, 7(2):258–290, 1982.

[750] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling.
IEEE Computer, 27(3):17–29, 1994.

[751] K. Runapongsa, J. Patel, H. Jagadish, and S. AlKhalifa. The michigan
benchmark. Technical report, University of Michigan, 2002.

[752] G. Sacco. Index access with a finite buffer. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 301–309, 1887.

[753] G. Sacco and M. Schkolnick. A technique for managing the buffer pool in
a relational system using the hot set model. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 257–262, 1982.

[754] G. Sacco and M. Schkolnick. Buffer management in relational database
systems. ACM Trans. on Database Systems, 11(4):473–498, 1986.

[755] G. M. Sacco. Fragmentation: A technique for efficient query processing.
ACM Trans. on Database Systems, 11(2):?–?, June 1986.

[756] Y. Sagiv. Optimization of queries in relational databases. PhD thesis,
Princeton University, 1978.

[757] Y. Sagiv. Optimization of Queries in Relational Databases. UMI Research
Press, Ann Arbor, Michigan, 1981.

[758] Y. Sagiv. Quadratic algorithms for minimizing joins in restricted rela-
tional expressions. SIAM J. Comput., 12(2):321–346, 1983.

[759] Y. Sagiv and M. Yannakakis. Equivalence among expressions with the
union and difference operators. Journal of the ACM, 27(4):633–655, 1980.

[760] V. Sarathy, L. Saxton, and D. Van Gucht. Algebraic foundation and
optimization for object based query languages. In Proc. IEEE Conference
on Data Engineering, pages 113–133, 1993.

[761] C. Sartiani. A general framework for estimating XML query cardinality.
In Int. Workshop on Database Programming Languages, pages 257–277,
2003.

[762] S. Savage. The Flaw of Average. John Wiley & Sons, 2009.

[763] F. Scarcello, G. Greco, and N. Leone. Weighted hypertree decomposition
and optimal query plans. In Proc. ACM SIGMOD/SIGACT Conf. on
Princ. of Database Syst. (PODS), pages 210–221, 2004.

BIBLIOGRAPHY 679

[764] J. Scheible. A survey of storage options. IEEE Computer, 35(12):42–46,
2002.

[765] H.-J. Schek and M. Scholl. The relational model with relation-valued
attributes. Information Systems, 11(2):137–147, 1986.

[766] W. Scheufele. Algebraic Query Optimization in Database Systems. PhD
thesis, Universität Mannheim, 1999.

[767] W. Scheufele and G. Moerkotte. Optimal ordering of selections and
joins in acyclic queries with expensive predicates. Technical Report 96-3,
RWTH-Aachen, 1996.

[768] W. Scheufele and G. Moerkotte. On the complexity of generating optimal
plans with cross products. In Proc. ACM SIGMOD/SIGACT Conf. on
Princ. of Database Syst. (PODS), pages 238–248, 1997.

[769] W. Scheufele and G. Moerkotte. Efficient dynamic programming algo-
rithms for ordering expensive joins and selections. In Proc. of the Int.
Conf. on Extending Database Technology (EDBT), pages 201–215, 1998.

[770] J. Schindler, A. Ailamaki, and G. Ganger. Lachesis: Robust database
storage management based on device-specific performance characteristics.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 706–717,
2003.

[771] J. Schindler and G. Ganger. Automated disk drive characterization. Tech-
nical Report CMU-CS-99-176, Carnegie Mellon University, 1999.

[772] J. Schindler, J. Griffin, C. Lumb, and G. Ganger. Track-aligned extents:
Matching access patterns to disk drive characteristics. Technical Report
CMU-CS-01-119, Carnegie Mellon University, 2001.

[773] J. Schindler, J. Griffin, C. Lumb, and G. Ganger. Track-aligned extents:
Matching access patterns to disk drive characteristics. In Conf. on File
and Storage Technology (FAST), pages 259–274, 2002.

[774] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relation-
al storage and retrieval of XML documents. In ACM SIGMOD Workshop
on the Web and Databases (WebDB), 2000.

[775] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu, M. Carey,
and R. Busse. The XML Benchmark Project. Technical Report INS-
R0103, CWI, Amsterdam, 2001.

[776] J. W. Schmidt. Some high level language constructs for data of type
relation. ACM Trans. on Database Systems, 2(3):247–261, 1977.

[777] K. Schmidt and G. Trenkler. Moderne Matrix Algebra. Springer, 2006.
Second Edition.

680 BIBLIOGRAPHY

[778] M. Scholl. Theoretical foundation of algebraic optimization utilizing un-
normalized relations. In Proc. Int. Conf. on Database Theory (ICDT),
pages ?–?, 1986.

[779] T. Schwentick. XPath query containment. ACM SIGMOD Record,
33(1):101–109, 2004.

[780] E. Sciore and J. Sieg. A modular query optimizer generator. In Proc.
IEEE Conference on Data Engineering, pages 146–153, 1990.

[781] B. Seeger. An analysis of schedules for performing multi-page requests.
Information Systems, 21(4):387–407, 1996.

[782] B. Seeger, P.-A. Larson, and R. McFadyen. Reading a set of disk pages.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 592–603,
1993.

[783] A. Segev. Optimization of join operations in horizontally partitioned
database systems. ACM Trans. on Database Systems, 11(1):48–80, 1986.

[784] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access
path selection in a relational database management system. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 23–34, 1979.

[785] T. Sellis. Intelligent caching and indexing techniques for relational
database systems. Information Systems, 13(2):175–185, 1988.

[786] T. Sellis. Intelligent caching and indexing techniques for relational
database systems. Information Systems, 13(2):175–186, 1988.

[787] T. Sellis. Multiple-query optimization. ACM Trans. on Database Systems,
13(1):23–52, 1988.

[788] T. K. Sellis. Global query optimization. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 191–205, 1986.

[789] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited. In
USENIX, pages 313–323, 1990.

[790] V. Sengar and J. Haritsa. PLASTIC: Reducing query optimization over-
heads through plan recycling. In Proc. of the ACM SIGMOD Conf. on
Management of Data, page 676, 2003.

[791] P. Seshadri, J. Hellerstein, H. Pirahesh, T. Leung, R. Ramakrishnan,
D. Srivastava, P. Stuckey, and S. Sudarshan. Cost-based optimization
for magic: Algebra and implementation. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 435–446, 1996.

[792] S. Setzer, G. Steidl, T. Teuber, and G. Moerkotte. Approximation related
to quotient functionals. Journal of Approximation Theory, 162(3):545–
558, 2010.

BIBLIOGRAPHY 681

[793] K. Sevcik. Data base system performance prediction using an analytical
model. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
182–198, 1981.

[794] D. Severance. A practitioner’s guide to data base compression. Informa-
tion Systems, 8(1):51=62, 1983.

[795] D. Severance and G. Lohman. Differential files: their application to
the maintenance of large databases. ACM Trans. on Database Systems,
1(3):256–267, Sep 1976.

[796] M. C. Shan. Optimal plan search in a rule-based query optimizer. In J. W.
Schmidt, S. Ceri, and M. Missikoff, editors, Proc. of the Intl. Conf. on
Extending Database Technology, pages 92–112, Venice, Italy, Mar 1988.
Springer-Verlag, Lecture Notes in Computer Science No. 303.

[797] J. Shanmugasundaram, R. Barr E. J. Shekita, M. J. Carey, B. G. Lindsay,
H. Pirahesh, and B. Reinwald. Efficiently Publishing Relational Data as
XML Documents. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 65–76, 2000.

[798] L. Shapiro, D. Maier, P. Benninghoff, K. Billings, Y. Fan, K. Hatwal,
Q. Wang, Y. Zhang, H.-M. Wu, and B. Vance. Exploiting upper and
lower bounds in top-down query optimization. In IDEAS, pages 20–33,
2001.

[799] L. Shapiro and A. Stephens. Bootstrap percolation, the schröder numbers
and the n-kings problem. SIAM J. Discr. Math., 4(2):275–280, 1991.

[800] G. M. Shaw and S.B. Zdonik. Object-oriented queries: Equivalence and
optimization. In 1st Int. Conf. on Deductive and Object-Oriented Databas-
es, pages 264–278, 1989.

[801] G. M. Shaw and S.B. Zdonik. A query algebra for object-oriented databas-
es. Tech. report no. cs-89-19, Department of Computer Science, Brown
University, 1989.

[802] G.M. Shaw and S.B. Zdonik. An object-oriented query algebra. In 2nd Int.
Workshop on Database Programming Languages, pages 111–119, 1989.

[803] G.M. Shaw and S.B. Zdonik. A query algebra for object-oriented databas-
es. In Proc. IEEE Conference on Data Engineering, pages 154–162, 1990.

[804] E. Shekita and M. Carey. A performance evaluation of pointer-based
joins. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 300–311, 1990.

[805] E. Shekita, K.-L. Tan, and H. Young. Multi-join optimization for sym-
metric multiprocessors. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 479–492, 1993.

682 BIBLIOGRAPHY

[806] E. Shekita, H. Young, and K.-L. Tan. Multi-join optimization for sym-
metric multiprocessors. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 479–492, 1993.

[807] P. Shenoy and H. Cello. A disk scheduling framework for next generation
operating systems. In Proc. ACM SIGMETRICS Conf. on Measurement
and Modeling of Computer Systems, pages 44–55, 1998.

[808] S. T. Shenoy and Z. M. Ozsoyoglu. A system for semantic query opti-
mization. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 181–195, 1987.

[809] S. Sherman and R. Brice. Performance of a database manager in a virtual
memory system. ACM Trans. on Database Systems, 1(4):317–343, 1976.

[810] B. Shneiderman and V. Goodman. Batched searching of sequential and
tree structured files. ACM Trans. on Database Systems, 1(3):208–222,
1976.

[811] E. Shriver. Performance Modeling for Realistic Storage Devices. PhD
thesis, University of New York, 1997.

[812] E. Shriver, A. Merchant, and J. Wilkes. An analytical behavior model
for disk drives with readahead caches and request reordering. In Proc.
ACM SIGMETRICS Conf. on Measurement and Modeling of Computer
Systems, pages 182–191, 1998.

[813] A. Shrufi and T. Topaloglou. Query processing for knowledge bases using
join indices. In Int. Conference on Information and Knowledge Manage-
ment (CIKM), 1995.

[814] K. Shwayder. Conversion of limited entry decision tables to computer
programs — a proposed modification to Pollack’s algorithm. Communi-
cations of the ACM, 14(2):69–73, 1971.

[815] M. Siegel, E. Sciore, and S. Salveter. A method for automatic rule deriva-
tion to support semantic query optimization. ACM Trans. on Database
Systems, 17(4):53–600, 1992.

[816] A. Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts.
McGraw Hill, 1997. 3rd Edition.

[817] D. Simmen, C. Leung, and H. Pirahesh. Exploitation of uniqueness prop-
erties for the optimization of SQL queries using a 1-tuple condition. Re-
search Report RJ 10008 (89098), IBM Almaden Research Division, Feb.
1996.

[818] D. Simmen, E. Shekita, and T. Malkemus. Fundamental techniques for
order optimization. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 57–67, 1996.

BIBLIOGRAPHY 683

[819] D. Simmen, E. Shekita, and T. Malkemus. Fundamental techniques for
order optimization. In Proc. of the Int. Conf. on Extending Database
Technology (EDBT), pages 625–62, 1996.

[820] G. Slivinskas, C. Jensen, and R. Snodgrass. Bringing order to query
optimization. SIGMOD Record, 13(2):5–14, 2002.

[821] D. Smith and M. Genesereth. Ordering conjunctive queries. Artificial
Intelligence, 26:171–215, 1985.

[822] J. A. Smith. Sequentiality and prefetching in database systems. ACM
Trans. on Database Systems, 3(3):223–247, 1978.

[823] J. M. Smith and P. Y.-T. Chang. Optimizing the performance of a
relational algebra database interface. Communications of the ACM,
18(10):568–579, 1975.

[824] R. Sosic, J. Gu, and R. Johnson. The Unison algorithm: Fast evalua-
tion of boolean expressions. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 1:456 – 477, 1996.

[825] P. Spellucci. Numerische Verfahren der Nichtlinearen Optimierung.
Birkhäuser, 1993.

[826] N. Spyratos. An operational approach to data bases. In Proc. ACM
SIGMOD/SIGACT Conf. on Princ. of Database Syst. (PODS), pages
212–220, 1982.

[827] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. Patel, and
Y. Wu. Structural joins: A primitive for efficient XML query pattern
matching. In Proc. IEEE Conference on Data Engineering, 2002.

[828] D. Srivastava, S. Dar, J. Jagadish, and A. Levy. Answering queries with
aggregation using views. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 318–329, 1996.

[829] R. Stanley. Enumerative Combinatorics, Volume I, volume 49 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
1997.

[830] H. Steenhagen. Optimization of Object Query Languages. PhD thesis,
University of Twente, 1995.

[831] H. Steenhagen, P. Apers, and H. Blanken. Optimization of nested queries
in a complex object model. In Proc. of the Int. Conf. on Extending
Database Technology (EDBT), pages 337–350, 1994.

[832] H. Steenhagen, P. Apers, H. Blanken, and R. de By. From nested-loop
to join queries in oodb. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 618–629, 1994.

684 BIBLIOGRAPHY

[833] H. Steenhagen, R. de By, and H. Blanken. Translating OSQL queries into
efficient set expressions. In Proc. of the Int. Conf. on Extending Database
Technology (EDBT), pages 183–197, 1996.

[834] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized
optimization for the join ordering problem. The VLDB Journal, 6(3):191–
208, Aug. 1997.

[835] M. Steinbrunn, K. Peithner, G. Moerkotte, and A. Kemper. Bypassing
joins in disjunctive queries. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 228–238, 1995.

[836] K. Stocker, D. Kossmann, R. Braumandl, and A. Kemper. Integrating
semi-join reducers into state-of-the-art query processors. In Proc. IEEE
Conference on Data Engineering, pages 575–584, 2001.

[837] L. Stockmeyer and C. Wong. On the number of comparisons to find the
intersection of two relations. Technical report, IBM Watson Research
Center, 1978.

[838] H. Stone and H. Fuller. On the near-optimality of the shortest-latency-
time-first drum scheduling discipline. Communications of the ACM,
16(6):352–353, 1973.

[839] M. Stonebraker. Inclusion of new types in relational database systems.
In Proc. IEEE Conference on Data Engineering, pages ?–?, 1986.

[840] M. Stonebraker, J. Anton, and E. Hanson. Extending a database system
with procedures. ACM Trans. on Database Systems, 12(3):350–376, Sep
1987.

[841] M. Stonebraker and P. Brown. Object-Relational DBMSs, Tracking the
Next Great Wave. Morgan Kaufman, 1999.

[842] M. Stonebraker et al. QUEL as a data type. In Proc. of the ACM SIG-
MOD Conf. on Management of Data, Boston, MA, June 1984.

[843] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamios. On rules, pro-
cedures, caching and views in data base systems. In Proc. of the ACM
SIGMOD Conf. on Management of Data, pages 281–290, 1990.

[844] M. Stonebraker and L. A. Rowe. The design of postgres. In Proc. of the
15nth ACM SIGMOD, pages 340–355, 1986.

[845] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and imple-
mentation of INGRES. ACM Trans. on Database Systems, 1(3):189–222,
1976.

[846] D. Straube and T. Özsu. Access plan generation for an object algebra.
Technical Report TR 90-20, Department of Computing Science, Univer-
sity of Alberta, June 1990.

BIBLIOGRAPHY 685

[847] D. Straube and T. Özsu. Queries and query processing in object-oriented
database systems. Technical report, Department of Computing Science,
University of Alberta, Edmonton, Alberta, Canada, 1990.

[848] D. Straube and T. Özsu. Queries and query processing in object-oriented
database systems. ACM Trans. on Information Systems, 8(4):387–430,
1990.

[849] D. Straube and T. Özsu. Execution plan generation for an object-oriented
data model. In Proc. Int. Conf. on Deductive and Object-Oriented
Databases (DOOD), pages 43–67, 1991.

[850] D. D. Straube. Queries and Query Processing in Object-Oriented
Database Systems. PhD thesis, The University of Alberta, Edmonton,
Alberta, Canada, Dec 1990.

[851] S. Subramanian and S. Venkataraman. Cost-based optimization of deci-
sion support queries using transient views. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 319–330, Seattle, WA, 1998.

[852] D. Suciu. Query decomposition and view maintenance for query languages
for unconstrained data. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 227–238, 1996.

[853] N. Südkamp and V. Linnemann. Elimination of views and redundant
variables in an SQL-like database language for extended NF2 structures.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 302–313,
1990.

[854] Wei Sun and Clement T. Yu. Automatic knowledge acquisition and main-
tenance for semantic query optimization. IEEE Trans. on Knowledge and
Data Engineering, 1(3):362–375, 1989.

[855] Wei Sun and Clement T. Yu. Semantic query optimization for tree
and chain queries. IEEE Trans. on Knowledge and Data Engineering,
6(1):136–151, 1994.

[856] K. Sutner, A. Satyanarayana, and C. Suffel. The complexity of the resid-
ual node connectedness reliability problem. SIAM J. Comp., 20(1):149–
155, 1991.

[857] P. Svensson. On search performance for conjunctive queries in com-
pressed, fully transposed ordered files. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 155–163, 1979.

[858] A. Swami. Optimization of Large Join Queries. PhD thesis, Stanford
University, 1989. Technical Report STAN-CS-89-1262.

[859] A. Swami. Optimization of large join queries: Combining heuristics and
combinatorial techniques. In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 367–376, 1989.

686 BIBLIOGRAPHY

[860] A. Swami and A. Gupta. Optimization of large join queries. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 8–17, 1988.

[861] A. Swami and B. Iyer. A polynomial time algorithm for optimizing join
queries. Technical Report RJ 8812, IBM Almaden Research Center, 1992.

[862] A. Swami and B. Iyer. A polynomial time algorithm for optimizing join
queries. In Proc. IEEE Conference on Data Engineering, pages 345–354,
1993.

[863] A. Swami and B. Schiefer. Estimating page fetches for index scans with
finite LRU buffers. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 173–184, 1994.

[864] A. Swami and B. Schiefer. On the estimation of join result sizes. In Proc.
of the Int. Conf. on Extending Database Technology (EDBT), pages 287–
300, 1994.

[865] M. Switakowski, P. Boncz, and M. Zukowski. From cooperative scans to
predictive buffer management. Proc. of the VLDB Endowment (PVLDB),
5(12):1759–1770, 2012.

[866] N. Talagala, R. Arpaci-Dusseau, and D. Patterson. Microbenchmark-
based extraction of local and global disk characteristics. Technical Report
UCB-CSD-99-1063, University of Berkeley, 2000.

[867] K.-L. Tan and H. Lu. A note on the strategy space of multiway join query
optimization problem in parallel systems. SIGMOD Record, 20(4):81–82,
1991.

[868] A. Tansel and L. Garnett. On roth, korth, and silberschatz’s extended
algebra and calculus for nested relational databases. ACM Trans. on
Database Systems, 17(2):374–383, 1992.

[869] Y. C. Tay. On the optimality of strategies for multiple joins. Journal of
the ACM, 40(5):1067–1086, 1993.

[870] T. Teorey and K. Das. Application of an analytical model to evaluate
storage structures. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 9–19, 1976.

[871] T. Teorey and T. Pinkerton. A comparative analysis of disk scheduling
policies. In Proc. of the AFIPS Fall Joint Computer Conference, pages
1–11, 1972.

[872] T. Teorey and T. Pinkerton. A comparative analysis of disk scheduling
policies. Communications of the ACM, 15(3):177–184, 1972.

[873] J. Teubner, T. Grust, and M. Van Keulen. Bridging the gap between
relational and native XML storage with staircase join. Grundlagen von
Datenbanken, pages 85–89, 2003.

BIBLIOGRAPHY 687

[874] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional
histograms. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 428–439, 2002.

[875] H. To, K. Chiang, and C. Shahabi. Entropy-based histograms for selec-
tivity estimation. In CIKM, pages 1939–1948, 2013.

[876] C. Tompkins. Machine attacks on problems whose variables are permuta-
tions. Numerical Analysis (Proc. of Symposia in Applied Mathematics),
6, 1956.

[877] R. Topor. Join-ordering is NP-complete. Draft, personal communication,
1998.

[878] Transaction Processing Council (TPC). TPC Benchmark D.
http://www.tpc.org, 1995.

[879] Transaction Processing Performance Council, 777 N. First Street, Suite
600, San Jose, CA, USA. TPC Benchmark R, 1999. Revision 1.2.0.
http://www.tpc.org.

[880] P. Triantafillou, S. Christodoulakis, and C. Georgiadis. A comprehensive
analytical performance model for disk devices under random workloads.
IEEE Trans. on Knowledge and Data Eng., 14(1):140–155, 2002.

[881] O. Tsatalos, M. Solomon, and Y. Ioannidis. The GMAP: A versatile tool
for physical data independence. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 367–378, 1994.

[882] A. Tsois and T. Sellis. The generalized pre-grouping transformation:
Aggregate-query optimization in the presence of dependencies. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 644–655, 2003.

[883] K. Tufte and D. Maier. Aggregation and accumulation of XML data.
IEEE Data Engineering Bulletin, 24(2):34–39, 2001.

[884] K. Tzoumas, A. Deshpande, and C. Jensen. Efficiently adapting graphical
models for selectivity estimation. Proc. Int. Conf. on Very Large Data
Bases (VLDB), 22:3–27, 2013.

[885] Überhuber. Computer Numerik 2. Springer, 1995.

[886] J.D. Ullman. Database and Knowledge Base Systems, volume Volume 1.
Computer Science Press, 1989.

[887] J.D. Ullman. Database and Knowledge Base Systems, volume Volume 2.
Computer Science Press, 1989.

[888] J.D. Ullman. Database and Knowledge Base Systems. Computer Science
Press, 1989.

688 BIBLIOGRAPHY

[889] D. Straube und T. Özsu. Query transformation rules for an object al-
gebra. Technical Report TR 89-23, Department of Computing Science,
University of Alberta, Sept. 1989.

[890] T. Urhan, M. Franklin, and L. Amsaleg. Cost based query scrambling for
initial delays. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 130–141, 1998.

[891] M. Uysal, G. Alvarez, and A. Merchant. A modular analytical throughput
model for modern disk arrays. In MASCOTS, pages 183–192, 2001.

[892] P. Valduriez. Join indices. ACM Trans. on Database Systems, 12(2):218–
246, 1987.

[893] P. Valduriez and H. Boral. Evaluation of recursive queries using join
indices. In Proc. Int. Conf. on Expert Database Systems (EDS), pages
197–208, 1986.

[894] P. Valduriez and S. Danforth. Query optimization in database program-
ming languages. In Proc. Int. Conf. on Deductive and Object-Oriented
Databases (DOOD), pages 516–534, 1989.

[895] L. Valiant. The complexity of computing the permanent. Theoretical
Comp. Science, 8:189–201, 1979.

[896] L. Valiant. The complexity of enumeration and reliability problems. SIAM
J. Comp., 8(3):410–421, 1979.

[897] B. Vance. Join-order Optimization with Cartesian Products. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1998.

[898] B. Vance and D. Maier. Rapid bushy join-order optimization with carte-
sian products. In Proc. of the ACM SIGMOD Conf. on Management of
Data, pages 35–46, 1996.

[899] S. L. Vandenberg and D. DeWitt. An algebra for complex objects with
arrays and identity. Internal report, Computer Sciences Department, Uni-
versity of Wisconsin, Madison, WI 53706, USA, 1990.

[900] S. L. Vandenberg and D. DeWitt. Algebraic support for complex objects
with arrays, identity, and inheritance. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 158–167, 1991.

[901] G. von Bültzingsloewen. Optimizing SQL queries for parallel execution.
ACM SIGMOD Record, 1989.

[902] G. von Bültzingsloewen. Optimierung von SQL-Anfragen für parallele
Bearbeitung (Optimization of SQL-queries for parallel processing). PhD
thesis, University of Karlsruhe, 1990. in German.

[903] G. von Bültzingsloewen. SQL-Anfragen: Optimierung für parallele Bear-
beitung. FZI-Berichte Informatik. Springer, 1991.

BIBLIOGRAPHY 689

[904] F. Waas and A. Pellenkoft. Probabilistic bottom-up join order selection
– breaking the curse of NP-completeness. Technical Report INS-R9906,
CWI, 1999.

[905] F. Waas and A. Pellenkoft. Join order selection - good enough is easy. In
BNCOD, pages 51–67, 2000.

[906] H. Wang and K. Sevcik. Histograms based on the minimum description
length principle. The VLDB Journal, 17:419–442, 2008.

[907] J. Wang, J. Li, and G. Butler. Implementing the PostgreSQL query
optimzier within the OPT++ framework. In Asia-Pacific Software Engi-
neering Conference (APSEC), pages 262–272, 2003.

[908] J. Wang, M. Maher, and R. Topor. Rewriting unions of general conjunc-
tive queries using views. In Proc. of the Int. Conf. on Extending Database
Technology (EDBT), pages 52–69, 2002.

[909] W. Wang, H. Jiang, H. Lu, and J. Yu. Containment join size estima-
tion: Models and methods. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 145–156, 2003.

[910] W. Wang, H. Jiang, H. Lu, and J. Yu. Bloom histogram: Path selectivity
estimation for xml data with updates. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 240–251, 2004.

[911] X. Wang and M. Cherniack. Avoiding ordering and grouping in query
processing. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
826–837, 2003.

[912] S. Waters. File design fallacies. The Computer Journal, 15(1):1–4, 1972.

[913] S. Waters. Hit ratio. Computer Journal, 19(1):21–24, 1976.

[914] G. Watson. Approximation Theory and Numerical Methods. Addison-
Wesley, 1980.

[915] H. Wedekind and G. Zörntlein. Prefetching in realtime database appli-
cations. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 215–226, 1986.

[916] M. Wedekind. On the selection of access paths in a database system.
In J. Klimbie and K. Koffeman, editors, IFIP Working Conference Data
Base Management, pages 385–397, Amsterdam, 1974. North-Holland.

[917] G. Weikum. Set-oriented disk access to large complex objects. In Proc.
IEEE Conference on Data Engineering, pages 426–433, 1989.

[918] G. Weikum, B. Neumann, and H.-B. Paul. Konzeption und Realisierung
einer mengenorientierten Seitenschnittstelle zum effizienten Zugriff auf
komplexe Objekte. In Proc. der GI-Fachtagung Datenbanksysteme für
Büro, Technik und Wissenschaft (BTW), pages 212–230, 1987.

690 BIBLIOGRAPHY

[919] T. Westmann. Effiziente Laufzeitsysteme für Datenlager. PhD thesis,
University of Mannheim, 2000.

[920] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The imple-
mentation and performance of compressed databases. Technical Report
03/98, University of Mannheim, 1998.

[921] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The imple-
mentation and performance of compressed databases. SIGMOD Record,
29(3):55–67, 2000.

[922] T. Westmann and G. Moerkotte. Variations on grouping and aggrega-
tions. Technical Report 11/99, University of Mannheim, 1999.

[923] K.-Y. Whang, A. Malhotra, G. Sockut, and L. Burns. Supporting uni-
versal quantification in a two-dimensional database query language. In
Proc. IEEE Conference on Data Engineering, pages 68–75, 1990.

[924] K.-Y. Whang, B. Vander-Zanden, and H. Taylor. A linear-time prob-
abilistic counting algorithm for database applications. ACM Trans. on
Database Systems, 15(2):208–229, 1990.

[925] K.-Y. Whang, G. Wiederhold, and D. Sagalowicz. Estimating block ac-
cesses in database organizations: A closed noniterative formula. Commu-
nications of the ACM, 26(11):940–944, 1983.

[926] N. Wilhelm. A general model for the performance of disk systems. Journal
of the ACM, 24(1):14–31, 1977.

[927] D. E. Willard. Efficient processing of relational calculus queries using
range query theory. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 164–175, 1984.

[928] C. Williams and T. Hogg. Using deep structure to locate hard problems.
In Proc. National Conference on Artificial Intelligence, pages 472–477,
1992.

[929] J. Wolf, R. Iyer, K. Pattipati, and J. Turek. Optimal buffer partitioning
for the nested block join algorithm. In Proc. IEEE Conference on Data
Engineering, pages 510–519, 1991.

[930] C. Wong. Minimizing expected head movement in one-dimensional
and two-dimensional mass storage systems. ACM Computing Surveys,
12(2):167–177, 1980.

[931] F. Wong and K. Youssefi. Decomposition – a strategy for query process-
ing. ACM Trans. on Database Systems, 1(3):223–241, 1976.

[932] H. Wong and J. Li. Transposition algorithms on very large compressed
databases. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
304–311, 1986.

BIBLIOGRAPHY 691

[933] P. Wood. On the equivalence of XML patterns. In CL 2000, 2000.

[934] P. Wood. Minimizing simple XPath expressions. In Int. Workshop on
Database Programming Languages, pages 13–18, 2001.

[935] P. Wood. Containment for XPath fragments under dtd constraints. In
Proc. Int. Conf. on Database Theory (ICDT), pages 300–314, 2003.

[936] W. A. Woods. Procedural semantics for question-answering systems. In
FJCC (AFIPS Vol. 33 Part I), pages 457–471, 1968.

[937] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. Scheduling algo-
rithms for modern disk drives. In Proc. ACM SIGMETRICS Conf. on
Measurement and Modeling of Computer Systems, pages 241–251, 1994.

[938] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. On-line extraction
of SCSI disk drive parameters. In Proc. ACM SIGMETRICS Conf. on
Measurement and Modeling of Computer Systems, pages 146–156, 1995.

[939] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. On-line extraction of
SCSI disk drive parameters. Technical Report CSE-TR-323-96, University
of Michigan, 1996.

[940] M.-C. Wu. Query optimization for selections using bitmaps. In Proc. of
the ACM SIGMOD Conf. on Management of Data, pages 227–238, 1999.

[941] Y. Wu, J. Patel, and H.V. Jagadish. Estimating answer sizes for XML
queries. In Proc. of the Int. Conf. on Extending Database Technology
(EDBT), pages 590–608, 2002.

[942] Y. Wu, J. Patel, and H.V. Jagadish. Estimating answer sizes for XML
queries. Information Systems, 28(1-2):33–59, 2003.

[943] Z. Xie. Optimization of object queries containing encapsulated methods.
In Proc. 2nd. Int. Conf. on Information and Knowledge Management,
pages 451–460, 1993.

[944] Z. Xie and J. Han. Join index hierarchies for supporting efficient naviga-
tion in object-oriented databases. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), pages 522–533, 1994.

[945] G. D. Xu. Search control in semantic query optimization. Technical
Report 83-09, COINS, University of Massachusetts, Amherst, MA, 1983.

[946] W. Yan and P.-A. Larson. Performing group-by before join. In Proc.
IEEE Conference on Data Engineering, pages 89–100, 1994.

[947] W. Yan and P.-A. Larson. Eager aggregation and lazy aggregation. In
Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 345–357, 1995.

[948] H. Yang and P.-A. Larson. Query transformation for PSJ-queries. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), pages 245–254, 1987.

692 BIBLIOGRAPHY

[949] J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view
design in data warehousing environment. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 136–145, 1997.

[950] Qi Yang. Computation of chain queries in distributed database systems.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
348–355, 1994.

[951] M. Yannakakis. Algorithms for acyclic database schemes. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages 82–94, 1981.

[952] B. Yao and T. Özsu. XBench – A Family of Benchmarks for XML DBMSs.
Technical Report CS-2002-39, University of Waterloo, 2002.

[953] B. Yao, T. Özsu, and N. Khandelwal. Xbench benchmark and perfor-
mance testing of XML DBMSs. In Proc. IEEE Conference on Data En-
gineering, pages 621–632, 2004.

[954] S. B. Yao. Approximating block accesses in database organizations. Com-
munications of the ACM, 20(4):260–261, 1977.

[955] S. B. Yao. An attribute based model for database access cost analysis.
ACM Trans. on Database Systems, 2(1):45–67, 1977.

[956] S. B. Yao and D. DeJong. Evaluation of database access paths. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 66–77, 1978.

[957] S.B. Yao. Optimization of query evaluation algorithms. ACM Trans. on
Database Systems, 4(2):133–155, 1979.

[958] S.B. Yao, A.R. Hevner, and H. Young-Myers. Analysis of database sys-
tem architectures using benchmarks. IEEE Trans. on Software Eng.,
SE-13(6):709–725, 1987.

[959] J. Yiannis and J. Zobel. Compression techniques for fast external sorting.
VLDB Journal, 16(2):269–291, 2007.

[960] Y. Yoo and S. Lafortune. An intelligent search method for query optimiza-
tion by semijoins. IEEE Trans. on Knowledge and Data Eng., 1(2):226–
237, June 1989.

[961] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. Xrel: A path-
based approach to storage and retrieval of XML documents using relation-
al databases. ACM Transactions on Internet Technology, 1(1):110–141,
June 2001.

[962] K. Youssefi and E. Wong. Query processing in a relational database man-
agement system. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 409–417, 1979.

[963] C. T. Yu, W. S. Luk, and M. K. Siu. On the estimation of the number of
desired records with respect to a given query. ACM Trans. on Database
Systems, 3(1):41–56, 1978.

BIBLIOGRAPHY 693

[964] L. Yu and S. L. Osborn. An evaluation framework for algebraic object-
oriented query models. In Proc. IEEE Conference on Data Engineering,
1991.

[965] X. Yu, N. Koudas, and C. Zuzarte. HASE: a hybrid approach to selec-
tivity estimation for conjunctive predicates. In Proc. of the Int. Conf. on
Extending Database Technology (EDBT), pages 460–477, 2006.

[966] X. Yu, C. Zuzarte, and K. Sevcik. Towards estimating the number of
distinct value combinations for a set of attributes. In CIKM, pages 656–
663, 2005.

[967] J. Zahorjan, B. Bell, and K. Sevcik. Estimating block transfers when
record access probabilities are non-uniform. Information Processing Let-
ters, 16(5):249–252, 1983.

[968] B. T. Vander Zander, H. M. Taylor, and D. Bitton. Estimating block
accesses when attributes are correlated. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), pages 119–127, 1986.

[969] S. Zdonik and G. Mitchell. ENCORE: An object-oriented approach
to database modelling and querying. IEEE Data Engineering Bulletin,
14(2):53–57, June 1991.

[970] N. Zhang, V. Kacholia, and T. Özsu. A succinct physical storage scheme
for efficient evaluation of path queries in XML. In Proc. IEEE Conference
on Data Engineering, pages 54–65, 2004.

[971] N. Zhang and T. Özsu. Optimizing correlated path expressions in XML
languages. Technical Report CS-2002-36, University of Waterloo, 2002.

[972] Y. Zhao, P. Deshpande, J. Naughton, and A. Shukla. Simultaneous opti-
mization and evaluation of multiple dimensional queries. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 271–282, 1998.

[973] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View mainte-
nance in a warehouse environment. In Proc. of the ACM SIGMOD Conf.
on Management of Data, 1995.

694 BIBLIOGRAPHY

Appendix E

ToDo

• size of a query in rel alg: [730]

• [908]

• Integrating Buffer Issues into Query Optimization: [211, 473]

• Integrating concurrency control issues into query optimization: [624, 625]

• [101]

• where do we put ”counting page accesses”?

• control, A∗, ballooning: [611, 610]

• Bypass Plans

• Properties (rather complete list, partial ordering, plan independent prop-
erties: store them somewhere else (dpstructure or memostructure))

• describe prep-phase of plan generator

• reuse plans: [790]

• estimating query compilation time: [444]

• cost model [793]

• sensivitity of QO to storage access cost parameters [727] (and join selec-
tivities on join order: [521] [papier ist nicht ernst zu nehmen])

• magic set and semi join reducers [79, 81, 80, 175, 341, 633, 631, 633, 632,
791, 836, 960]

• join indexes and clustering tuples of different relations with 1:n relation-
ship [230, 401, 892, 893, 813]

• B-Trees with space filling curves (Bayer)

• Prefetching [915]

695

696 APPENDIX E. TODO

• feedback to optimizer [508]

• compression [26, 55, 167, 207, 259, 258, 335, 342] [647, 720, 745, 794, 795,
857, 920, 932]

• semantic QO SQO: [1, 82, 172, 332, 365, 495, 496, 517, 525] [648, 656,
657, 681, 808, 815, 817, 945] [552]

• join processing with nonclustered indexes: [649]

• join+buffer: [929]

• removal/elimination of redundant joins [659, 853]

• benchmark(ing): Gray Book: [366]; papers: [98, 108, 667, 751, 775, 958,
952, 953]

• dynamic qo: [671] [29, 890] [43] [474]

• unnesting: [675, 718, 641]

• prefetching: [679, 678, 822, 915]

• Starburst: [689, 690]

• BXP: [107, 260, 310, 375, 397, 437, 491, 694, 726, 814, 821, 824, 490]
BXP complexity: [77] BXP var infl: [475]

• joins: [701]

• query folding: [703]

• quantification: [114, 113, 185, 186, 715, 708, 923] [467]

• outerjoins: [85, 88, 218, 308, 299, 298, 717, 736]

• partial match + hashing: [710]

• OODB indexing by class division: [193, 714]

• decision support [719]

• tree structured databases: [728]

• Rosenthal: [739, 723, 740, 741, 724, 735, 738, 737]

• conj. queries [733]

• aggregation/(generalized proj): [120, 193, 300, 744] [381, 382, 405]

• do nest/unnest to optimize duplicate work: [742]
e1 BA1=A2 e2 ≡ µg(e1 BA1=A2 Γg;=A2;id(e2))

• join size: [734]

• fragmentation: [755]

697

• eqv: [17, 18]

• alg eqvs union/difference: [759] [908]

• other sagiv: [757, 758]

• bayesian approach to QO: [638]

• cache query plans: [790]

• joins for horizontally fragmentation: [783]

• partitioning: [56, 106, 395, 478, 651]

• MQO: [25, 140, 138, 788, 787, 972]

• indexing+caching: [786]

• rule-based QO: [796, 66, 67, 295]

• rule-based IRIS: [229]

• cost: [837] [891]

• search space: [867], join ordering: [869]

• access path: [132, 916, 956, 99]

• eff aggr: [296] [922]

• misc: [927] [9] [13]

• access paths: bitmaps [940]

• dist db: [37, 38, 97, 216, 950] Donald’s state of the art: [514]

• [147, 148]

• eqv: bags [21, 221]

• eqvs old: [22]

• DB2: norwegian analysis: [31]

• nested: [46]

• Genesis/Praire/Batory: [57, 61, 60, 62, 217]

• eqvs OO: [68, 69]

• dupelim: [91]

• (generalized) division: [130, 215, 355, 344]

• early aggregation

• chunks-wise processing [231, 351]

698 APPENDIX E. TODO

• temporal intersection join: [378]

• 2nd ord sig: Güting: [386]

• classics: [392]

• smallest first: [396]

• Hwang/Yu: [436]

• Kambayashi: [477]

• Koch [506], Lehnert [543]

• I/O cost reduction for (hash) joins: [563, 604]

• dist nest: [265]

• band join: [570]

• Donovan (TODS 76,1,4) Decision Support: [247]

• whenever materialize something (sort, hash join, etc) compute min/max
of some attributes and use these as additional selection predicates

• determine optimal page access sequence and buffer size to access pairs
(x,y) of pages where join partners of one relation lie on x and of the
other on y (Fotouhi, Pramanik [292], Merret, Kambayashi, Yasuura [604],
Omiecinski [649], Pramanik, Ittner [701], Chan, Ooi [142])

• buffer mgmt: [865]

• Scarcello, Greco, Leone: [763]

• Sigmod05:

– proactive reoptimization [45]

– robust query optimizer [44]

– stacked indexed views [225]

– NF2-approach to processing nested sql queries [123]

– efficient computatio of multiple groupby queries [169]

• LOCI: [670]

• Wavelet synopses: [321]

• Progress Indicators: [153, 574, 575]

• PostgresExperience: [907]

• Chaudhuri sigmod 05: [44]

• Cesar on testing sql server [329]

699

• Bruno, Galindo-Legaria, Joshi [112] which is like GOO with the two addi-
tional techniques of pushing partial plans down and pulling partial plans
up whenever a new join is added.

• incremental evaluation to justify θ, q-acceptability [640]

• Exeuction Strategies for sql subqueries by Cesar [263]

• PIVOT, UNPIVOT: optimization/execution in sql server by Cesar [214]

• statistical views by cesar [301]

• multiway joins [426]

• [518]: heuristics to order index anding.

• [875]: Entropy-based histograms for selectivity estimation

• [884]: efficiently adapting graphical models for selectivity estimation

• [411]: multidim selectivity estimation via kernel density

• [?]: effective and complete discovery of order-dependencies via set-based
axiomatization

• section joinorder/top-down: pit, pruning [798]

• chapter plan generation

• chapter unnesting Oracle: Coalescing [72];

• benchmarking query optimizers: [?]

• Herodotou, Borisov, Babu: Query Optimization Techniques for Parti-
tioned Tables

• Al-Kateb, Sinclair, Au, Ballinger: Hybrid Row-Column Partitioning in
Teradata

• Antova, El-Helw, Soliman, Gu, ZPetropoulos, Waas: Optimizing Queries
over Partitioned Tables in MPP Systems.

• Chen, Yi: Two-Level Sampling for Join Size Estimation [?]

• check: joinorder chapter: ccp: Fig3: numbers for #ccp for chain for n=20,
formel:nn-¿2n

• cardinality estimation: Shekelyan [?]

• cardinality estimation: Kyuseok Shim [?]

• heuristics join ordering [805]

• predicate inference [854]

• merge min/max subqueries if possible using tableau equivalence [14]

• Union-All-Duplicate Operator (UAD) [16]

	I Basics
	Introduction
	General Remarks
	DBMS Architecture
	Interpretation versus Compilation
	Requirements for a Query Compiler
	Search Space
	Generation versus Transformation
	Focus
	Organization of the Book

	Textbook Query Optimization
	Example Query and Outline
	Algebra
	Canonical Translation
	Logical Query Optimization
	Physical Query Optimization
	Discussion

	Join Ordering
	Queries Considered
	Query Graph
	Join Tree
	Simple Cost Functions
	Classification of Join Ordering Problems
	Search Space Sizes
	Problem Complexity

	Deterministic Algorithms
	Heuristics
	Determining the Optimal Join Order in Polynomial Time
	The Maximum-Value-Precedence Algorithm
	Dynamic Programming
	Memoization
	Join Ordering by Generating Permutations
	A Dynamic Programming based Heuristics for Chain Queries
	Transformation-Based Approaches

	Probabilistic Algorithms
	Generating Random Left-Deep Join Trees with Cross Products
	Generating Random Join Trees with Cross Products
	Generating Random Join Trees without Cross Products
	Quick Pick
	Iterative Improvement
	Simulated Annealing
	Tabu Search
	Genetic Algorithms

	Hybrid Algorithms
	Two Phase Optimization
	AB-Algorithm
	Toured Simulated Annealing
	GOO-II
	Iterative Dynamic Programming

	Ordering Order-Preserving Joins
	Characterizing Search Spaces
	Complexity Thresholds

	Discussion
	Bibliography

	Database Items, Building Blocks, and Access Paths
	Disk Drive
	Database Buffer
	Physical Database Organization
	Slotted Page and Tuple Identifier (TID)
	Physical Record Layouts
	Physical Algebra (Iterator Concept)
	Simple Scan
	Scan and Attribute Access
	Temporal Relations
	Table Functions
	Indexes
	Single Index Access Path
	Simple Key, No Data Attributes
	Complex Keys and Data Attributes

	Multi Index Access Path
	Indexes and Joins
	Remarks on Access Path Generation
	Counting the Number of Accesses
	Counting the Number of Direct Accesses
	Counting the Number of Sequential Accesses
	Pointers into the Literature

	Disk Drive Costs for N Uniform Accesses
	Number of Qualifying Cylinders, Tracks, and Sectors
	Command Costs
	Seek Costs
	Settle Costs
	Rotational Delay Costs
	Head Switch Costs
	Discussion

	Concluding Remarks
	Bibliography

	II Foundations
	Logic, Null, and Boolean Expressions
	Two-Valued Logic
	Null Values
	Functions and Operators
	Comparison Operators

	Three-Valued Logic
	Preparation of Boolean Expressions
	Equivalence Classes based on Equality
	Nullability Inference
	Bibliography

	Functional Dependencies
	Functional Dependencies
	Functional Dependencies in the presence of NULL values
	Deriving Functional Dependencies over algebraic operators
	Bibliography

	An Algebra for Sets, Bags, and Sequences
	Sets, Bags, and Sequences
	Sets
	Duplicate Data: Bags
	Explicit Duplicate Control
	Ordered Data: Sequences

	Aggregation Functions
	Operators
	Preliminaries
	Signatures
	Projection
	Selection
	Map
	Unary Grouping
	Unnest Operators
	Flatten Operator
	Join Operators
	Groupjoin
	Min/Max Operators
	Other Dependent Operators

	Linearity of Algebraic Operators
	Linearity of Algebraic Operators
	Exploiting Linearity

	Representations
	Three Different Representations
	Conversion between Representations
	Conversion between Bulk Types
	Adjusting the Algebra
	Partial Preaggregation

	A Note on Equivalences
	Simple Reorderability
	Unary Operators
	Push-Down/Pull-Up of Unary into/from Binary Operators
	Binary Operators

	Predicate Detachment and Attachment
	Basic Equivalences for D-Join
	Equivalences for Outerjoins
	Outerjoin Simplification
	Generalized Outerjoin

	Equivalences for Unary Grouping
	An Elementary Fact about Grouping
	Join
	Left Outerjoin
	Left Outerjoin with Default
	Full Outerjoin
	D-Join
	Groupjoin
	Intersection and Difference

	Eliminating Redundant Joins
	Semijoin and Antijoin Reducer
	Outerjoin Simplification
	Correct and Complete Exploration of the Core Search Space
	The Core Search Space
	Exploration
	More Issues

	Logical Algebra for Sequences
	Introduction
	Algebraic Operators
	Equivalences
	Bibliography

	Literature
	ToDo

	Declarative Query Representation
	Calculus Representations
	Datalog
	Tableaux Representation
	Monoid Comprehension
	Expressiveness
	Bibliography

	Translation and Lifting
	Query Language to Calculus
	Query Language to Algebra
	Calculus to Algebra
	Algebra to Calculus
	Bibliography

	Query Equivalence, Containment, Minimization, and Factorization
	Set Semantics
	Conjunctive Queries
	… with Inequalities
	… with Negation
	… under Constraints
	… with Aggregation

	Bag Semantics
	Conjunctive Queries

	Sequences
	Path Expressions

	Minimization
	Detecting common subexpressions
	Simple Expressions
	Algebraic Expressions

	Bibliography

	III Rewrite Techniques
	Simple Rewrites
	Simple Adjustments
	Rewriting Simple Expressions
	Normal forms for queries with disjunction

	Deriving new predicates
	Collecting conjunctive predicates
	Equality
	Inequality
	Aggregation
	ToDo

	Predicate Push-Down and Pull-Up
	Eliminating Redundant Joins
	Distinct Pull-Up and Push-Down
	Set-Valued Attributes
	Introduction
	Preliminaries
	Query Rewrite

	Bibliography

	View Merging
	View Resolution
	Simple View Merging
	Predicate Move Around (Predicate pull-up and push-down)
	Complex View Merging
	Views with Distinct
	Views with Group-By and Aggregation
	Views in IN predicates
	Final Remarks

	Bibliography

	Quantifier treatment
	Pseudo-Quantifiers
	Existential quantifier
	Universal quantifier
	Bibliography

	Unnesting Nested Queries
	Optimizing Queries with Materialized Views
	Conjunctive Views
	Views with Grouping and Aggregation
	Views with Disjunction
	Bibliography

	Semantic Query Rewrite
	Constraints and their impact on query optimization
	Semantic Query Rewrite
	Exploiting Uniqueness in Query Optimization
	Bibliography

	IV Plan Generation
	Current Search Space and Its Limits
	Plans with Outer Joins, Semijoins and Antijoins
	Expensive Predicates and Functions
	Techniques to Reduce the Search Space
	Bibliography

	Dynamic Programming-Based Plan Generation
	Introduction
	Hypergraphs
	CCPs: Csg-Cmp-Pairs for Hypergraphs
	Neighborhood
	The CCP Enumerator BuEnumCppHyp
	BuEnumCcpHyp
	EnumerateCsgRec
	EmitCsg
	EnumerateCmpRec
	EmitCsgCmp
	Neighborhood Calculation

	DPhyp
	Adding Selections
	Adding Maps
	Adding Grouping

	Optimizing Queries with Disjunctions
	Introduction
	Using Disjunctive or Conjunctive Normal Forms
	Bypass Plans
	Implementation remarks
	Other plan generators/query optimizer
	Bibliography

	Generating Plans for the Full Algebra
	Generating DAG-structured Plans
	Simplifying the Query Graph
	Introduction
	On Optimizing Join Queries
	Graph Simplification Algorithm
	Simplifying the Query Graph
	The Full Algorithm
	Join Ordering Criterion
	Theoretical Foundation

	The Time/Quality Trade-Off

	Deriving and Dealing with Interesting Orderings and Groupings
	Introduction
	Problem Definition
	Ordering
	Grouping
	Functional Dependencies
	Algebraic Operators
	Plan Generation

	Overview
	Detailed Algorithm
	Overview
	Determining the Input
	Constructing the NFSM
	Constructing the DFSM
	Precomputing Values
	During Plan Generation
	Reducing the Size of the NFSM
	Complex Ordering Requirements

	Experimental Results
	Total Impact
	Influence of Groupings
	Annotated Bibliography

	Cardinality and Cost Estimation
	Introduction
	A First Approach
	Top-Most Cost Formula (Overall Costs)
	Summation of Operator Costs
	CPU Cost
	Abbreviations
	I/O Costs
	Cardinality Estimates

	The Simple Profile: A First Logical Profile and its Propagation
	The Logical Profile
	Assumptions
	Profile Propagation for Selection
	Profile Propagation for Join
	Profile Propagation for Projection
	Profile Propagation for Division
	Remarks

	Approximation of a Set of Values
	Approximations and Error Metrics
	Example Applications

	Approximation with Linear Models
	Linear Models
	Example Applications
	Linear Models Under l2
	Linear Models Under l
	Linear Models Under lq
	Non-Linear Models under lq
	Multidimensional Models under lq

	Traditional Histograms
	Bucketization
	Heuristics to Determine Bucket Boundaries

	More on Q
	Properties of the Q-Error
	Properties of Estimation Functions
	,q-Acceptability
	Testing ,q-Acceptability for Buckets
	From Buckets To Histograms
	Q-Compression

	One Dimensional Synopses
	Four Level Tree and Variants
	Q-Histograms (Type I)
	Q-Histogram (Type II)

	Sketches For Counting The Number of Distinct Values
	Linear Counting
	DvByKMinVal
	Logarithmic Counting
	SuperLogLog Counting
	HyperLogLog Counting
	DvByMinAvg
	DvByKMinAvg
	Pointers to the Literature

	Multidimensional Synopsis
	Introductory Example
	Solving the Introductory Problem without 2-Dimensional Synopsis
	Statistical Views
	Regular Partitioning: equi-width
	Equi-Depth Histogram
	2-Dimensional Synopsis based on SVD
	PHASED
	MHIST
	GENHIST
	HiRed
	VI Histograms
	Grid Trees
	More

	Iterative Selectivity Combination
	Maximum Entropy
	Selected Issues
	Exploiting and Augmenting Existing DBMS Data Structures
	Sampling
	Query Feedback
	Combining Data Summaries with Sampling
	Wavelets
	Selectivity of String-Valued Attributes

	Cost Functions
	Disk-based Joins
	Main Memory Joins
	Additional Pointers to the Literature

	V Implementation
	Architecture of a Query Compiler
	Compilation process
	Architecture
	Control Blocks
	Memory Management
	Tracing and Plan Visualization
	Driver
	Bibliography

	Internal Representations
	Requirements
	Algebraic Representations
	Graph Representations
	Query Graph
	Operator Graph

	Query Graph Model (QGM)
	Classification of Predicates
	Treatment of Distinct
	Query Analysis and Materialization of Analysis Results
	Query and Plan Properties
	Conversion to the Internal Representation
	Preprocessing
	Translation into the Internal Representation

	Bibliography

	Details on the Phases of Query Compilation
	Parsing
	Semantic Analysis, Normalization, Factorization, Constant Folding, and Translation
	Normalization
	Factorization
	Constant Folding
	Semantic analysis
	Translation
	Rewrite I
	Plan Generation
	Rewrite II
	Code generation
	Bibliography

	Hard-Wired Algorithms
	Hard-wired Dynamic Programming
	Introduction
	A plan generator for bushy trees
	A plan generator for bushy trees and expensive selections
	A plan generator for bushy trees, expensive selections and functions

	Bibliography

	Rule-Based Algorithms
	Rule-based Dynamic Programming
	Rule-based Memoization
	Bibliography

	Example Query Compiler
	Research Prototypes
	AQUA and COLA
	Black Dahlia II
	Epoq
	Ereq
	Exodus/Volcano/Cascade
	Freytags regelbasierte System R-Emulation
	Genesis
	GOMbgo
	Gral
	Lambda-DB
	Lanzelotte in short
	Opt++
	Postgres
	Sciore & Sieg
	Secondo
	Squiral
	System R and System R*
	Starburst and DB2
	Der Optimierer von Straube
	Other Query Optimizer

	Commercial Query Compiler
	The DB 2 Query Compiler
	The Oracle Query Compiler
	The SQL Server Query Compiler

	VI Selected Topics
	Generating Plans for Top-N-Queries?
	Motivation and Introduction
	Optimizing for the First Tuple
	Optimizing for the First N Tuples

	Recursive Queries
	Issues Introduced by OQL
	Type-Based Rewriting and Pointer Chasing Elimination
	Class Hierarchies
	Cardinalities and Cost Functions

	Issues Introduced by XPath
	A Naive XPath-Interpreter and its Problems
	Dynamic Programming and Memoization
	Naive Translation of XPath to Algebra
	Pushing Duplicate Elimination
	Avoiding Duplicate Work
	Avoiding Duplicate Generation
	Index Usage and Materialized Views
	Cardinalities and Costs
	Bibliography

	Issues Introduced by XQuery
	Reordering in Ordered Context
	Result Construction
	Unnesting Nested XQueries
	Cardinalities and Cost Functions
	Bibliography

	Outlook
	Query Languages?
	Designing a query language
	SQL
	OQL
	XPath
	XQuery
	Datalog

	Query Execution Engine (?)
	Glossary of Rewrite and Optimization Techniques
	Useful Formulas
	Bibliography
	Index
	ToDo

