Delayed Locked Loop Design Issues

Chulwoo Kimckim@korea.ac.kr

Advanced Integrated Systems Lab Korea University

Outline

- \bullet **Introduction**
- \bullet **DLL operation and control theory**
- \bullet **DLL building blocks**
- \bullet **DLL design issues**
- \bullet **Multiplying DLL**

DLL vs PLL

\bullet **PLL**

- **VCO**
	- 9 **jitter accumulation**
- **higher order system** 9 **can be unstable**
- **slow locking time**
- **hard to integrate LF**
- **hard to design**
- **+ less ref. signal dependent**
- **+ freq. multiplication**
- **+ no limited locking range**
- \bullet **DLL**
	- **+ VCDL**
		- 9 **no jitter accumulation**
	- **+ 1st order system**
		- 9 **always stable**
	- **+ fast locking time**
	- **+ easy to integrate LF**
	- **+ easier to design**
	- **- ref. signal dependent**
	- **- no freq. multiplication**
	- **- limited locking range**

Jitter Accumulation Comparison

 \bullet

Closed loop

- jitter accumulation

PLL-based clock generator • DLL-based clock generator

Open loop

- No jitter accumulation

Basic DLL Architectures

 \bullet **Delay-locked Loop (Delay line based first order PLL)**

 \bullet **Phase-Locked Loop (VCO based second order)**

DLL Locking Process

Korea University

AISL

Frequency Response

 \bullet **Open loop response**

$$
D_O(s) = \left(\frac{D_f(s)}{T_{REF}} \cdot I_{CH}\right) \cdot \frac{1}{s \cdot C} \cdot K_{DL}
$$

$$
\frac{D_O(s)}{D_f(s)} = \frac{1}{s \cdot C} \cdot I_{CH} \cdot K_{DL} \cdot F_{REF} = H(s)
$$

Frequency Response(cnt'd)

 \bullet **Closed loop response**

$$
D_O(s) = H(s) \cdot (D_I(s) - D_O(s))
$$

$$
\frac{D_O(s)}{D_I(s)} = \frac{1}{1 + \frac{1}{H(s)}}
$$

$$
\frac{D_O(s)}{D_I(s)} = \frac{1}{1 + \frac{s \cdot C}{I_{CH} \cdot K_{DL} \cdot F_{REF}}}
$$

$$
\frac{D_O(s)}{D_I(s)} = \frac{1}{1 + s/\omega_N}
$$

where loop bandwidth is

$$
\omega_N = I_{CH}\cdot K_{DL}\cdot F_{REF}/C
$$

Delay Cell

- \bullet **Single-ended delay cell**
	- -**Simple**
	- -**Dynamic power only (no static current)**
- \bullet **Differential delay cell**
	- -**Complex biasing**
	- -**Static power consumption**
	- -**Immune to supply noise and thus smaller jitter**
- \bullet **Variables for delay control**
	- **Current**
	- **Capacitance**
	- -**Resistance**
	- -**Voltage swing**
- \bullet **Fine delay generation**
	- -**Phase interpolation**
	- -**Vernier delay line**

Single-Ended Delay Cell

 \bullet **Current-starved inverter delay line**

Single-Ended Delay Cell(cnt'd)

 \bullet **Capacitor-loaded inverter delay line**

Single-Ended Delay Cell(cnt'd)

 \bullet **Inverters with regulated supply voltage**

[S. Sidiropoulos, SOVC00]

Differential Delay Cell

 \bullet **Differential delay element with resistive loads**

- **High power supply rejection ratio**
- - **Requirements**
	- 9 **Adjustable loads to control the delay and resistive loads to reject power supply noise**

Differential Delay Cell(cnt'd)

 \bullet **Voltage-controlled two-element PFET "Resistor"**

- -Adjustable load : $I_{load} = B_p(V_c-V_{tp})^2$
- -**Resistive load : S-shaped, nearly resistive**

Differential Delay Cell(cnt'd)

 \bullet **Replica-biased differential delay line circuitry**

- **The low end of the signal swing can be set by controlling the bias current with a replica bias circuit**

Differential Delay Cell(cnt'd)

 \bullet **Replica-biased delay line**

(a) Delay adjustment range for replica-

biased delay element (b) Static supply sensitivity for replica- biased delay element

Phase Interpolation

- \bullet **Can interpolate between two edges through a weighted sum**
	- - **Control over delay is guaranteed to be monotonic, but not necessarily linear**
		- 9 **Resolution can be arbitrarily high**
		- 9 **Precision is limited by linearity**

Delay Line Vernier

- \bullet **Can use two delay lines with switches to use part of one and remainder of the other with fractionally larger delays** (1 + 1*/N*)
	- -**Delay resolution is a buffer delay** */ N*
	- -**Relative precision is limited by control over** *tx / ty*

Phase Detector

- \bullet **Output describes phase difference between twoinputs**
	- may be analog or digital
	- may linearly cover a wide range, or just a narrow phase difference
	- -"Dead zone" may occur

Phase-Frequency Detector

Korea University

UP

DN

AISL

Dead-Zone in PFD

- \bullet **"Dead-zone" occurs when the loop doesn't respond to small phase errors - e.g. 10 ps phase error at PFD inputs:**
	- -**Solution: delay reset to guarantee min. pulse width (typically > 100 ps)**

Charge Pump

- \bullet **Converts PFD digital** *UP***/***DN* **signals into charge**
- \bullet **Charge is proportional to duration of** *UP***/***DN* **signals**
- \bullet $Q_{cp} = I_{UP}^* t_{UP} - I_{DN}^* t_{DN}$
- \bullet **The LPF converts integrates currents**
- \bullet **Charge pump requirements:**
	- **Match currents** *IUP* **and** *IDN*
	- -**Reduce control voltage coupling**
	- **Supply noise rejection, PVT insensitivity (Simple or bandgap biased)**

Charge Pump: Better Switches

- \bullet **Unity-gain buffer controls the voltage over switches**
- \bullet **Current mirrored into** *Iup***/***Idn*

Charge Pump: Zero-Offset

 \bullet **Up and down nodes track with each other thanks to the selfbias scheme**.

Charge Pump : Reversed Switches

2n^d Order Charge-Pump Scheme : Mismatch Cancellation

Korea University

Design Issues

- \bullet **Bandwidth**
- \bullet **Limited lock range**
- \bullet **Lock in time**
- \bullet **Static phase offset**
- \bullet **Power dissipation limits**
- \bullet **Area limits**
- \bullet **Peak output jitter**

Bandwidth

 \bullet **Bandwidth**

-

- **A wider loop bandwidth**
	- 9 **Fast acquisition time but degraded jitter performance**

$$
\frac{\omega_N}{F_{REF}} = \frac{I_{CH} \cdot K_{DL}}{C} \leq \frac{\pi}{5}
$$

[A. Chandrakasan, IEEE Press, 2001]

- I_{CH}, K_{DL}, and C are process technology dependent.
- -**According to the design target, the loop bandwidth varies.**

Adaptive Bandwidth

Korea University

Locking Range

 \bullet **Locking range**

$$
0.5 \times T_{\text{CLK}} < T_{\text{VCDL} \text{min}} < T_{\text{CLK}}
$$
\n
$$
T_{\text{CLK}} < T_{\text{VCDL} \text{max}} < 1.5 \times T_{\text{CLK}}
$$

 $max(T_{\textit{VCDL} \square \text{min}}, 2 / 3 \times T_{\textit{VCDL} \square \text{max}}) < T_{\textit{CLK}} < Min(2 \times T_{\textit{VCDL} \square \text{min}}, T_{\textit{VCDL} \square \text{max}})$

Harmonic Lock Problem

• Correct and false locking

DLL Locking Using Inversion

Korea University

Wide Range DLL

- \bullet **Overcome the false locking problem**
	- -**Rotating phase DLL**
	- -**Phase detector which can detect harmonic locking**
	- -**Initial locking starts within delay range**
- \bullet **Widen operating frequency**
	- -**Using multiple phases**

Rotating Phase DLL

- \bullet **Uses N-stage VCDL or VCO phase-locked to clock period as timing reference to supply output phases that are uniformly distributed over clock period**
- \bullet **Selects or interpolates output phases from delay reference**
- \bullet **Unlimited output phase range (modulo clock period)**

Rotating Phase DLL (cnt'd)

Semi-digital DLL Semi-digital DLL Semi-digital DLL Example 2018 [S. Sidiropoulos, JSSC97]

Self-Correction DLL

 \bullet **Phase detector gains the control of loop according to release, under and over**

DLL Using A Replica Delay Line

[Y.Moon, JSSC00]

 \bullet **The control voltage of RDL protect false locking**

DLL Using Multiple Phases

Korea University

AISL

Lock Time

- \bullet **Lock time limits (< 100 cycles for DDR)**
	- -**Need high tracking bandwidth (self-biased DLLs)**
	- -**Digital DLLs can use "non-linear" techniques**
	- -**Open loop**

Digital Delay Line DLL

- \bullet **Uses digital delay line with fixed delay as timing reference**
- \bullet **Selects output phases from delay reference (digital control)**
- \bullet **Correction step size is typically fixed**
	- **Large locking time (clock cycle · number of steps)**
	- -**Can use exponentially decreasing steps (SADLL)**
- \bullet **Digital delay control provides more flexibility**

Digital Delay Line DLL with SAR

 \bullet **Successive Approximation Register DLL** [M.Hasegawa, ISSCC98]

- \bullet Fast-lock by successive approximation < 64 cycles
- \bullet Counter-mode operation during normal cycle

After lock-in

Korea University

Digital Delay Line DLL with SAR(cnt'd)

All-Digital DLL Using a TDC

Korea University

AISL

Schematic of Dual Coarse Delay Line

[J. Kwak, SOVC03]

Compensation of Static Phase Offset

Korea University

AISL

Power Dissipation and Area

- \bullet **Power dissipation limits**
	- **Operating power**
		- 9 **Analog DLLs can use less power than digital DLLs**
	- **Stand-by power**
		- 9 **Analog DLLS cannot be turned off for long without relocking (charge in loop filter cap. Will leak away)**
		- 9 **Digital DLLs store locked state in registers**
- \bullet **Area limits**
	- **Analog DLLs can have smaller area than digital DLLs**
		- 9 **Digital delay line DLLs that support low operating frequencies can be very large**

Register Controlled DLL

[A.Hatakeyama, ISSCC97]

- \bullet **Locking information is stored as a digital code.**
- \bullet **High resolution because of vernier type delay line.**

Portable DLL

 \bullet **Phase information is stored in control logic.**

Multiplying DLL

- \bullet **Avoid jitter accumulation problem of PLL without VCO**
- \bullet **1st-order system**
	- **Stable and easier to design**
- \bullet **Block diagram**

Multiplying DLL With LC tank

Multiplying DLL With LC tank (cnt'd)

- \bullet **Diff. pair modulates tail currents into LC-tank circuit**
- \bullet **LC-Tank enhances load impedance : large area & fixed multiplication ratio**
- \bullet **Large current necessary for large voltage swing**

Multiplying DLL With AND/OR Gate

- \bullet **AND/OR gate: 9 times freq. multiplication**
- \bullet **Need analog OR I/O buffer & 50 pull-up resistor: off-chip clock signal**

Multiplying DLL With Digital Controls

- \bullet **Low power and small area**
- \bullet **Easier to integrate**
- \bullet **Multiplication factor can be easily programmable**

Multiplying DLL for Low-jitter Clock Generation

[R. Farjad-Rad, JSSC 2002]

Conclusions

- \bullet **As data rates increase, DLLs will become essential to relax system timing constraints in each direction of data transfer.**
- \bullet **DLL consists of phase detector, voltage controlled delay cell, loop filter and charge pump.**
- \bullet **DLL should be designed as considering below issues.**
	- -**Bandwidth**
	- -**Limited lock range**
	- **Lock in time**
	- **Power dissipation limits**
	- **Area limits**
	- **Peak output jitter**

References

- [S.Sidiropoulos SOVC 2000] S. Sidiropoulos, D. Liu, J. Kim, G. Wei, and M. Horowitz, "Adaptivebandwidth DLL's and PLL's using regulated supply CMOS buffers," in*VLSI Symp. Dig. Tech. Papers*, June 2000, pp. 124–127.
- [Young JSSC 1992] I.A. Young; J.K Greason; K.L Wong, "A PLL clock generator with 5 to 10MHz of lock range for microprocessors," IEEE J. Solid-state Circuits, vol. 27, no. 11, pp1599-1607
- [Ingino JSSC 2001] J.M. Ingino, V.R von Kaenel, "A 4-GHz clock system for a high-performance system-on-a-chip design" IEEE J. Solid-state Circuits, vol. 36, no. 11, pp1693-1698
- [K. Kim ISSCC 04] K. Kim *et al* , "1.4Gb/s DLL using 2nd order charge-pump scheme with low phase/duty error for high-sped DRAM application" ISSCC 2004 Dig. Tech. Papers, pp 212-213, Feb 2004
- [A. Chandrakasan, IEEE Press, 2001] A. Chandrakasan, W. J. Bowhill, and F. Fox, Design of High-Performance Microprocessor Circuit. New York: IEEE Press, 2001, p. 240.
- [J. Maneatis, JSSC Nov 96] J. Maneatis, "Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques," IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, Nov. 1996.
- [S. Sidiropoulos, JSSC Nov 97] S. Sidiropoulos, and M. Horowitz, "A semidigital dual delay-locked loop," IEEE J. Solid-State Circuits, vol. 32, no. 11, pp. 1683-1692, Nov. 1997.
- [D.J. Foley JSSC] D.J.Foley and M.P.Flynn, "CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer and temperature-compensated tunable oscillator," IEEE J. Solid-State , vol. 36, pp.417-423, Mar. 2001
- [Y.Moon JSSC 2000] Y. Moon, J. Choi, K. Lee, D. K. Jeong, and M. K. Kim, "An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and lowjitter performance," IEEE J. Solid-State Circuits, vol.35, pp. 377–384, Mar. 2000.
- [B.Kim, CICC04] B.Kim and L. Kim, "A 250MHz-2GHz wide range delay-locked loop," In *Proc.IEEE CICC* 2003, pp.139-142, Oct 2004.
- [M. Hasegawa, ISSCC98] M. Hasegawa, et al., "A 256Mb SDRAM with subthreshold leakage current suppression," ISSCC 1998 Dig. Tech. Papers, pp. 80-81, Feb. 1998.
- [C.Chung, JSSC04] C. Chung and C. Lee "A New DLL-Based Approach for All-Digital Multiphase Clock Generation" IEEE J. Solid-State Circuits,vol. 39, pp 469-475, MAR. 2004
- [J. Kwak, SOVC03] J.Kwak et al."A low cost high performance register-controlled digital DLL for 1 Gbps_spl times_32 DDR SDRAM" Symp. VLSI Circuits Dig. Tech. Papers, pp283-284, 2003
- [A. Hatakeyama ISSCC 1997] A. Hatakeyama, H. Mochizuki, T. Aikawa, M. Takita, Y. Ishii, H. Tsuboi, S. Fujioka, S. Yamaguchi, M. Koga, Y. Serizawa, K. Nishimura, K. Kawabata, Y. Okajima, M. Kawano, H. Kojima, K. Mizutani, T. Anezaki, M. Hasegawa, and M. Taguchi, "A 256 Mb SDRAM using register-controlled digital DLL," in ISSCC 1997 Dig. Tech. Papers, Feb.1997, pp. 72–73.
- [B.W Garlepp JSSC 99] B.W. Garlepp, K. S. Donnely, J. Kim, P. S. Chau, J. L. Zerbe, C. Haung, C. V. Tran, C. L. Pourtman, D. Stark, Y. Chan, T. H. Lee, and M. A. Horowitz, "A portable digital DLL for high-Speed CMOS interface circuits,"IEEE J. Solid-State Circuits, vol. 34, pp. 632–644, May 1999.
- [V. von Kaenel, ISSCC98] V. von Kaenel, et al., "A 600MHz CMOS PLL microprocessor clock generator with a 1.2GHz VCO," ISSCC 1998 Dig. Tech. Papers, pp. 396-397, Feb. 1998.
- [G. Chien , JSSC 2000] G. Chien and P. R. Gray, "A900-MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications," *IEEE J. Solid- State Circuits*, vol. 35, pp. 1996–1999, Dec. 2000.
- [C. Kim, JSSC 2002] C. Kim, I.-C. Hwang, and S.-M. Kang, "A low-power small-area ± 7.28-ps-jitter 1-GHz DLL-based clock generator," IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1414-1420, Nov. 2002.
- [R. Farjad-Rad, JSSC 2002] R. Farjad-Rad *et al.*, "Alow-power multiplying DLL for low-jitter multigigahertz clock generation in highly integrated digital chips," *IEEE J.Solid-State Circuits*, vol. 37, pp. 1804–1812, Dec. 2002.[J. Kwak, SOVC03] J.Kwak *et al*."A low cost high performance register-controlled digital DLL for 1 Gbps_spl times_32 DDR SDRAM" Symp. VLSI Circuits Dig. Tech. Papers, pp283-284, 2003

