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Logs are semi-structured text generated by logging statements in software source code. In recent decades,
software logs have become imperative in the reliability assurancemechanism ofmany software systems because
they are often the only data available that record software runtime information. As modern software is evolving
into a large scale, the volume of logs has increased rapidly. To enable effective and efficient usage of modern
software logs in reliability engineering, a number of studies have been conducted on automated log analysis.
This survey presents a detailed overview of automated log analysis research, including how to automate
and assist the writing of logging statements, how to compress logs, how to parse logs into structured event
templates, and how to employ logs to detect anomalies, predict failures, and facilitate diagnosis. Additionally,
we survey work that releases open-source toolkits and datasets. Based on the discussion of the recent advances,
we present several promising future directions toward real-world and next-generation automated log analysis.
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1 INTRODUCTION
In the recent decades, modern software, such as search engines, instant messaging apps., and cloud
systems, has been increasingly integrated into our daily lives and becomes indispensable. Most of
these software systems are expected to be available on a 24 × 7 basis. Any non-trivial downtime
can lead to significant revenue loss, especially for large-scale distributed systems [52, 53, 172]. For
example, in 2017, a downtime in Amazon led to a loss of 150+ million US dollars [173]. Thus, the
reliability of modern software is of paramount importance [130].
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1 public void setTemperature(Integer temperature) {
2 // ...
3 logger.debug("Temperature set to {}. Old temperature was {}.", t, oldT);
4 if (temperature.intValue() > 50) {
5 logger.info("Temperature has risen above 50 degrees.");
6 }
7 }

⇓
1 0 [setTemperature] DEBUG Wombat - Temperature set to 61. Old temperature was 42.
2 0 [setTemperature] INFO Wombat - Temperature has risen above 50 degrees.

Fig. 1. An example of logging statements by SLF4J and the generated logs.

Software logs have been widely employed in a variety of reliability assurance tasks, because
they are often the only data available that record software runtime information. Additionally,
logs also play an indispensable role in data-driven decision making in industry [149]. In general,
logs are semi-structured text printed by logging statements (e.g., printf(), logger.info()) in the
source code. For example, in Fig. 1, the two log messages are printed by the two logging statements
in the source code. The first few words (e.g., "Wombat") of the log messages are decided by the
corresponding logging framework (e.g., SLF4J) and they are in structured form. On the contrary,
the remaining words (e.g., "50 degrees") are unstructured because they are written by developers to
describe specific system runtime events.

A typical log analysismanagement framework is illustrated by the upper part of Fig. 2. Particularly,
traditional logging practice (e.g., which variables to print) mainly relies on developers’ domain
knowledge. During system runtime, software logs are collected and compressed as normal files
using file compression toolkits [110] (e.g., WinRAR). Additionally, developers leverage the collected
logs in various reliability assurance tasks (i.e., log mining), such as anomaly detection. Decades
ago, these processes were based on specific rules specified by the developers. For example, to
extract specific information related to a task (e.g., thread ID), developers need to design regex (i.e.,
regular expression) rules for automated log parsing [76]. The traditional anomaly detection process
also relies on manually constructed rules [66]. These log analysis techniques were effective at the
beginning because most of the widely-used software systems were small and simple.

However, as modern software has become much larger in scale and more complex in structure,
traditional log analysis that is mainly based on ad-hoc domain knowledge or manually constructed
and maintained rules becomes inefficient and ineffective [146]. This brings four major challenges to
modern log analysis. (1) In many practices, while a number of senior developers in the same group
share some best logging practices, most of the new developers or developers from different projects
write logging statements based on domain knowledge and ad-hoc designs. As a result, the quality of
the runtime logs varies to a large extent. (2) The volume of software logs has increased rapidly (e.g.,
50 GB/h [138]). Consequently, it is much more difficult to manually dig out the rules (e.g., log event
templates or anomalous patterns). (3) With the prevalence of Web service and source code sharing
platforms (e.g., Github), software could be written by hundreds of global developers. Developers
who should maintain the rules often have no idea of the original logging purpose, which further
increases the difficulty in manual maintenance of their rules. (4) Due to the wide adoption of the
agile software development concept, a new software version often comes in a short-term manner.
Thus, corresponding logging statements update frequently as well (e.g., hundreds of new logging
statements per month [178]). However, it is hard for developers to manually update the rules.
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Fig. 2. An overall framework for automated log analysis.

To address these challenges, a great amount of work has been accomplished by both researchers
and practitioners in recent decades. In particular, starting from 2003, a line of research efforts have
been contributed to automated rule construction and critical information extraction from software
logs, including the first pieces of work of log parsing [174], anomaly detection [174], and failure
prediction [157]. In addition, in the same year, Hätönen et al. [70] proposed the first log specific
compression technique. Later, many empirical studies were conducted as the first steps towards
some difficult problems in automated log analysis, including the first study on failure diagnosis by
Jiang et al. [83] in 2009, the first exploration of logging practice by Yuan et al. [189] in 2012, and the
first industrial study on logging practice by Fu et al. [58] in 2014. Recently, machine learning and
deep learning algorithms have been widely adopted by the state-of-the-art (SOTA) papers, such
as the deep learning-based "what-to-log" approach [102] in logging practice and Deeplog [46] in
anomaly detection. Besides machine learning, parallelization has been employed in various recent
papers, such as Logzip [110] in log compression and POP [72] in log parsing.
These extensive studies on automated log analysis across multiple core directions have largely

boosted the effectiveness and efficiency of systematic usage of software logs. However, the diver-
sity and richness of both the research directions and recent papers could inevitably hinder the
non-experts who intend to understand the SOTA and propose further improvements. To address
this problem, this paper surveys 158 papers in the last 23 years across a variety of topics in log
analysis. The papers under exploration are mainly from top venues in three related fields: software
engineering (e.g., ICSE), system (e.g., SOSP), and networking (e.g., NSDI). Thus, the readers can
obtain a deep understanding of the advantages and limitations of the SOTA approaches, as well
as taking a glance at the existing open-source toolkits and datasets. In addition, the insights and
challenges summarized in the paper can help practitioners understand the potential usage of the
automated log analysis techniques in practice and realize the gap between academy and industry
in this field. We present crucial research efforts on automated log analysis from the following seven
perspectives as illustrated in Fig. 2:

• Logging: Section 3 introduces approaches that automate or improve logging practices, in-
cluding where-to-log, what-to-log, and how-to-log.

• Log compression: Section 4 presents approaches to compress software logs in runtime.
• Log parsing: Section 5 discusses how to automatically extract event templates and key
parameters from software logs.

• Log mining: Section 6 introduces what automated log mining techniques can do to enhance
system reliability. We focus on three main tasks: anomaly detection, failure prediction, and
failure diagnosis.

• Open-source toolkits and datasets: Papers providing open-source toolkits and datasets, which
facilitate log analysis research, are presented in Section 7.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2021.



4 S. He et al.

N
um

be
r o

f P
ub

lic
at

io
ns

0

5

10

15

20

25

Year

97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20

16%

51%

9%

8%

16%

Logging
Log Compression
Log Parsing
Log Mining
Empirical Study

Fig. 3. Paper distribution on each research topic and the associated evolution trend from 1997 to 2020.

• Best current practices: Supplementary A presents some common log practices in industry,
which might benefit the log analysis research and industrial deployment.

• Future directions: Supplementary B discusses open challenges and promising future directions
that can push this field forward beyond current practices.

2 SURVEY METHODOLOGY
To systematically collect the publications for conducting this survey, we maintained a repository
for the automated log analysis literature. We first searched relevant papers in online digital libraries
and extended the repository by manually inspecting all references of these papers. The repository
is now available online.1

To begin with, we searched several popular online digital libraries (e.g., IEEE Xplore, ACM Digital
Library, Springer Online, Elsevier Online, Wiley Online, and ScienceDirect) with the following
keywords: "log", "logging", "log parsing", "log compression", "log + anomaly detection", "log + failure
prediction", "log + failure diagnosis". The "log" term is broadly quoted in various domains, such
as the query log in database, web search log in recommendation, and the logarithm function in
mathematics. Hence, to precisely collect the set of papers of our interest, we mainly focused on
regular papers published in top venues (i.e., conferences and journals) of relevant domains, including
ICSE, FSE, ASE, TSE, TOSEM, EMSE, SOSP, OSDI, ATC, NSDI, TDSC, DSN, ASPLOS, and TPDS.
Then, we manually inspected each reference of these papers to collect additional publications that
are related to the survey topics. In this paper, we focused on publications studying the reliability
issues with software system logs, while publications of other topics are beyond the scope of this
survey, such as logs for security and privacy [92], software change logs [23], kernel logs [148], and
process mining logs [176].

In total, we collected 158 publications in automated log analysis area spanning from year 1997 to
2020. Fig. 3 (on the right part) shows the histogram of annual publications during the period. We
can find that automated log analysis has been continuously and actively investigated in the past
two decades. In particular, we can observe steady growth in the number of publications since 2006,
indicating that the log analysis field has attracted an increasing amount of interest since then.
Furthermore, we classify these publications into five categories by research focus: logging, log

compression, log parsing, log mining, and empirical study. The distribution is presented on the left
part of Fig. 3. Note that some papers may address more than one research focuses, in which case
we categorized the paper based on its major contribution. As expected, Fig. 3 shows that a large
portion (around a half) of research efforts were devoted to log mining. The reasons are two-fold:
1https://github.com/logpai/awesome-log-analysis
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First, log mining is a comprehensive task that consists of many sub-tasks (e.g., anomaly detection,
failure diagnosis). Each sub-task has a huge space for research exploration and thereby attracts
many research studies on it; Second, research areas other than log mining are relatively mature.
Besides, logging is also extensively studied in the past decades since it is more closely related to
industrial practices. In addition, many log research tasks are empirical studies, and we discussed
them in different sections respectively.
Furthermore, we were aware of several existing surveys on logs analysis. Oliner et al. [146]

briefly reviewed sixteen log analysis papers and pointed out some challenges in 2012. Since then,
the log analysis area has been actively studied, which impels a more comprehensive and systematic
log survey paper. Other existing surveys mainly studied logs and their use in the security area. Khan
et al. [89] focused on logs in the cloud computing environment and the logs were leveraged for
identifying and preventing suspicious attacks. Zeng et al. [193] studied the logging mechanisms and
security issues in three computer operating systems. A recent publication [94] reviewed clustering
based approaches in cyber security applications. Different from these studies, our survey mainly
targets the automated log analysis for tackling the general reliability issues.

3 LOGGING
Logging is the task of constructing logging statements with proper description and necessary
program variables, and inserting the logging statements to the right positions in the source code.
Logging has attracted attention from both academia [139, 149, 158, 180] and industry [9, 18, 58,
149, 189, 194] across a variety of application domains because logging is a fundamental step for all
the subsequent log mining tasks.

3.1 Logging Mechanism and Libraries
3.1.1 Logging Mechanism. Logging mechanism is the set of logging statements and their activation
code implemented by developers or a given software platform [149]. Fig. 1 shows two example log-
ging statements and the collected logs during the execution of the program. The logging statement
at line 3 is executed every time the setTemperaturemethod is called, with no specific activation code.
The logging statement at line 5 is controlled by the activation code if (temperature.intValue() >

50) at line 4. According to the data collected by [149], the most widely-adopted coding pattern that
is used to activate the logging statements is if (condition) then log error().

3.1.2 Logging Libraries. To improve flexibility, industrial developers often utilizes logging li-
braries [20, 149], which are software components that facilitate logging and provide advanced
features (e.g., thread-safety, log archive configuration, and API separation). Toward this end, a lot
of open-source logging libraries have been developed (e.g., Log4j [116], SLF4J [166], AspectJ [5],
spdlog [167]).

3.2 Challenges for Logging
Logging in a software system is usually decided by an empirical process in the development
phase [149]. In general, logging practice, i.e., how developers conduct the task of logging, is scarcely
documented or regulated by strict standard, such as the logging mechanism and APIs [9]. Thus,
logging relies heavily on human expertise [58, 71, 146, 149, 160]. In the following, we summarize
three main challenges for automated logging, which also align with the taxonomy mentioned by
Chen and Jiang [17]: where-to-log, what-to-log, and how-to-log. Under this categorization, every
problem exhibits aspects that represent the primary concerns of the actual practice of logging.
Accordingly, we summarize three major aspects, i.e., diagnosability, maintenance, and performance,
as presented in Table 1.
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3.2.1 where-to-log. Where-to-log is about determining the appropriate location of logging state-
ments. Although logging statements provide rich information and can be inserted almost every-
where, excessive logging results in performance degradation [17] and incurs additional maintenance
overhead. In addition, it is challenging to diagnose problems by analyzing a large volume of logs as
most logs are unrelated to the problematic scenarios [85]. On the other hand, insufficient logging
will also impede the logs’ diagnosability. For example, an incomplete sequence of logs may hinder
the reproduction of precise execution paths [199]. Therefore, developers need to be circumspect in
their choices of where-to-log.

3.2.2 what-to-log. What-to-log is about providing sufficient and concise information within the
three major components of a logging statement, i.e., verbosity level, static text, and dynamic content.
Mis-configured verbosity level has similar consequences with inappropriate logging points. As
developers typically filter logs according to the verbosity levels, under-valued verbosity levels may
result in missing or ignored log messages while over-valued verbosity levels lead to overwhelming
log messages [85]. When composing a snippet of logging code, the static text should be concise and
the dynamic content should be coherent and up-to-date. Poorly written static text and inconsistent
dynamic content could affect the subsequent diagnosis and maintenance activities [86, 111, 136, 196].

3.2.3 how-to-log. How-to-log is the "design pattern" and maintenance of logging statements
systematically. Most software testing techniques focus on verifying the quality of feature code, but
a few papers [17, 18, 68, 162, 189] pay attention to the quality and anti-patterns in the logging code.
Most industrial and open source systems choose to scatter logging statements across the entire
code base, intermixing with feature code [17], which also hardens the maintenance of logging code.

3.3 Logging Approaches
Numerous solutions have been proposed to address the challenges mentioned in Section 3.2. Table 1
summarizes existing studies along with corresponding problems and aspects. Each row represents
a challenge. The approaches fall into three categories: static code analysis, machine learning, and
empirical study. A bunch of early work utilized static code analysis to analyze logging in a program
without executing the source code. Machine learning-based approaches focus on learning from data.
By concentrating on the inherent statistical properties of existing logging statements, learning-
based approaches automatically give suggestions on improving the logging statements. In the
remainder of this section, we discuss solutions by their aspects.

3.3.1 Diagnosability. Logs are valuable for investigating and diagnosing failures. However, a
logging statement is only as helpful as the information it provides. The research on this aspect aims
at (1) understanding the helpfulness of logs for failure diagnosis and (2) making logs informative
for diagnosis.

(1) Understanding the helpfulness of logs for failure diagnosis. This is of great importance because
logs are widely adopted for failure diagnosis. According to a survey [58] involving 54 experienced
developers in Microsoft, almost all the participants agreed that “logging statements are important
in system development and maintenance” and “logs are a primary source for problem diagnosis”. Fu
et al. [58] also studied the types of logging statements in industrial software systems by source code
analysis, and summarized five types of logging snippets, i.e., assertion-check logging, return-value-
check logging, exception logging, logic-branch logging, and observing-point logging. Besides, Fu et
al. [58] further demonstrated the potential feasibility of predicting where to log. Shang et al. [163]
conducted the first empirical study to provide a taxonomy for user inquiries of logs. They identified
five types of information that were often sought from log lines by practitioners, i.e., meaning, cause,
context, impact, and solution. Shang et al. [163] were also the first to associate the development
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Table 1. Summary of logging approaches.

Problems Aspects Objectives

where-to-log

Diagnosability Suggest appropriate placement of logging statements into
source code [31, 32, 102, 183, 188, 198, 199, 203] ; Study
logging practices in industry [58, 97].

Performance Minimize or reduce performance overhead [44, 188].

what-to-log

Diagnosability Enhance existing logging code to aid debugging [190];
Suggest proper variables and text description in log [71,
98, 111].

Maintenance Determine whether a logging statement is likely to
change in the future [87]; Characterize and detect du-
plicate logging code [103].

Performance Study the performance overhead and energy impact of
logging in mobile app [26, 194]; Automatically change
the log level of a system in case of anomaly [141].

how-to-log

Diagnosability Characterize the anti-patterns in the logging code [163];
Optimize the implementation of logging mechanism to
facilitate failure diagnosis [129].

Maintenance Characterize and detect the anti-patterns in the logging
code [17, 18, 68, 99, 101, 189]; Characterize and prioritize
the maintenance of logging statements [86]; Study the
relationship between logging characteristics and the code
quality [19, 162]; Propose new abstraction or program-
ming paradigm of logging [90, 115].

Performance Optimize the compilation and execution of logging
code [182].

knowledge at present in various development repositories (e.g., code commits and issues reports)
with the log lines and to assist practitioners in resolving real-life log inquiries. In addition, Li et
al. [97] highlighted the feasibility of guiding developers’ logging practice with topic models by
investigating six open source systems.
(2) Making logs informative for failure diagnosis. As printed logs are often the only run-time

information source for debugging and analysis, the quality of log data is critically important.
LogEnhancer [190] made the first attempt to systematically and automatically augment existing
logging statements in order to reduce the number of possible code paths and execution states
for developers to pinpoint the root cause of a failure. Zhao et al. [198, 199] followed the idea of
LogEnhancer and proposed an algorithm capable of completely disambiguating the call path of
HDFS requests. Yuan et al. [188] found that the majority of unreported failures were manifested
via a generic set of error patterns (e.g., system call return errors) and proposed the tool Errlog to
proactively add pattern-specific logging statements by static code analysis.

As modern software becomes more complex, where-to-log has become an important but difficult
decision, largely limited to the developer’s domain knowledge. Around 60% of failures due to
software faults do not leave any trace in logs, and 70% of the logging pattern aims to detect errors
via a checking code placed at the end of a block of instructions [31, 32]. Cinque et al. [32] concluded
that the traditional logging mechanism has limited capacity due to the lack of a systematic error
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model. They further formalized the placement of the logging instruction and proposed to use system
design artifacts to manually define rule-based logging which utilizes error models about what cause
errors to fail. Zhu et al. [203] made an important first step towards the goal of “learning to log”. They
proposed a logging recommendation tool, LogAdvisor, that learns the common logging rules on
where-to-log from existing code via training a classifier and further leverages it for informative and
viable recommendations to developers. Yao et al. [183] leveraged a statistical performance model to
suggest the need for updating logging locations for performance monitoring. Li et al. [102] proposed
a deep learning framework to suggest where-to-log at the block level. Li et al. also concluded that
there might be similar rules regarding the implementation of logging mechanism across different
systems and development teams, which agreed with the industrial survey by Pecchia et al. [149].
The lack of strict logging guidance and domain-specific knowledge makes it difficult for de-

velopers to decide what-to-log. To address this need, Li et al. [98] employed ordinal regression
model to suggest proper verbosity level based in software metrics. He et al. [71] conducted the
first empirical study on the usage of natural language in logging statements. They showed the
global (i.e., in a project) and local (i.e., in a file) repeatability of text descriptions. Furthermore, they
demonstrated the potential of automated description text generation for logging statements. Liu et
al. [111] proposed a deep learning-based approach to recommend variables in logging statements
by learning embeddings of program tokens. In order to troubleshoot transiently-recurring problems
in cloud-based production systems, Luo et al. [129] put forward a new logging mechanism that
assigns a blame rank to methods based on their likelihood of being relevant to the root cause of the
problem. With the blame rank, logs generated by a method over a period of time are proportional
to how often it is blamed for various misbehavior, thus facilitating diagnosis.

3.3.2 Maintenance. The maintenance of logging code has also attracted researchers’ interest. The
research on this aspect aims at (1) characterizing the maintenance and detecting anti-patterns of
logging statements and (2) proposing new abstractions of logging.

(1) Characterizing the maintenance and detecting anti-patterns of logging statements. Anti-patterns
in logging statements are bad coding patterns that undermine the quality and effectiveness of logging
statements and increases the maintenance effort of projects. Many papers [18, 19, 68, 162] performed
empirical studies to reveal the link between logs and defects. These papers observed a positive
correlation between logging characteristics and post-release defects. Therefore, practitioners should
allocate more effort to source code files with more logging statements.
Yuan et al. [189] made the first attempt to conduct a quantitative characteristic study of how

developers log within four pieces of large open-source software. They described common anti-
patterns and provided insights into where developers spend most of their efforts in modifying
the log messages and how to improve logging practice. They further implemented a prototype
checker to verify the feasibility of detecting unknown problematic statements using historical
commit data. Chen and Jiang [17] and Hassani et al. [68] both studied the problem of how-to-log
by characterizing and detecting the anti-patterns in the logging code. The analysis [17] of well-
maintained open-source systems revealed six anti-patterns that are endorsed by developers. Chen
and Jiang [17] then encoded these anti-patterns into a static code analysis tool to automatically
detect anti-patterns in the source code. Li et al. [103] developed an automated static analysis tool,
DLFinder, to detect duplicate logging statements that have the same static text description.
Just like feature code, logging code updates with time [87]. Moreover, logging statements are

often changed without consideration for other stakeholders, resulting in sudden failures of log
analysis tools and increased maintenance costs for such tools. Pecchia et al. [149] reviewed the
industrial practice in the reengineering of logging code. Kabinna et al. [86] empirically studied
the migration of logging libraries and the main reasons for the migration. Li et al. [99] derived
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and used a set of measures to predict whether a code commit requires log changes. Kabinna et
al. [87] later examined the important metrics for determining the stability of logging statements and
further leveraged learning-based models (random forest classifier and Cox proportional hazards) to
determine whether a logging statement is likely to remain unchanged in the future. Their findings
were helpful to build robust log analysis tools by ensuring that these tools relied on logs generated
by more stable logging statements. Li et al. [101] designed a tool to learn log revision rules from
logging context and modifications and recommend candidate log revisions.

(2) Proposing new abstractions of logging. Maintaining logging code along with feature code has
proven to be error-prone [18, 68, 162]. Hence, additional logging approaches [90, 115] have been
proposed to resolve this issue. Kiczales et al. [90] proposed a new programming paradigm that
improves the modularity of the logging code. To tackle the ordering problem of logs in distributed
systems, Lockerman et al. [115] introduced FuzzyLog that featured strong consistency, durability,
and failure atomicity.

3.3.3 Performance. The intermixing nature of the logging code and feature code usually incurs per-
formance overhead, storage cost, and development and maintenance efforts [26, 44, 141, 190, 194].
Tools like LogEnhancer [190], Errlog [188], Log2 [44], and INFO-logging [198] all took performance
into consideration while dealing with diagnosability and maintenance issues. Mizouchi et al. [141]
proposed a dynamical adjusting verbosity level to record irregular events while reducing perfor-
mance overhead. Yang et al. [182] proposed NanoLog, a nanosecond scale logging system that
achieved relatively low latency and high throughput by moving the workload of logging from the
runtime hot path to the post-compilation and execution phases of the application. Chowdhury
et al. [26] were the first to explore the energy impact of logging in mobile apps. Zeng et al. [194]
conducted a case study that characterized the performance impact of logging on Android apps.

4 LOG COMPRESSION
After collecting logs by executing logging statements during runtime, logs are stored for failure
diagnosis or sensitive operations auditing. Then, how to store logs efficiently becomes a challenging
problem. Since large-scale software systems run on a 24 × 7 basis, the generated log size has
been huge (e.g., 50 gigabytes per hour [138]). Besides, many logs require the long-term storage for
identifying duplicate problems and mining failure patterns from historical logs [2, 43, 191]. Auditing
logs that record sensitive user operations are often stored for two years and even more to track
systemmisuse in future. Archiving logs in such a huge volume for a long period brings inconceivably
heavy burden to storage space, electrical power, and network bandwidth for transmission. To tackle
these problems, a line of research has been focusing on log compression, which aims to remove the
redundancy in a large log file and reduce its storage consumption.

4.1 Challenges for Log Compression
Practically, log compression can be achieved by various approaches. The most straightforward
way is to reduce the amount of logging statements in the source code or to set a less verbose
log level (e.g., change from "INFO" to "ERROR") [98] in runtime. Although effective, this method
leads to information loss in logs, which impedes the log-based troubleshooting. Besides, it is a
common practice in existing logging libraries (e.g., log4j) to compress log files by some general
file compressors, such as gzip. However, the method is not tailored for the semi-structured log
format, making it very ineffective in log compression. The structured fields (i.e., constant parts) are
often repetitive across many raw logs, which consume a lot of storage space and should be handled
specifically. To address these issues, a tailored log compression algorithm is highly in demand.
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Table 2. Summary of log compression approaches.

Methods GC Target Data Scalability Heuristics

Bucket

Balakrishnan et al. [7] Yes Blue Gene/L logs High Yes
Skibinski et al. [165] Yes All logs Low No
Hassan et al. [67] No Telecom logs High Yes

Christensen et al. [27] Yes All logs High Yes
Feng et al. [55] Yes All logs Middle No

Dictionary

Deorowicz et al. [42] No Apache web log Middle Yes
Lin et al. [106] No Structured Logs High Yes
Mell et al. [134] Yes Structured Logs High No
Racz et al. [153] Yes Web log High Yes

Statistics
Hatonen et al. [70] No Structured Logs High Yes
Meinig et al. [133] No All logs High Yes
Liu et al. [110] Yes Structured Logs Low No

Industry Splunk [168] Yes All logs Low No
ElasticSearch [49] Yes All logs Low No

4.2 Characteristics for Log Compression
An ideal log compressor should achieve a high compression ratio while imposing short compression
and decompression time. The compression ratio denotes the ratio between the file sizes before and
after the compression. A higher compression ratio indicates that less storage space is consumed and
the compression algorithm is more effective. Additionally, log compression algorithm takes a certain
amount of time to compress and decompress the file respectively, which is supposed to be as short
as possible. In this paper, we mainly explored 12 existing log compressing approaches and several
empirical studies. As shown in Table 2, to clearly demonstrate the advantages and disadvantages
of these approaches, we list several characteristics that concern the log compressors based on
the following descriptions in the surveyed papers. (1) Use of general compressors (GC). Some log
compressors utilize the general compressor as the backend technique after reformatting the logs.
Specifically, these reformattings can transform raw logs to better formats that achieve a higher
compression ratio. (2) General applicability denotes whether the log compressor can be generally
applicable to various log data formats. A general log compressor shows better utility in different
scenarios. For example, as shown in the “target data” of Table 2, the log compressor proposed in [42]
was specialized for Apache web log while other log compressors [27] can be applied to different
log data types. (3) Scalability. Since logs are often of a great volume in practice, the efficiency of log
compression is crucial to the practical employment. A highly scalable compressor could save both
the compression and decompression time, which thereby saves the log query time and supports
real-time analysis. (4) Heuristics. The deployment would be more efficient and smoother if the log
compressor requires little prior knowledge, e.g., heuristic rules on log formats and preprocessing
procedures. The less heuristics a log compressor needs, the more generally applicable it would be.

4.3 Log Compression Approaches
According to the techniques employed above, there are three categories of log compression methods:
(1) bucket-based compression that divides the log data into different blocks and compresses each
block in parallel; (2) dictionary-based compression that builds a dictionary for fields in the log
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and replaces strings by referring to the dictionary; and (3) statistics-based compressors that apply
complex statistical models to find correlations between logs before compression. Note that some
log compression methods may involve two or more techniques, in which case we took the major
compression technique as their category.

4.3.1 Bucket-based Compression. Bucket-based compression methods break the log data into
different blocks by some log-specific characteristics and then compresses these blocks in parallel.
For instance, many logs show the strong temporal locality or high similarity in certain fields,
therefore, these logs can be gathered and then compressed. To tackle the problem that log data
were often heterogeneous with varying patterns over time, Christensen et al. [27] proposed to
partition the log data into different buckets by leveraging the temporal locality and then compress
these buckets in parallel. Hassan et al. [67] adopted a similar idea for telecom logs; however the
objective was log event sequence instead of log messages. The log data is firstly broken into equal
sized periods and compressed separately. Different from other studies, they use the compressed log
event sequences to identify noteworthy usage scenarios for operational profile customization.

Besides, the bucket partition often serves as an initial step towards achieving a high compression
ratio. For example, LogPack [165] was a multi-tiered log compression method, in which each
tier addressed one notion of redundancy. The first tier handled the local redundancy between
neighboring lines. The second tier handled the global repetitiveness of tokens while the third tier
handled all the remaining redundancy by employing a general compressor. Similarly, Balakrishnan
et al. [7] first observed a number of trends in the Blue Gene/L system logs and proposed several
solution to compress the logs accordingly. For example, one trend was that most columns in
adjacent logs tended to be the same. At last, the generic compression utilities were applied to
further compress the log file. Hence, they utilized a variant of delta encoding method which
compared the log with preceding logs and encoded the differences only. In addition, Multi-level
Log Compression (MLC) [55] divided logs with redundancy into different buckets by calculating
the Jaccard similarity among logs. Then, the logs were condensed by a variant of delta encoding,
followed by a general compressor to further improve the compression ratio.

4.3.2 Dictionary-based Compression. Dictionary-based compression removes the redundancy in
log files by replacing repetitive strings with references to a dictionary. For example, some frequent
strings (e.g., IP addresses) can be mapped to a condensed string in the dictionary. Lin et al. [106]
presented a column-wise independent compression for structured logs, which was also very similar
to the work presented in [42, 153] though their focuses were web logs. The general idea of these
methods is as follows: At first, it splits a log entry into several columns by its fields. After observing
common properties in columns (e.g., common prefixes and suffixes), the method builds a dictionary-
based model with Huffman code to compress each column separately. Many general compression
techniques can then be applied to achieve a higher compression ratio, including move-to-front
coding, phrase sequence substitution, etc. Similarly, Mell et al. [134] proposed a multi-step method
for log compression. It first separated and sorted logs according to particular properties (e.g., value
of the first column), and then it created a dictionary where logs are stored by hashing the field
name, followed by serializing the dictionary and compressing logs with a general compressor.

4.3.3 Statistics-based Compression. Statistics-based methods realize the log compression by build-
ing a statistical model to identify possible redundancy in the log data. Unlike the above two
categories of methods which are supported by manually defined compression logic, the statistics-
based compression automatically mines the compression rules. Hatonen et al. [70] demonstrated
a Comprehensive Log Compression (CLC) method to dynamically characterize and combine log
data entries. Particularly, the method first identified frequently occurring patterns from dense log
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081109 204655 556 INFO dfs.DataNode$PacketResponder: Received block 
blk_3587508140051953248 of size 67108864 from /10.251.42.84

TIMESTAMP 081109 204655 556 

LEVEL INFO

COMPONENT dfs.DataNode$PacketResponder

EVENT TEMPLATE Received block <*> of size <*> from <*>

PARAMETERS [“blk_3587508140051953248”, “67108864”, “10.251.42.84”]

Structured Log

Fig. 4. A log parsing example.

data by frequent pattern mining, and then linked patterns to the data as a data directory. Meinig et
al. [133] proposed an approach adopted from the rough set in the uncertainty theory. It treated the
log file as a decision table with removable attributes identified by a one-time analysis of log data.
Specifically, attributes that could roughly express each other are then collapsed to one represen-
tative attribute. The proposed method belongs to the set of lossy compression approaches which
allow the information loss after compression. Lossy compression usually sacrifices the information
completeness in raw logs for the high efficiency of log compression. Liu et al. [110] proposed the
Logzip method based on log parsing introduced in Section 5. Logzip first automatically extracted
log templates from raw log messages by a statistical log parsing model. Then Logzip structuralized
log templates and other information into intermediate representations, which were finally fed into
a general compressor.

4.3.4 Others. Recently, Yao et al. [184] provided an empirical study on comparing the performance
of general compressors on compressing log data against natural language data. Although the study
was targeted on general compressors instead of specialized log compressors, their findings could
potentially guide the design of tailored log compressors. Besides, Otten et al. [147] presented a
systematic review on general compression techniques, based on which they investigated the use of
compression for log data reduction and the use of semantic knowledge to improve data compression.
Different from the classic log compression, Hamou-Lhadj et al. [65] proposed to summarize the
content of logs for the purpose of understanding software system behaviors. In detail, their approach
removes implementation details such as utility information from the execution traces by ranking
system components under a well-defined metric.

5 LOG PARSING
After log collection, log messages will be input into different downstream log mining tasks (e.g.,
anomaly detection) for further analysis. However, most of the existing log mining tools [75, 180]
require structured input data (e.g., a list of structured log events or a matrix). Thus, a crucial step of
automated log analysis is to parse the semi-structured log messages into structured log events.
Fig. 4 presents a log parsing example, where the input is a log message collected from Hadoop

Distributed File System (HDFS) [180]. A log message is composed of message header and message
content. The message header is determined by the logging framework and thus it is relatively easy
to extract, such as verbosity levels (e.g., "INFO"). In contrast, it is difficult to extract key information
from the message content because it is mainly written by developers in free-form natural language.
Typically, the message content contains constants and variables. Constants are the fixed text written
by the developers (e.g., "Received") and describe a system event, while variables are the values of
the program variables which carry dynamic runtime information. The goal of log parsing is to
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distinguish between constants and variables. All the constants form the event template. The output
of a log parser is a structured log message, containing an event template and the key parameters.

5.1 Challenges for Log Parsing
As a key component, log parsing has become an appealing selling-point [118, 123, 154] of many
industrial log management solutions [204] (e.g., Splunk [168]). However, these industrial solutions
only support common log types such as Apache logs [154]. When parsing general log messages,
they rely on regexs and ad-hoc scripts provided by developers. These scripts separate log messages
into different groups, where log messages in the same group have the same event template. In
modern software engineering, even with these existing industrial solutions, log parsing is still a
challenging task due to three main reasons: (1) the large volume of logs and thus the great effort on
manual regex construction; (2) the complexity of software and thus the diversity of event templates;
and (3) the frequency of software updates and thus the frequent update of logging statements.

5.2 Log Parser Characteristics
We explore 15 automated log parsing approaches. To provide a clear glimpse of these parsers, we
focus on three main characteristics: mode, coverage, and preprocessing. We follow the definition
introduced by Zhu et al. [204]. Note that different from their work, which was an evaluation
study providing benchmarks and open-source implementation of existing log parsers, this survey
focuses on the methodological comparison of these parsers. In addition, while parsing rules can be
constructed by analyzing source code [180], we focus on parsers that only utilize logs as input.

Mode. Mode is the most important log parsing characteristic to consider. Depending on the usage
scenarios of parsing, log parsers can be categorized into two modes: offline and online. Offline
log parsers require all the log messages beforehand and parse log messages in a batch manner. To
cope with the frequent software update, developers need to periodically re-run the offline parser to
obtain the newest event templates. In contrast, online parsers parse the log messages in a streaming
manner, which work seamlessly with the downstream log mining tasks.

Coverage. We denote coverage as the capability of a log parser to match all input log messages
with event templates. Note that this is orthogonal to whether the matched event templates are
correct or not. In Table 3, “Partial" indicates the parser can only parse part of the log messages
(i.e., some logs will be matched with no event templates). For example, SLCT [174] matches a log
message with an event template only if the log message contains a specific “frequent pattern" and
thus leaving the remaining log messages unparsed. Therefore, SLCT achieves “Partial” coverage.
“Partial" coverage might lead to the neglection of crucial system anomalies.

Preprocessing. Preprocessing removes some variables or replaces them by constants based on domain
knowledge. For example, IP addresses (e.g., 10.251.42.84) are typical variables in cloud systems’ log
messages. This step requires some manual efforts (i.e., constructing regexs for these variables).

5.3 Offline Log Parsing Approaches
Frequent Pattern Mining. SLCT (Simple Logfile Clustering Tool) [174] is the first research paper on
automated log parsing. SLCT conducted two passes in total to obtain associated words. In the first
pass, SLCT counted the occurrence of all the tokens and marked down the frequent words. These
frequent words were utilized in the second pass to find out associated frequent words. Finally,
for a log message, if it contained a pattern of associated frequent words, these words would be
regarded as constants and employed to generate event templates. Otherwise, the log message would
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Table 3. Summary of log parsing approaches.

Methods Coverage Preprocessing Technique

O
ff
li
ne

SLCT [174] Partial No Frequent pattern mining
AEL [84] All Yes Heuristics
LKE [57] All Yes Clustering
LFA [143] All No Frequent pattern mining

LogSig [171] All No Clustering
IPLoM [131, 132] All No Iterative partitioning
LogCluster [175] Partial No Frequent pattern mining
LogMine [64] All Yes Clustering
POP [72] All Yes Iterative partitioning

MoLFI [137] All Yes Evolutionary algorithms

O
nl
in
e

SHISO [142] All No Clustering
LenMa [164] All No Clustering
Spell [45] All No Longest common subsequence

Drain [73, 74] All Yes Heuristics
Logram [35] All Yes Frequent pattern mining

be placed into an outlier cluster without matched event templates. LFA [143] adopted a similar
strategy as SLCT. Differently, LFA could cover all the log messages.

Clustering. LogCluster [175] is similar to SLCT [174]. Differently, LogCluster allowed variable length
of parameters in between via a clustering algorithm. Thus, compared with SLCT, LogCluster is
better at handling log messages of which the parameter length is flexible. For example, “Download
Facebook and install" and "Download Whats App and install" have the same event template
“Download <*> and install" while the length of the parameter (i.e., an app name) is flexible. LKE (Log
Key Extraction) [57] was developed by Microsoft. LKE adopted a hierarchical clustering algorithms
with a customized weighted edit distance metric. Additionally, the clusters were further partitioned
by heuristic rules. LogSig [171] was a more recent clustering-based parser than LKE. Instead of
directly clustering log messages, LogSig transformed each log message into a set of word pairs and
clustered logs based on the corresponding pairs. LogMine [64] adopted an agglomerative clustering
algorithm. It was implemented in map-reduce framework for better efficiency.

Heuristics. AEL [84] employed a list of specialized heuristic rules. For example, for all the pairs like
“word=value," AEL regarded the “value" as a variable and replaced it with a “$v" symbol.

Evolutionary Algorithms. MoLFI [137] formulate log parsing as a multi-objective optimization
problem and propose an evolutionary algorithm-based approach. Specifically, MoLFI employs
the Non-dominated Sorting Genetic Algorithm II [41] to search for a Pareto optimal set of event
templates. Compared with other log parsers, the strength of MoLFI is that it requires little parameter
tuning effort because the four parameters required by MoLFI has effective default values. However,
because of the adoption of evolutionary algorithm, the MoLFI is slower than most of the parsers.

Iterative Partitioning. IPLoM [131, 132] contained three steps and partitioned log messages into
groups in a hierarchical manner. (1) Partition by log message length. (2) Partition by token position.
The position containing the least number of unique words is “token position". Partitioning was
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conducted according to the words in the token position. (3) Partition by mapping. Mapping relation-
ships were searched between the set of unique tokens in two token positions, which were selected
using a heuristic criterion. POP [72] is a parallel log parser that utilizes distributed computing to
accelerate the parsing of large-scale software logs. POP can parse 200 million HDFS log messages
in 7 mins, while most of the parsers (e.g., LogSig) failed to terminate in reasonable time.

5.4 Online Log Parsing Approaches
Clustering. SHISO [142] is the first online log parsing approach. SHISO used a tree-form structure to
guide the parsing process, where each node was correlated with a log group and an event template.
The numbers of children nodes in all the layers were the same and were manually configured
beforehand. During the parsing process, SHISO traversed the tree to find the most suitable log
group by comparing the log message and the event templates in the corresponding log groups.
SHISO is sensitive to path explosion and thus its efficiency is often unsatisfactory. LenMa [164]
is similar to SHISO. LenMa encodes each log message into a length vector, where each dimension
records the number of characters of a token. For example, “Receive a file." would be vectorized as
[7, 1, 5]. During parsing, LenMa would compare the length vectors of the log messages.

Longest Common Subsequence. Similar to SHISO and LenMa, Spell [45] maintained a list of log
groups. To accelerate the parsing process, Spell utilized specialized data structures: prefix tree and
inverted index. In addition, Spell provided a parallel implementation.

Heuristics. Drain [74] maintained log groups via the leaf nodes in the tree. The internal nodes of the
tree embedded different heuristic rules. The extended version of Drain [73] was based on a directed
acyclic graph that allowed log group online merging. In addition, it provided the first automated
parameter tuning mechanism for log parsing.

Frequent Pattern Mining. Logram [35] is the current state-of-the-art parser. Different from the
existing approaches that count frequent tokens, Logram considered frequent n-gram. The core
insight of Logram is: frequent n-gram are more likely to be constants. Note that Logram assumed
developers had some log messages on hand to construct the dictionary.

6 LOG MINING
Log mining employs statistics, data mining, and machine learning techniques for automatically ex-
ploring and analyzing large volume of log data to glean meaningful patterns and informative trends.
The extracted patterns and knowledge could guide and facilitate monitoring, administering, and
troubleshooting of software systems. In this section, we first elaborate on challenges encountered
in log mining (Section 6.1). Then, we describe the general workflow of log mining (Section 6.2).
Finally, we introduce three major log mining tasks for reliability engineering, including anomaly
detection (Section 6.3), failure prediction (Section 6.4), and failure diagnosis (Section 6.5). Other
relevant studies with relatively lesser popularity are laid out in Section 6.6.

6.1 Challenges of Log Mining
Traditionally, engineers perform simple keyword search (such as "error", "exception", and "failed")
to mine suspicious logs that might be associated with software problems, e.g., component failures.
Some rule-based tools [66, 151, 155] have been developed to detect software problems by comparing
logs against a set of manually defined rules which describe normal software behaviors. However,
due to the ever-increasing volume, variety, and velocity of logs produced by modern software, such
approaches fall short for being labor-intensive and error-prone. Moreover, suspicious logs are often
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Fig. 5. A general workflow of log mining.

overwhelmed by logs generated during software normal executions. Manually sifting through a
massive amount of logs to identify failure-relevant ones is like finding a needle in a haystack.
Additionally, inspecting logs for software troubleshooting often requires engineers to possess

descent knowledge about the software. However, modern software systems usually consist of many
components developed by different engineers, leading to the generation of heterogeneous logs,
which makes troubleshooting beyond the ability of a single engineer. Moreover, due to the high
complexity of modern software systems, failures could stem from various sources of software and
hardware issues. Examples include software bugs, hardware damage, OS crash, service exception,
etc. In addition, promptly pinpointing to the root cause by inspecting logs highly relies on engineers’
expertise and experience. However, such knowledge is often not well accumulated, organized, and
documented. Therefore, sophisticated ways to conduct automatic log mining are in high demand.

6.2 A General Workflow of Log Mining
The general workflow of log mining is illustrated in Fig. 5, which mainly consists of four steps, i.e.,
log partition, feature extraction, model training, and online deployment.

6.2.1 Log Partition. Modern software systems often adopt a microservice architecture and comprise
a large number of modules operating in a multi-threaded environment. Different microservices or
modules often aggregate their execution logs into a single log file, which hinders automated log
mining. To tackle the problem, interleaved logs should be partitioned into different groups, each of
which represents the execution of individual system tasks. The partitioned log group is the basic
unit in extracting features before constructing log mining models. Moreover, studies [76] show
that the way to partition logs impacts the log mining performance. In the literature, we observe
that two elements often serve as the log partitioner, namely, timestamp and log identifier.
Timestamp. It records the occurrence time of each log, which is a fundamental feature supported

by many logging libraries, such as Log4j. Through regexs, the timestamp with different formats
can be easily extracted from raw logs in log parsing phase (Section 5). In general, two strategies are
often adopted to conduct timestamp-based log partition, i.e., fixed window and sliding window.
Fixed window has a predefined window size, which means the time span or time interval (e.g.,
30 minutes) used to split chronologically sorted logs. Extended from the fixed window, sliding
window allows the overlapping between two consecutive fixed windows. The sliding window has
two attributes, i.e., window size and step size. The step size indicates the forwarding distance of the
window alone the time axis to generate log partitions, which is often smaller than the window size.

Log Identifier. It is a token identifying a series of related operations or message exchanges
of the system. For instance, HDFS logs adopt block_id to record the operations (e.g., allocation,
replication, and deletion) on a specific block. Common log identifiers include user ID, task/session/job
ID, variable/component name, etc., which can be extracted by log parsing. Compared to timestamp,
log identifier is a clearer and more definite signal for partitioning logs. Therefore, many research
studies [57] employed the log identifier for its ability in distinguishing logs of different task
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executions. However, the log identifiers might be non-unique in representing distinct system
entities in different logs, such as virtual machines, physical machines, and networks [186]. This is
because, for example, identifiers may not be propagated and synchronized across different services,
one thread or process may serve more than one request through multiplexing, etc. Therefore,
dedicated algorithms have been developed to address this problem and we elaborate on them later.

6.2.2 Feature Extraction. To analyze logs automatically, textual logs in a log partition should
be transformed into appropriate formats that could fit machine learning algorithms. Through
reviewing the literature, we identified two categories of log-based features, namely, numerical
feature and graphical feature. Particularly, numerical feature is the mainstreaming feature which is
widely used in the log analysis community.

Numerical Feature. It represents log’s statistical properties including numerical and categorical
fields that can be directly extracted from logs. It conveys the information of a log partition into a
numerical vector representation. Particularly, numerical features employed by most of the existing
work are similar and share some typical forms. In the following, we compactly summarize four
types of such features.

• Log event sequence: A sequence of log events recording system’s activities. Particularly, each
element can simply be the log event ID or log embedding vector, e.g., learned by word2vec
algorithms [140].

• Log event count vector : A feature vector recording the log events occurrence in a log partition,
where each feature denotes a log event type and the value counts the number of occurrence.

• Parameter value vector : A vector recording the value of parameters (i.e., variables extracted
by log parsing) that appear in logs.

• Ad-hoc features: A set of relevant and representative features extracted from logs, which
are defined using domain knowledge on the object software system and problem context.
For example, Zhou et al. [202] manually identified various types of features from system
trace logs, including configuration (e.g., memory limit, CPU limit), resource (e.g., memory
consumption, CPU consumption), etc. These features profile the typical health states of a
system.

Graphical Feature. To discover the hierarchical and sequential relations (e.g., dependency and
co-occurrence) between system components and events with logs, the graphical feature usually
produces a directed graph model characterizing system behaviors, e.g., the execution path of a
process. The graphical features serve as the foundation for a variety of downstream log mining
tasks (such as monitoring [186, 200] and diagnosis [3, 8, 145]). For example, log-based behavioral
differencing [62] can identify system executions that are derived from system normal behaviors,
which has various applications in system evolution, testing, and security [8]. In this section, we
briefly introduce the algorithms used by existing work for graphical feature extraction, which can
be roughly categorized into two lines of work.
The first line of work leverages the objects identified in logs, e.g., process ID and system com-

ponent name, to construct graphs for system state monitoring. As objects often demonstrate
complicated hierarchical relations, it usually needs a more sophisticated algorithm for log partition.
For instance, to represent execution structure and object hierarchy in logs, Zhao et al. [200] con-
structed a stack structure graph by considering the 1:1, 1:n, and n:m mappings among different
objects. To tackle the challenge that unique identifiers are often unavailable, Yu et al. [186] proposed
to group interleaved logs based on a common set of identifiers. Each log contains an identifier
set that acts as a state node of the graph, and transitions are added by examining the subset and
superset relations of different identifier sets.
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The other line of work makes use of the underlying statistical distribution of log events, e.g.,
the order of log events, the temporal and spatial locality of dependent log events, to build various
graphs for system behavior analysis. Particularly, somework aims at recovering the exact behavioral
model from log traces. Log partition therefore requires that identifiers can tie together the set of
events associated with a program execution. For example, Amar et al. [3] presented two variants of
k-Tails [13], namely 2KDiff and nKDiff, to build Finite State Machine (FSM) for log differencing.
2KDiff computes and highlights the differences between two log files containing a set of partitioned
logs; while nKDiff is able to conduct the comparison for multiple log files at once. Later Bao et
al. [8] extended their work by proposing s2KDiff and snKDiff, which take into consideration the
frequencies of different behaviors. Busany et al. [14] studied the scalability problem of existing
behavioral log analysis algorithms by extracting Finite State Automaton (FSA) models or temporal
properties from logs. We refer readers to this paper for more related studies.
However, as previously discussed, a unique identifier for each execution trace is not always

available, especially in distributed applications and systems. Therefore, some work attempts to
mine behavioral models using interleaved logs. For example, Lou et al. [124] employed statistical
inference to learn the temporal dependencies among log events, which is also studied in similar
work including [11, 12]. Nandi et al. [145] computed the nearest neighbor groups to capture the
temporal co-occurrence of log events more accurately. The resulted model is a program Control
Flow Graph (CFG) spanning distributed components. Particularly, the correlation between two
components is calculated using either the Jaccard similarity or the Bayesian conditional probability
approach. Du et al. [46] described two methods to capture service executions by FSA models. The
first method leverages the trained log anomaly detection model, whose predictions encode the
underlying path of task execution. The second method builds a matrix where each entry represents
the co-occurrence probability of two log keys appearing together within a predefined distance.

6.2.3 Model Training. In this process, appropriate algorithms are selected based on the problem at
hand and selected models are trained based on the extracted features. A variety of machine learning
algorithms have been proposed, and we leave more details in the following sections. This step is
often conducted in an offline manner. Moreover, a fundamental assumption of various log mining
tasks is that the majority of logs should exhibit patterns that conform to system’s normal behaviors.
For example, in anomaly detection, different models are trained to capture various patterns from
different perspectives and used to detect anomalies that lack the desireable properties.

6.2.4 Online Deployment. Once the model is trained offline, it could be deployed to real-world
software systems for various log mining tasks. For example, an anomaly detection model can be
integrated into software products to detect malicious system behaviors and raise alarms in real
time. To tackle the challenge of pattern change caused by system upgrades, several studies [46, 108]
supported online update of a previously trained model to adapt to unprecedented log patterns.

6.3 Anomaly Detection
6.3.1 Problem Formulation. Anomaly detection is the task of identifying system anomalous patterns
that do not conform to expected behaviors on log data. Typical anomalies often indicate possible
error, fault or failure in software systems. In this section, we elaborate on existing research work in
this field based on approaches adopted therein. As shown in Fig. 6, we categorize the approaches
into two broad classes: traditional machine learning algorithms and deep learning models. The
surveyed approaches are listed in Table 4 together with several interesting properties. Specifically,
we summarize the algorithm/model and feature used by an approach and whether or not each
approach is unsupervised and online. Particularly, unsupervised approaches do not require labels
for model training; and an online approach is one that can process its input piece-by-piece in a
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Table 4. Summary of log anomaly detection approaches.

Methods Algorithm/Model Feature Unsupervised Online

T
ra
di
ti
on

al
m
ac
hi
ne

le
ar
ni
ng

Xu et al. [180] PCA ★ † Yes No
Lin et al. [108] Clustering ∗ Yes No
He et al. [75] Clustering ∗ ★ Yes No

Liang et al. [104] SVM ‡ No No
Kimura et al. [91] SVM ‡ No No
Xu et al. [179] Frequent pattern mining ∗ ★ Yes Yes

Shang et al. [161] Frequent pattern mining ∗ Yes No
Lou et al. [125] Frequent pattern mining ★ Yes No

Farshchi et al. [54] Frequent pattern mining ★ Yes No
Nandi et al. [145] Graph mining ¶ Yes No
Lou et al. [124] Graph mining ¶ Yes No

Yamanishi et al. [181] Statistical model ∗ Yes No
He et al. [76] Logistic regression ★ No No
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Du et al. [46] LSTM model ∗ † Yes Yes
Zhang et al. [196] LSTM classification model ∗ No No
Meng et al. [136] LSTM model ∗ ★ Yes Yes
Xia et al. [177] LSTM-based GAN model ∗ Yes Yes
Lu et al. [128] CNN model ∗ No No
Liu et al. [109] Graph embedding model ¶ Yes No

∗ Log event sequence, ★ Log event count vector, † Parameter value vector
‡ Ad hoc features, ¶ Graphical feature

streaming fashion. In this paper, we mainly focus on general types of anomalies that are natural
imperfections of software systems and will directly impact system’s reliability. External attacks
and intrusions (such as cyber attacks and malicious activities) that are more relevant to system’s
security go out of the scope for this paper.

6.3.2 Traditional Machine Learning Algorithms. Traditional machine learning algorithms usually
perform on top of features explicitly provided by practitioners, e.g., log event count vector. Particu-
larly, the anomaly detection task can be formalized into different types and solved with different
algorithms such as clustering, classification, regression, etc.
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Dimensionality Reduction. It transforms data of high dimension into a low-dimension rep-
resentation such that some meaningful properties of the original data can be retained in the
low-dimension space. Principal Components Analysis (PCA) is one of the most popular algorithms
of this kind. By projecting data points to the first k principal components, anomalies can be identi-
fied if the projected distance is larger than a threshold. PCA was first applied by Xu et al. [179, 180]
to mine system problems from console logs. Particularly, both log event count vector and parameter
value vector are constructed and fed into a PCA model for anomaly detection.

Clustering. As an unsupervised method, clustering-based anomaly detection groups log-based
feature vectors into different clusters such that vectors in the same cluster are more similar to each
other (and as dissimilar as possible to vectors from other clusters). Clusters that contain very few
data instances tend to be anomalous. For example, Lin et al. [108] proposed LogCluster, which
clusters log sequences and recommends a representative sequence to assist developers quickly
identify potential problems. The representative sequence is selected by calculating the cluster
centroid. Furthermore, He et al. [75] proposed the Log3C framework to incorporate system KPIs
into the identification of impactful problems in service systems. In particular, they proposed a
cascading clustering algorithm to group numerous log sequences promptly. They finally use a
multivariate linear regression model to identify impactful problems that lead to KPI degradation.

Classification. Anomaly detection with classification categorizes the log partition into either
normal or anomalous type, where anomalous examples are derived from normal ones in terms of
some statistical properties. Support Vector Machine (SVM) is a supervised classification method
that is commonly used for log anomaly detection. In [104], Liang et al. vectorized log partitions by
identifying six types of features, including events number in a time window, accumulated events
number, etc. Based on these features, they applied four classification models for anomaly detection,
i.e. including SVM and nearest neighbor predictor. In addition, Kimura et al. [91] proposed a log
analysis method for proactive failure detection based on logs’ characteristics, including frequency,
periodicity, burstiness, and correlation with maintenance and failures. A SVM model with the
Gaussian kernel is employed for detecting failures.

Frequent Pattern Mining. It aims to discover the most frequent item sets and sub-sequences
in a log dataset that characterize system’s normal behaviors. Data instances that do not conform
to the frequent patterns will be reported as anomalies. The presence of specific log events and
the order of log events can both constitute patterns. For example, Xu et al. [179] mined sets of log
messages that often co-occur to detect abnormal execution traces in an online setting. Compared
to offline approaches, online pattern matching can quickly identify benign system executions, thus
striking a balance between accuracy and efficiency. Similarly, Lim et al. [105] searched for item sets
that were commonly associated with different failure types. Such item sets can assist developers
in predicting and characterizing failures. Other approaches mine the sequential patterns by log
events to discover anomalies or bugs [126, 161].

Additionally, Lou et al. [125] were the first to consider mining invariants among log messages for
system anomaly detection. Two kinds of invariants that model the relations between the number
of different log messages are derived: (1) invariants in textual logs that describe the equivalence
relation; and (2) invariants as a linear equation, which is the linear independence relation. Farshchi et
al. [54] proposed a similar approachwhichmines the correlation and causation relations between log
events and cloud system metric changes. Specifically, they employed a regression-based approach
to learn a set of assertions modeling the linear relations. Anomaly detection is then conducted by
monitoring log event streams and checking the compliance of metrics against the assertions.

Graph Mining. The set of approaches mainly employs graphical features, i.e., various graph
models (Section 6.2), to identify behavioral changes of complex systems, which can be used for
early detection of anomalies and allowing proactive actions for correction. For example, Nandi et
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al. [145] introduced a CFG mining approach to detect anomalous runtime behaviors of distributed
applications from execution logs, including both sequence anomaly and distribution anomaly. A
sequence anomaly is raised when an expected child is missing for a parent node within the given
time interval; a distribution anomaly is raised when an edge probability is violated. In [57], Fu et al.
modeled the execution behaviors of each system module as a state transition graph by learning an
FSA from log sequences. Each transition in the learned FSAs corresponds to a log key. For each
state transition, two types of information (i.e., the time consumed and circulation number) are
recorded and applied to detect two performance issues: low transition time and low transition
loop. By employing the Gaussian distribution to model the state transition in a distributed system,
low-performance transitions can be automatically identified by setting a proper threshold.

Other Statistical Models. There are some algorithms that do not belong to the above categories.
For example, Yamanishi et al. [181] employed a mixture of Hidden Markov Models to monitor
syslog behaviors. Particularly, the model is learned with an online discounting learning algorithm
by dynamically selecting an optimal number of mixture components. Anomaly scores are assigned
using universal test statistics whose threshold can be dynamically optimized. He et al. [76] employed
a logistic regression model to detect anomalies. They adopted event count vectors as the feature
and trained the model with a set of labeled data. A testing instance is declared as anomalous when
the probability estimated by the logistic function is greater than 0.5. Nagaraj et al. [144] diagnosed
performance issues for large-scale distributed systems by finding a set of inter-related log event
occurrences and variable values that exhibit the largest divergence across logs sets. Specifically, they
first separated logs into two sets according to some performance metrics (e.g., runtime). Then, they
recommended log events or state variables that contribute the most to the performance difference
via t-tests.

6.3.3 Deep learning models. Deep learning uses a multiple-layer architecture (i.e., neural networks)
to progressively extract features from inputs with different layers addressing different levels of
feature abstraction. Due to the exceptional ability in modeling complex relationships, neural
networks are widely applied in log-based anomaly detection. In the literature, we observed a
significant portion of papers adopting the Recurrent Neural Network (RNN) model and its variants.
Hence, we classify the deep learning models into RNN-based models and other models.

RNN-based Models. Models belonging to the RNN family (such as LSTM model and GRU
model) are commonly used to automatically learn the sequential patterns in log data. Anomalies
are raised when log patterns deviate from the model’s predictions. For example, Du et al. [46]
proposed DeepLog, which utilizes an LSTM model to learn system’s normal execution patterns by
predicting the next log event given a sequence of preceding log events. However, some anomalies
may manifest themselves as an irregular parameter value instead of a deviation from a normal
execution path. Hence, DeepLog also applies an LSTM model for checking the validity of parameter
value vectors. Many existing studies assume that the log data are stable over time and the set
of distinct log events is fixed and known. However, Zhang et al. [196] found that log data often
contain previously unseen log events or log sequences, demonstrating log instability. To tackle this
problem, they proposed LogRobust to extract the semantic information of log events by leveraging
off-the-shelf word vectors and then applied a bidirectional LSTM model to detect anomalies.

In terms of capturing log’s semantics, Meng et al. [136] found existing word2vec models did not
distinguishwell between synonyms and antonyms. Therefore, they trained aword embeddingmodel
to explicitly consider the information of synonyms and antonyms. Meng et al. [135] further extended
their work by proposing a semantic-aware representation framework for online log analysis. The
issues of log-specific word embedding and out-of-vocabulary (OOV) are both addressed. Recently,
Zuo et al. [205] combined the transaction-level topic modeling for learning the embedding of
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logs, where a transaction is a group of logs sequentially occurring in a time window. To address
the problem of insufficient labels, Chen et al. [24] applied transfer learning to share anomalous
knowledge between two software systems. Specifically, they first trained an LSTM model on the
data with sufficient anomaly labels to extract sequential log features, which were then fed into
fully connected layers for anomaly classification. Next, the LSTM model was fine-tuned with logs
from another system with limited labels, while the fully connected layers were fixed.

Other Deep Learning Models. Besides the RNN-based models, other model architectures also
play a role in detecting anomalies with logs. For example, Xia et al. [177] proposed LogGAN,
an LSTM-based Generative Adversarial Network (GAN). Like all GAN-style models, LogGAN
comprises a generator and a discriminator. The generator attempts to capture the distribution of
real training data and synthesizes plausible examples; while the discriminator tries to distinguish
fake instances from real and synthetic data. Effort is also devoted to explore the feasibility of
Convolutional Neural Networks (CNN) for anomaly detection. Specifically, Lu et al. [128] first
utilized a word embedding technique to encode logs into two-dimension feature matrices, upon
which CNN models with different filters were then applied for anomaly detection. Liu et al. [109]
proposed log2vec, a graph embedding basedmethod for cyber threat detection. Specifically, they first
converted logs into a heterogeneous graph using heuristic rules and then learned the embedding of
each log entry by a graph representation learning approach. Based on the embedding vectors, logs
were grouped into clusters, whose size smaller than a threshold would be reported as malicious.

6.4 Failure Prediction
6.4.1 Problem Formulation. Anomaly detection aims to detect anomalous status or unexpected
behavior patterns which may or may not cause failures. Differently, failure prediction attempts
to proactively generate early warnings to prevent server failures, which often lead to unrecover-
able states. The objective and role of anomaly detection and failure prediction are different yet
both are important. Therefore, the exploration of failure prediction techniques is significant to
reliability engineering. Generally, when software systems deviate from fulfilling a required system
function [95], a failure occurs and it often shows human-perceivable symptoms. The failure could
lead to unintended results and user dissatisfaction, especially for large-scale software systems.
Traditional ways of failure management (such as anomaly detection) are mostly passive, which deal
with failures after they have happened. In contrast, failure prediction aims to proactively predict
the failure before it happens. A common practice is to leverage the valuable logs to proactively
predict failures. For example, in [195], switch failures in data center networks are predicted from
current status and curated historical hardware failure cases. Usually, input data of the predictive
model are system logs, which record the system status, changes in configuration, and operational
maintenance, etc.
According to the source of failures, failure prediction could mainly be categorized into two

scenarios: a) Prediction of independent failures in homogeneous systems, e.g., high-performance
computing (HPC) systems. Most existing approaches focus on how to leverage the sequential
information to predict the failure of each single component, i.e., sequence-based methods. b)
Prediction of outages caused by a collection of heterogeneous devices or components, which is
widely observed in large-scale cloud systems. The mainstreaming approach tends to explore useful
hints in the relationship between multiple heterogeneous components and makes prediction from
relation-mining algorithms.

6.4.2 Homogeneous Systems. In homogeneous systems, the mainstreaming approaches are based
on modeling the sequential information that represents the system status. A typical homogeneous
system is large-scale supercomputers which may encounter faults (e.g., component failures) every
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day. Exascale systems are expected to combat with higher fault rates due to enormous number of
system components and higher workload [39]. However, triggering resilience-mitigating mecha-
nisms is difficult since there are no obvious, well-defined failure indicators, which rely on a deeper
understanding of the faults caused by hardware and software components. Therefore, logs become
the most reliable information source to monitor the system health. Furthermore, to catch early
warning signs of these failures, there are additional applications that scan through the monitoring
data from the system logs and proactively generate alerts. Some of these alerts are generated from
the manually defined thresholds on the collected system performance data (e.g., CPU utilization rate)
or error logs (e.g., certain types of errors appearing too frequently within some time range). The
objective of such alerts is to provide early warnings so that protective actions (e.g., virtual machine
migration or software rejuvenation) can be performed to mitigate or minimize the impact of such
failures. In this context, efficient failure prediction via system log mining can enable proactive
recovery mechanisms to increase reliability.
In homogeneous systems, component failures or node soft lock-ups typically lead to crashes

of user jobs scheduled on the affected nodes, and they may cause undesired downtime. One
approach to mitigate such problems is to predict node failures with a sufficient lead time in order
to take proactive measures. Sahoo et al. [157] first addressed this problem by collecting system
logs representing the components’ health status. Then, several time series models are employed
to predict the system health of each node through indication metrics, such as the percentage of
system utilization, usage of network IO, and system idle time. Russo et al. [156] considered the
log sequence as multi-dimensional vector and employed three kinds of support vector machines
to predict defective log sequences. Das et al. [39] proposed Desh to identify failure indicators in
each node with enhanced training and classification for failure event log chain. Desh is a deep
learning-based method that contains three phases: (1) It first recognizes chains of log events leading
to a failure. (2) Then it re-trains chain recognition of events augmented with expected lead times to
failure; (3) Finally Desh predicts lead times during testing/inference deployment to predict which
specific node fails in how many minutes. To speed up the recognition of the failure chain from log
events, Das et al. [38] proposed a new node failure predicting method called Aarohi to extend their
previous work to online learning setting. Aarohi first trains an offline deep learning model with log
parsing, then utilizes grammar-based rules to provide online testing. Another approach from feature
engineering tries to extract specific patterns about a certain time frame before a critical event. This
anomaly pattern can serve as a proactive alerts. Klinkenberg et al. [93] adopted descriptive statistics
and supervised machine learning techniques to create such proactive alert from the system logs.
They trained a binary classification model to detect the potential node failure based on a given time
sequence of monitoring data collected from each node. Berrocal et al. [10] used environmental logs
to extract numerical indicators and conducted a Void Search (VS) algorithm on these numerical
values for the failure prediction task.

6.4.3 Heterogeneous Systems. In heterogeneous systems, modeling the relationship amongmultiple
components is the key, which is also the core part for the dominating relation mining algorithms.
Different from homogeneous systems which focus on predicting failures based on raw signals
sealed in the event logs or trace logs from single component, the prediction of critical failures (also
called outage) in heterogeneous systems relies on the failure signals from log information collected
from diversified system components. In current real-time heterogeneous systems, such as the cloud
system, outage prediction is an important and challenging task to perform. On one hand, outages
are critical system failures that could lead to severe consequences. On the other hand, outages
occur without a significant alerting signals pattern, which makes it hard to predict. Moreover, the
scope of impacting signals is a complex process to define. Therefore, compared to homogeneous
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system settings, it is more valuable to detect node outages and distinguish regular internal failures
from those caused by external factors, such as maintenance and human errors.
From the perspective of methodology, the advancement of failure prediction in heterogeneous

systems relies on effective detection of the relationship between early alerting signals from system
logs and node/component outage. Chen et al. [25] proposed AirAlert framework based on Bayesian
network to find the conditional dependence between the alerting signal extracted from system logs
and the outage. Then, given several alert signals, AirAlert employed gradient boosting tree method
to conduct outage prediction. Lin et al. [107] designed MING framework to find the relationship
between complex failure-indicating alerts and the outage from temporal and spatial features. They
carefully designed a ranking model that combines the intermediate results from LSTM model
capturing temporal signals and a Random Forest model incorporating spatial data. Zhou et al. [202]
proposed MEPFL to narrow down the scope of failure prediction into microservice level. Based on
a set of manual selected features defined on the system trace logs, MEPFL trains prediction models
at both the trace level and the microservice level to predict three common types of microservice
application faults: multi-instance faults, configuration faults, and asynchronous interaction faults.

6.5 Failure Diagnosis
6.5.1 Problem Formulation. Unlike anomaly detection and failure prediction that are usually
formalized as a classification task, failure diagnosis targets to identify the underlying causes
leading to a failure that has affected end users. It is often closely related to the root cause analysis.
Specifically, although anomaly detection and failure prediction can pinpoint whether a problem
occurs or will occur, there is a huge gap between the detection and removal of a problem or a
failure. To completely resolve the problems, failure diagnosis is a crucial step, but the diagnosis
process is notoriously expensive and inefficient. It is reported that failure diagnosis takes over 100
billion dollars, and developers spend more than half of their time on debugging [197]. Following
the concept of error, fault, and failure, as defined in [95], failure diagnosis aims to identify the fault
that has led to the user-perceived impairment in a software system. In the broad domain of failure
diagnosis, log-based failure diagnosis is now a standard practice for software developers. However,
failure diagnosis is very challenging. The complexity of modern software systems grows rapidly,
where different services, software, and hardware are tightly coupled. It is too complex to correctly
and efficiently disentangle the relations among the fault, failure, and human-observed symptoms.
Moreover, as software systems become more mature, failures are becoming more and more hard to
detect and diagnose, from perceptible software functionality issues to imperceptible problems [88],
e.g., performance issues [1, 138, 185].
To tackle these challenges, in recent decades, techniques to automate the diagnosis process

have been widely developed, for example, using the informative logs [29, 82, 202]. Jiang et al. [83]
provided one of the first characteristic studies of log-based problem troubleshooting on real-world
cases. They concluded that problem troubleshooting is time-consuming and challenging, which can
be significantly facilitated by logs. In addition, they appealed to engineers to employ automated
methods to speedup the problem resolution time, which is also the focus of this survey. Likewise,
Zhou et al. [201] empirically investigated the faults and debugging practices in microservice systems.
The results show that proper tracing and visualization techniques can improve the diagnosis,
which also suggest the strong needs for more intelligent log analysis. Other empirical studies
include understanding failures with logs in high-performance computing (HPC) systems [48], cloud
management systems [34], web servers [78] and industrial air traffic control system [30].
In this section, we review recent work on automated log-based failure diagnosis. Particularly,

these research studies mainly focus on the large-scale software systems where failure diagnosis is
burdensome, such as general distributed systems, storage systems, big data systems, microservice
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systems. As the characteristic and functionality may vary, these systems demonstrate different
failure behaviors. However, the overall methodology for failure diagnosis still shares similar tech-
niques, which can be categorized into four types, i.e., execution replay, model-based, statistics-based,
and retrieval-based methods. There are also studies on diagnosing the hardware fault by traces
(e.g., [100]), which are beyond the scope of this survey.

6.5.2 Execution Replay Methods. Traditional rule-based methods heavily rely on a set of predefined
rules (e.g., in the format of "if-then") from the expert knowledge to diagnose failures. However, the
methods cannot be well generalized to unseen failures that are not included in the rules. On the
contrary, execution replay methods aim to automatically infer the execution flow from logs and
trace back to the software system failure, as previously introduced in Section 6.2. The set of methods
is human-interpretable and automated. Yuan et al. [187] proposed the SherLog, which analyzes
source code by run-time logs to represent the detailed execution process of a failure. Specifically,
SherLog infers both control and data value information of a failed execution to help developers
understand the failure. Similarly, LogMap [16] first retrieves log messages from bug reports and
then applies static analysis technique to identify corresponding logging lines in source code. At
last, it traverses through logging lines to derive the potential code paths, which help reconstruct
the execution path and assist the debugging process.

6.5.3 Model-based Methods. Model-based methods utilize logs to build the reference model (e.g.,
execution path) for a software system and then check which log events violate the reference model.
In short, it sets up standards for normal software system executions and diagnoses failures by
detecting the possible inconsistency. The majority of existing model-based studies leverage the
log information to reconstruct the system execution flow as a graph representation [6, 80, 81]. To
achieve so, Jia et al. proposed to mine a time-weighted control flow graphs (TCFG) [81] and the
service topology [80] from interleaved logs during the offline phase. In the online phase, a failure
can be easily diagnosed by observing the deviation between execution log sequences and the mined
graph models. After observing that log sequences generated by a normal execution are consistent
across multiple runs, Tak et al. [170] proposed the LOGAN to capture normal log patterns by log
grouping, log parsing, and log alignment. When a failure occurs, LOGAN highlights the divergence
of current log sequence from a reference model and suggests the possible root cause. Different from
these research tasks, to detect concurrency bugs in distributed systems, Lu et al. [126] proposed to
mine logs from historical executions to uncover feasible but undertested log message orders. The
log message orders represent possible execution flow that are likely to expose errors.

6.5.4 Statistics-based Methods. Since software systems generate logs to record normal and abnor-
mal executions, it is intuitive to employ some statistical techniques (e.g., statistical distribution,
correlation analysis) to capture the relationships between logs and the consequent failures.
Chuah et al. [29] developed a diagnostics tool, FDiag, to parse the log messages and employs

statistical correlation analysis to attribute the observed failure to a possible root cause. However,
the diagnostic capability of the proposed method is limited to known failures. To overcome the
difficulty, Chuah et al. [28] further extended their approach to an advanced FDiagV3 method, in
which a PCA and ICA-based correlation approach is additionally employed. Differently, FDiagV3 can
identify those unknown failures by automatically extracting the outlier issues. In [59], a three-step
approach is designed to establish the causal dependency graph through log events, which helps
identify the process that a failure occurs. The general idea resembles execution replay methods,
but the causal dependency graph is statistically mined by grouping similar log events and utilizing
the temporal order information. Similarly, Yu et al. [185] proposed to comprehend performance
problem of device drivers in Windows. The method narrows down the diagnosis scope and pattern
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mining by measuring the impact of suspicious components on performance and representing the
behavior pattern with the signature set tuple. Then, thresholds are set to identify highly suspicious
and high-impact components that are likely to cause performance problems.

Lu et al. [127] proposed to detect and diagnose anomalies in the Spark system. In complementary
to previous studies, the proposed method builds statistical models from the data distribution of
several task-related features. It then diagnoses the anomaly by setting threshold and analyzes the
root causes with weighted factors. Similar to Xu et al. [180], SCMiner [192] was proposed to utilize
a PCA method to detect abnormal system call sequences. Then, it maps the abnormal sequence to
application functions by frequent pattern mining on system call traces. At last, SCMiner identifies
and ranks buggy functions by matching with the function call traces. Likewise, CloudDiag [138]
employs a statistical technique (i.e., based on the data distribution) to identify the category of a
fine-grained performance problem. Then, a fast matrix recovery algorithm, RPCA, is adopted to
identify the root cause (i.e., method invocations) for the performance failure.

6.5.5 Retrieval-based Methods. In practice, failures that previously occurred are valuable since
they can aid developers in better diagnosing newly-occurred failures. Retrieval-based methods, as
indicated by the name, retrieve similar failures in a knowledge base composed of failures in history
or populated by injected faults in the test environment. Shang et al. [161] focused on diagnosing
big data analytics applications in Hadoop system by injecting failures manually and analyzing the
logs. Particularly, they proposed to uncover differences between pseudo and cloud deployments by
log parsing, execution sequence recovery, and sequence comparison. Pham et al. [150] adopted a
similar idea but they targeted on the general distributed system. Under the assumption that similar
faults generate similar failures, we can locate the root cause of a reported failure by inspecting
matched failures in the knowledge base. The method first reconstructs execution flows between
system components, computes the similarity of the reconstructed flows, and performs precise fault
injection. Nagaraj et al. [144] proposed to diagnose the performance failures by comparing the logs
of system behaviors in good and bad performance. Based on the two collected sets of logs, they
applied a number of machine learning techniques to automatically compare and infer the strongest
associations between performance and system components, where failures were likely to happen.
Similarly, CAM [82] applies the same idea to the cause analysis for test alarms in system and

integration testing. In detail, the failure matching is achieved by using the K nearest neighbors
(KNN) algorithm to find similar attribute vectors, which are built on test log terms extracted by
term frequency–inverse document frequency (TF-IDF). Furthermore, Amar et al [2] extended the
CAM by keeping failing logs and removing logs that passed the test. Then, the most relevant logs
in historical failures were extracted by a modified TF-IDF and then vectorized. The vectors were
utilized to train an exclusive version of KNN to identify possible log lines that led to the failure.
Yuan et al. [191] facilitated the failure diagnosis by leveraging historical failures. They built four
classifiers by vectorizing historical failures logs using natural language processing techniques.
When a new failure occurs, the corresponding classifier was employed to identify the root cause.
Moreover, some failures are indistinguishable because they generate very similar logs. To tackle
the problem, Ikeuchi et al. [79] proposed to utilize user actions. At first, a log-based failure database
is constructed by performing various user actions. In the online deployment phase, when a user
action is performed, operators match the failures with the database to identify the root cause.

6.6 Others
There are other valuable topics to broaden the log mining literature. In this section, we mainly
introduce two reliability engineering tasks: specification mining and log-based software testing.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: June 2021.



A Survey on Automated Log Analysis for Reliability Engineering 27

Specification Mining. Specification mining is the task of extracting specifications (e.g., program
invariants) from program execution traces. Typical specifications impose constraints on the se-
quencing of program executions (ordering constraint) and program values (value constraint) [114].
Such specifications play an important role in system comprehension, verification, and evolution.
Ernst et al. [50, 51] leveraged dynamic techniques to discover program invariants from execution
traces. Specifically, they instrumented programs to write variables at critical program points (e.g.,
procedure entries and exits) and checked them against a series of potential invariant rules. They
also released an open-source toolkit named Daikon [36] for public reuse, which supports dynamic
detection of likely invariants from program computes. Lo et al. [114] mined modal scenario-based
specifications in the framework of Damm and Harel’s Live Sequence Charts (LSC) [37] from execu-
tion traces, which describe the relations among caller/callee object identifier, and method signature.
Lo et al. [112] further extended this model to explore the trigger-and-effect relationship of different
charts in LSCs. Moreover, they found the combination of scenario-based and value-based specifi-
cation mining is able to yield more rich specifications [113]. Using the ITU-T standard Use Case
Maps language, Hassine et al. [69] visualized execution traces to recover availability scenarios.
Such availability scenarios describe the degree to which a system or a component is operational
and accessible. In modern user-intensive applications, understanding user behaviors is crucial for
their design. To this end, Ghezzi et al. [60] inferred a set of Markov models from user interaction
logs to capture their behaviors probabilistically. Lemieux et al. [96] introduced a tool named Texada
to discover temporal behaviors of programs that hold true on log traces.

Log-based Software Testing. Log-based software testing aims to stimulate the overall software
workflow under testing by the generated log data. Many existing work solves this problem by
proposing a variety of state-machine-based formalism, similar to the techniques introduced in
Section 6.2. A pioneer work [4] discussed the availability of using formal log analyzer to enhance
software reliability. The majority of log-based testing approaches utilize cues from log files to
improve testing coverage or completeness, Chen et al. [21] designed a framework called LogCoCo
to estimate code coverage measures using the readily available execution logs. Chen et al. [22]
derived the state machine framework to conduct workload testing by extracting representative
user behaviors from large-scale systems. Cohen et al. [33] proposed a concept called log confidence
to evaluate the completeness of any log-based dynamic specification mining task.

7 OPEN-SOURCE TOOLKITS AND DATASETS
In recent years, there are many research studies focusing on automated log analysis. Meanwhile,
a number of log management tools have been developed to facilitate the real-world deployment
in industry. In this section, we review existing open-source tools and datasets for automated log
analysis. To select the desired tools, we define the following criteria: First, we did not consider
commercial log analysis tools, such as Splunk [168] and Loggly [119]; Second, the selected tools
should cover multiple log analysis phases presented in the paper. After carefully searching, we
curated a list of open-source log analysis toolkits, as shown in Table 5. These log analysis tools are
GrayLog, GoAccess, Fluentd, Logstash, Logalyze, Prometheus, Syslog-ng, and LogPAI. In common,
these tools support crucial features such as log collection, searching, routing, parsing, visualization,
alerting and automated analysis. Among these tools, LogPAI is an open-source project built upon
pure research outputs while other tools are packed as open-source enterprise products. Additionally,
most of existing tools focus on phases before the log mining (e.g., log parsing), and the resulting
outcomes (e.g., visualization) are presented to developers for manual analysis. Particularly, LogPAI
provides a set of automated log analysis tools such as log parsing and anomaly detection.
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Table 5. A list of open-source log analysis tools and log datasets.

Category Description Link

To
ol
s

GrayLog A centralized log collection and real-time analysis tool. [63]
GoAccess A real-time terminal-based log analyzer for web logs. [61]
Fluentd A data collector that unifies multiple logging infrastructures. [56]
Logstash A server-side processor that ingests and transforms log data. [122]
Logalyze A centralized log management and network monitoring software. [117]

Prometheus A monitoring solution for metrics collection and alerting. [152]
Syslog-ng A scalable log collector and processor across infrastructures. [169]
LogPAI A comprehensive automated log analysis toolkit [121]

D
at
as
et
s

Loghub A large collection of log datasets from various systems. [120]
Failure dataset Error logs produced by OpenStack cloud system. [40]

CFDR Computer failure data repository of different systems. [15]
SecRepo A list of security log data such as malware and system logs. [159]
EDGAR Apache log files that record and store user access statistic. [47]

Besides the open-source toolkits, a number of log datasets collected from various software
systems are available for research studies in academia. Table 5 shows the list of public log datasets
and their descriptions. The Loghub [77] maintains a large log collection that is freely accessible for
research purposes. Some log datasets are production data released from previous studies, while
others are collected in the lab environment. Another research study [34] presented error logs
produced by injecting failures in the OpenStack cloud management system. The computer failure
data repository (CFDR) focuses mainly on component failure logs in a variety of large production
systems. Besides these log datasets, there are also logs collected for other purposes, such as security
and web search. SecRepo is a curated list of security data such as malware and system logs. The
EDGAR dataset contains Apache logs that record user access statistic through internet search.

8 CONCLUSION
Recent years have witnessed the blossom of log analysis. Given the importance of software logs
in reliability engineering, extensive efforts have been contributed to efficient and effective log
analysis. This survey mainly explores the four main steps in automated log analysis framework:
logging, log compression, log parsing, and log mining. Additionally, we introduce the available
open-source toolkits and datasets. Our article enables the outsiders to step in this promising and
practical field, and allows the experts to fill in the gaps of their knowledge background. Based on
the investigation of these recent advances, we proposed new insights and discussed several future
directions, including how to make automated log analysis more feasible under the modern agile
and distributed development style, and the concept of a next-generation log analysis framework.
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