Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID Supplementary Material

Yixiao Ge Feng Zhu Dapeng Chen Rui Zhao Hongsheng Li Multimedia Laboratory The Chinese University of Hong Kong {yxge@link,hsli@ee}.cuhk.edu.hk dapengchenxjtu@gmail.com

A Algorithm Details

Algorithm 1 Self-paced contrastive learning algorithm on domain adaptive object re-ID

Require: Source-domain labeled data X^s and target-domain unlabeled data X^t ; **Require:** Initialize the backbone encoder f_{θ} with ImageNet-pretrained ResNet-50; **Require:** Initialize the hybrid memory with features extracted by f_{θ} ; **Require:** Temperature τ for Eq. (1), momentum m^s for Eq. (3), momentum m^t for Eq. (4); **for** n in [1, num_epochs] **do** Group X^t into X_c^t and X_o^t by clustering $\{v\}$ from the hybrid memory with the independence Eq. (5) and compactness Eq. (6) criterion; Initialize the cluster centroids $\{c\}$ with Eq. (2) in the hybrid memory; **for** each mini-batch $\{x_i^s\} \subset X^s, \{x_i^t\} \subset X^t$ **do** 1: Encode features $\{f_i^s\}, \{f_i^t\}$ for $\{x_i^s\}, \{x_i^t\}$ with f_{θ} ; 2: Compute the unified contrastive loss with $\{f_i^s\}, \{f_i^t\}$ by Eq. (1) and update the encoder f_{θ} by back-propagation; 3: Update source-domain related class centroids $\{w\}$ in the hybrid memory with $\{f_i^s\}$ and momentum m^s (Eq. (3)); 4: Update target-domain related cluster centroids $\{c\}$ with updated $\{v\}$ in the hybrid memory (Eq. (2)); **end for**

end for

Algorithm 2 Self-paced contrastive learning algorithm on unsupervised object re-ID

Require: Unlabeled data \mathbb{X}^t ; **Require:** Initialize the backbone encoder f_{θ} with ImageNet-pretrained ResNet-50; **Require:** Initialize the hybrid memory with features extracted by f_{θ} ; **Require:** Temperature τ for Eq. (1), momentum m^t for Eq. (4); for n in $[1, num_epochs]$ do Group \mathbb{X}^t into \mathbb{X}^t_c and \mathbb{X}^t_o by clustering $\{v\}$ from the hybrid memory with the independence Eq. (5) and compactness Eq. (6) criterion; Initialize the cluster centroids $\{c\}$ with Eq. (2) in the hybrid memory; for each mini-batch $\{x_i^t\} \subset \mathbb{X}^t$ do **1:** Encode features $\{f_i^t\}$ for $\{x_i^t\}$ with f_{θ} ; 2: Compute the unsupervised-version unified contrastive loss with $\{f_i^t\}$ as below and update the encoder f_θ by back-propagation; $\exp{(\langle m{f},m{z}^+
angle/ au)}$ $\mathcal{L}_{\boldsymbol{f}} = -\log \frac{1}{\sum_{k=1}^{n_c^t} \exp\left(\langle \boldsymbol{f}, \boldsymbol{c}_k \rangle / \tau\right) + \sum_{k=1}^{n_c^t} \exp\left(\langle \boldsymbol{f}, \boldsymbol{v}_k \rangle / \tau\right)}$ 3: Update instance features $\{v\}$ in the hybrid memory with $\{f_i^t\}$ and momentum m^t (Eq. (4)); 4: Update cluster centroids $\{c\}$ with updated $\{v\}$ in the hybrid memory (Eq. (2)); end for end for

B More Discussions

Comparison with ECN [62, 63]. There is an existing work, ECN [62] with its extension version [63], which also adopts a feature memory for the domain adaptive person re-ID task. Comparison results in Table 2 demonstrate the superiority of our proposed method, and there are three main

^{*}Dapeng Chen is the corresponding author.

differences between our method and ECN. (1) Our proposed hybrid memory dynamically provides all the source-domain class-level, target-domain cluster-level and un-clustered instance-level supervisory signals, while the memory used in ECN only provides instance-level supervisions on the target domain. (2) We use unified training of source classes, target clusters and target outliers, while ECN uses multi-task learning and treats source and target classes separately. (3) We propose a self-paced learning strategy to gradually refine the learning targets on both clusters and un-clustered instances, while ECN adopts noisy k-nearest neighbors as learning targets for all the samples without consideration of uneven density in the latent space.

C More Implementation Details

We implement our framework in PyTorch [35] and adopt 4 GTX-1080TI GPUs for training[†]. The domain adaptation task with both source-domain and target-domain data takes ~ 3 hours for training, and the unsupervised learning task with only target-domain data takes ~ 2 hours for training on Market-1501 and PersonX datasets. When training on MSMT17, VehicleID, VeRi-776 and VehicleX datasets, time needs to be doubled due to over $2 \times$ images in the training set.

C.1 Network Optimization

We adopt an ImageNet [7]-pretrained ResNet-50 [18] up to the global average pooling layer, followed by a 1D BatchNorm layer and an L_2 -normalization layer, as the backbone for the encoder f_{θ} . Domainspecific BNs [3] are used in f_{θ} for narrowing domain gaps. Adam optimizer is adopted to optimize f_{θ} with a weight decay of 0.0005. The initial learning rate is set to 0.00035 and is decreased to 1/10 of its previous value every 20 epochs in the total 50 epochs. The temperature τ in Eq. (1) is empirically set as 0.05. The hybrid memory is initialized by extracting the whole training set with the ImageNet-pretrained encoder f_{θ} , and is then dynamically updated with $m^s = m^t = 0.2$ in Eq. (3)&(4) at each iteration.

C.2 Training Data Organization

During training, each mini-batch contains 64 source-domain images of 16 ground-truth classes (4 images for each class) and 64 target-domain images of *at least* 16 pseudo classes, where target-domain clusters and un-clustered instances are all treated as independent pseudo classes (4 images for each cluster or 1 image for each un-clustered instance). The person images are resized to 256×128 and the vehicle images are resized to 224×224 . Random data augmentation is applied to each image before it is fed into the network, including randomly flipping, cropping and erasing [61].

C.3 Target-domain Clustering

Following the clustering-based UDA methods [11, 10, 38], we use DBSCAN [9] and Jaccard distance [60] with k-reciprocal nearest neighbors for clustering before each epoch, where k = 30. For DBSCAN, the maximum distance between neighbors is set as d = 0.6 and the minimal number of neighbors for a dense point is set as 4. In our proposed self-paced learning strategy described in Section 3.2, we tune the value of d to loosen or tighten the clustering criterion. Specifically, we adopt d = 0.62 to form the looser criterion and d = 0.58 for the tighter criterion, denoted as $\Delta d = 0.02$. The constant threshold α for identifying independent clusters is defined by the top-90% \mathcal{R}_{indep} before the first epoch and remains the same for all the training process. The dynamic threshold β for identifying compact clusters is defined by the maximum \mathcal{R}_{comp} in each cluster on-the-fly, *i.e.*, we preserve the most compact points in each cluster.

D Additional Experimental Results

D.1 Performance with IBN-ResNet [34]

Instance-batch normalization (IBN) [34] has been proved effective in object re-ID methods in either unsupervised [11] or supervised [30] learning tasks. We evaluate our framework with IBN-ResNet as

[†]https://github.com/yxgeee/SpCL

Source	Target	Ours W/ ResNet-50				Ours W/ IBIN-Resinet				
		mAP	top-1	top-5	top-10	mAP	top-1	top-5	top-10	
Market-1501	MSMT17	26.8	53.7	65.0	69.8	31.0	58.1	69.6	74.1	
MSMT17	Market-1501	77.5	89.7	96.1	97.6	79.9	92.0	97.1	98.1	
PersonX	Market-1501	73.8	88.0	95.3	96.9	77.9	90.5	96.1	97.7	
PersonX	MSMT17	22.7	47.7	60.0	65.5	25.4	50.6	63.3	68.3	
VehicleID	VeRi-776	38.9	80.4	86.8	89.6	38.0	79.7	85.8	88.4	
VehicleX	VeRi-776	38.9	81.3	87.3	90.0	37.8	80.7	86.1	89.2	
None	Market-1501	73.1	88.1	95.1	97.0	73.8	88.4	95.3	97.3	
None	MSMT17	19.1	42.3	55.6	61.2	24.0	48.9	61.8	67.1	
None	VeRi-776	36.9	79.9	86.8	89.9	36.6	79.1	85.9	89.2	

Table 6: Comparison of different backbones in our framework, *i.e.*, ResNet-50 and IBN-ResNet.

the backbone of the encoder, which is formed by replacing all BN layers in ResNet-50 [18] with IBN layers. As shown in Table 6, the performance can be further improved with IBN-ResNet except for the vehicle datasets.

D.2 Self-paced Learning Strategy on Other Clustering Algorithms

Table 7: Evaluate our framework over Agglomerative Clustering [1] algorithm. Experiments are conducted on the tasks of unsupervised person re-ID.

Clustering	Market-1501					
Clustering	mAP	top-1	top-5	top-10		
Agglomerative Clustering w/o self-paced strategy	70.4	87.1	94.7	96.6		
Agglomerative Clustering w/ self-paced strategy	75.2	89.7	95.8	97.5		

In order to verify that our proposed self-paced learning strategy with cluster reliable criterion is still effective when creating pseudo labels with other clustering algorithms, we conduct experiments by replacing the original DBSCAN algorithm with Agglomerative Clustering [1] algorithm. As shown in Table 7, significant 4.8% mAP improvements can be observed when applying the self-paced learning strategy. What is interesting is that the final performance is even better than that on DBSCAN.

D.3 Cluster Reliable Criterion v.s. HDBSCAN [2]

Table 8: Comparison between DBSCAN *w*/ our cluster reliable criterion and HDBSCAN [2]. Experiments are conducted on the tasks of unsupervised person re-ID.

Clustering	Market-1501				MSMT17			
	mAP	top-1	top-5	top-10	mAP	top-1	top-5	top-10
DBSCAN w/ our cluster reliable criterion HDBSCAN	73.1 71.7	88.1 87.7	95.1 95.0	97.0 96.3	19.1 15.7	42.3 39.2	55.6 51.3	61.2 56.7

The intuition of our cluster reliable criterion is to measure the stability of clusters by hierarchical structures, which shows similar motivation as HDBSCAN [2]. So we test HDBSCAN to replace our reliability criterion and observe 1.4%/3.4% mAP drops on unsupervised Market-1501/MSMT17 tasks (Table 8), which indicates that DBSCAN with our cluster reliability criterion is more suitable than HDBSCAN in the proposed framework.

E Parameter Analysis

We tune the hyper-parameters on the task of MSMT17 \rightarrow Market-1501, and the chosen hyper-parameters are directly applied to all the other tasks.

E.1 Temperature τ for Contrastive Loss

As demonstrated in Figure 4, our framework achieves the optimal performance when setting the temperature τ as 0.05 in Eq. (1) on the task of MSMT17 \rightarrow Market-1501. One may find that the performance varies with different values of τ , but note that all methods using temperature contrastive

Figure 4: Performance of our framework with different values of temperature τ .

function (e.g., [62, 63, 48, 17, 4, 33]) have similar effects on τ . We set $\tau = 0.05$ following [62, 63] and achieve the best performance using the same $\tau = 0.05$ for 6 UDA tasks (Table 2) and 3 unsupervised tasks (Table 4), showing the robustness of $\tau =$ fixed 0.05.

E.2 Momentum Coefficients m^s, m^t for Hybrid Memory

Figure 5: Performance of our framework with different values of m^t when $m^s = 0.2$.

Figure 6: Performance of our framework with different values of m^s when $m^t = 0.2$.

Figure 7: Performance of our framework with different values of m^s, m^t when $m^s = m^t$.

Our proposed hybrid memory simultaneously stores and updates the source-domain class centroids with momentum m^s in Eq. (3) and the target-domain instance features with momentum m^t in Eq. (4). We adopt $m^s = m^t = 0.2$ in our experiments by tuning such hyper-parameter on the task of MSMT17 \rightarrow Market-1501.

We find that the value of m^t is critical to the optimal performance (Figure 5) while our framework is not sensitive to the value of m^s (Figure 6), so we adopt the same momentum coefficient on two domains for convenience, *i.e.*, $m^s = m^t$. Despite the value of m^t affects the final performance, the results of our framework are robust when m^t changes within a large range, *i.e.*, [0.2, 0.6] in Figure 7.

E.3 Residual Δd for Cluster Reliability Criterion

Figure 8: Performance of our framework with different values of Δd in the cluster reliability criterion.

As described in Section C.3, we tune the value of the maximum neighbor distance d with a residual $\Delta d = 0.02$ to measure the cluster reliability in our self-paced learning strategy. As shown in Figure 8, $\Delta d = 0.00$ can be thought of as removing the self-paced strategy from training, which is the same as "Ours $w/o \mathcal{R}_{comp} \& \mathcal{R}_{indep}$ " in Table 5. Our method could achieve similar performance when Δd changes within [0.02, 0.05], which indicates that our proposed reliability criterion is not sensitive to the hyper-parameter Δd .