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ABSTRACT
Singapore’s vision of a Smart Nation encompasses the de-
velopment of effective and efficient means of transportation.
The government’s target is to leverage new technologies to
create services for a demand-driven intelligent transportation
model including personal vehicles, public transport, and taxis.
Singapore’s government is strongly encouraging and support-
ing research and development of technologies for autonomous
vehicles in general and autonomous taxis in particular. The
design and implementation of intelligent routing algorithms
is one of the keys to the deployment of autonomous taxis.
In this paper we demonstrate that a reinforcement learning
algorithm of the Q-learning family, based on a customized
exploration and exploitation strategy, is able to learn optimal
actions for the routing autonomous taxis in a real scenario at
the scale of the city of Singapore with pick-up and drop-off
events for a fleet of one thousand taxis.

1. INTRODUCTION
Singapore’s Prime Minister Office outlines its vision of

a Smart Nation as the harnessing of information and com-
munication technologies “to support better living, create
more opportunities, and support stronger communities”1.
The vision encompasses the development of effective and
efficient means of transportation and aims at the develop-
ment of a demand-driven intelligent transportation model
including personal vehicles, public transports, and taxis. In
particular, Singapore’s government is strongly encouraging
and supporting research and development of technologies
for autonomous vehicles (AV). Its agencies, together with
academia and industry, are involved in learning and under-
standing opportunities and challenges for autonomous vehicle
technologies and autonomous taxis. For example, the Land
Transport Authority of Singapore [9] has been working with
A*STAR’s Institute for Infocomm Research to evaluate their

1http://www.pmo.gov.sg/smartnation
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AV Proof-of-Concept on-road trials2 since last year. “Unlike
autonomous vehicle trials elsewhere, Singapore is focusing
on applying the technology to public buses, freight carriers,
autonomous taxis and utility operations such as road sweep-
ers.” [8]. Self-driving riders have already been experienced
by the public at Gardens by the Bay last December3.

The design and implementation of intelligent routing algo-
rithms is one of the keys to the deployment of autonomous
taxis. While prior studies have explored reinforcement learn-
ing approaches to taxi routing, they have mostly done so with
synthetic models and data in small and static state spaces.
In this paper we demonstrate that a reinforcement learning
algorithm is able to progressively, adaptively, efficiently, and
effectively learn optimal actions for the routing to passenger
pick-up points of an autonomous taxi in a real scenario at
the scale of the city of Singapore.

We present a solution based on a customized exploration
and exploitation strategy for an algorithm of the Q-learning
family [10]. Q-learning is an approach to solve reinforcement
learning [7] problems. Reinforcement learning is used for
learning an optimal policy in a dynamic environment: an
agent takes an action in a state, receives a reward, moves to
some next state, and repeats this procedure. Initially, the
agent has no knowledge of which action has to be taken in a
given state. The algorithm has the choice between exploiting
its knowledge by choosing the action with highest estimated
value and exploring its environment by taking any other
action. The trade-off between exploration and exploitation
is crucial. We devise an exploration strategy that follows
an almost-greedy policy. The strategy first selects a set
of candidate actions with long-term reward above a given
threshold and then selects, among candidates, the action
with the highest probability of finding a passenger.

We evaluate how Q-learning progressively learns and how
to balance exploration and exploitation. We quantify the
influence of the parameters. We propose an original selection
strategy. The evaluation uses a dataset of taxi pickups and
drop-offs for a fleet of 1000 taxis for one month in Singapore.

2. BACKGROUND AND RELATED WORK
Most studies addressing the taxi routing problem focus

on providing the fastest route and a sequence of pick-up
points [6] by mining historical data [6,11–13]. Yuan et al. [11]

2http://www.lta.gov.sg/apps/news/page.aspx?c=2&id=
7dac9bd2-e6d1-448f-ba0e-f31fd13a8c3e
3http://www.opengovasia.com/articles/6792-asias-first-
fully-operational-autonomous-vehicle-running-at-gardens-
by-the-bay-singapore
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cluster road segments and travel time to build a landmark
graph of traffic patterns and time-dependent fastest routes.
They then present in [12] a recommendation system for taxi
drivers and passengers by clustering road segments extracted
from GPS trajectories. The system recommends a parking
place and road segments to taxi drivers and passengers. Qu
et al. [6] propose a method to recommend a route. They
develop a graph representation of a road network by mining
the historical taxi GPS traces and generate an optimal route
for finding passengers. Those models rely on the availability
of accurate historical data and trajectories. They might not
be relevant in dynamic environments such as an autonomous
taxi looking for optimal passenger pick-up points.

Reinforcement learning [7] has the potential to continuously
and adaptively learn from interaction with the environment.
The algorithm discovers which actions produce the greatest
reward by experience and estimates how good it is to take a
certain action in a given state. Yet reinforcement learning
aims to maximize cumulated reward. The notion of Markov
Decision Process (MDP) underlies much of the work on
reinforcement learning, and is at the basis of our work.

Q-learning [10] is widely used because of its computational
simplicity. In Q-learning, one does not require a model of
transition functions and reward functions but learns directly
from observed experience. This is an advantage as learning
a model often requires exhaustive exploration that is not
suitable for a large state space. Thus, Q-learning seems
suitable for taxi routing in a city of the scale of Singapore.

While taxi routing has often been used as the example
application for reinforcement learning algorithms, it often
remained relegated to toy or small scale examples, as it is the
case of the seminal 5×5 grid introduced by the authors of [1]
and used for experimental purposes by the authors of [2–5].
Learning pick-up points is a somewhat new application of
reinforcement learning.

3. Q-LEARNING FOR TAXI ROUTING
We consider an autonomous taxi completely relying on

reinforcement learning. The algorithm decides where the
autonomous taxi should go in order to pick up passengers
by learning the existence probability of passengers from its
gathered experience. Reinforcement learning models an agent
taking an action a in state s, receiving a reward r, and moving
to the next state s′. With Q-learning, the estimated value
of taking action a in state s, denoted Q(s, a), is updated as:
Q(s, a) := Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)] .

Here, α is a positive fraction such that 0 < α 6 1, the step-
size parameter that influences the rate of learning. When
α = 1, the agent considers only the most recent information
for learning. If α is properly reduced over time, the function
converges [7]. The discount rate γ (0 6 γ < 1) determines
the present value of future rewards. If γ = 0, the agent
is only concerned with the immediate reward. The agent’s
action influences only the current reward. If γ approaches 1,
the agent considers future rewards more strongly.

To maximize total reward, the agent must select the action
with highest value (exploitation), but to discover such action
it has to try actions not selected before (exploration). The
ε-greedy method works as follows: most of the time, select
an action with the highest estimated value, but with small
probability ε select an action uniformly at random. This
exploration enables to experience other actions not taken

Algorithm 1 Taxi Routing for Learning Pick-up Points

1: Initialize Q(s, a), existence probability of passengers p
2: repeat
3: repeat
4: if greedy then
5: V := { a ∈ A | Q(s, a) > maxa′ Q(s, a′)− η }
6: if |V | > 1 then
7: Select action a with highest probability p

8: else /* not greedy */
9: Select action a uniformly at random

10: Take action a, obtain reward r, observe next state s′

11: Q(s, a) := Q(s, a) + α [r + γmaxa′ Q(s′, a′)−Q(s, a)]
12: Increment visit count on s′

13: Update existence passenger probability p(s′)
14: if passenger found in s′ then
15: Increment found count on s′

16: s becomes the end of the passenger route from s′

17: else
18: s := s′

19: until a passenger is found
20: until algorithm converges

before and it may increase the greater total reward in the
long run because we would discover better actions.

We call an episode the movement of a taxi to an actual pick-
up point. For the first episode, the taxi located at a random
position moves according to the initial oblivious learning
policy. The episode ends when the taxi finds a passenger.
Then, it moves to the passenger’s destination and starts
a new episode. As the taxi moves it receives rewards and
updates its action-value and the existence probability. The
road network is discretized and the movements correspond
to steps in the discretized network. At each step, the taxi
learns where passengers are likely to be located.

The Taxi Routing algorithm for learning pick-up points is
outlined in Algorithm 1. According to the ε-greedy policy,
an action a is selected in a given state s.

The action selection rule selects the action with the maxi-
mum estimated action value (greedy action). However, with
this rule, the algorithm ignores other actions that, although
they have slightly lesser value, may lead to a state having
a higher chance to pick a passenger up. Hence, instead of
selecting one greedy action, we loosen the selection condi-
tion by setting a lower bound below the maximum value in
order to choose from more potentially valuable candidate
actions (Line 5). The candidate actions are compared with
existence probabilities of passengers in their corresponding
states (Line 7). We later refer to the algorithm with this
selection strategy as Q-learning using LB/Proba.

After taking an action, we update the Q-value in the
current state s with reward r and next state s′. As we visit a
new state s′, the visit and found counts are incremented and
the existence probability of passengers is also recalculated.
We repeat this procedure until we find a passenger.

4. PERFORMANCE EVALUATION
For the sake of simplicity, in this paper, we present the

results for a map discretized into cells of 0.01 degree longitude
× 0.01 degree latitude (about 1.1km × 1.1km) forming a
38 × 20 grid. At each cell of the grid, eight actions are
possible: up, down, right, left, and diagonally. A step is the
movement from one cell to an adjacent one. Although such



a representation does not capture several natural constraints
on the traffic, it is sufficient, with limited loss of generality,
to evaluate the effectiveness of the algorithm.

Since popular pick-up points generally depend on the time
of the day, we run the experiments for selected time intervals.
Here, we present the results for two off-peak hours (12h to
13h and 14h to 15h), but we obtain comparable results for
other time slots. At each episode we select 300 passengers
according to actual geographical distribution in the given
time interval in a dataset of taxi pickups and drop-offs for a
fleet of one thousand taxis for one month in Singapore.

We first look into the impact of the step-size parameter α,
the discount rate γ, and the probability of exploration ε.
We evaluate how these parameters influence the learning
performance with ordinary Q-learning. We compare the
average number of steps. The average steps are calculated at
every 100 episode by dividing the total steps from the first
episode to the last by the total number of episodes.

Figures 1a–1b show the average number of steps with
different step-size parameter α values for different time in-
tervals. We compare four different α with a fixed γ (= 0.5)
and ε (= 0.3). For all the time intervals, as the α is smaller,
the average number of steps also decreases. Lower step-size
values perform better. This indicates that accumulated ex-
perience affects value estimation more significant than recent
experience, i.e., that the problem is indeed stochastic.

For the discount rate γ experiment, we fixed α (= 0.5)
and ε (= 0.3) and changed the γ. The average number
of steps with different γ values for different time intervals
are shown in Figures 1c–1d. In Figure 1d, the lowest γ
(= 0.25) perform better. This means that immediate rewards
are more important than future rewards. In Figure 1c, as
episodes continue, a higher γ (= 0.75) is slightly better. In 1c,
relatively longer step counts than those of the other time
intervals are needed to achieve a goal. In this case, future
rewards are more significant than current rewards.

Figures 1e–1f show the average number of steps with dif-
ferent ε values for different time intervals, given α = 0.5
and γ = 0.5. The average number of steps first decreases
dramatically and then converges gradually. For all time in-
tervals, when ε is 0.1, the average number of steps is higher
than the other cases in early episodes but it dominates after
about 30,000 episodes. At the beginning, exploration is more
effective and relatively inexpensive. Eventually, sufficient
knowledge is accumulated and exploitation is worthy.

We now compare Q-learning using LB/Proba (our algo-
rithm) with ordinary Q-learning. For experiments, we select
three parameter values shown in the previous section. The
step-size parameter α is set to 0.25 because low learning rate
is appropriate to our problem. The probability of exploration
ε is set to 0.1. Since loosened selection for maximum action
has the effect of exploration, high ε is not needed. We take
η = 0.01 to set the lower bound on the maximum action
value per state. Two algorithms are compared by varying
the discount rate γ value.

In Figures 1g–1j, when γ = 0.75 or 0.5, Q-learning us-
ing LB/Proba converges faster than Q-learning. On the
other hand, when γ is 0.25 (Figures 1k–1l), Q-learning per-
forms similary well or slightly better than Q-learning using
LB/Proba. These experiments show that when the learning
rate α is low and the discount rate γ approaches 1, Q-learning
using LB/Proba outperforms Q-learning. In other words, it
has to accumulate much experience for value prediction and

it considers future rewards more strongly. The reason is that
Q-learning using LB/Proba depends on existence probability
of passengers that requires enough experience and that is
more related to long-term high rewards.

5. CONCLUSIONS AND FUTURE WORK
A*STAR’s Institute for Infocomm Research, with its aca-

demic partners, is contributing to Singapore’s Land Trans-
port Authority’s efforts to evaluate the viability of autonomous
vehicles. We explored the use of reinforcement learning for
autonomous taxi routing. The evaluation results provide em-
pirical support of the effectiveness of reinforcement learning
for the task at hand. We are planning more extensive studies
as soon as extensive on-road trials are carried out and more
data is available to us. We are also currently extending this
work to consider a more dynamic environment. We are con-
sidering a multi-agent approach to scale to larger and more
complex state spaces. We also investigate hierarchies, fac-
tored representations, and other extended methods that can
improve adaptiveness, effectiveness and efficiency of learning.
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(a) Varying α, 12h to 13h (b) Varying α, 14h to 15h (c) Varying γ, 12h to 13h

(d) Varying γ, 14h to 15h (e) Varying ε, 12h to 13h (f) Varying ε, 14h to 15h

(g) Regular Q-learning vs LB/Proba,
γ = 0.75, 12h to 13h

(h) Regular Q-learning vs LB/Proba,
γ = 0.75, 14h to 15h

(i) Regular Q-learning vs LB/Proba,
γ = 0.5, 12h to 13h

(j) Regular Q-learning vs LB/Proba,
γ = 0.5,14h to 15h

(k) Regular Q-learning vs LB/Proba,
γ = 0.25, 12h to 13h

(l) Regular Q-learning vs LB/Proba,
γ = 0.25, 14h to 15h

Figure 1: Average number of steps as the number of episodes increases.
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