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Abstract

This paper considers doing quantile regression on censored data using neural
networks (NNs). This adds to the survival analysis toolkit by allowing direct
prediction of the target variable, along with a distribution-free characterisation
of uncertainty, using a flexible function approximator. We begin by showing
how an algorithm popular in linear models can be applied to NNs. However, the
resulting procedure is inefficient, requiring sequential optimisation of an individual
NN at each desired quantile. Our major contribution is a novel algorithm that
simultaneously optimises a grid of quantiles output by a single NN. To offer
theoretical insight into our algorithm, we show firstly that it can be interpreted
as a form of expectation-maximisation, and secondly that it exhibits a desirable
‘self-correcting’ property. Experimentally, the algorithm produces quantiles that
are better calibrated than existing methods on 10 out of 12 real datasets.
Code: https://github.com/TeaPearce/Censored_Quantile_Regression_NN.

1 Introduction

Domains such as biomedical sciences and reliability engineering often produce datasets with a
particular challenge – for many datapoints the target variable is not directly observed and only a lower
or upper bound is recorded. For example, when modelling the time to failure of a machine, in many
cases it might have been preemptively maintained before a failure event was observed, meaning only
a lower bound on the time to failure is recorded. This is known as censored data, which is studied in
the field of survival analysis.

Recently, there has been interest in combining ideas from survival analysis with neural networks
(NNs), in the hope of leveraging the capabilities of deep learning for this important class of problem.
Quantile regression has proven valuable in survival analysis, since it directly predicts the variable
of interest, naturally capturing the uncertainty of the conditional distribution with no assumptions
made about the distribution of residual errors [Peng, 2021]. Despite a wealth of research in the linear
setting, explorations into its combination with NNs are at an early stage [Jia and Jeong, 2022]. This
paper advances this line of research, showing how an estimator from Portnoy [2003], used for doing
quantile regression in linear models on left and right censored data, can be combined with NNs.

Section 2 introduces Portnoy’s estimator, and outlines a sequential grid algorithm that is used in its
optimisation for linear models [Neocleous et al., 2006]. As our first contribution, Section 3.1 shows
how this algorithm can be directly adapted to work with NNs. Unfortunately, the resulting method is
inefficient, requiring sequential optimisation of a new NN at each predicted quantile. Section 3.2
outlines our main contribution; an improved algorithm that is well suited to NNs, named ‘censored
quantile regression neural network’ (CQRNN). Our CQRNN algorithm is a significant departure from
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the sequential approach, and we offer theoretical insights into it in Section 4, interpreting it as a form
of expectation-maximisation (EM), and also analysing a ‘self-correcting’ property. In Section 6 the
algorithm’s effectiveness is empirically demonstrated by benchmarking against alternative methods
on simulated and real data. Careful ablations illuminate effects of the algorithm’s hyperparameters.

2 Background

We first introduce censored data. Consider a dataset D = {{x1, y1,�1}, ..., {xN , yN ,�N}}, where
xi 2 RD is the input, yi 2 R is the (possibly censored) variable to regress on, and �i represents the
observed/censored indicator. We assume two data generating distributions, one for the target variable,
ti ⇠ pt(t|xi), and another for the censoring variable, ci ⇠ pc(c|xi). In the case of right censoring,
we only observe the smaller of these two, which forms our dataset labels, yi = min(ti, ci), and
�i =

n
0 if censored, ci<ti
1 else —————— . Whilst this paper concentrates on the right censored case, for all estimators

and algorithms discussed, left censoring can be handled by simply inverting the labels, i.e. using
�yi 8i [Koenker, 2022].

In this paper we make common assumptions about pt(t|xi) and pc(c|xi); the target is independent
of censoring given the covariates, t ? c | x (sometimes termed ‘random’ censoring), but both t

and c depend on x in different and possibly non-linear ways. These are more general than some
alternative assumptions, such as using fixed-value censoring, ci = constant 8i (e.g. [Powell, 1986])
or requiring the censoring distribution to be independent of x (e.g. [Jia and Jeong, 2022]).

2.1 Quantile Regression without Censoring

Ignoring censoring for a moment, the conditional quantile function is given by,

Q(⌧ |xi) = inf{yi,⌧ : p(yi  yi,⌧ |xi) = ⌧}, (1)

where, ⌧ 2 (0, 1). To learn such a function for a single target quantile, ⌧ , quantile regression
minimises a ‘checkmark’ loss, ⇢⌧ (·, ·) : R⇥ R! R, [Koenker and Bassett, 1978],

Lcheck(✓,D, ⌧) :=
1

N

NX

i=1

⇢⌧ (yi, ŷi,⌧ ), (2)

⇢⌧ (yi, ŷi,⌧ ) :=(yi � ŷi,⌧ ) (⌧ � I[ŷi,⌧ > yi]) , (3)

for model parameters, ✓, and a prediction, ŷi,⌧ =  ⌧ (xi, ✓), made by some model  ⌧ : RD
! R,

with I[·] as the indicator function. A linear model refers to when, ŷi,⌧ = ✓
|
⌧
xi, with, ✓⌧ 2 RD.

2.2 Portnoy’s Censored Quantile Regression Estimator

Directly optimising the loss in Eq. 2 can produce undesirable models when a dataset contains
censored observations. Naively ignoring censoring indicators or excluding all censored data will, in
the general case, induce unfavourable bias [Zhong et al., 2021]. The algorithms proposed in this paper
use a re-weighting scheme introduced in Portnoy [2003] that does account for censoring. Define
two disjoint sets of indices, one for censored and one for observed datapoints, Scensored and Sobserved,
letting, Nc := |Scensored| and No := |Sobserved|. Portnoy’s estimator minimises,

LPort.(✓,D, ⌧,w, y
⇤) =

X

i2Sobserved

⇢⌧ (yi, ŷi,⌧ ) +
X

j2Scensored

wj⇢⌧ (yj , ŷj,⌧ ) + (1�wj)⇢⌧ (y
⇤
, ŷj,⌧ ). (4)

While the loss for observed datapoints is unchanged, censored datapoints have been split into two
‘pseudo’ datapoints – one at the censored value, and one at some large value, y⇤ � maxi yi (Section
6.4 discusses y⇤ further). Weight is apportioned between each pair of pseudo datapoints by,

wj =
⌧ � qj

1� qj
, (5)

where qj is the quantile at which the datapoint was censored, with respect to the target value
distribution, i.e. pt(tj > cj |xj). We use w 2 RNc and q 2 RNc to denote the vector of all weights
and quantiles respectively, indexed as wj and qj . Given these weights, Portnoy’s estimator has been
shown to be analogous to the Kaplan-Meier (KM) estimator [Portnoy, 2003].
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Algorithm 1 Sequential grid algorithm for NNs.
Require: Dataset D, M parametric models  ⌧ (·) each with randomly initialised parameters ✓⌧ ,

ordered quantiles to be estimated grid
⌧
, learning rate ↵, pseudo y value y

⇤.

Scensored  {i 2 {0, 1, . . . , N} : �i = 0},Sobserved  {i 2 {0, 1, . . . , N} : �i = 1}, Kcross  ;
for i = 0 to M � 1 do

⌧  grid
⌧
[i]

if i = 0 then . Initialise quantile estimates to zero
q̂ zeros(Nc)

else . Find indices which have been crossed and update their estimated quantiles
K  {j 2 Scensored :  grid⌧ [i�1](xj)  yj \  grid⌧ [i](xj) > yj}

q̂[K] grid
⌧
[i� 1]

Kcross  Kcross [K

q̂[¬Kcross] ⌧ . Sets ŵ = 0 for uncrossed datapoints
ŵ (⌧ � q̂)/(1� q̂)
✓  arg min✓⌧ LPort.(✓⌧ ,D, ⌧, ŵ, y

⇤) . Fully optimise Eq. 4

2.3 Sequential Grid Algorithm

A challenge with Portnoy’s estimator is that it creates a circularity. If the true quantiles q and hence
w for all censored datapoints were known, Eq. 4 could be optimised straightforwardly, but the very
reason to perform this optimisation is to estimate such quantiles! Prior work has tackled this issue
in various ways (see Section 5). Here we discuss the most widely-used algorithm. It was originally
presented in Portnoy [2003] and slightly modified in Neocleous et al. [2006], we refer to it as the
‘sequential grid algorithm’.

Described in Algorithm 1, it sequentially steps through a grid of M desired quantiles, arranged
in strictly increasing order, and typically evenly spaced, e.g., grid

⌧
= {0.1, 0.2, . . . , 0.8, 0.9} for

M = 9. A new model is fitted at each quantile. The algorithm terminates either when all quantiles
in the grid have been iterated through, or if only censored datapoints lie above the current quantile.
(Portnoy [2003] suggest handling the first quantile specially, but we have simplified this – see later.)
Note we introduce q̂ & ŵ to explicitly designate model estimates of q & w.
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Figure 1: 1D synthetic datasets of varying functions (rows), fitted by various methods (columns).
Estimated quantiles (blue through pink) compared to ground truth quantiles (dashed black lines).
CQRNN recovers quantiles closest to the ground truth on most datasets.
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3 Censored Quantile Regression and Neural Networks

This section considers applying the sequential grid algorithm to NNs, explaining why this is inefficient.
It then describes the CQRNN algorithm, our main contribution, which avoids these pitfalls.

3.1 The Sequential Grid Algorithm and Neural Networks

To the best of our knowledge the sequential grid algorithm has been proposed and implemented only
on linear models. Our first contribution is showing that, with three adjustments, it can be used in NNs.

Adj. 1) The M models producing estimates, ŷj,⌧ , are chosen be NNs, of any architecture with a
single output. Adj. 2) While the linear version of the algorithm minimises Eq. 4 analytically with a
parametric programming approach, for NNs this is instead minimised with stochastic gradient descent.
Adj. 3) Portnoy [2003] proposed using a lengthy process for the first quantile. They set ŵ = 1 and
optimise Eq. 4. After optimisation, if any censored datapoints lie below the first quantile, these are
removed from the dataset, and the procedure repeats until there are none. This repeated optimisation
could go on for many iterations for large datasets and is costly for NNs. Instead, we simply set q̂ = 0,
and optimise the first quantile once only. We show this is roughly equivalent in Appendix A.2.

Unfortunately, this adaption is still inefficient. Inspecting Algorithm 1, one notes that M NNs must be
trained sequentially, meaning time complexity (both at training and at test) and memory complexity is
O(M). This is not the case when doing quantile regression with NNs without censoring – a single NN
typically uses multiple outputs, one per quantile, and their losses can be minimised simultaneously
[Taylor, 2000]. For modest numbers of quantiles, this results in little overhead relative to a single
NN, since the extra quantile outputs require only linear heads, while the bulk of the parameter count
and computation time arise from the shared trunk of the NN.

Note that these inefficiencies are less problematic for linear models – optimisation of Eq. 4 can be
performed quite rapidly, and memory complexity cannot obviously be improved beyond O(M). As
such, it is the use of NNs that motivates the search for an alternative algorithm.

3.2 CQRNN Algorithm

Our proposed algorithm uses a single NN outputting a grid of quantile estimates that can be optimised
simultaneously. This results in a more efficient algorithm in terms of training time, test time, and
memory. Concretely, if the NN is a single hidden-layer NN with H neurons, then the model is
defined,  ⌧ (xj , ✓) = ✓

|
1,⌧�(✓|0xi), with ✓0 2 RD⇥H shared for all estimates and ✓1,⌧ 2 RH⇥1 for

the specific output head, and non-linearity, �.

The key insight behind our algorithm is that estimates of the censored weights, ŵ, can be bootstrapped
from the model while it learns, without requiring sequential optimisation. Intuitively, as the model
trains, the estimates of the censored quantiles, q̂, and hence the censored weights, ŵ, improve, and
these feedback to create a more accurate loss function, allowing further improvement of the model.

We summarise the method in Algorithm 2. The quantile of a censored datapoint is estimated as
whichever NN output is closest under the current model parameters. Whilst the algorithm is written in
two steps, getting up-to-date estimates of censored quantiles, q̂j , requires only a forward pass, which
is done at the point of loss optimisation anyway, so actually comes ‘for free’. In our implementations,
the algorithm is extended to leverage mini-batches and modern optimisers (e.g. Adam).

4 Analysis of CQRNN

The previous section introduced the CQRNN algorithm, motivating it intuitively, while this section
considers its correctness. Providing precise analytical guarantees is very challenging, both due to the
involvement of non-convex NNs, and the bootstrapping nature of the algorithm. We therefore consider
more holistic ways of understanding and providing confidence in the method. We firstly show that
it can be interpreted as a flavour of EM (‘generalised hard’ EM) – connecting to this well-studied
class of algorithms provides some justification of CQRNN’s design. We secondly validate the way
the model bootstraps its own censored quantile estimates by describing a ‘self-correcting’ property.
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Algorithm 2 CQRNN algorithm.
Require: Dataset D, one parametric model  (·) with randomly initialised parameters ✓ that can

output M quantile predictions, quantiles to be estimated grid
⌧

, learning rate ↵, pseudo y value y⇤.

Scensored  {i 2 {0, 1, . . . , N} : �i = 0},Sobserved  {i 2 {0, 1, . . . , N} : �i = 1}

while not convereged do
1. Hard expectation step

for j 2 Scensored do
q̂j  arg min⌧ |ŷj,⌧ � yj | . Estimate quantile of censored data under current model
ŵj  (⌧ � q̂j)/(1� q̂j)

2. Partial maximisation step

✓  ✓ � ↵@L(✓⌧ ,D, ⌧, ŵ, y
⇤)/@✓ 8⌧ 2 grid

⌧
. Gradient step to minimise Eq. 4

4.1 Interpretation as Expectation-Maximisation

EM is a two-stage iterative optimisation technique for finding maximum likelihood solutions. It can
be useful when one has both observed and latent variables, and where knowing the latent variables
would allow straightforward optimisation of a model’s parameters and vice versa.

In our problem, we interpret the weights of the censored datapoints, w, as latent variables, observed
variables as x & y, and the NN parameters ✓ are to be optimised. Under our notation, the vanilla EM
procedure [Bishop, 2006] can be written as follows (using a randomly initialising ✓old),

1. Expectation step. Evaluate, p(w|x, y, ✓old), to set up the expectation,

Q(✓, ✓old) =

Z

w
p(w|x, y, ✓old) log p(y,w|x, ✓)dw = Ew|x,y,✓old [log p(y,w|x, ✓)]. (6)

2. Maximisation step. Perform optimisation of the expected likelihood.

✓
new = arg max

✓
Q(✓, ✓old) (7)

3. Set ✓old
 ✓

new and repeat until convergence.

We now show how our CQRNN method in Algorithm 2 can be interpreted as a flavour of EM, specifi-
cally generalised hard EM. The key steps in this interpretation are: 1) The likelihood for datapoints at
each quantile are chosen to follow an asymmetric Laplace distribution. 2) The expectation step is
treated as a hard assignment under the current NN parameters. 3) The likelihood is only partially
maximised at each iteration.

Likelihood Form

A likelihood function is required for both the E & M steps. Theorem 1 shows how Eq. 4 can be
interpreted as a negative log likelihood.

Theorem 1. Let the likelihood for each datapoint at each quantile be an asymmetric Laplace

distribution with scale, � =
p
⌧ � ⌧2, and asymmetry, k = ⌧/

p
⌧ � ⌧2. The negative log likelihood

is,

� log p(y|x, ✓,w, y
⇤) =

X

⌧2grid⌧

LPort.(✓, y,x, ⌧,w, y
⇤) + constant . (8)

Proof sketch. The asymmetric Laplace distribution has been used in Bayesian treatments of quantile
regression without censoring [Yu and Moyeed, 2001]. We extend this to Portnoy’s loss with a
weighted likelihood form using the censored weights. Appendix A provides the full proof.

Expectation as a Hard Assignment of Latent Variables

In some models, such as a Gaussian mixture model, the expectation step can be computed through
analytical evaluation of the latent posterior distribution [Bishop, 2006]. In our case, p(w|x, y, ✓old),
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is intractable, though Eq. 4 depends linearly on each element wj , so we need only consider the
expectation, Ewj |x,y,✓old [wj ]. The algorithm can then be interpreted as making an assignment under
the current model parameters,

Êwj |xj ,yj ,✓
old [wj ] =

X

wj

wj p̂(wj |xj , yj , ✓
old) =

⌧ � q̂j

1� q̂j
, (9)

p̂(wj |xj , yj , ✓
old) =

(
1 if wj = ⌧�q̂j

1�q̂j
, where q̂j = arg min⌧ |ŷj,⌧ � yj |

0 else
. (10)

This is a ‘hard’ assignment, where latents are assigned to the most likely values under the current
model (e.g. datapoints are attributed to the nearest clusters in the K-means algorithm [Bishop, 2006]),
and gives rise to a class of algorithms termed hard EM [Samdani et al., 2012].

Note that the in Eq. 6 we can rewrite, log p(y,w|x, ✓) = log p(w)p(y|x, ✓,w). Since we choose
only a single setting for w in the outer expectation, this dependence disappears, and we require
maximisation of, Ew|x,y,✓old [log p(y|x, ✓,w)].

Partial Maximisation

A second departure from the standard EM algorithm, is that Algorithm 2 performs only a partial
maximisation of the likelihood, taking a single gradient step. This has been shown to provide similar
guarantees, and is termed ‘generalised’ EM [Neal and Hinton, 1998].

One could consider an alternative version of the algorithm that is closer to the standard EM procedure,
where the estimated quantiles of censored data points are fixed while the maximisation step of NN
parameters is run to convergence over multiple training epochs, before the estimates are updated in the
expectation step, and repeating. In our case this is less effective – the maximisation requires running
a forward pass through the NN, and obtaining estimated quantiles under current NN parameters
once this is done is trivial, so we can access up-to-date estimates essentially for free. Appendix
Figure 5 empirically demonstrates that CQRNN’s partial maximisation approach produces the fastest
convergence.

4.2 Self-Correcting Property

The CQRNN bootstraps weight estimates from the current model as it trains. It’s not immediately
obvious why this bootstrapping approach should converge to something sensible – what if bad initial
weight estimates lead to worse ones? As a second insight into the CQRNN algorithm, Theorem 2
shows that when a censored weight, ŵj , is estimated incorrectly, the algorithm acts in a way to adjust
the estimated quantiles in a favourable way – we refer to this as ‘self-correcting’.

Theorem 2. If q̂j is underestimated, one iteration of the algorithm acts to increase the quantile

predictions, ŷj,⌧ , by the same amount, or even higher, than if the weight had been correct. If q̂j is

overestimated, ŷj,⌧ , is decreased by the same amount, or even lower, than with the correct weight.

Proof sketch. Denote qj the true quantile that censored datapoint j is censored in, and wj the
corresponding true weight. We derive the expression for the gradient wrt the predicted quantiles, ŷj,⌧ ,
finding that if ŵj is underestimated it holds that, @LPort.(✓,D,⌧,ŵ,y

⇤)
@ŷj,⌧


@LPort.(✓,D,⌧,w,y

⇤)
@ŷj,⌧

, and hence
gradient descent applies an adjustment in the desired direction of equal or greater magnitude than if
the true weight had been used. The reverse holds for overestimated ŵj . Appendix A provides a full
proof.

5 Related Work

Survival analysis and NNs. Following the widespread success of deep NNs over the past decade,
there has been a wave of research applying NNs to survival analysis – for instance by modifying
the CoxPH model [Katzman et al., 2018], or framing the task as ordinal classification [Lee et al.,
2018]. Closer to our work are methods that use NNs to output parameters of a distribution such
as the Weibull [Martinsson, 2016], seek robust training objectives for these models [Avati et al.,
2019], or help with their optimisation [Tang et al., 2022]. Our work stands out as offering a way to
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directly estimate the target variable at pre-specified quantiles, without enforcing any distributional
assumption. A limitation is that the distribution may only be predicted at these quantiles (unless
additional assumptions are made to allow interpolation between these).

Quantile regression and NNs. Quantile regression has proven an attractive option to enable NNs to
move beyond point predictions. This allows quantification of a NN’s aleatoric uncertainty [Tagasovska
and Lopez-Paz, 2019]. It is attractive due to its straightforward implementation, and avoidance of
any distributional assumption. For example, it has found use in reinforcement learning to capture
the distribution of rewards, rather than just the mean [Dabney et al., 2017]. Since NNs are flexible
function approximators, particular attention has been paid to the crossing quantile problem [Bondell
et al., 2010, Zhou et al., 2020, Brando et al., 2022]. CQRNN borrows ideas from this line of work,
and further tackles the challenge of learning quantiles under censored data.

Censored quantile linear regression. There is much work on censored quantile regression methods
for linear models. Powell [1986] developed an estimator under fixed-value censoring which can be
implemented with an algorithm from Fitzenberger [1997]. Portnoy [2003] developed an estimator
under random censoring based on the KM estimator, while Peng and Huang [2008] developed an
alternative based on the Nelson–Aalen (NA) estimator. KM and NA are closely related, and Portnoy
and Peng’s methods have been reported to offer similar empirical performance [Koenker, 2008].
Koenker [2022] provides all above methods in the popular ‘quantreg’ R package. Other notable
methods include Yang et al. [2018], based on the data augmentation algorithm, and Wang and Wang
[2009], whose estimator is similar to Portnoy’s but utilises local estimates of the KM, computed with
a kernel method. See Peng [2021] for a review of the broader area. Our work allows modelling of
flexible non-linear quantile functions, leveraging the powerful representation learning abilities of
NNs. Although, this sacrifices the interpretability of coefficients of linear models.

Censored quantile regression and NNs. Only a small amount of work has been done in this area.
The ‘qrnn’ R package [Cannon, 2019] offers the ability to train NNs under fixed-value left censoring,
adopting an idea from the linear setting [Friederichs and Hense, 2007, Cannon, 2011]. Huttel et al.
[2022] explore our objective but assume censoring times, ci, are available for both censored and
uncensored data points (i.e. the censoring distribution is known). We do not require this assumption.
DeepQuantReg [Jia and Jeong, 2022] tackles the same objective as this paper. They showed that
improvements in quantile estimation can be obtained relative to naive methods. Their work differs
from ours significantly – they base their method around an estimator for the median from Huang et al.
[2007], requiring an assumption that the censoring distribution is independent of covariates.

6 Experiments

This section empirically investigates several questions. Q1) How does the proposed CQRNN method

compare with existing methods? This is done qualitatively on synthetic 1D functions in Section 6.1
and quantitatively on synthetic and real datasets in Section 6.2. Q2) How does the sequential grid

algorithm compare to the CQRNN algorithm, both in terms of predictive accuracy and efficiency?

Explored in Section 6.3 Q3) How is the CQRNN algorithm affected by its hyperparameters? We
investigate the impact of grid fidelity and y

⇤ in Section 6.4.

All experiments use fully-connected NNs with two hidden layers of 100 neurons, except for SurvM-
NIST, when three convolutional layers are used. Grid size M is set to 5, 9 or 19 depending on dataset
size. Appendix B contains further details on hyperparameter settings, metrics, and datasets. Appendix
C presents further results.

Datasets. We use three types of dataset. Type 1) Synthetic target data with synthetic censoring. Type
2) Real target data with synthetic censoring. Type 3) Real target data with real censoring. Whilst
type 3 captures the kind of datasets we care about most, evaluation of quantiles is challenging since
in real-world survival data the target conditional quantiles are not obtainable even at test time [Li
and Peng, 2017]. In contrast, type 1 offers access to the ground truth quantiles for clean evaluation,
but properties of these datasets may be less realistic. We introduce type 2 as a middle ground, which
takes a real-world dataset without censoring, and synthetically overlays a censoring distribution
to create training data. At test time, we have the option of not applying the censoring, providing
samples from the clean target distribution, allowing clearer evaluation. We summarise all datasets
in Table 2. Full details are in Appendix B.4. Our experiments exceed the number and variety of
datasets used in popular recent works [Goldstein et al., 2020, Zhong et al., 2021]
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Table 1: Performance of our proposed CQRNN algorithm (Algorithm 2) compared to the sequential
grid method for NNs (Algorithm 1), over 200 random seeds.

Dataset Number Training time Test time Parameter TQMSE difference CQRNN is Seq. grid is No statistical
quantiles speed up speed up saving Seq. grid � CQRNN sig. better sig. better significant

95% conf. interval in TQMSE? in TQMSE? difference

Norm linear 9 14.7⇥ 11.2⇥ 8.3⇥ -2.189 ± 0.245 X
Norm non-lin 9 12.4⇥ 9.6⇥ 8.3⇥ -0.003 ± 0.001 X
Exponential 9 12.4⇥ 8.0⇥ 8.3⇥ -0.093 ± 0.176 X
Weibull 9 12.5⇥ 8.7⇥ 8.3⇥ -0.014 ± 0.016 X
LogNorm 9 12.9⇥ 8.8⇥ 8.3⇥ -0.039 ± 0.028 X
Norm uniform 9 12.6⇥ 8.1⇥ 8.3⇥ 0.175 ± 0.033 X
Norm heavy 19 31.0⇥ 18.5⇥ 16.2⇥ 0.108 ± 0.211 X
Norm med. 19 34.1⇥ 17.9⇥ 16.2⇥ -0.046 ± 0.004 X
Norm light 19 31.7⇥ 19.2⇥ 16.2⇥ -0.035 ± 0.003 X
Norm same 19 34.3⇥ 21.2⇥ 16.2⇥ -0.390 ± 0.049 X
LogNorm heavy 19 33.6⇥ 19.9⇥ 16.2⇥ 0.005 ± 0.001 X
LogNorm med. 19 31.3⇥ 13.1⇥ 16.2⇥ 0.019 ± 0.002 X
LogNorm light 19 31.3⇥ 20.2⇥ 16.2⇥ -0.033 ± 0.004 X
LogNorm same 19 29.8⇥ 18.4⇥ 16.2⇥ -0.371 ± 0.045 X
Total: 8/14 3/14 3/14

Metrics. Our objective is to measure how closely a model’s predicted quantiles match those of the
ground truth target distribution. We favour different metrics for each dataset type.

For type 1 datasets, since targets are generated synthetically it is possible to analytically compute the
ground truth target quantile for an input xi, which we denote yi,⌧ . We compute the mean squared
error (MSE) between the predictions and the ground truths across three quantiles, ⌧ 2 [0.1, 0.5, 0.9],
(we ensure these are always present in grid

⌧
). This is our first-choice metric when available.

True quantile MSE (TQMSE) := 1
N

P
⌧2[0.1,0.5,0.9]

P
N

i=1(ŷi,⌧ � yi,⌧ )2.

In type 2 datsets samples from the uncensored target distribution are available but not the syn-
thetic generating function. Our preferred metric is the checkmark loss across the three quantiles.
Uncensored quantile loss (UQL) := 1

N

P
⌧2[0.1,0.5,0.9]

P
N

i=1 ⇢⌧ (yi, ŷi,⌧ ).

For datasets of type 3, we use two metrics. The concordance index (C-index) is computed using
the median (⌧ = 0.5). But this may not reveal anything about systematic bias of different models,
nor about other quantiles ⌧ 6= 0.5. We secondly use censored D-Calibration (CensDCal) [Haider
et al., 2020] which measures whether the empirical proportion of datapoints falling between pairs
of consecutive quantiles, matches the target proportion, ⌧j+1 � ⌧j . MSE of the deviation is then
computed. There is also an uncensored version (UnDCal), which we can compute for type 1 & 2
datasets. Appendix B.2 gives further details.

Baselines. We compare against three methods that can be used to predict the quantiles of a target
distribution using a NN. Excl. Censor – a method that naively excludes censored datapoints from
the training data, optimising the loss in Eq. 3. DeepQuantReg – the only existing method in
the literature proposing explicit output of quantiles from a NN on censored data [Jia and Jeong,
2022]. LogNorm MLE – A NN outputting parameters of a lognormal distribution, that’s trained
via maximum likelihood estimation (MLE) (details in Appendix B.3), and is a standard baseline
in related work (e.g. [Avati et al., 2019, Goldstein et al., 2020]) since this distribution often suits
properties of real-world time-to-event survival data [Kleinbaum and Klein, 2012].

6.1 Qualitative 1D Analysis

Figure 1 visualises the quantiles predicted by CQRNN and baseline methods for 1D datasets (Table
2 describes dataset functions, Figure 3 visualises further 1D datasets). Each dataset contains 500
datapoints drawn from, x ⇠ U(0, 2) and grid

⌧
2 {0.1, 0.3, 0.5, 0.7, 0.9}. CQRNN usually learns

quantiles that are closer to the ground truth than baseline methods, particularly at higher quantiles.
Excl. censor systemically makes underpredictions, and this worsens at higher quantiles since larger
values of y are more likely to be censored and excluded. DeepQuantReg avoids this systemic
underprediction, but appears to introduce bias of its own. LogNorm MLE provides variable results –
on Norm uniform it fails with excessive variance (an issue also observed by Avati et al. [2019]), but
on LogNorm, since the target distribution matches the distribution output by the NN, it performs well.
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6.2 Benchmarking
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Figure 2: Main benchmarking results. Mean ±

one standard error over ten runs.

Our main experiment benchmarks CQRNN
against all baselines across a wide variety of
datasets, covering various domains, sizes, di-
mensionalities and censoring proportions (see
Table 2). Some hyperparameter tuning was per-
formed for each method (Appendix B.1). Figure
2 plots the preferred metric for each dataset type,
though patterns were consistent across metrics
– Table 4 provides a full breakdown.

For type 1 (synthetic) datasets, the quantitative
results follow our qualitative observations, with
CQRNN producing lowest TQMSE on all but
the datasets generated from a Log Normal distri-
bution, when it sometimes placed second behind
LogNorm MLE.

CQRNN also produces the lowest UQL on all
datasets of type 2. LogNorm MLE performs
poorly on these, presumably since they are not
typical time-to-event datasets which are well
captured by the Log Normal distribution.

For type 3 datasets, CQRNN and LogNorm
MLE usually perform best in terms of C-index,
with error bars tending to overlap. In CensDCal,
CQRNN consistently perform best, matched
only by LogNorm MLE on two datasets, when
error bars overlap. Excl. censor is the weakest
method, with DeepQuantReg midway between
it and CQRNN.

6.3 Comparison of Sequential Grid and CQRNN

We ran a head-to-head comparison of CQRNN and the sequential grid algorithm on all type 1 synthetic
datasets, and all type 3 real datasets. Table 1 compares on type 1 datasets, along with statistical
tests of significance for TQMSE differences (200 random seeds). Appendix Table 5 provides results
for the type 3 datsets, reporting C-index and CensDCal (50 random seeds). Significance tests are
described in Appendix B.1.

CQRNN delivers benefits in speed up both at training and test time, running an order of magnitude
faster than the sequential grid algorithm. CQRNN also dramatically reduces model size. The
magnitude of these benefits is largely determined by the size of the quantile grid, M , which is explicit
in the sequential algorithm’s time and space complexity, O(M), but largely avoided in CQRNN.

Differences in the quality of quantiles of the two algorithms is usually slight (after-all both leverage the
same estimator), though CQRNN shows statistically significant gains on 8/14 type 1 datasets in terms
of TQMSE, 4/7 type 3 datsets in terms of C-Index, and 7/7 type 3 datasets in terms of CensDCal. We
hypothesise that having a single NN output all quantiles provides a helpful inductive bias, encouraging
similarity between adjacent quantiles, that’s not present in independently trained NNs.

6.4 Hyperparameter Investigation

The CQRNN algorithm includes two hyperparameters – the grid of quantiles, grid
⌧

, and the pseudo
y value, y⇤. We ran ablations to empirically investigate the effect of these, as well as remedies for the
‘crossing-quantile’ problem, and a comparison of partial vs. full optimisation. Here we summarise
our findings, Appendix C.1 provides full details.

We tested grid sizes, M 2 {9, 19, 39}, on several type 1 datasets. In general, a finer grid (larger M )
is slightly beneficial, though there is variance between datasets and gains are sometimes only seen

9



for larger datasets (>5,000 datapoints). Selection of y⇤ requires some care for CQRNN. We defined
it in terms of the maximum y value in the training set, y⇤ = cy⇤ maxi yi, for a hyperparemeter,
cy⇤ > 1. Performance can be improved by tuning cy⇤ for each dataset, but using cy⇤ = 1.2 provided
consistently reasonable results – this was the value used in our benchmarking experiments. We
trialled two methods for combating the crossing-quantile problem. 1) Adding a crossing loss penalty.
2) Constraining the NN architecture to output quantiles adding to the previous prediction. Neither of
these methods significantly affected performance.

7 Discussion & Conclusion

This paper has taken a popular idea from survival analysis, Portnoy’s censored quantile regression
estimator, and shown how it can be efficiently combined with NNs in a new algorithm, CQRNN.
We provided theoretical insight by interpreting it as a flavour of EM. Empirically the method
outperformed existing approaches, consistently producing more accurate quantile estimates across a
range of synthetic and real datasets. For example, across datasets of type 2 and 3, CQRNN was best
calibrated in 10 out of 12 instances (see CensDCal in Table 4).

Limitations. Firstly, our theoretical results have not said that solutions will converge on a global
optimum. Secondly, we have only tested CQRNN on a modest number of real-world datasets, many
drawn from the biomedical domain. It’s possible that some datasets may cause CQRNN problems, as
we found on BreastMSK (Figure 2). In particular, cases where higher quantiles are undefined should
be handled with care.

Conclusion. To summarise, our work contributes toward unlocking the benefit that modern machine
learning could bring to important domains such as healthcare and machinery prognostics. By
outputting quantiles, CQRNN naturally communicates a measure of uncertainty in its predictions,
which makes it particularly suitable to these high-stakes applications, and a valuable addition to the
toolkit combining deep NNs with survival analysis.

Table 2: Summary of all datasets used.

Dataset Feats Train Test Prop. Target sampling Censoring sampling
data data censored distribution distribution

Type 1 – Synthetic datasets with synthetic censoring
Norm linear 1 500 1000 0.20 N (2x + 10, (x + 1)2) N (4x + 10, (0.8x + 0.4)2)
Norm non-linear 1 500 1000 0.24 N (x sin(2x) + 10, (0.5x + 0.5)2) N (2x + 10, 22)
Exponential 1 500 1000 0.30 Exp(2x + 4) Exp(�3x + 15)
Weibull 1 500 1000 0.22 Weibull(4x sin(2(x� 1)) + 10, 5) Weibull(�3x + 20, 5)
LogNorm 1 500 1000 0.21 Lognorm((x� 1)2, x2) U(0, 10)
Norm uniform 1 500 1000 0.62 N (2x cos(2x) + 13, (x2 + 0.5)2) U(0, 18)
Norm heavy 4 2000 1000 0.80 N (3x0 + x2

1 � x2
2 + 2 sin(x2x3) + 6, (x2 + 0.5)2) U(0, 12)

Norm med. 4 2000 1000 0.49 — ” — U(0, 20)
Norm light 4 2000 1000 0.25 — ” — U(0, 40)
Norm same 4 2000 1000 0.50 — ” — Equal to target dist.
LogNorm heavy 8 4000 1000 0.75 Lognorm(

P8
i
�ixi, 1)/10 U(0, 0.4)

LogNorm med. 8 4000 1000 0.52 — ” — U(0, 1.0)
LogNorm light 8 4000 1000 0.23 — ” — U(0, 3.5)
LogNorm same 8 4000 1000 0.50 — ” — Equal to target dist.

Type 2 – Real datasets with synthetic censoring
Housing 8 16512 4128 0.50 Real U(0, c1)
Protein 9 36584 9146 0.44 Real U(0, c2)
Wine 11 5197 1300 0.69 Real U(0, c3)
PHM 21 36734 9184 0.52 Real U(0, c4)
SurvMNIST 28⇥28 48000 12000 0.53 One Gamma dist. per MNIST class U(0, c5)

Type 3 – Real datasets with real censoring
METABRIC 9 1523 381 0.42 Real Real
WHAS 6 1310 328 0.57 Real Real
SUPPORT 14 7098 1775 0.32 Real Real
GBSG 7 1785 447 0.42 Real Real
TMBImmuno 3 1328 332 0.49 Real Real
BreastMSK 5 1467 367 0.77 Real Real
LGGGBM 5 510 128 0.60 Real Real
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