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GODSON-3: A SCALABLE MULTICORE
RISC PROCESSOR WITH X86

EMULATION
..........................................................................................................................................................................................................................

THE GODSON-3 MICROPROCESSOR AIMS AT HIGH-THROUGHPUT SERVER APPLICATIONS,

HIGH-PERFORMANCE SCIENTIFIC COMPUTING, AND HIGH-END EMBEDDED APPLICATIONS.

IT OFFERS A SCALABLE NETWORK ON CHIP, HARDWARE SUPPORT FOR X86 EMULATION,

AND A RECONFIGURABLE ARCHITECTURE. THE FOUR-CORE GODSON-3 CHIP IS FABRICATED

WITH 65-NM CMOS TECHNOLOGY. EIGHT- AND 16-CORE GODSON-3 CHIPS ARE IN

DEVELOPMENT.

......Godson-3 is the third generation
of the Godson microprocessor series, a proj-
ect of the Institute of Computing Technol-
ogy at the Chinese Academy of Sciences.
As a multicore processor, Godson-3 targets
high-throughput server applications, high-
performance scientific computing, and
high-end embedded applications.

Godson-3’s scalable and distributed on-
chip network connects processor cores and
globally addressed level-two (L2) cache mod-
ules. A directory-based cache-coherence pro-
tocol maintains multiple level-one (L1)
copies of the same L2 block. Godson-3’s
MIPS64-compatible superscalar reduced-
instruction-set-computing (RISC) processor
core is designed for high performance and
low power dissipation. It also supports effi-
cient x86 to MIPS binary translation through
dedicated hardware support.

Godson-3 adopts the scalable mesh of
crossbar (SMOC) on-chip network topology.
Using the SMOC architecture, a 2 � 2 mesh
network can support a 16-core processor, and

a 4 � 4 mesh network can support a 64-core
processor. We’ve already defined the four-,
eight-, and 16-core product chips, and
we’ve designed and fabricated four-core
Godson-3 based on 65-nm CMOS technol-
ogy. The eight- and 16-core Godson-3 are
still in physical implementation.

CPU core features
The GS464 is a general-purpose processor

core, upgraded from the Godson-2 micro-
processor. The GS464’s four-way superscalar
execution mechanism has extremely high
requirements for resolving interinstruction de-
pendency and providing instructions and data.
It therefore uses out-of-order execution and ag-
gressive cache design to improve pipeline effi-
ciency, as other modern microprocessors do.1-6

The GS464 out-of-order execution scheme
combines register renaming, dynamic sched-
uling,7 and branch prediction. GS464 has
a 64-entry physical register file for fixed-
point and floating-point register mapping.
In GS464, the 16-entry fixed-point reservation
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station and the 16-entry floating-point reser-
vation station issue instructions out of order,
whereas the 64-entry reorder queue commits
out-of-order executed instructions in pro-
gram order. GS464 also implements a 16-
entry branch target buffer, an 8-Kbyte entry
branch history table, a 9-bit global history
register, and a 4-entry return address stack
for branch prediction.

GS464 has two fixed-point functional
units and two floating-point functional units.
Both fixed-point units execute addition,
subtraction, logical, shift, and compar-
ison instructions. In addition, the first
fixed-point arithmetic logic unit (ALU1)
executes trap, conditional move, and branch
instructions; the second (ALU2) executes
multiplication and division instructions.
The first floating-point unit (FALU1) can
execute all floating-point instructions; the
second floating-point unit (FALU2) can exe-
cute floating-point addition, subtraction, and
multiplication instructions.

The GS464 memory system supports 64-
bit virtual addresses and 48-bit physical
addresses, and can access a 128-bit quad
word in one cycle. GS464 has a 64-Kbyte
L1 instruction cache and a 64-Kbyte L1
data cache; both are four-way set associative.
GS464’s fully associative translation look-
aside buffer (TLB) has 64 entries, each of
which maps an odd page and an even page.
The 24-entry memory-access queue, which
contains a content-addressable memory for
dynamic memory disambiguation, supports
out-of-order memory access, nonblocking
cache, and load speculation. GS464’s
memory-access pipeline includes four cycles:
address calculation, TLB and cache reading,
tag comparison, and write back.

GS464 implements the Enhanced JTAG
(EJTAG) standard for debugging and perfor-
mance tuning. We implemented error-
correcting code for the data cache and parity
check for the instruction cache. We optimized
the CPU core for low power dissipation in the
architectural, logical, and physical design stages.

Figure 1 shows the architecture of the
GS464 CPU core.

We designed several CPU chips with differ-
ent process technologies based on the GS464
architecture. The Godson-2F8—which inte-
grates the GS464 core, a 512-Kbyte L2

cache, a 333-MHz DDR2 controller, and a
PCI/PCIX controller—is based on 90-nm
CMOS technology. It achieves 1 GHz with
both SPECint2000 and SPECfp2000 scores
of more than 500. The chip includes 51 mil-
lion transistors and has a die size of 42 square
millimeters. It consumes from 3 to 5 watts
depending on the application.

Hardware support for x86 to MIPS binary
translation

To support x86 emulation, Godson-3 pro-
vides hardware support for binary translation
from x86 to MIPS in its GS464 core. Al-
though the Crusoe processor supports transla-
tion from x86 to VLIW,9 no commercial
RISC processor provides dedicated support
for x86 emulation because of the difference
between x86 and RISC.1-5 Because some
x86-related features aren’t present in MIPS
(EFlags, the floating-point register stack,
segment addressing mode, and so on),
software-based translation from x86 binary to
MIPS binary is inefficient.10,11 In many
cases, translating an x86 instruction requires
tens of MIPS instructions because of the dif-
ference between the x86 and MIPS ISAs.
Godson-3’s x86 binary translator smoothes
translation from x86 binary to MIPS binary
with minimal hardware support. To achieve
this, GS464 defines new instructions and
runtime environments through the MIPS64
user-defined interface (UDI) to bridge the
gap between the x86 and MIPS64 ISAs. It
defines and implements new instructions in
MIPS format for functions that are in x86
ISA but not in MIPS64 ISA.

The Godson-3 virtual machine will be
compatible with x86 at both the ISA level
and Linux application binary interface
(ABI) level. We’ll build the system- and
process-level virtual machines accordingly.
The ISA-level compatibility is for low-cost
PC applications, in which Microsoft Win-
dows are most popular; the Linux ABI-level
compatibility is for server applications,
in which Linux servers with x86 processors
are most popular. Figure 2 shows the
Godson-3 binary translation system’s software
architecture. The process- and system-level
virtual machine monitors (VMMs) are imple-
mented on Linux, which is improved to pro-
vide x86-compatible system calls.
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Hardware support for EFlag of x86
A major difference between the x86 and

MIPS ISAs is that the x86 ISA uses EFlags.
Most x86 fixed-point arithmetic instructions
generate 6-bit EFlags as by-products of the

arithmetic calculation, and the branch direc-
tions of branch instructions are determined
according to the EFlag values. MIPS fixed-
point arithmetic instructions don’t generate
EFlags, and MIPS branch instructions decide
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Figure 2. The GS464 virtual machine’s software architecture. x86 operating systems and

applications are built on MIPS Linux system through virtual machine monitor.
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Figure 1. GS464 microarchitecture. GS464 adopts a nine-stage dynamical pipeline.
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branch directions according to the general-
purpose registers’ values.

Software simulation of the 6-bit EFlags
with MIPS instructions requires tens of
MIPS instructions. As the x86 program
segment in Figure 3a shows, we need about
40 MIPS instructions to simulate the ‘‘SUB
ecx, edx’’ instruction to produce the subtrac-
tion result and the four most commonly used
bits of EFlag (SF, ZF, OF, and CF), shown
in Figure 3b.

To reduce the cost of generating the x86
EFlags with MIPS instructions, GS464

provides an EFlag counterpart instruction
for each fixed-point arithmetic instruction—
either by adding a SetFlag prefix to the orig-
inal instruction, or, for frequently used
instructions, by defining the EFlag counter-
part instruction. Using new instructions can
significantly reduce the number of translated
instructions. For example, adding a SetFlag
prefix to the SUB R1, R2, R3 instruction
turns the SUB instruction into its EFlag
counterpart, which performs the same calcu-
lation as the original SUB instruction but
generates x86 EFlags instead of the difference
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(a)

(b)

(c)  

Number of
instructions CommentLable Instruction

0  SUB ECX EDX
1  JE X86_target

0.00  SUBU Result Recx Redx
0.01  SRL Rsf Result 31 /*SF=Result[31]*/
0.02  BEQ Result R0 L1
0.03  ADD Rzf R0 R0 /*ZF=0*/   
0.04  B L2   
0.05  NOP
0.06 L1: ADDI Rzf R0 1 /*ZF=1*/ 
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0.35  B L8
0.36  NOP
0.37 L7: ADDI Rcf R0 1 /*CF=1*/
0.38 L8: ADD Recx Result R0
1.00  BNE Rzf R0 MIPS_target
1.01  NOP

0.0  SUBU Result Recx Redx /*Generating Sub result*/ 
0.1  SETFLAG
0.2  SUBU Reflag Recx Redx /*Generating EFLAGS*/
1.0  X86JE Reflag MIPS_target  /*Branch on EFLAGS*/

0.0  SUB Result Recx Redx /*Generating Sub result*/
0.1  X86SUB Reflag Recx Redx /*Generating EFLAGS*/
1.0  X86JE Reflag MIPS_target  /*Branch on EFLAGS*/

(d)  

Figure 3. Example of EFlag translation: Original x86 program (a); the program translated with standard MIPS code

(b). We can reduce the number of instructions by adding a SetFlag prefix, which turns the SUB instruction into its EFlag

counterpart (c); or by adding a new instruction to define new EFlag counterpart instructions (d). The instructions in boldface

type are new instructions for x86 emulation.
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of R2 and R3 (as Figure 3c shows). We can
also define the new instruction x86SUB
for generating EFlagS of the subtraction, as
Figure 3d shows.

An instruction’s EFlag counterpart can
reuse most of the original instruction’s data
paths, such as register renaming logic, reor-
der logic, issue logic, and write-back logic.
We only need to slightly adjust the decode
logic and execution unit.

GS464 also defines a set of branch
instructions corresponding to x86 EFlag-
based branch instructions, such as x86JE.

Hardware support for the floating-point format
and register

The x87 FPU differs from the FPU of
RISC processors in that it is accessed in a
stack-based way and supports 80-bit floating-
point numbers.

The x87 FPU instructions (math-related
instructions for the x86 architecture) treat
the eight x87 FPU data registers as the reg-
ister stack. It addresses the data registers rel-
ative to the register on the top of the stack,
and it stores the current top-of-stack reg-
ister’s number in the 3-bit TOP field in
the x87 FPU status word. Maintaining the
TOP pointer and calculating the absolute
register number from the relative register
number through software at runtime is
costly. To solve this problem, GS464 main-
tains a TOP pointer dynamically. GS464
adds the TOP value to the floating-point
register number in the decode stage. It
uses the new register number as a logical reg-
ister number to look up the physical register
number in the register renaming stage. We
define some instructions to modify the
TOP pointer. GS464 uses a hardware flag
in the MIPS floating-point control register
to indicate whether a register number for
floating-point instructions is relative to
TOP. The TOP pointer only affects MIPS
instructions translated from x86 instructions.
With the support of the GS464 floating-
point register, the TOP pointer reduces
more than 10 instructions in each x86
floating-point instruction translation. It also
reduces the number of switches between
the translator and the generated code.

The x87 FPU supports 80-bit floating-
point numbers, whereas MIPS supports

64-bit floating-point numbers. Transferring
between 80-bit and 64-bit floating-point
numbers requires more than 40 integer
instructions. GS464 defines one instruction
to transfer an 80-bit floating-point number
stored in two 64-bit registers to a 64-bit
number kept in one register, and two instruc-
tions to transfer a 64-bit floating-point num-
ber to an 80-bit floating-point number that
occupies two registers. Figure 4 shows an
example of floating-point format translation.
Without any hardware support, about
40 MIPS instructions in Figure 4b are
needed to simulate the three x86 instructions
in Figure 4a, which GS464 can emulate with
four instructions.

The x87 FPU has a 16-bit tag word to in-
dicate the contents of each of the eight regis-
ters in the x87 FPU data-register stack (one
2-bit tag per register). The tag codes indicate
whether a register contains a valid number,
zero, a special floating-point number, or is
empty. The x87 FPU uses the tag values to
detect stack overflow and underflow. GS464
provides dedicated instructions to simulate
the x87 tag with general-purpose registers
and defines a new exception to reflect stack
overflow or underflow exceptions in tag sim-
ulation. Except when turned on explicitly, the
binary translator can ignore the tag simula-
tion because correct programs never raise
the stack overflow or underflow exception.

Hardware support for x86 multimedia instructions
The x86 ISA defines powerful multimedia

instruction sets such as MMX, streaming
SIMD extensions (SSE), and SSE2, which dif-
fer from the MIPS digital media extension
(MDMX) in application-specific extensions of
MIPS. GS464 emulates x86 multimedia
instructions using its own multimedia instruc-
tions with little additional hardware cost.

In GS464, multimedia instructions have
similar functions to those in x86 SSE2.
GS464 defines and implements its multi-
media instructions by extending the fmt
field in the floating-point operations.
Like MIPS floating-point instructions,
GS464 internal floating-point operations
use a 5-bit fmt field to specify data types.
The fmt values of 16, 17, 20, 21, and 22
represent single-precision floating point,
double-precision floating point, fixed-point
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word, fixed-point long, and paired single-
precision floating point, respectively.
GS464 SIMD multimedia operations extend
the fmt fields in floating-point operations to
define eight 8-bit or four 16-bit fixed-point
data units in the 64-bit floating-point data
path. For example, the ADD.fmt operation
represents ADD.single, ADD.double, or
ADD.PS in MIPS. GS464 extends the oper-
ation to represent ADD.8 � 8 and ADD.4 �
16. To further facilitate emulating x86
multimedia instructions, GS464 extends

MIPS-style unaligned memory-access instruc-
tions to floating-point registers.

Other hardware support for x86 binary translation
In addition to support for x86 EFlags,

floating-point instructions, and multimedia
instructions, GS464 adopts many other tech-
niques to further facilitate x86 emulation.

New addressing mode. The x86 ISA has more
flexible addressing modes than MIPS. It sup-
ports the SIB addressing mode in the form

[3B2-3] mmi2009020004.3d 3/3/09 17:54 Page 6

(a)

(b)

(c)

0  FLD *%R10
1  FMUL *16(%R10)
2  FSTP *%R10

0.00  LD Rtmp1 12(R8)  /*convert 1st operand*/
0.01  LD Rtmp2 4(R8)
0.02  ANDI Rsign Rtmp1  /*get sign bit and sign bit of
      exp*/
0.03  DSLL32 Rsign Rsign 16 /*get biased exponent
.
.
.
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.
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0.23  DMTC1 F8 Rfp2
1.00  MUL.d F9 F7 F8 /*64-bit multiply*/
2.00  DMFC1 Rres F9
2.01  DSRL32 Rsign Rres 31 /*get sign bit*/

2.12  SD Rres1 12(R8)  /*write back result*/
2.13  SD Rres2 4(R8)

0.0  GSLQC1 F4 4(R8)  /*128-bit load to F4 and F5*/
0.1  CVT.d.ld F7 F4 F5 /*80-bit to 64-bit convert*/
0.2  GSLQC1 F2 20(R8)  /*128-bit load to F2 and F3*/
0.3  CVT.d.ld F8 F2 F3 /*80-bit to 64-bit convert*/

1.0  MUL.d F9 F7 F8 /*64-bit multiplication*/
2.0  CVT.ud.d F7 F9  /*64-bit to high part of 80-

      bit*/
2.1  CVT.ld.d F8 F9  /*64-bit to low part of 80-bit*/
2.2  GSSQC1 F7 4(R8)  /*128-bit store*/

Number of
instructions CommentLable Instruction

Figure 4. Example of 80-bit floating-point operation translation. The original x86 program (a), translated with standard

MIPS code (b), and translated with GS464 floating-point conversion instructions (c). The instructions in boldface are new

instructions for x86 emulation.
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of ‘‘(base)þ (index)� scaleþ disp,’’ whereas
MIPS only supports the ‘‘(base) þ disp’’
for both fixed-point and floating-point load
and store instructions, and the ‘‘(base) þ
(index)’’ addressing mode for floating-point
load and store instructions. To ease the trans-
lation of x86 addressing modes, GS464
supports the ‘‘(base) þ (index) þ disp8’’
addressing mode for both fixed-point and
floating-point load and store instructions.

Bounded load and store. GS464 supports
bounded load and store instructions, which
read the bound register as the memory-access
boundary in addition to the normal base reg-
ister and value register. The bounded load
and store instructions have the same behav-
ior as normal load and store instructions,
except an address exception is raised if
the memory-access address of a load and
store instruction exceeds the boundary ad-
dress. The bounded load and store instruc-
tions help ease the translation of segment
address mode instructions in x86.

Fixed-point multiplication and division.
MIPS fixed-point multiplication and division
instructions use the special Hi/Lo registers as
destination registers, and MIPS provides
instructions to move data between Hi/Lo
registers and general-purpose registers.
GS464 implements fixed-point multiplica-
tion and division instructions, which use
general-purpose registers as destination regis-
ters to ease the translation of fixed-point mul-
tiplication and division x86 instructions.

Byte insertion and extraction. The x86 ISA
supports 8-, 16-, 32-, and 64-bit operations,
whereas RISC processors normally support
32- and 64-bit operations. To close this
gap, GS464 implements flexible byte inser-
tion instructions that can insert a byte, half
word, or word from any location of a regis-
ter to any location of another register; and
byte extraction instructions that extract
a byte, half word, or word from any register
location and store the result to another reg-
ister after zero or sign extension.

Hardware supports for binary translation
mechanism

Binary translation dynamically generates
binary codes on the target machine. The bi-
nary codes generated during runtime are the

data results of the binary translator. Because
the binary translator stores these codes in
data cache, executing them requires flushing
them from the data cache and loading them
into the instruction cache. However, flushing
the data cache through software to keep
coherence between the data and instruction
caches is time consuming. Therefore, GS464
keeps coherence between the data and instruc-
tion caches, as well as the L2 cache, through
hardware.

Translation of indirect branch instructions
is costly because the binary translator must
look up the MIPS branch target dynamically
according to the x86 branch target from
some mapping mechanism, such as a hash
table. GS464 implements a 64-entry content-
associated memory (CAM) to speed up
the translation and execution of indirect
branch instructions. Each CAM entry
includes a process ID field, an address field,
and a data field. GS464 provides instructions
to read, write, and probe the CAM. Figure 5
shows an indirect branch target translation.
GS464 CAM instructions greatly reduce the
complexity of translation results. Although
we’ve added more codes to handle the
CAM miss situation, they’re rarely executed.

Binary translation system
The Godson-3 binary translator is built

on top of the Linux operating system. We
improved the Linux operating system based
on Godson-3’s MIPS ISA to provide a system
call compatible with x86 Linux and increase
binary translator efficiency. We implemented
a process-level binary translator on Linux to
run x86 applications. We can also implement
a system-level binary translator to achieve x86
compatibility at the ISA level.

Godson-3’s binary translation system is
an improvement upon the open-source binary
translator QEMU.12 In addition to imple-
menting a new interpreter and translator
under the QEMU framework, we redesigned
the intermediate representation to allow
optimizations, such as fixed register alloca-
tion and lazy conditional code evaluation.
Like other traditional binary translators, the
Godson-3 VMM initially interprets x86
instructions on the MIPS processor and
monitors the behavior during interpretation.
When the VMM finds hot spots, it translates
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their x86 codes to MIPS codes for execution
and optimizes them at different levels accord-
ing to the hot degree. The multicore Godson-3
can also perform parallel optimization for
very hot spots. The Godson-3 hardware sup-
port for x86 instruction translation makes the
translation process straightforward, not only
improving the translated code’s efficiency,
but also simplifying the binary translator’s
implementation.

System optimization also improves the
Godson-3 binary translator’s performance.
To fully use the 64-bit processor resources,
such as registers, we implemented the
N32/N64 tool chain. The Godson-3 system
uses GNU binutils, the GNU compiler collec-
tion (GCC), and the GNU C library
(GLIBC) as the basic compilation environ-
ment. We modified the binutils’ GNU Assem-
bler (Gas) to help GCC recognize all the new
instructions. We added new instruction tem-
plates and pipeline descriptions to GCC to
improve the generated code quality. We also
implemented autovectorization for the 128-
bit memory-access instructions and multimedia
instructions to fully utilize the Godson-3 pro-
cessor resources. We profiled GLIBC and re-
wrote the frequently executed routines.

Preliminary performance results
The first four-core Godson-3 design

was taped out in 2008. Before the chip
returned from fabrication, we carried out
the Godson-3 performance analysis on

two platforms: a register-transfer-level (RTL)
simulation platform and a field-programmable
gate array (FPGA) prototyping platform.
In the RTL simulation environment, we
set the core clock frequency to 1 GHz,
the DDR2/DDR3 clock frequency to
333 MHz, and the HyperTransport clock
frequency to 800 MHz. To speed up the
simulation, we used Cadence’s Xtreme-313

simulation accelerator, which can achieve a
speed of 200,000 to 400,000 cycles per sec-
ond. Because of the difficulty of building a
full-scale Godson-3 FPGA prototype system,
we built a partial-scale prototype to evaluate a
single processor core’s performance. The pro-
totype system includes one processor core, a
1-Mbyte L2 cache, one DDR2/DDR3 con-
troller, and one HyperTransport controller.
FPGA prototyping speed is 50 MHz,
which is much faster than RTL simulation.
Because the ratios between the FPGA proto-
type’s core and I/O clocks differ from those
in a real system, we carefully adjusted the
FPGA prototyping system’s I/O latency to
obtain accurate performance results.

Table 1 shows the benchmarks we tested
on the Xtreme-3 and FPGA platforms. We
selected nine typical kernels or full applica-
tions to evaluate the hardware improvements
and software translation efficiency. We ran
all benchmarks in three modes:

� native MIPS mode, in which bench-
marks are directly compiled into MIPS
binary and run on MIPS hardware;
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0  MOVE Rr11 Rrax
1.0  CAMPV Rtmp Rr11 /* Look up the first level indirect jump
     address */
1.1  CAMPV Rtgt Rtmp /* Look up the final jump address */
1.2  JR Rtgt

(b) 

0  MOV %RAX %R11
1  JMPQ %*R11

(a)

Number of
instructions CommentLable Instruction

Figure 5. Example of indirect branch target translation: The original x86 program (a), and the

program translated with Godson-3 content-associated memory (CAM) instructions (b). The

boldface text indicates new instructions for x86 emulation.
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� basic translator mode, in which bench-
marks are compiled into x86 binary
and run on MIPS hardware using the
basic QEMU binary translator; and

� improved translator mode, in which
benchmarks are compiled into x86 bi-
nary and run on MIPS hardware using
the improved QEMU binary translator
with x86 binary translation acceleration
on RISC processors (XBar) hardware
support.

We compiled all programs with the
GCC-O3 flag.

Figure 6 shows the relative performance
of basic and improved translator modes
compared to native MIPS mode. Godson-
3’s x86 emulation hardware support signif-
icantly accelerates binary translation from
x86 to MIPS, and on average achieves per-
formance that is nearly 70 percent of the
ideal mode.

The performance results in Figure 6 are
still preliminary. Much more work must be
done to further improve the binary translator.

Scalable multicore interconnection
Figure 7 shows the Godson-3 overall ar-

chitecture. Each node in the mesh includes
an 8 � 8 crossbar connecting four processor
cores as four masters, four shared L2-cache
banks as four slaves, and four adjacent
nodes in the east, south, west, and north
directions as four masters and four slaves.
A second-level crossbar inside the node con-
nects the DDR2/DDR3 memory controllers

to L2-cache banks. The Godson-3 Hyper-
Transport I/O controller is connected to
the free crossbar ports of boundary nodes.

The four-core, eight-core, and 16-core
Godson-3 chips take one, two, and four
nodes in the mesh, respectively. Figure 8
shows the architecture of the four-core
and eight-core Godson-3. Both have two
DDR2/DDR3 controllers, two Hyper-
Transport controllers, and other necessary pe-
ripheral interfaces. The four-core and eight-
core Godson-3 have the same I/O package.
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Table 1. Specifications of benchmark kernels tested on Godson-3 prototypes.

Microbench

Microbench

Microbench

EEMBC

EEMBC

Microbench

SPEC 2000

SPEC 2000

SPEC 2000

Source 

C

C

C

x86 assembly

x86 assembly

C and x86

 assembly  

C
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The Godson-3 interconnection network
takes the 128-bit AXI standard interface,
which is simple, efficient, and open. We
extended the L1 crossbar AXI interface to
support cache coherence in Godson-3.

Figure 9 shows the crossbar’s architecture.
An 8 � 8 multiplexing matrix connects eight
AXI master link (AML) modules and
eight AXI slave link (ASL) modules. Each link
has five channels according to the AXI protocol:

� write address channel (AW),
� write data channel (W),
� write response channel (B),
� read address channel (AR), and
� read data channel (R).

The AML routes read and write requests
(AW, W, and AR channels) according to
the access address. Each AW or AR channel
has eight address windows, each of which
assigns a destination ASL port to a matching
request. The ASL routes read and write
replies (R and B channels) according to the
corresponding request’s AML port number.
Both AML and ASL have two pipeline

stages—that is, the crossbar has a latency of
four hops. Two buffers for each pipeline
stage prevent the pipeline stalling signal
from propagating across stages.

Reconfigurable architecture
Godson-3’s reconfigurability involves

three features:

� reconfigurable processor cores,
� dynamic L2 cache migration, and
� reconfigurable DMA engine.

Because Godson-3’s interconnection net-
work adopts the AXI protocol, we can insert
any processor cores complying with the AXI
protocol into the network slots. Depending
on the application, we can configure the
Godson-3 chips’ AXI ports to contain either
general-purpose GS464 cores or special-
purpose cores.

A distributed shared memory system’s
performance depends heavily on memory-
access locality. In a nonuniform cache access
(NUCA) system such as Godson-3, accesses
to nonlocal L2 cache blocks suffer from
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high L2 access latency. Godson-3 can in-
crease the locality of L2 cache access by
migrating shared L2 cache blocks. Each
AW or AR channel in the AXI crossbar
has eight reconfigurable address windows,
which let the software dynamically bind
memory addresses to cache block locations.
With the reconfigurable address windows,
the software can migrate home blocks across
cache banks, or set cache blocks as private or
shared blocks according to the locality of
memory accesses.

We can also configure Godson-3’s DMA
engine to achieve high performance.

Software can decide whether the DMA
data is to or from main memory or to or
from the L2 cache directly. The DMA en-
gine maintains cache coherence automati-
cally when transferring data between I/O
and memory. In addition, we can configure
the DMA engine to prefetch data from
memory to L2 cache, or to transpose a ma-
trix in the memory without intervention
from the processor core.

The four-core physical implementation
We built the four-core Godson-3 using

the seven-metal 65-nm CMOS process.
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We designed it using cell-based flow with
some custom-designed macros and manual
placement and routing. Full-custom macros
include a four write port and four read
port (4w4r) 64 � 64 register file, a 64 �
64 CAM for TLB, a phase-locked loop
(PLL), and a HyperTransport link. To re-
duce clock cycle time, we manually mapped
specific datapath modules or modules with
replicated structure to the cell library and
placed them in a bit-sliced structure. The
clock tree takes an H-tree structure and is
mainly manually placed and routed. We
use a clock skew technique for the critical-
path pipeline stage to borrow time from ad-
jacent pipeline stages.

Figure 10 shows the layout of the four-
core Godson-3. The chip includes 425 mil-
lion transistors and the die size measures
14,240 micrometers by 12,205 micrometers.

The chip’s highest frequency is 1.0 GHz, and
its power dissipation ranges from 5 to 10 W
depending on the application.

O ur recent work includes an eight-core
Godson-3 chip design with im-

proved frequency. Moreover, research on
teraflops-scale many-core chips is also in
progress. M I CR O
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