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1. Introduction

T hroughout this paper, let Γ be a nonempty closed subset of a real Banach space Ψ, N the set of all
natural numbers, < the set of all real numbers and C([d, e]) denotes the set of all continuous real-valued

functions defined on [d, e] ⊂ <.
A mapping T : Γ→ Γ is called

• contraction if there exists a constant δ ∈ [0, 1) such that

‖Tψ− Tζ‖ ≤ δ‖ψ− ζ‖, ∀ψ, ζ ∈ Γ; (1)

• nonexpansive if

‖Tψ− Tζ‖ ≤ ‖ψ− ζ‖, ∀ψ, ζ ∈ Γ. (2)

Clearly, every contraction map is a nonexpansive map for δ = 1.
For some decades now, fixed point theory has been developed into a basic and an essential tool for

different branches of both applied and pure mathematics. Particularly, it may be seen as an essential subject of
nonlinear functional analysis. Moreover, fixed point theory is one of the useful tools to solve many problems
in applied sciences and engineering such as: the existence of solutions to integral equations, differential
equations, matrix equations, dynamical system, models in economy, game theory, fractals, graph theory,
optimization theory, approximation theory, computer science and many other subjects.

It is well known that several mathematical problems are naturally formulated as fixed point problem,

Tψ = ψ, (3)
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where T is some suitable mapping, which may be nonlinear. For example, given a mapping ϕ : [d, e] ⊂ < → <
and k : [d, e]× [d, e]×< → <, then the solution to the following nonlinear integral equation:

ψ(c) = ϕ(c) +
∫ e

d
k(c, ρ, ψ(ρ))dρ, (4)

where ψ ∈ C([d, e]), is tantamount to finding the fixed point of the integral operator T : C([d, e]) → C([d, e])
defined by

T(ψ)(c) = ϕ(c) +
∫ e

d
k(c, ρ, ψ(ρ))dρ, (5)

for all ψ ∈ C([d, e]).
A solution ψ of the problem (3) is called a fixed point of the mapping T. We will denote the set of all fixed

points of T by F(T), i.e., F(T) = {ψ ∈ Γ : Tψ = ψ}.
On the other hand, once the existence of some fixed points of a given mapping is guaranteed, then finding

such fixed point of the mapping is cumbersome in some cases. To surmount this difficulty, iterative algorithm
is usually employed for approximating them. An efficient iterative should at least be T–stable, converges faster
than a number of some existing iterative scheme in the literature, converges to a fixed point of an operator or
should be data dependent (see [1]).

The Picard iterative algorithm

ψs+1 = Tψs, ∀s ∈ N (6)

is one of the first iterative algorithms which has been widely used for approximating the fixed points of
contraction mappings. However, the success of Picard iterative algorithm has not been carried over to the
more general classes of operators such as nonexpansive mappings even when a fixed exists.

For example, the mapping T : [0, 1] → [0, 1] defined by Tψ = 1− ψ for all ψ ∈ [0, 1] is a nonexpansive
mapping with a unique fixed point ψ = 1

2 . Notice that for ψ0 ∈ [0, 1], ψ0 6= 1
2 , the Picard iterative algorithm (6)

generates the sequence {1− ψ0, ψ0, 1− ψ0, ...} for which fails to converge to the fixed point z of T.
To overcome the failure recorded by Picard iterative algorithm, many researchers in nonlinear analysis got

busy with constructing several new iterative algorithms for approximating the fixed points of nonexpansive
mappings and other mappings more general than the classes of nonexpansive mappings.

Some notable iterative algorithms in the existing literature includes: Mann [2], Ishikawa [3], Noor [4],
Argawal et al., [5], Abbas and Nazir [6], SP [7], S* [8], CR [9], Normal-S [10], Picard-S [11], Thakur et al., [12], M
[13], M* [14], Garodia and Uddin [15], Two-Step Mann [16] iterative algorithms and so on.

In 2007, the following iterative algorithm which is known as S iteration was introduced by Argawal et al.,
[5]: 

w0 ∈ Γ,
ms = (1− µs)ws + µsTws,
ws+1 = (1− rs)Tws + rsTms,

s ∈ N, (7)

where {µs} and {rs} are sequences in [0, 1].
In 2014, the following iterative algorithm known as Picard-S iteration was introduced by Gursoy and

Karakaya [11]: 
w0 ∈ Γ,
ps = (1− µs)ws + µsTws,
ms = (1− rs)Tws + rsTps,
ws+1 = Tms,

s ∈ N, (8)

where {µs} and {rs} are sequences in [0, 1]. The authors showed with the aid of an example that Picard-S
iterative algorithm (8) converges at a rate faster than all of Picard, Mann, Ishikawa, Noor, SP, CR, S, S*, Abbas
and Nazir, Normal-S and Two-Step Mann iteration processes for contraction mappings.
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In 2016, Thakur et al., [12] introduced the following three steps iterative algorithm:
w0 ∈ Γ,
ps = (1− µs)ws + µsTws,
ms = T((1− rs)ws + rs ps),
ws+1 = Tms,

s ∈ N, (9)

where {µs} and {rs} are sequences in [0, 1]. With the help of numerical example, they proved that (9) is
faster than Picard, Mann, Ishikawa, Agarwal, Noor and Abbas iterative algorithm for Suzuki generalized
nonexpansive mappings.

In 2018, Ullah and Arshad [13] introduced the M iterative algorithm as follows:
w0 ∈ Γ,
ps = (1− rs)ws + rsTws,
ms = Tps,
ws+1 = Tms,

s ∈ N, (10)

where {rs} is a sequence in [0, 1]. Numerically they show that M iterative algorithm (10) converges faster than
S iterative algorithm (7) and Picard-S iteration process (8) for Suzuki generalized nonexpansive mapping.

Recently, Garodia and Uddin [15] introduced the following three steps iterative algorithm:
w0 ∈ Γ,
ps = Tws,
ms = T((1− rs)ps + rsTps),
ws+1 = Tms,

s ∈ N, (11)

where {rs} is a sequence in [0, 1]. The authors showed both analytically and numerically that their iterative
algorithm (11) converges faster than M iterative algorithm (10). Also, they showed that the iterative algorithm
(11) converges faster than all of S, Abbas and Nazir, Thakur New, M, Noor, Picard-S, Thakur, M* iterative
algorithms for contractive-like mappings and Suzuki generalized nonexpansive mappings.

Clearly, from the performance of the iterative algorithm (11), we note that it is one of the leading iterative
schemes.

Problem 1. Is it possible to construct a four-steps iterative algorithm which have better rate of converges than
the three-step iterative algorithm (11) for contraction mappings?

To solve the above problem, we introduce the following iterative algorithm, called AU iterative algorithm:

ψ0 ∈ Γ,
gs = T((1− rs)ψs + rsTψs),
ks = Tgs,
ηs = Tks,
ψs+1 = Tηs,

s ∈ N, (12)

where {rs} is a sequence in [0, 1].
The aim of this paper is to prove the strong convergence of AU iterative algorithm (12) to the fixed points

of contraction mappings. We will prove analytically that AU iterative algorithm (12) converges faster than the
iterative algorithm (11). With the aid of an example, we show numerically that AU iterative algorithm has
a better rate of convergence than the iterative algorithm (11) and several other leading iterative algorithms
existing in the literature. Also, we will show that AU iterative algorithm is T-stable and data dependent.

Additionally, we will use AU iterative algorithm (12) to find the unique solutions of a nonlinear integral
equation.



Open J. Math. Anal. 2021, 5(2), 95-112 98

2. Preliminaries

The following definitions and lemmas will be useful in proving our main results.

Definition 2. [17] Let {as} and {bs} be two sequences of real numbers that converge to a and b respectively
and assume that there exists

` = lim
s→∞

‖as − a‖
‖bs − b‖ .

Then,

(R1) if ` = 0, we say that {as} converges faster to a than {bs} does to b.
(R2) If 0 < ` < ∞, we say that {as} and {bs} have the same rate of convergence.

Definition 3. [17] Let {ωs} and {µs} be two fixed point iteration processes that converge to the same point z,
the error estimates

‖ωs − z‖ ≤ as, s ∈ N,

‖µs − z‖ ≤ bs, s ∈ N,

are available where {as} and {bs} are two sequences of positive numbers converging to zero. Then we say that
{ωs} converges faster to z than {µs} does if {as} converges faster than {bs}.

Definition 4. [17] Let T, T̃ : Γ → Γ be two operators. We say that T̃ is an approximate operator for T if for
some ε > 0, we have

‖Tψ− T̃ψ‖ ≤ ε, ∀ψ ∈ Γ. (13)

Definition 5. [18] Let {ζs} be any sequence in Γ. Then, an iterative algorithm ψs+1 = f (T, ψs), which
converges to fixed point z, is said to be T-stable if for εs = ‖ζs+1 − f (T, ζs)‖, ∀ s ∈ N, we have

lim
s→∞

εs = 0⇔ lim
s→∞

ζs = z. (14)

Lemma 6. [19] Let {‘s} and {λs} be nonnegative real sequences satisfying the following inequalities:

‘s+1 ≤ (1− σs)‘s + λs, (15)

where σs ∈ (0, 1) for all s ∈ N,
∞
∑

s=0
σs = ∞ and lim

s→∞
s

σs
= 0, then lim

s→∞
‘s = 0.

Lemma 7. [20] Let {‘s} be a nonnegative real sequence and there exits an s0 ∈ N such that for all s ≥ s0 satisfying the
following condition:

‘s+1 ≤ (1− σs)‘s + σsλs,

where σs ∈ (0, 1) for all s ∈ N,
∞
∑

s=0
σs = ∞ and λs ≥ 0 for all s ∈ N, then

0 ≤ lim sup
s→∞

‘s ≤ lim sup
s→∞

λs.

3. Convergence result

In this section, we prove the strong convergence of AU iterative algorithm (12) for contraction mappings.
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Theorem 8. Let Γ be a nonempty closed convex subset of a real Banach space Ψ and T : Γ→ Γ be a contraction mapping
such that F(T) 6= ∅. Let {ψs} be the sequence iteratively generated by (12) with a real sequence {rs} in [0, 1] satisfying
∞
∑

s=0
rs = ∞. Then {ψs} converges strongly to a unique fixed point of T.

Proof. Given z ∈ F(T), then from (12) we have

‖gs − z‖ = ‖T((1− rs)ψs + rsTψs)− z‖
≤ δ‖(1− rs)ψs + rsTψs − z‖
≤ δ((1− rs)‖ψs − z‖+ rs‖Tψs − z‖)
≤ δ((1− rs)‖ψs − z‖+ rsδ‖ψs − z‖)
= δ(1− (1− δ)rs)‖ψs − z‖. (16)

Now, from (12) and (16) we obtain

‖ks − z‖ = ‖Tgs − z‖
≤ δ‖gs − z‖
≤ δ2(1− (1− δ)rs)‖ψs − z‖. (17)

Also, from (12) and (17) we get

‖ηs − z‖ = ‖Tks − z‖
≤ δ‖ks − z‖
≤ δ3(1− (1− δ)rs)‖ψs − z‖. (18)

Finally, from (12) and (18) we have

‖ψs+1 − z‖ = ‖Tηs − z‖
≤ δ‖ηs − z‖
≤ δ4(1− (1− δ)rs)‖ψs − z‖. (19)

From (19), the following inequality is obtained:

‖ψs+1 − z‖ ≤ δ4(1− (1− δ)rs)‖ψs − z‖
‖ψs − z‖ ≤ δ4(1− (1− δ)rs−1)‖ψs−1 − z‖
‖ψs−1 − z‖ ≤ δ4(1− (1− δ)rs−2)‖ψs−2 − z‖

...

‖ψ1 − z‖ ≤ δ4(1− (1− δ)r0)‖ψ0 − z‖. (20)

From (20), we have

‖ψs+1 − z‖ ≤ δ4(s+1)
s

∏
n=0

(1− (1− δ)rn)‖ψ0 − z‖. (21)

Since for all s ∈ N, {rs} ∈ [0, 1] and δ ∈ (0, 1), it follows that (1− (1− δ)rs) < 1. From classical analysis we
know that 1− ψ < exp−ψ for all ψ ∈ [0, 1]. Then from (21), we have

‖ψs+1 − z‖ ≤ δ4(s+1)‖ψ0 − z‖

exp
(1−δ)

s
∑

s=0
rs

. (22)
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If we take the limits of both sides of (22), we get lim
s→∞
‖ψs − z‖ = 0. Hence, {ψs} converges strongly to the fixed

point of T as required.

4. Stability result

Theorem 9. Let Γ be a nonempty closed convex subset of a Banach space Ψ and T : Γ → Γ be a contraction mapping.

Let {ψs} be an iterative algorithm defined by (12) with a real sequence {rs} in [0,1] satisfying
∞
∑

s=0
rs = ∞. Then the

iterative algorithm (12) is T-stable.

Proof. Let {ζs} ⊂ Ψ be an arbitrary sequence in Γ and suppose that the sequence iteratively generated by (12)
is ψs+1 = f (T, ψs), which converges to a unique point z and that εs = ‖ζs+1 − f (T, ζs)‖. To prove that (12) is
T-stable, we have to show that lim

s→∞
εs = 0⇔ lim

s→∞
ζs = z.

Let lim
s→∞

εs = 0. Then from (12) and the demonstration above, we have

‖ζs+1 − z‖ = ‖ζs+1 − f (T, ζs) + f (T, ζs)− z‖
≤ ‖ζs+1 − f (T, ζs)‖+ ‖ f (T, ζs)− z‖
= εs + ‖ f (T, ζs)− z‖
= εs + ‖Tηs − z‖
≤ εs + δ‖ηs − z‖. (23)

‖ηs − z‖ = ‖Tks − z‖
≤ δ‖ks − z‖. (24)

Putting (24) into (23) we obtain

‖ζs+1 − z‖ = εs + δ2‖ks − z‖. (25)

‖ks − z‖ = ‖Tgs − z‖
≤ δ‖gs − z‖. (26)

Substituting (26) into (25), we obtain

‖ζs+1 − z‖ = εs + δ3‖gs − z‖. (27)

‖gs − z‖ = ‖T((1− rs)ζs + rsTζs)− z‖
≤ δ‖(1− rs)ζs + rsTζs − z‖
≤ δ(1− rs)‖ζs − z‖+ δrs‖Tζs − z‖
≤ δ(1− rs)‖ζs − z‖+ δ2rs‖ζs − z‖
= δ(1− (1− δ)rs)‖ζs − z‖. (28)

Substituting (28) into (27), we get

‖ζs+1 − z‖ = εs + δ4(1− (1− δ)rs)‖ζs − z‖. (29)

For all s ∈ N, put

θs = ‖ζs − z‖,
σs = (1− δ)rs ∈ (0, 1),

λs = εs.
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Since lim
s→∞

εs = 0, this implies that λs
σs

= εs
(1−δ)rs

→ 0 as s → ∞. Apparently, all the conditions of Lemma 6 are

fulfilled. Hence, we have lim
s→∞

ζs = z.

Conversely, let lim
s→∞

ζs = z. The we have

εs = ‖ζs+1 − f (T, ζs)‖
= ‖ζs+1 − z + z− f (T, ζs)‖
≤ ‖ζs+1 − z‖+ ‖ f (T, ζs)− z‖
≤ ‖ζs+1 − z‖+ δ4(1− (1− δ)rs)‖ζs − z‖. (30)

From (30), it follows that lim
s→∞

εs = 0. Hence, our new iterative algorithm (12) is stable with respect to T.

5. Rate of convergence

In this section, we show that AU iterative algorithm (12) converges faster than Garodia and Uddin
iterative algorithm (11) for contraction mappings.

Theorem 10. Let Γ be a nonempty closed convex subset of a Banach space and T : Γ → Γ be a contraction mapping
with fixed point z. For any w0 = ψ0 ∈ Γ, let {ws} and {ψs} be two sequences iteratively generated by (11) and (12)
respectively, with real sequence {rs} ∈ [0, 1] such that r ≤ rs < 1, for some r > 0 and s ∈ N. Then {ψs} converges
faster to z than {ws} does.

Proof. Recalling the inequality (21), we have

‖ψs+1 − z‖ ≤ δ4(s+1)
s

∏
n=0

(1− (1− δ)rn)‖ψ0 − z‖. (31)

Following our assumption that r ≤ rs < 1, for some r > 0 and together with s ∈ N, then from (31) we obtain

‖ψs+1 − z‖ ≤ δ4(s+1)
s

∏
n=0

(1− (1− δ)rn)‖ψ0 − z‖

= δ4(s+1)(1− (1− δ)r)s+1‖ψ0 − z‖. (32)

Let

as = δ4(s+1)(1− (1− δ)r)s+1‖ψ0 − z‖. (33)

Similarly, for any z ∈ F(T), it follows from (11) that

‖ps − z‖ = ‖Tws − z‖
≤ δ‖ws − z‖. (34)

Using (11) and (34), we obtain

‖ms − z‖ = ‖T((1− rs)ps + rsTps)− z‖
≤ δ‖(1− rs)ps + rsTps − z‖
≤ δ((1− rs)‖ps − z‖+ rs‖Tps − z‖)
≤ δ((1− rs)‖ps − z‖+ rsδ‖ps − z‖)
= δ(1− (1− δ)rs)‖ps − z‖
≤ δ2(1− (1− δ)rs)‖ws − z‖. (35)
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Again, from (11) and (35) we get

‖ws+1 − z‖ = ‖Tms − z‖
≤ δ‖ms − z‖
≤ δ3(1− (1− δ)rs)‖ws − z‖. (36)

From (36), we obtain the following inequalities:

‖ws+1 − z‖ ≤ δ3(1− (1− δ)rs)‖ws − z‖
‖ws − z‖ ≤ δ3(1− (1− δ)rs−1)‖ws−1 − z‖
‖ws−1 − z‖ ≤ δ3(1− (1− δ)rs−2)‖ws−2 − z‖

...

‖w1 − z‖ ≤ δ3(1− (1− δ)r0)‖w0 − z‖. (37)

From (37), we have

‖ws+1 − z‖ ≤ δ3(s+1)
s

∏
n=0

(1− (1− δ)rn)‖w0 − z‖. (38)

Then from (38) we obtain that

‖ws+1 − z‖ ≤ δ3(s+1)
s

∏
n=0

(1− (1− δ)rn)‖w0 − z‖

= δ3(s+1)(1− (1− δ)r)s+1‖w0 − z‖. (39)

Put

bs = δ3(s+1)(1− (1− δ)r)s+1‖w0 − z‖. (40)

Now, from (33) and (40) we have that

θs =
as

bs
=

δ4(s+1)(1− (1− δ)r)s+1‖ψ0 − z‖
δ3(s+1)(1− (1− δ)r)s+1‖w0 − z‖

= δs+1. (41)

Since lim
s→∞

θs+1
θs

= lim
s→∞

δs+2

δs+1 = δ < 1, so from ratio test we know that
∞
∑

s=0
θs < ∞. Hence, from (41) we have

lim
s→∞

‖ψs+1 − z‖
‖ws+1 − z‖ = lim

s→∞

as

bs
= lim

s→∞
θs = 0. (42)

From the above demonstrations, it implies that {ψs} converges at a rate faster than {ws}. Hence, our
new iterative algorithm (12) converges faster than Garodia and Uddin iterative algorithm (11). To support the
analytical proof of Theorem 10 and to illustrate the efficiency of AU iterative algorithm (12), we will consider
the following numerical example.

Example 1. Let Ψ = < and Γ = [1, 50]. Let T : Γ → Γ be a mapping defined by Tψ = 3
√

2ψ + 4 for all ψ ∈ Γ.
Clearly, T is contraction and z = 2 is a fixed point of T. Take µs = rs =

1
2 , with an initial value of 30.

By using the above example, we will show that AU iterative algorithm (12) converges faster a number of
leading iterative algorithms in existing literature.
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Table 1. A comparison of the different iterative algorithm.

Step S MANN M NOOR AU
1 30.000000000 30.000000000 30.000000000 30.000000000 30.000000000
2 3.6809877034 17.000000000 2.2052183845 16.671526557 2.0055900713
3 2.1987214827 10.180987703 2.0032795388 9.7690754673 2.0000025151
4 2.0258396187 6.5399580891 2.0000531287 6.1528499922 2.0000000011
5 2.0034028155 4.5576312697 2.0000008609 4.2363659316 2.0000000000
6 2.0004488682 3.4579473856 2.0000000139 3.2106233814 2.0000000000
7 2.0000592237 2.8381224183 2.0000000002 2.6575629271 2.0000000000
8 2.0000078142 2.4845256350 2.0000000000 2.3578892859 2.0000000000
9 2.0000010310 2.2811112127 2.0000000000 2.1950165817 2.0000000000

10 2.0000001360 2.1634532374 2.0000000000 2.1063366837 2.0000000000
11 2.0000000179 2.0951662880 2.0000000000 2.0580036416 2.0000000000
12 2.0000000024 2.0554515931 2.0000000000 2.0316457914 2.0000000000
13 2.0000000003 2.0323255723 2.0000000000 2.0172673331 2.0000000000
14 2.0000000000 2.0188493597 2.0000000000 2.0094223922 2.0000000000
15 2.0000000000 2.0109929989 2.0000000000 2.0051417581 2.0000000000
16 2.0000000000 2.0064117448 2.0000000000 2.0028058861 2.0000000000

Table 2. A comparison of the different Iterative methods.

Step ISHIKAWA GARODIA ABBASS THAKUR AU
1 30.000000000 30.000000000 30.000000000 30.000000000 30.000000000
2 16.680987703 2.0287550076 2.8050437150 2.2052183845 2.0055900713
3 9.7832248288 2.0000774455 2.0456798729 2.0032795388 2.0000025151
4 6.1683753023 2.0000002091 2.0027147499 2.0000531287 2.0000000011
5 4.2509176634 2.0000000006 2.0001617881 2.0000008609 2.0000000000
6 3.2228294683 2.0000000000 2.0000096435 2.0000000139 2.0000000000
7 2.6669712534 2.0000000000 2.0000005748 2.0000000002 2.0000000000
8 2.3646881630 2.0000000000 2.0000000343 2.0000000000 2.0000000000
9 2.1996958627 2.0000000000 2.0000000020 2.0000000000 2.0000000000

10 2.1094405974 2.0000000000 2.0000000001 2.0000000000 2.0000000000
11 2.0600055172 2.0000000000 2.0000000000 2.0000000000 2.0000000000
12 2.0329091715 2.0000000000 2.0000000000 2.0000000000 2.0000000000
13 2.0180511628 2.0000000000 2.0000000000 2.0000000000 2.0000000000
14 2.0099021119 2.0000000000 2.0000000000 2.0000000000 2.0000000000
15 2.0054321205 2.0000000000 2.0000000000 2.0000000000 2.0000000000
16 2.0029800349 2.0000000000 2.0000000000 2.0000000000 2.0000000000

Figure 1. Graph corresponding to Table 1.
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Table 3. A comparison of the different Iterative methods.

Step SP CR AU
1 30.0000000000 30.0000000000 30.000000000
2 6.5399580891 2.9645498633 2.0055900713
3 2.8381224183 2.0693639599 2.0000025151
4 2.1634532374 2.0053107041 2.0000000011
5 2.0323255723 2.0004085862 2.0000000000
6 2.0064117448 2.0000314469 2.0000000000
7 2.0012725149 2.0000024204 2.0000000000
8 2.0002525810 2.0000001863 2.0000000000
9 2.0000501359 2.0000000143 2.0000000000
10 2.0000099517 2.0000000011 2.0000000000
11 2.0000019754 2.0000000001 2.0000000000
12 2.0000003921 2.0000000000 2.0000000000
13 2.0000000778 2.0000000000 2.0000000000
14 2.0000000154 2.0000000000 2.0000000000
15 2.0000000031 2.0000000000 2.0000000000
16 2.0000000006 2.0000000000 2.0000000000
17 2.0000000001 2.0000000000 2.0000000000
18 2.0000000000 2.0000000000 2.0000000000

Figure 2. Graph corresponding to Table 2.

Figure 3. Graph corresponding to Table 3.

From the above Tables and Figures, it is clear that AU iterative algorithm converges faster than a number
of existing iterative algorithms.
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6. Data dependence result

In this section, our focus is on the prove of data dependence result for fixed points of contraction mappings
by utilizing AU iterative algorithm (12).

Theorem 11. Let T̃ be an approximate solution of a contraction mapping T. Let {ψs} be a sequence iteratively generated
by AU iterative algorithm (12) and define an iterative algorithm {ψ̃s} as follows:

ψ̃0 ∈ Γ,
g̃s = T̃((1− rs)ψ̃s + rsT̃ψ̃s),
k̃s = T̃g̃s,
η̃s = T̃k̃s,
ψ̃s+1 = T̃η̃s,

s ∈ N (43)

where {rs} is a sequence in [0, 1] satisfying the following conditions:

(i) 1
2 ≤ rs, s ∈ N,

(ii)
∞
∑

s=0
rs = ∞.

If Tz = z and T̃z̃ = z̃ such that lim
s→∞

ψ̃s = z̃, we have

‖z− z̃‖ ≤ 9ε

1− δ
, (44)

where ε > 0 is a fixed number.

Proof. From (12) and (43), we have

‖gn − g̃s‖ = ‖T((1− rs)ψs + rsTψs)− T̃((1− rs)ψ̃s + rsT̃ψ̃s)‖
≤ ‖T((1− rs)ψs + rsTψs)− T((1− rs)ψ̃s + rsT̃ψ̃s)‖

+‖T((1− rs)ψ̃s + rsT̃ψ̃s)− T̃((1− rs)ψ̃s + rsT̃ψ̃s)‖
≤ δ‖(1− rs)ψs + rsTψs − ((1− rs)ψ̃s + rsT̃ψ̃s)‖+ ε

≤ δ(1− rs)‖ψs − ψ̃s‖+ δrs‖Tψs − T̃ψ̃s‖+ ε

≤ δ(1− rs)‖ψs − ψ̃s‖+ δrs‖Tψs − Tψ̃s‖+ δrs‖Tψ̃s − T̃ψ̃s‖+ ε

≤ δ(1− rs)‖ψs − ψ̃s‖+ δ2rs‖ψs − ψ̃s‖+ δrsε + ε

= δ(1− (1− δ)rs)‖ψs − ψ̃s‖+ δrsε + ε. (45)

‖ks − k̃s‖ = ‖Tgs − T̃g̃s‖
= ‖Tgs − Tg̃s + Tg̃s − T̃g̃s‖
≤ ‖Tgs − Tg̃s‖+ ‖Tg̃s − T̃g̃s‖
≤ δ‖gs − g̃s‖+ ε. (46)

Putting (45) into (46), we obtain

‖ks − k̃s‖ ≤ δ2(1− (1− δ)rs)‖ψs − ψ̃s‖+ δ2rsε + δε + ε. (47)

‖ηs − η̃s‖ = ‖Tks − T̃k̃s‖
= ‖Tks − Tk̃s + Tk̃s − T̃k̃s‖
≤ ‖Tks − Tk̃s‖+ ‖Tk̃s − T̃k̃s‖
≤ δ‖ks − k̃s‖+ ε. (48)
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Substituting (47) into (48), we have

‖ηs − η̃s‖ ≤ δ3(1− (1− δ)rs)‖ψs − ψ̃s‖+ δ3rsε + δ2ε + δε + ε. (49)

‖ψs+1 − η̃s+1‖ = ‖Tηs − T̃η̃s‖
= ‖Tηs − Tη̃s + Tη̃s − T̃η̃s‖
≤ ‖Tηs − Tη̃s‖+ ‖Tη̃s − T̃η̃s‖
≤ δ‖ηs − η̃s‖+ ε. (50)

Putting (49) into (50), we obtain

‖ψs+1 − ψ̃s+1‖ ≤ δ4(1− (1− δ)rs)‖ψs − ψ̃s‖+ δ4rsε + δ3ε + δ2ε + δε + ε.

Since rs ∈ [0, 1] and δ ∈ [0, 1), it implies that{
(1− (1− δ)rs) < 1,
δ4, δ3, δ2 < 1,

(51)

and using our assumption (i), we have

1− rs ≤ rs ⇒ 1 = 1− rs + rs ≤ rs + rs = 2rs.

From (51), we have

‖ψs+1 − ψ̃s+1‖ ≤ (1− (1− δ)rs)‖ψs − ψ̃s‖+ rsε + 4ε

= (1− (1− δ)rs)‖ψs − ψ̃s‖+ rsε + 4(1− rs + rs)ε

≤ (1− (1− δ)rs)‖ψs − ψ̃s‖+ 9rsε

= (1− (1− δ)rs)‖ψs − ψ̃s‖+ rs(1− δ)
9ε

(1− δ)
. (52)

Let θs = ‖ψs − ψ̃s‖, σs = (1− δ)rs, λs =
9ε

(1−δ)
, then from Lemma 7 and (52), we obtain

0 ≤ lim sup
s→∞

‖ψs − ψ̃s‖ ≤ lim sup
s→∞

9ε

(1− δ)
. (53)

Recalling Theorem 8, we have lim
s→∞

ψs = z and from the assumption that lim
s→∞

ψ̃s = z̃ together with (53) we have

‖z− z̃‖ ≤ 9ε

(1− δ)
. (54)

Hence, AU iterative algorithm (12) is data dependent. This completes the proof of Theorem 6.1

7. Application to a Volterra-Fredholm functional integral equation

In this section, we will use AU iterative algorithm (12) to find the solutions of a nonlinear integral
equation.

Many problems of mathematical physics, applied sciences and engineering are reduced to
Volterra-Fredholm integral equations (see for example, [21,22] and the references therein).

In 2011, Cracium and Serbian [23] considered and studied the following mixed-type Volterra-Fredholm
functional nonlinear integral equation:

ψ(t) = F
(

t, ψ(t),
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, ψ(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, ψ(ρ))dρ

)
, (55)
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where [u1; v1]× · · · × [um; vm] is an interval in <m, K, H : [u1; v1]× · · · × [um; vm]× [u1; v1]× · · · × [um; vm]×
< → < continuous functions and F : [u1; v1]× · · · × [um; vm]×<3 → <.

Recently, many authors in nonlinear analysis have constructed some iterative algorithms for
approximating the unique solution of the mixed-type Volterra-Fredholm functional nonlinear integral equation
(55) in Banach spaces (see for example, [24–26] and the references therein).

In this paper, we will prove the strong convergence of AU iterative algorithm (12) to the unique solution
of the problem (55). The following theorem which was given by Cracium and Serbian [23] will be of great
importance in proving our main results.

Theorem 12. [23]We assume that the following conditions are satisfied:

(B1) K, H ∈ Γ([u1; v1]× · · · × [um; vm]× [u1; v1]× · · · × [um; vm]×<);
(B2) F ∈ ([u1; v1]× · · · × [um; vm]×<3);
(B3) there exists nonnegative constants α, β, γ such that

|F(t, f1, ξ1, h1)− F(t, f2, ξ2, h2)| ≤ α| f1 − f2|+ β|ξ1 − ξ2|+ γ|h1 − h2|,

for all t ∈ [u1; v1]× · · · × [um; vm], f1, ξ1, h1, f2, ξ2, h2 ∈ <;
(B4) there exist nonnegative constants LK and LH such that

|K(t, ρ, f )− K(t, ρ, ξ)| ≤ LK| f − ξ|,
|H(t, ρ, f )− H(t, ρ, ξ)| ≤ LH | f − ξ|,

for all t, ρ ∈ [u1; v1]× · · · × [um; vm], f , ξ ∈ <;
(B5) α + (βLK + γLH)(v1 − u1) · · · (vm − um) < 1. Then, the nonlinear integral equation (55) has a unique solution

z ∈ C([u1; v1]× · · · × [um; vm]).

We are now ready to prove our main result.

Theorem 13. Assume that all the conditions (B1) − (B5) in Theorem 12 are satisfied. Let {ψn} be defined by AU

iterative algorithm (12) with real sequence rs ∈ [0, 1], satisfying
∞
∑

s=1
rs = ∞. Then (55) has a unique solution and the

AU iterative algorithm (12) converges strongly to the unique solution of the mixed type Volterra–Fredholm functional
nonlinear integral equation (55), say z ∈ C([u1; v1]× · · · × [um; vm]).

Proof. We now consider the Banach space Ψ = C([u1; v1] × · · · × [um; vm], ‖ · ‖C), where ‖ · ‖C is the
Chebyshev’s norm. Let {ψn} be the iterative sequence generated by AU iterative algorithm (12) for the
operator A : Ψ→ Ψ define by

A(ψ)(t) = F
(

t, ψ(t),
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, ψ(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, ψ(ρ))dρ

)
. (56)

Our intention now is to prove that ψs → z as s → ∞. Now, by using (12), (55), (56) and the assumptions
(B1)–(B5), we have that

‖gs − z‖ = ‖A((1− rs)ψs + rs Aψs)− z‖
= |A[(1− rs)ψs + rs Aψs](t)− A(z)(t)|

= |F(t, [(1− rs)ψs + rs Aψs](t),
∫ q1

u1

. . .∫ qm

um
K(t, ρ, [(1− rs)ψs + rs Aψs](ρ))dρ,

∫ v1

u1

. . .∫ vm

um
H(t, ρ, [(1− rs)ψs + rs Aψs](ρ))dρ)

−F
(

t, z(t),
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ

)
|
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≤ α|[(1− rs)ψs + rs Aψs](t)− z(t)|+ β|
∫ q1

u1

. . . (57)∫ qm

um
K(t, ρ, [(1− rs)ψs + rs Aψs](ρ))dρ−

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ|

+γ|
∫ v1

u1

. . .
∫ vm

um
H(t, ρ, [(1− rs)ψs + rs Aψs](ρ))dρ−

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ|

≤ α|[(1− rs)ψs + rs Aψs](t)− z(t)|+ β
∫ q1

u1

. . .∫ qm

um
|K(t, ρ, [(1− rs)ψs + rs Aψs](ρ))− K(t, ρ, z(ρ))|dρ

+γ
∫ v1

u1

. . .
∫ vm

um
|H(t, ρ, [(1− rs)ψs + rs Aψs](ρ))− H(t, ρ, z(ρ))|dρ

≤ α|[(1− rs)ψs + rs Aψs](t)− z(t)|+ β
∫ q1

u1

. . .∫ qm

um
LK|[(1− rs)ψs + rs Aψs](ρ)− z(ρ)|ds

+γ
∫ v1

u1

. . .
∫ vm

um
LH |[(1− rs)ψs + rs Aψs](ρ)− z(ρ)|ds

≤ α‖(1− rs)ψs + rs Aψs − z‖+ β
m

∏
i=1

(vi − ui)LK‖(1− rs)ψs + rs Aψs − p‖

+γ
m

∏
i=1

(vi − ui)LH‖(1− rs)ψs + rs Aψs − z‖

= [α + (βLK + γLH)
m

∏
i=1

(vi − ui)]‖(1− rs)ψs + rs Aψs − z‖. (58)

‖(1− rs)ψs + rs Aψs − z‖
≤ (1− rn)|ψs(t)− z(t)|+ rn|A(ψs)(t)− A(p)(t)|
= (1− rs)|ψs(t)− z(t)|

+rs

∣∣∣∣F(t, ψs(t),
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, ψs(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, ψs(ρ))dρ

)
−F

(
t, ρ(t),

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ

)∣∣∣∣
≤ (1− rs)|ψs(t)− z(t)|+ rnα|ψs(t)− z(t)|+ rsβ

∫ q1

u1

. . .
∫ qm

um
LK|ψs(ρ)− z(ρ)|dρ

+rsγ
∫ v1

u1

. . .
∫ vm

um
LH |ψs(ρ)− z(ρ)|dρ

≤ {1− rs(1− [α + (βLK + γLH)
m

∏
i=1

(vi − ui)])}‖ψs − z‖. (59)

Putting (59) into (58), we obtain

‖gs − z‖ ≤ [α + (βLK + γLH)
m

∏
i=1

(vi − ui)]{1− rs(1− [α + (βLK + γLH)
m

∏
i=1

(vi − ui)])}‖ψs − z‖. (60)

From (12) and (60), we have

‖ks − z‖ = ‖Ags − z‖ = |A(gs)(t)− A(z)(t)|

=

∣∣∣∣F(t, gs(t),
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, gs(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, gs(ρ))dρ

)
−F

(
t, z(t),

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ

)∣∣∣∣
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≤ α|gs(t)− z(t)|+ β|
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, gs(ρ))dρ−

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ|

+γ|
∫ v1

u1

. . .
∫ vm

um
H(t, ρ, gs(ρ))dρ−

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ|

≤ α|gs(t)− z(t)|+ β
∫ q1

u1

. . .
∫ qm

um
|K(t, ρ, gs(ρ))− K(t, ρ, z(ρ))|dρ

+γ
∫ v1

u1

. . .
∫ vm

um
|H(t, ρ, gs(ρ))− H(t, ρ, z(ρ))|dρ

≤ α|gs(t)− z(t)|+ β
∫ q1

u1

. . .
∫ qm

um
LK|gs(ρ)− z(ρ)|dρ + γ

∫ v1

u1

. . .
∫ vm

um
LH |gs(ρ)− z(ρ)|dρ

≤ α‖gs − z‖+ βΠm
i=1(vi − ui)LK‖gs − z‖+ γΠm

i=1(vi − ui)LH‖gs − z‖

= [α + (βLK + γLH)
m

∏
i=1

(vi − ui)]‖gs − z‖

≤ ([α + (βLK + γLH)
m

∏
i=1

(vi − ui)])
2{1− rs(1− [α + (βLK + γLH)

m

∏
i=1

(vi − ui)])}‖ψs − z‖. (61)

From (12) and (61), we have

‖ηs − z‖ = ‖Aks − z‖
= |A(ks)(t)− A(z)(t)|

= |F
(

t, ks(t),
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, ks(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, ks(ρ))dρ

)
−F

(
t, z(t),

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ

)
|

≤ α|ks(t)− z(t)|+ β|
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, ks(ρ))dρ−

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ|

+γ|
∫ v1

u1

. . .
∫ vm

um
H(t, ρ, ks(ρ))dρ−

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ|

≤ α|ks(t)− z(t)|+ β
∫ q1

u1

. . .
∫ qm

um
|K(t, ρ, ks(ρ))− K(t, ρ, z(ρ))|dρ

+γ
∫ v1

u1

. . .
∫ vm

um
|H(t, ρ, ks(ρ))− H(t, ρ, z(ρ))|dρ

≤ α|ks(t)− z(t)|+ β
∫ q1

u1

. . .
∫ qm

um
LK|ks(ρ)− z(ρ)|dρ + γ

∫ v1

u1

. . .
∫ vm

um
LH |ks(ρ)− z(ρ)|dρ

≤ α‖ks − z‖+ βΠm
i=1(vi − ui)LK‖ks − z‖+ γΠm

i=1(vi − ui)LH‖ks − z‖

= [α + (βLK + γLH)
m

∏
i=1

(vi − ui)]‖ks − z‖

≤ ([α + (βLK + γLH)
m

∏
i=1

(vi − ui)])
3{1− rs(1− [α + (βLK + γLH)

m

∏
i=1

(vi − ui)])}‖ψs − z‖.

(62)

Again, from (12) and (62), we obtain

‖ηs − z‖ = ‖Aks − z‖ = |A(ks)(t)− A(z)(t)|

=

∣∣∣∣F(t, ks(t),
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, ks(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, ks(ρ))dρ

)
−F

(
t, z(t),

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ

)∣∣∣∣
≤ α|ks(t)− z(t)|+ β

∣∣∣∣∫ q1

u1

. . .
∫ qm

um
K(t, ρ, ks(ρ))dρ−

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ

∣∣∣∣
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+γ

∣∣∣∣∫ v1

u1

. . .
∫ vm

um
H(t, ρ, ks(ρ))dρ−

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ

∣∣∣∣
≤ α|ks(t)− z(t)|+ β

∫ q1

u1

. . .
∫ qm

um
|K(t, ρ, ks(ρ))− K(t, ρ, z(ρ))|dρ

+γ
∫ v1

u1

. . .
∫ vm

um
|H(t, ρ, ks(ρ))− H(t, ρ, z(ρ))|dρ

≤ α|ks(t)− z(t)|+ β
∫ q1

u1

. . .
∫ qm

um
LK|ks(ρ)− z(ρ)|dρ + γ

∫ v1

u1

. . .
∫ vm

um
LH |ks(ρ)− z(ρ)|dρ

≤ α‖ks − z‖+ βΠm
i=1(vi − ui)LK‖ks − z‖+ γΠm

i=1(vi − ui)LH‖ks − z‖

= [α + (βLK + γLH)
m

∏
i=1

(vi − ui)]‖ks − z‖

≤ ([α + (βLK + γLH)
m

∏
i=1

(vi − ui)])
3{1− rs(1− [α + (βLK + γLH)

m

∏
i=1

(vi − ui)])}‖ψs − z‖. (63)

Finally, from (12) and (63), we obtain

‖ψs+1 − z‖ = ‖Aηs − z‖
= |A(ηs)(t)− A(z)(t)|

=

∣∣∣∣F(t, ηs(t),
∫ q1

u1

. . .
∫ qm

um
K(t, ρ, ηs(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, ηs(ρ))dρ

)
−F

(
t, z(t),

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ,

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ

)∣∣∣∣
≤ α|ηs(t)− z(t)|+ β

∣∣∣∣∫ q1

u1

. . .
∫ qm

um
K(t, ρ, ηs(ρ))dρ−

∫ q1

u1

. . .
∫ qm

um
K(t, ρ, z(ρ))dρ

∣∣∣∣
+γ

∣∣∣∣∫ v1

u1

. . .
∫ vm

um
H(t, ρ, ηs(ρ))dρ−

∫ v1

u1

. . .
∫ vm

um
H(t, ρ, z(ρ))dρ

∣∣∣∣
≤ α|ηs(t)− z(t)|+ β

∫ q1

u1

. . .
∫ qm

um
|K(t, ρ, ηs(ρ))− K(t, ρ, z(ρ))|dρ

+γ
∫ v1

u1

. . .
∫ vm

um
|H(t, ρ, ηs(ρ))− H(t, ρ, z(ρ))|dρ

≤ α|ηs(t)− z(t)|+ β
∫ q1

u1

. . .
∫ qm

um
LK|ηs(ρ)− z(ρ)|dρ + γ

∫ v1

u1

. . .
∫ vm

um
LH |ηs(ρ)− z(ρ)|dρ

≤ α‖ηs − z‖+ βΠm
i=1(vi − ui)LK‖ηs − z‖+ γΠm

i=1(vi − ui)LH‖ηs − z‖

= [α + (βLK + γLH)
m

∏
i=1

(vi − ui)]‖ηs − z‖

≤ ([α + (βLK + γLH)
m

∏
i=1

(vi − ui)])
4{1− rs(1− [α + (βLK + γLH)

m

∏
i=1

(vi − ui)])}‖ψs − z‖.

(64)

Since from condition (B5) we have [α+(βLK +γLH)
m
∏
i=1

(vi−ui)] < 1, it follows that ([α+(βLK +γLH)
m
∏
i=1

(vi−

ui)])
4 < 1. Thus, (64) reduces to

‖ψs+1 − z‖ ≤ {1− rs(1− [α + (βLK + γLH)
m

∏
i=1

(vi − ui)])}‖ψs − z‖. (65)

From (65), we have the following inequalities:

‖ψs+1 − z‖ ≤ {1− rs(1− [α + (βLK + γLH)
m

∏
i=1

(vi − ui)])}‖ψs − z‖

‖ψs − z‖ ≤ {1− rs−1(1− [α + (βLK + γLH)
m

∏
i=1

(vi − ui)])}‖ψs−1 − z‖
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...

‖ψ1 − z‖ ≤ {1− r0(1− [α + (βLK + γLH)
m

∏
i=1

(vi − ui)])}‖ψ0 − z‖. (66)

From (66), we have

‖ψn+1 − p‖ ≤ ‖ψ0 − p‖
s

∏
n=0

{
1− rn

(
1− [α + (βLK + γLH)

m

∏
i=1

(vi − ui)]

)}
. (67)

Since rn ∈ [0, 1] for all n ∈ N and recalling from assumption (B5) that [α + (βLK + γLH)∏m
i=1(vi − ui)] < 1,

then we have

1− rn(1− [α + (βLK + γLH)
m

∏
i=1

(vi − ui) < 1. (68)

From classical analysis, it is that 1− ψ ≤ e−ψ for all ψ ∈ [0, 1], thus from (67), we have

‖ψs+1 − z‖ ≤ ‖z0 − z‖e
−(1−[α+(βLK+γLH)

m
∏

i=1
(vi−ui)])

s
∑

n=0
rn

. (69)

Taking the limit of both sides of the above inequalities, we have lim
s→∞
‖ψs − z‖ = 0. Hence, (12) converges

strongly to the unique solution of the mixed type Volterra-Fredholm functional nonlinear integral equation
(55).

8. Conclusion

In this paper, we have proved that our new iterative algorithm (12) outperforms several well known
iterative algorithms in the literature in terms of rate of convergence. The stability result of AU iterative
algorithm has also been obtained. We have also shown that AU iterative algorithm (12) is data dependent.
Finally, to illustrate the efficiently of AU iterative algorithm (12), we have proved approximated the unique
solution of a nonlinear integral equation. Hence, our results are generalization and improvements of several
well known results in the existing literature.
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