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imaging methods for analysis of plant stress
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Abstract

Current methods of in-house plant phenotyping are providing a powerful new tool for plant biology studies. The
self-constructed and commercial platforms established in the last few years, employ non-destructive methods and
measurements on a large and high-throughput scale. The platforms offer to certain extent, automated measurements,
using either simple single sensor analysis, or advanced integrative simultaneous analysis by multiple sensors. However,
due to the complexity of the approaches used, it is not always clear what such forms of plant phenotyping can offer
the potential end-user, i.e. plant biologist. This review focuses on imaging methods used in the phenotyping of plant
shoots including a brief survey of the sensors used. To open up this topic to a broader audience, we provide here a
simple introduction to the principles of automated non-destructive analysis, namely RGB, chlorophyll fluorescence,
thermal and hyperspectral imaging. We further on present an overview on how and to which extent, the automated
integrative in-house phenotyping platforms have been used recently to study the responses of plants to various
changing environments.

Keywords: Plant phenotyping, RGB digital imaging, Chlorophyll fluorescence imaging, Thermal imaging, Hyperspectral
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Introduction
Recently, a large number of reviews have been published
on the advantages and possibilities of high-throughput
plant phenotyping approaches [1-5]. Most focus on the
potential of these approaches which use precise and so-
phisticated tools and methodologies to study plant
growth and development. To review the state-of-the-art
of phenotyping platforms, we present a list of recent
publications in Table 1. Interestingly, in about a half of
these, only one measuring tool, mostly RGB imaging, for
plant phenotyping was used. In the other papers, inte-
grative phenotyping, signifying two or more measuring
tools but which are rarely automated, was used (Table 1).
This illustrates that the integrative automated high-
throughput phenotyping measurements/platforms are
still rather rare. Greenhouse- and grow chamber-based
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plant phenotyping platforms are publically available and
these offer their services and collaborative projects. De-
scriptions, methodological background and focus can be
found at http://www.plant-phenotyping-network.eu/eppn/
select_installation. As an example of the integrative auto-
mated high-throughput phenotyping platform, a grow
chamber-based phenotyping facility installed at Palacký
University in Olomouc, Czech Republic is presented in
Figure 1.
High-throughput integrative phenotyping facilities pro-

vide an opportunity to combine various methods of auto-
mated, simultaneous, non-destructive analyses of plant
growth, morphology and physiology, providing a complex
picture of the plant growth and vigour in one run, and re-
peatedly during the plant’s life-span. Particular methods
used in integrative plant phenotyping are often not new
and usually represent those which have already been used
for a number of years in basic research, e.g. non-
invasive methods that employ visible or fluorescence
imaging (described in more detail further in the text).
High-throughput then allows analysis of the plants on a
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Table 1 List of selected works describing automated high-throughput analysis to study plant stress responses

Study Plant species Type of stress Type of the study Type of automated analysis Platform
name/origin

Granier et al. 2006; [58] Arabidopsis drought-stress methodology RGB (top view) PHENOPSIS

Skirycz et al. 2011; [59] Arabidopsis drought-stress applied RGB (top view) WIWAM

Clauw et al. 2015; [60] Arabidopsis drought-stress applied RGB (top view) WIWAM

Tisné et al. 2013; [61] Arabidopsis drought-stress applied RGB (top view) PHENOSCOPE

Neumann et al. 2015; [26] barley drought-stress methodology RGB (multiple views) LemnaTec

Pereyra-Irujo et al. 2012; [62] soybean drought-stress methodology RGB (two-views) GlyPh (self-
construction)

Honsdorf et al. 2014; [16] barley, (wild species) drought-stress applied RGB (multiple views) LemnaTec

Coupel-Ledru et al. 2014; [63] grapevine drought-stress applied RGB (multiple views) LemnaTec

Petrozza et al. 2014; [66] tomato drought-stress applied RGB (multiple views),
hyperspectral NIR, SLCFIM

LemnaTec

Harshavardhan et al. 2014; [67] Arabidopsis drought-stress applied RGB (top view),
hyperspectral NIR

LemnaTec

Bresson et al. 2013; [68] Arabidopsis drought-stress applied RGB (top view) PHENOPSIS

Bresson et al. 2014; [69] Arabidopsis drought-stress applied RGB (top view), TLCFIM PHENOPSIS

Chen et al. 2014; [64] barley drought-stress methodology RGB (multiple-views),
hyperspectral NIR, SLCFIM

LemnaTec

Fehér-Juhász et al. 2014; [19] wheat drought-stress applied RGB (multiple views),
thermoimaging

self-construction,
semi-automated

Cseri et al. 2013; [65] barley drought-stress methodology RGB (multiple views),
thermoimaging

self-construction,
semi-automated

Vasseur et al. 2014 [71] Arabidopsis heat-stress,
drought-stress

applied RGB (top view) PHENOPSIS

Rajendran et al. 2009; [73] wheat salt-stress applied RGB (multiple views) LemnaTec

Harris et al. 2010; [74] wheat, barley salt-stress applied RGB (multiple views) LemnaTec

Golzarian et al. 2011; [18] barley salt-stress methodology RGB (multiple views) LemnaTec

Schilling et al. 2014; [75] barley salt-stress applied RGB (multiple views) LemnaTec

Hairmansis et al. 2014; [76] rice salt-stress applied RGB (multiple views) SLCFIM LemnaTec

Chaerle et al. 2006; [77] tobacco biotic-stress methodology thermoimaging, TLCFIM self-construction

Poiré et al. 2014; [79] Brachypodium nutrient-deficiency methodology RGB (multiple views ) LemnaTec

Neilson et al. 2015; [80] Sorghum nutrient-deficiency methodology RGB (multiple views ),
hyperspectral NIR

LemnaTec

Chaerle et al. 2007; [81] bean nutrient-deficiency,
biotic-stress

methodology RGB (top view),
thermoimaging, TLCFIM

self-construction

Jansen et al. 2009; [37] Arabidopsis, tobacco drought-stress,
chilling-stress

methodology RGB (top view), KCFIM GROWSCREEN
(self-construction)

Humplík et al. 2015; [20] pea, field cultivars cold-stress methodology RGB (multiple views), KCFIM PlantScreen
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large scale. This enables users to apply statistics to dis-
cover subtle but significant differences between the
studied genotypes and treatment variants.
The potential users of such facilities, mostly biologists,

are often not very familiar with the applied physical
methods used in integrative plant phenotyping. Thus, in
this mini-review, we present a simple introduction to
the basis of various non-invasive sensors used in high-
throughput phenotyping platforms, namely visible red-
green-blue (RGB) imaging, chlorophyll fluorescence
imaging (CFIM), thermoimaging, and hyperspectral
imaging. Further, we describe potential applications of
some of the phenotyping methods that have been used
to study the responses of different plant species to vari-
ous stresses.

Non-destructive analysis of growth and physiology of
plant shoots
The methods for automated phenotyping and their aims
have been reviewed in a number of recent reports
[3,6,7]. In the following text we give a description of the
basis of the automated non-invasive analysis of plant



Figure 1 Scheme of the grow chamber-based automated high-throughput phenotyping platform PlantScreen™ (Photons Systems Instruments,
Brno, Czech Republic), installed at Palacký University in Olomouc, Czech Republic [20]. The system is located in a growth chamber with white LED
illumination (max. 1000 μmol photons m−2 s−1) and controlled environment (10 – 40°C, 30 – 99% relative humidity). The growth area with roller
conveyer has capacity of up to 640 Arabidopsis, cereals and other crops grown in standardized pots. The measuring cabinet contains acclimation
chamber for dark adaptation of plants coupled with an automated weighting and watering area. The cabinet is equipped with KCFIM and RGB
imaging (top and 2 side views), thermoimaging (IR) to measure stomata openness and SWIR hyperspectral imaging to determine water content.
The platform can be controlled either from the place or via remote control software. The operating software enables automatic data evaluation.
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shoots and appropriate sensors that have been used for
studies of plant stress responses.

Visible RGB imaging of plant shoots
Apart from the importance of root-growth analysis, a
key descriptive parameter in plant physiology is the
growth of plant shoots. Although there are numerous
secondary traits describing the morphology of shoots in
particular species and their developmental stages, the
primary and universal trait is biomass formation. Shoot
biomass is defined as the total mass of all the above-
ground plant parts at a given point in a plant’s life [8].
This trait can be easily assessed by a simple weighing of
the fresh (FW) and dry (DW) masses. However, this in-
volves the destruction of the measured plant thus only
allowing end-point analyses. Similarly, leaf area and con-
sequently the plant growth rate are usually determined
by manual measurements of the dimensions of plant
leaves [9-11]. Such measurements are highly time con-
suming and thus cannot be used for large scale experi-
ments. For this reason, plant phenotyping facilities
prefer to evaluate the growth rate using imaging
methods which employ digital cameras with subsequent
software image analysis. This enables a faster and more
precise determination of the leaf area [12-14] and other
parameters called projected area (Figure 2), or hull area
in the case of monocots [15,16]. In general, non-invasive
techniques of shoot growth determination have proven
very reliable, and high correlations between the digital
area and the shoot fresh, or dry weights, respectively,



Figure 2 The illustrative figure presenting outcome of simultaneous analysis of control and salt-stressed Arabidopsis plants, using RGB, hyperspectral
and Chl fluorescence imaging. The 18 DAG old soil-grown Arabidospis plants were treated with 250 mM NaCl (salt-stressed) and water (control) and
after 48 hours were analysed by different sensors for comparison in: morphology (top-view RGB imaging can be used for computation of rosette area
or shape parameters), spatial distribution of vegetation index reflecting changes in the chlorophyll content (NDVI) provided by VIS/NIR
hyperspectral camera, and the changes in maximal quantum yield of PSII photochemistry for a dark-adapted state (ΦPo, also referred as
FV/FM) reflecting the photosynthetic activity of the plants obtained from KCFIM.
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were reported in Arabidopsis, tobacco [17], cereals
[18,19], and pea [20]. An example of a general shoot
phenotyping protocol based on biomass estimation was
reported by Berger et al. [21]. Similarly, other common
morphometric parameters such as stem length, number
of tillers and inflorescence architecture can be assessed
non-destructively and manually, but again the time re-
quirements, limit the number of plants analysed. High-
throughput approaches for analyses of these rather
species-specific traits would be very valuable [15], how-
ever, with the exception of Arabidopsis [22] the range of
accessible solutions is still limited (for some emerging
methods see [23-26]).
Correct determination of digital plant growth area can

be distorted by overlapping leaves, leaf twisting and curl-
ing, and circadian movement, especially when the RGB
image is taken only from one view (e.g. from top view).
A new approach developed for Arabidopsis consisting of
plant area estimation (which takes into account leaf
overlapping), growth modelling and analysis, followed by
application of a nonlinear growth model to generate
growth curves, and subsequent functional data analysis,
was shown to analyse the plant growth in high-
throughput experiments more precisely [14]. However,
due to the use of only a top-view RGB imaging, this ap-
proach cannot be applied for analyses of most of the
agronomical important plants with vertical growth. A
set-up that introduces more projections (e.g. side-views)
into the phenotyping platforms thus can partially solve
this problem. The three-views RGB imaging together
with linear mathematical modelling was used for accur-
ate estimation of plant shoot dry weight of wheat and
barley from two dimensional images [18]. The accuracy
of three-view approach has been recently validated in
species with challenging shoot morphology such as field
pea [20].

Chlorophyll fluorescence imaging (CFIM)
One of the chlorophyll (Chl) fluorescence methods is
chlorophyll fluorescence induction (CFIN), i.e., the
measurement of the Chl fluorescence signal during illu-
mination of the sample following prior dark adaptation.
Since the first paper on CFIN by Kautsky and Hirsch
[27], CFIN has been one of the most common methods
used in photosynthesis and plant physiology research: it
is inexpensive, non-destructive, and above all, provides a
great deal of information about the photosynthetic func-
tion of the sample (reviewed, e.g., by Lazár [28,29]). Use
of pulse amplitude modulation (PAM) techniques for
the measurement of CFIN together with the application
of the saturation pulse (SP) method enables the separ-
ation of photochemical and non-photochemical events
occurring in the sample [30]. Chl fluorescence is excited
and measured with the help of weak measuring flashes,
whereas photosynthesis is maintained by actinic illumin-
ation and saturation of photosynthesis is achieved by the
SPs. Since Chls absorb in blue (Chl a at 436 nm and Chl
b at 470 nm, respectively) and red (at about 650 nm for
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both Chls a and b) regions of visible spectrum, the
measuring and actinic light is the light with one of the
above wavelengths, usually 650-nm. The SPs are usually
generated by white light. On the other hand, Chl fluores-
cence emission spectrum at room temperature shows
two peaks centred at about 680 and 735 nm. To avoid a
possible overlap of the 650-nm excitation light with Chl
fluorescence emission, the Chl fluorescence signal is de-
tected at wavelengths longer than 700 nm. To reveal
spatial heterogeneity of the fluorescence signal during
CFIN, imaging Chl fluorometers were developed [31,32].
In the images (for illustration see Figure 2), different col-
ours are used to show different fluorescence intensities
according to a chosen false colour scale (as mentioned
above, fluorescence emission is always above 700 nm,
red light). An additional advantage of the CFIM is that it
provides a huge amount of data which can be thoroughly
analysed and used for early detection of plant stress as
shown, e.g., by Lazár et al. [33]. At present, modern CFIM
instruments adopt PAM and SP methods/techniques and
are thus highly suitable for high-throughput plant phe-
notyping (reviewed, e.g., by Gorbe and Calatayud [34],
Harbinson et al. [35]). However, over the course of
time, too many Chl fluorescence parameters were de-
fined and claimed to reflect particular functions of
photosynthetic apparatus. Hence, there is a problem
over which parameter should be measured/evaluated
and presented. Values of most of the parameters cannot
be mutually compared. It is only possible to compare
relative changes (caused, e.g., by a stress treatment) of
a given parameter. The parameters of the so-called en-
ergy partitioning, i.e., quantum yields of processes re-
sponsible for the use of the absorbed light energy, are
the best choice (reviewed by Lazár [36]) as they are all
defined on the same basis and can be directly com-
pared. Since all quantum yields sum to unity, the quantum
yields express fractions of absorbed excitation light that
are used for given processes (photochemical and various
types of non-photochemical energy dissipations).
It is also worth mentioning here that kinetic types of

CFIM (KCFIM) that measure whole CFIN and also apply
the SPs which then allow computation of various Chl
fluorescence parameters, and integrate signal from the
whole leaf or shoot, are the most valuable for physio-
logical studies. However, integration of KCFIM into
high-throughput systems [20,37] is not very common
and in the majority of recent reports, imaging systems
measuring either single Chl fluorescence level (SLCFIM)
or two Chl fluorescence levels (usually the minimal and
maximal Chl fluorescence levels for the dark-adapted
state; TLCFIM) were used (see Table 1). As intensity of
Chl fluorescence depends on the amount of chloro-
phylls, the SLCFIM might be used, e.g. to distinguish be-
tween non-stressed and senescent leaves (when the
amount of Chls is decreased) at the later stages of stress
progression but it does not provide any information
about early processes in photosytem II (PSII) that are
not necessarily linked to the later senescence events.
Further, the usual output of the TLCFIM, the FV/FM ra-
tio, which estimates the maximum quantum yield of
photosystem II photochemistry, provides only a limited
information about photosynthetic function compared
with the outputs of the KCFIMs, which also allow deter-
mination of the other quantum yields and parameters
(see [36] for a review).

Thermoimaging
Plants are cooled by transpiration and when the stomata
are closed, plant temperature increases. Based on this
principle, thermal imaging was used for the first time to
detect the changes in the temperature of sunflower
leaves caused by water deficiency [38]. In addition to
transpiration, stomata also drive water vapour, both pa-
rameters being typically determined by leaf gas exchange
measurements. However, leaf gasometry involves contact
with leaves which often interferes with their function.
Further, leaf gasometry is time-consuming, limited by
sample size and/or large number of samples required. In
addition to heat emission, plants can lose heat by con-
duction and convection, which in fact represent mecha-
nisms of a non-photochemical quenching of excited
states. For this reason, it is not unexpected that an in-
creased thermal signal correlates with an increase in
non-photochemical quenching as shown by Kaňa and
Vass [39]. Given the foregoing, thermoimaging is a very
suitable method for plant phenotyping [19,40,41]. Like
CFIM, it uses cameras to measure spatial heterogeneity
of heat emissions, usually from leaves; the heat is electro-
magnetic radiation in the infrared region, usually between
8 – 13 μm. Generally, thermal imaging has been success-
fully used in a wide range of conditions and with diverse
plant species. The technique can be applied to different
scales, e.g., from single seedlings/leaves through whole
trees or field crops to regions. However, researchers have
to keep in mind that environmental variability, e.g., in light
intensity, temperature, relative humidity, wind speed, etc.
affects the accuracy of thermal imaging measurements
and therefore the measurements and their interpretations
must be done with care. Although thermal imaging sen-
sors have been integrated into the in-house phenotyping
platforms with controlled-environment (see section The
use of phenotyping methods to study plant stress responses)
the majority of studies have been performed so far in field
conditions [42-44]. All aspects of thermal imaging used
for the exploration of plant-environment interactions, as
well as an overview of the application of thermoimaging
in field phenotyping, were recently reviewed by Costa
et al. [45].
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Hyperspectral imaging (VIS-NIR, SWIR)
The absorption of light by endogenous plant compounds
is used for calculations of many indices which reflect the
composition and function of a plant. Such indices are,
for example, the normalized difference vegetation index
(NDVI) [46], an estimator of the Chl content, and the
photochemical reflectance index (PRI) [47], an estimator
of the photosynthetic efficiency. The absorption of a
compound (e.g., water) at a given wavelength [48] can
also be used for direct estimation of the compound con-
tents in the plant. For practical reasons, measurement of
absorbance is replaced here by measurements of reflect-
ance. Depending on the measured wavelengths of reflected
signal, various detectors are used, usually VIS-NIR
(visible-near infrared region (400–750) - (750–1400 nm))
and SWIR (short wavelength infrared region; 1400–
3000 nm). Measurements of the reflectance signal in
VIS-NIR and SWIR regions originate from methods of
remote sensing [49-51]. However, due to the high value
of the information they carry, they are very suitable
methods for plant phenotyping [52-54]. The reflectance
signal can be detected at selected wavelengths or sepa-
rated spectral bands (so-called multispectral detection).
The whole spectral region can also be measured even
for each pixel when cameras are applied and the hyper-
spectral imaging is carried out (Figure 2). Whereas the
hyperspectral imaging in the VIS-NIR spectral region is
used for evaluation of several indices as mentioned
above, the SWIR spectral region is mainly used for the
estimation of the plant’s water content. Several aspects
of plant reflectance were recently reviewed by Ollinger
[55]. Despite the many indices that have been defined
so far, based on the reflectance measurements, it is dif-
ficult to assess them accurately, similar to the situation
with CFIN parameters (see above). For this reason, crit-
ical revision of all of the reflectance indices is needed
to evaluate which of them provide the required infor-
mation in the best way.
The use of phenotyping methods to study plant stress
responses
One of the most important applications of automated
plant phenotyping methods is in studies of plants’ re-
sponses to various types of environmental stresses. In
Table 1 we listed recent reports describing phenotyping
protocols developed for indoor automated shoot pheno-
typing used in stress-related studies. Since the integra-
tive approaches are a logical but rather new step in the
development of phenotyping platforms, there are limited
reports on the use of simultaneous analysis by multiple
sensors. For this reason, we included here “single-
sensor” experiments as well, that were performed in the
automated platforms.
Perhaps the most widely used application of high-
throughput phenotyping is in the search for drought-
tolerant varieties. Objectives, traits and approaches
related to automated plant selection for drought stress
resistance were recently reviewed in Mir et al. [56], and
Berger et al. [57]. Here, we add information from exam-
ples of the use of non-invasive plant phenotyping in this
field. One of the early reports on the use of the high-
throughput phenotyping platform describes the employ-
ment of the commercial-prototype system for evaluation
of drought tolerance in nine Arabidopsis accessions [58].
The screening was based on RGB imaging, estimating
rosette-leaf area and automated pot weighing and water-
ing to assess transpiration rates. A very similar approach
was later used by Skirycz et al. also in Arabidopsis [59].
The same platform was further used in a recent physio-
logical study of Clauw and co-authors in which the im-
pact of mild-drought on various Arabidopsis thaliana
accessions was evaluated [60]. Another study on Arabi-
dopsis employing top-view RGB imaging, pot weighing
and automated rotation of pots was performed by Tisné
et al. [61]. The phenotyping platform was designed to
prevent position effect on water evaporation and authors
demonstrated important improvement in the evapor-
ation homogeneity [61].
Although these studies represent an important contri-

bution to the development of automated phenotyping,
the design of the platform for top-view experiments has
limited their use to analyses of plants with leaf rosette.
Further progress thus lay in development of platforms
allowing RGB imaging from multiple positions. The
most recent advances in the use of multiple-view RGB
imaging followed by software analysis were demon-
strated in a study by Neumann et al. [26]. The authors
were able to automatically extract from the images of
the barley plants, the plant height and width, and also
leaf colours to evaluate the impact of drought on the
degradation of chlorophyll. Earlier, Pereyra-Irujo et al.
[62], reported a study that employed a self-constructed
high-throughput platform for the RGB screening of
growth and water-use efficiency (WUE) in two soybean
(Glycine max L.) genotypes. The system with automated
weighing and watering placed in the greenhouse was
used to analyse the projected area of the shoots and the
mass of the pots [62]. An impressive number of plants
was analysed for similar traits in the study by Honsdorf
et al. [16]. These authors searched for drought-tolerance
QTLs in 48 wild barley introgression lines, using a com-
mercial greenhouse based platform with multiple-view
RGB imaging and automated weighing and watering
[16]. A similar approach utilizing estimation of shoot
biomass based on RGB imaging was used by Coupel-
Ledru et al., to screen thousands of grapevine plants for
drought tolerance [63]. In these studies, the plant water
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management was automatically analysed by simple weigh-
ing of the pots. This approach, however, begs several ques-
tions about the homogeneity of evaporation from the soil
of the pots placed in different positions of the growing
area. The solution to this issue usually requires an ex-
haustive validation process with numerous control pots
and artificial plant-like objects randomly distributed
throughout the growing area (Mark Tester, personal com-
munication). A more elegant solution could be the use of
the specific sensors controlling directly the plant water
content [64] or transpiration [65] of each plant. Even this
approach, however, requires appropriate validation.
An integrative way of analysis was employed in the

study of Petrozza et al. [66]. Here, the effect of Megafol
treatment on drought-stressed tomatoes was assessed
using RGB imaging to distinguish shoot area, SLCFIM
measurement to calculate “stress index” and NIR camera
for water content estimation. Repeated measurements by
NIR camera throughout the experiment allowed visualiz-
ing the drop of the high water content index that pre-
cedes the growth limitation caused by drought stress
[66]. A combination of RGB and NIR imaging tech-
niques was also used by Harshavardhan et al. for analysis
of the drought-tolerance of transgenic Arabidopsis plants
[67]. The RGB imaging was employed by Bresson et al.
to study the effect of plant-bacteria interactions on plant
tolerance to drought stress [68]. The integration of FV/FM
measurement by TLCFIM provided complementary infor-
mation to the growth rate and WUE analysis obtained by
pot weighing [69]. A combination of RGB, SLCFIM and
NIR imaging techniques was used by Chen et al. [64] to
study different phenotypic traits of 18 barley genotypes.
The authors used sophisticated statistics and mathematical
modelling to classify genotypes based on their response to
drought stress [64].
Another important trait in drought studies is the leaf

surface temperature that reflects the transpiration rate
of the plant (as discussed above in the section Thermoi-
maging). A combination of shoot digital imaging, ther-
moimaging and automated weighing and watering to
study WUE was used by Fehér-Juhász et al. [19]. These
authors employed a self-constructed greenhouse-based
platform for the selection of drought-tolerant transgenic
wheat plants. The platform allows monitoring of the ma-
ture cereal plants´ growth by multiple-view RGB im-
aging and assessment of the leaf surface temperature by
side-view thermal camera recording the differences in
temperatures of plant shoots [19]. The same platform
and a similar phenotyping experimental design were
used for evaluation of drought tolerance in barley. The
system provides integrative analysis of plant growth and
physiology, but its use for large-scale analysis is limited
by a semi-automated regime requiring manual loading
of the plants into the system [65].
Given that physiological responses to drought and
high temperature stresses are tightly connected, similar
approaches can be used to study the tolerance of plants
to both drought and high temperature. The use of high-
throughput phenotyping for high temperature tolerance
and a description of the appropriate sensors can be
found in a review by Gupta et al. [70]. More recently,
the effects of the high temperature on the Arabidopsis
plants were studied by Vasseur et al. [71]. The authors
used commercial-prototype platform allowing the top-
view RGB imaging and WUE analysis followed by
highly-sophisticated statistical approach to reveal con-
trasting adaptive strategies to the high temperature and
drought stresses [71].
The salinization of soil is another phenomenon often

associated with drought and high temperature stress.
The example of the protocol for salt stress study in vari-
ous cereals combining RGB imaging with destructive leaf
sampling to measure Na+ concentration was described
by Berger et al. [72]. The effect of salt stress was studied
by Rajendran et al. [73] using digital RGB imaging in a
greenhouse-based commercial system. This study pro-
vided deep insight into the physiological processes con-
nected with salinity in wheat. The authors used the
multiple-view RGB imaging to estimate a digital area of
shoot, and to visualize changes in leaf colour for quanti-
fication of the senescent area. Using non-invasive plant
phenotyping and analysis of Na+ concentration in 4th
leaf, the authors predicted a plant salinity tolerance
index that showed a good correlation with the results
obtained from conventional salt-tolerance measurements
[73]. Simple RGB imaging in wheat and barley was car-
ried out in the physiological study of Harris et al. [74],
and described in the methodological report of Golzarian
et al. [18]. Recently, Schilling et al. applied a similar ap-
proach to select a salt-tolerant line of transgenic barley
[75]. The combination of digital RGB imaging (used to
measure shoot growth rate) with SLCFIM (used for the
assessment of senescent areas) was used for the selection
of salt-tolerant cultivars of rice by Hairmansis et al. [76].
These studies of salt-stress tolerance were performed
using the same commercial platform involving SLCFIM
sensor. As mentioned in the section Chlorophyll fluores-
cence imaging (CFIM) this type of CFIM in fact provides
only estimation of a senescent area that can be obtained
using an older way of estimation based on colour detec-
tion by RGB imaging. Thus, to increase the value of the
physiological evaluation, the use of KCFIM is necessary
for quantification of the quantum yield of photochemis-
try and of the other competitive processes [36].
Combination of RGB imaging, thermoimaging and

TLCFIM was used in the pioneer work of Chaerle at al.
who evaluated the effects of mild mottle virus infection
on tobacco and bean plants [77]. The use of high-
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throughput techniques in the nutrient starving stress
studies have been already reported too. The principle of
the method based on RGB imaging of leaf expansion
was described by Moreau et al. [78]. A comprehensive
study on the phenotypic effects of nitrogen and phos-
phorus nutrient statuses of Brachypodium was carried
out by Poire et al. employing RGB imaging to estimate
growth rate [79]. A similar approach was used in a study
of Neilson et al. [80] where the responses to nitrogen de-
ficiency and drought were evaluated by RGB imaging,
NIR imaging and automated weighing, respectively. The
authors also developed software that extracted from the
images, additive traits such as projected plant height and
the height to the ligule of the youngest fully expanded
leaf, which showed very good correlations with standard
manually measured agronomical parameters [80]. The
multiple-sensor approach was described earlier in beans
by Chaerle et al., who used RGB imaging, thermoima-
ging and TLCFIM to evaluate the phenotypes related to
magnesium deficiency and biotic stress [81]. The impact
of cold stress on plant growth and physiology is rou-
tinely studied using non-invasive methods through the
analysis of Chl fluorescence, but not using fluorescence
sensors integrated into complex growth-analysing plat-
forms [82-84]. Jansen et al. studied the effects of chilling
stress in Arabidopsis and tobacco plants using a growth
chamber based system equipped with digital top-view
RGB screening and KCFIM [37]. Very recently an auto-
mated screening approach based on RGB imaging and
KCFIM analysis for selection of pea cultivars with differ-
ent cold-sensitivity was developed by Humplík et al.
[20]. The reported study was not intended only for selec-
tion of cold-sensitive/tolerant varieties of pea but also
for studies of plant cold-response strategies in general.
Since the CFIM analysis is not limited to plant morph-
ology and the image analysis was sensitive enough to de-
tect tiny tendrils of pea, the described procedure should
be theoretically employed for shoot analyses of other
plant species [20].

Conclusions
This mini-review focuses on recent advances towards
development of integrative automated platforms for
high-throughput plant phenotyping that employ multiple
sensors for simultaneous analysis of plant shoots. In
both basic and applied science, the recently emerging
approaches have found importance as tools in unravel-
ling complex questions of plant growth, development,
responses to environment, as well as selection of appro-
priate genotypes in molecular breeding strategies. As far
as phenotype is an interactive network of responses by
the plant to its environment that affects in turn, the ex-
pression of the genotype it is worth pointing out that at-
tention to the way the analyses are done, under precisely
controlled conditions allowing for direct linking the
huge amount of complex phenotyping data obtained to
the particular conditions. It would also help the end
user – the biologist – to narrow his/her view on the
importance of various parameters and indices available
from the specialized measurements (specifically CFIN
and reflectance measurements) and evaluate which of
them provide the required information in the best way
and hence thus the most suitable for high-throughput
plant phenotyping. Such information and standardized
protocols applicable for the particular phenotyping
methodologies should be available in the near future
due to the phenotyping community efforts.
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