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Abstract

Causal discovery and causal reasoning are classically treated as separate and con-
secutive tasks: one first infers the causal graph, and then uses it to estimate causal
effects of interventions. However, such a two-stage approach is uneconomical,
especially in terms of actively collected interventional data, since the causal query
of interest may not require a fully-specified causal model. From a Bayesian per-
spective, it is also unnatural, since a causal query (e.g., the causal graph or some
causal effect) can be viewed as a latent quantity subject to posterior inference—
other unobserved quantities that are not of direct interest (e.g., the full causal
model) ought to be marginalized out in this process and contribute to our epistemic
uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a
fully-Bayesian active learning framework for integrated causal discovery and rea-
soning, which jointly infers a posterior over causal models and queries of interest.
In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear
additive noise models, which we model using Gaussian processes. We sequentially
design experiments that are maximally informative about our target causal query,
collect the corresponding interventional data, and update our beliefs to choose the
next experiment. Through simulations, we demonstrate that our approach is more
data-efficient than several baselines that only focus on learning the full causal graph.
This allows us to accurately learn downstream causal queries from fewer samples
while providing well-calibrated uncertainty estimates for the quantities of interest.

1 Introduction

Causal reasoning, that is, answering causal queries such as the effect of a particular intervention,
is a fundamental scientific quest [3, 36, 39, 49]. A rigorous treatment of this quest requires a
reference causal model, typically consisting at least of (i) a causal diagram, or directed acyclic graph
(DAG), capturing the qualitative causal structure between a system’s variables [55] and (ii) a joint
distribution that is Markovian w.r.t. this causal graph [75]. Other frameworks additionally model (iii)
the functional dependence of each variable on its causal parents in the graph [56, 83]. If the graph
is not known from domain expertise, causal discovery aims to infer it from data [48, 75]. However,
given only passively-collected observational data and no assumptions on the data-generating process,
causal discovery is limited to recovering the Markov equivalence class (MEC) of DAGs implying
the conditional independences present in the data [75]. Additional assumptions like linearity can
render the graph identifiable [37, 61, 71, 86] but are often hard to falsify, thus leading to risk of
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misspecification. These shortcomings motivate learning from experimental (interventional) data,
which enables recovering the true causal structure [16, 17, 31]. Since obtaining interventional data is
costly in practice, we study the active learning setting, in which we sequentially design and perform
interventions that are most informative for the target causal query [1, 26, 31, 32, 50, 79].

Classically, causal discovery and reasoning are treated as separate, consecutive tasks that are studied
by different communities. Prior work on experimental design has thus focused either purely on
causal reasoning—that is, how to best design experimental studies if the causal graph is known?—or
purely on causal discovery, whenever the graph is unknown [35, 61]. In the present work, we
consider the more general setting in which we are interested in performing causal reasoning but
do not have access to a reference causal model a priori. In this case, causal discovery can be seen
as a means to an end rather than as the main objective. Focusing on actively learning the full causal
model to enable subsequent causal reasoning can thus be disadvantageous for two reasons. First,
wasting samples on learning the full causal graph is suboptimal if we are only interested in specific
aspects of the causal model. Second, causal discovery from small amounts of data entails significant
epistemic uncertainty—for example, incurred by low statistical test power or multiple highly-scoring
DAGs—which is not taken into account when selecting a single reference causal model [2, 21].

In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian framework
for integrated causal discovery and reasoning with experimental design. The basic approach is
to put a Bayesian prior over the causal model class of choice, and to cast the learning problem as
Bayesian inference over the model posterior. Given the unobserved causal model, we formalize
causal reasoning by introducing the target causal query, a function of the causal model that specifies
the set of causal quantities we are interested in. The model posterior together with the query function
induce a query posterior, which represents the result of our Bayesian learning procedure. It can
be used, e.g., in downstream decision tasks or to derive a MAP solution or suitable expectation. To
learn the query posterior, we follow the Bayesian optimal experimental design approach [10, 42] and
sequentially choose admissible interventions on the true causal model that are most informative about
our target query w.r.t. our current beliefs. Given the observed data, we then update our beliefs by
computing the posterior over causal models and queries and use them to design the next experiment.

Since inference in the general ABCI framework is computationally highly challenging, we instantiate
our approach for the class of causally-sufficient, nonlinear additive Gaussian noise models [37],
which we model using Gaussian processes (GPs) [22, 82]. To perform efficient posterior inference
in the combinatorial space of causal graphs, we use a recently proposed framework for differentiable
Bayesian structure learning (DiBS) [45] that employs a continuous latent probabilistic graph
representation. To efficiently maximise the information gain in the experiment design loop, we rely
on Bayesian optimisation [46, 47, 73]. Overall, we highlight the following contributions:

• We propose ABCI as a flexible Bayesian active learning framework for efficiently inferring
arbitrary sets of causal queries, subsuming causal discovery and reasoning as special cases (§ 3).

• We provide a fully Bayesian treatment for the flexible class of nonlinear additive Gaussian noise
models by leveraging GPs, continuous graph parametrisations, and Bayesian optimisation (§ 4).

• We demonstrate that our approach scales to relevant problem sizes and compares favourably to
baselines in terms of efficiently learning the graph, full SCM, and interventional distributions (§ 5).

2 Related Work

Causal discovery and reasoning have been widely studied in machine learning and statis-
tics [27, 35, 61, 81]. Given an already collected set of observations, there is a large body of literature
on learning causal structure, both in the form of a point estimate [9, 30, 43, 59, 60, 71, 75] and a
Bayesian posterior [2, 4, 12, 14, 21, 33, 45]. Given a known causal graph, previous work studies
how to estimate treatment effects or counterfactuals [56, 67, 69]. When interventional data is yet
to be collected, existing work primarily focuses on the specific task of structure learning—without
its downstream use. The concept of (Bayesian) active causal discovery was first considered in
discrete [50, 79] or linear [11, 53] models with closed-form marginal likelihoods and later extended
to nonlinear causal mechanisms [78, 80], multi-target interventions [77], and general models by using
hypothesis testing [23] or heuristics [68]. Graph theoretic works give insights on the interventions
required for partial or full identifiability [15–17, 31, 38, 40, 70, 84].
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Figure 1: Overview of the Active Bayesian Causal Inference (ABCI) framework. At each time step t, we
use Bayesian experimental design based on our current beliefs to choose a maximally informative intervention at
to perform. We then collect a finite data sample from the interventional distribution induced by the environment,
which we assume to be described by an unknown structural causal model (SCM) M⋆ over a set of observable
variables X . Given the interventional data x1:t collected from the true SCM M⋆ and a prior distribution
over the model class of consideration, we infer the posterior over a target causal query Y = q(M) that can be
expressed as a function of the causal model. For example, we may be interested in the graph (causal discovery),
the presence of certain edges (partial causal discovery), the full SCM (causal model learning), a collection
of interventional distributions or treatment effects (causal reasoning), or any combination thereof.

Beyond learning the complete causal graph, few prior works have studied active causal inference.
Concurrent work of Tigas et al. [78] considers experimental design for learning a full SCM
parameterised by neural networks. There are significant differences to our approach. In particular,
our framework (§ 3) is not limited to the information gain over the full model and provides a fully
Bayesian treatment of the functions and their epistemic uncertainty (§ 4). Agrawal et al. [1] consider
actively learning a function of the causal graph under budget constraints, though not of the causal
mechanisms and only for linear Gaussian models. Conversely, Rubenstein et al. [66] perform
experimental design for learning the causal mechanisms after the causal graph has been inferred.
Thus, while prior work considers causal discovery and reasoning as separate tasks, ABCI forms
an integrated Bayesian approach for learning causal queries through interventions, reducing to
previously studied settings in special cases. We further discuss related work in Appx. A.

3 Active Bayesian Causal Inference (ABCI) Framework

In this section, we first introduce the ABCI framework in generality and formalize its main concepts
and distributional components, which are illustrated in Fig. 1. In § 4, we then describe our particular
instantiation of ABCI for the class of causally sufficient nonlinear additive Gaussian noise models.

Notation. We use upper-case X and lower-case x to denote random variables and their realizations,
respectively. Sets and vectors are written in bold face, X and x. We use p(·) to denote different
distributions, or densities, which are distinguished by their arguments.

Causal Model. To treat causality in a rigorous way, we first need to postulate a mathematically
well-defined causal model. Historically hard questions about causality can then be reduced to
epistemic questions, that is, what and how much is known about the causal model. A prominent
type of causal model is the structural causal model (SCM) [56]. From a Bayesian perspective, an
SCM can be viewed as a hierarchical data-generating process involving latent random variables.
Definition 1 (SCM). An SCMM over observed endogenous variables X = {X1, . . . , Xd} and
unobserved exogenous variablesU = {U1, . . . , Ud} consists of structural equations, or mechanisms,

Xi := fi(Pai, Ui), for i ∈ {1, . . . , d}, (3.1)
which assign the value of each Xi as a deterministic function fi of its direct causes, or causal parents,
Pai ⊆X \ {Xi} and Ui; and a joint distribution p(U) over the exogenous variables.

Associated with each SCM is a directed causal graph G with vertices X and edges Xj → Xi if
and only if Xj ∈ Pai, which we assume to be acyclic. Any acyclic SCM then induces a unique
observational distribution p(X |M) over the endogenous variables X , which is obtained as the
pushforward measure of p(U) through the causal mechanisms in Eq. (3.1).

Interventions. A crucial aspect of causal models such as SCMs is that they also model the effect of
interventions—external manipulations to one or more of the causal mechanisms in Eq. (3.1)—which,
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in general, are denoted using Pearl’s do-operator [56] as do({Xi = f̃i(Pai, Ui)}i∈I) with I ⊆ [d]

and suitably chosen f̃i(·). An intervention leads to a new SCM, the so-called interventional SCM, in
which the relevant structural equations in Eq. (3.1) have been replaced by the new, manipulated ones.
The interventional SCM thus induces a new distribution over the observed variables, the so-called
interventional distribution, which is denoted by pdo(a)(X |M) with a denoting the (set of) interven-
tion(s) {Xi = f̃i(Pai, Ui)}i∈I . Causal effects, that is, expressions like E[Xj |do(Xi = 3)], can then
be derived from the corresponding interventional distribution via standard probabilistic inference.

Being Bayesian with Respect to Causal Models. The main epistemic challenge for causal reasoning
stems from the fact that the true causal modelM⋆ is not or not completely known. The canonical
response to such epistemic challenges is a Bayesian approach: place a prior p(M) over causal models,
collect data D from the true modelM⋆, and compute the posterior via Bayes rule:

p(M|D) = p(D |M) p(M)

p(D)
=

p(D |M) p(M)∫
p(D |M) p(M) dM

. (3.2)

A full Bayesian treatment overM is computationally delicate, to say the least. We require a way to pa-
rameterise the class of modelsMwhile being able to perform posterior inference over this model class.
In this paper, we present a fully Bayesian approach for flexibly modelling nonlinear relationships (§ 4).

Bayesian Causal Inference. In the causal inference literature, the tasks of causal discovery and
causal reasoning are typically considered separate problems. The former aims to learn (parts of) the
causal modelM⋆, typically the causal graph G⋆, while the latter assumes that the relevant parts of
M⋆ are already known and aims to identify and estimate some query of interest, typically using
only observational data. This separation suggests a two-stage approach of first performing causal
discovery and then fixing the model for subsequent causal reasoning. From the perspective of uncer-
tainty quantification and active learning, however, this distinction is unnatural because intermediate,
unobserved quantities like the causal model do not contribute to the epistemic uncertainty in the final
quantities of interest. Instead, we define a causal query function q, which specifies a target causal
query Y = q(M) as a function of the causal modelM. This view thus subsumes and generalises
causal discovery and reasoning into a unified framework. For example, possible causal queries are:

Causal Discovery: Y = qCD(M) = G, that is, learning the full causal graph G;

Partial Causal Discovery: Y = qPCD(M) = ϕ(G), that is, learning some feature ϕ of the
graph, such as the presence of a particular (set of) edge(s);

Causal Model Learning: Y = qCML(M) =M, that is, learning the full SCMM;

Causal Reasoning: Y = qCR(M) = {Xdo(XI(j)=ψj)

j }j∈J , that is, learning a set of
interventional variablesXj induced byM under do(XI(j) = ψj).2

Given a causal query, Bayesian inference naturally extends to our learning goal, the query posterior:

p(Y | D) =
∫
p(Y |M) p(M|D) dM = EM|D[ p(Y |M)] . (3.3)

Evidently, computing Eq. (3.3) constitutes a hard computational problem in general, as we need
to marginalise out the causal model. In § 4, we introduce a practical implementation for a restricted
causal model class, informed by this challenge.

Identifiability of causal models and queries. A crucial concept is that of identifiability of a
model class, which refers to the ability to uniquely recover the true model in the limit of infinitely
many observations from it [25].3 In the context of our setting, if the class of causal modelsM is
identifiable, the model posterior p(M|D) in Eq. (3.2) and hence, assuming q(·) is deterministic,

2The return value of q is a set of realisations of the respective random variables. In principle, the set J can
be uncountable, subsuming interventional distributions for a continuous set of intervention values, possibly
on different variables. However, instead of having an uncountable set J for a continuous set of intervention
values, it may be more practical to have a finite set J for intervention targets and to assume a distribution over
intervention values ψj ∼ pj(ψ) as we do in § 4.2 and § 5.

3It is worth pointing out that the term “identifiability” is sometimes used differently in the causal inference
literature: within causal discovery, it typically refers to structure identifiability, that is, recovering only the causal
graph; in the context of causal reasoning, on the other hand, it typically refers to whether an interventional (or
counterfactual) query can be expressed in terms of known quantities, usually involving only the observational
distribution. Here, we will use the term in its (original) statistical sense to refer to identifiability of models.
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also the query posterior p(Y | D) in Eq. (3.3) will collapse and converge to a point mass on their
respective true valuesM⋆ and q(M⋆), given infinite data and provided the true model has non-zero
mass under our prior, p(M⋆) > 0. Given only observational data, causal models are notoriously
unidentifiable in general: without further assumptions on p(U) and the structural form of Eq. (3.1),
neither the graph nor the mechanisms can be recovered. In this case, p(M|D) may only converge
to an equivalence class of models that cannot be further distinguished. Note, however, that even
in this case, p(Y | D) may still sometimes collapse, for example, if the Markov equivalence class
(MEC) of graphs is identifiable (under causal sufficiency) and our query concerns the presence of
a particular edge which is shared by all graphs in the MEC.

Active Learning with Sequential Interventions. Rather than collect a large observational dataset, we
seek to leverage experimental data, which can help resolve some of the aforementioned identifiability
issues and facilitate learning our target causal query more quickly, even if the model is identifiable.
Since obtaining experimental data is costly in practice, we study the active learning setting in which
we sequentially design experiments in the form of interventions at.4 At each time step t, the outcome
of this experiment at is a batch xt of Nt i.i.d. observations from the true interventional distribution:

xt = {xt,n}Nt
n=1, xt,n

i.i.d.∼ pdo(at)(X |M⋆) (3.4)

Crucially, we design the experiment at to be maximally informative about our target causal query Y .
In our Bayesian setting, this is naturally formulated as maximising the myopic information gain
from the next intervention, that is, the mutual information between Y and the outcomeXt [10, 42]:

maxat I(Y ;Xt |x1:t−1) (3.5)

whereXt follows the predictive interventional distribution of the Bayesian causal model ensemble
at time t− 1 under intervention at, which is given by

Xt ∼ pdo(at)(X |x1:t−1) ∝
∫
pdo(at)(X |M) p(M|x1:t−1) dM. (3.6)

By maximising Eq. (3.5), we collect experimental data and infer our target causal query Y in a
highly efficient, goal-directed manner.

4 Tractable ABCI for Nonlinear Additive Noise Models

Having described the general ABCI framework and its conceptual components, we now detail how to
instantiate ABCI for a flexible model class that still allows for tractable, approximate inference. This
requires us to specify (i) the class of causal models we consider in Eq. (3.1), (ii) the types of interven-
tions at we consider at each step and the corresponding interventional likelihood in Eq. (3.4), (iii) our
prior distribution p(M) over models, (iv) how to perform tractable inference of the model posterior
in Eq. (3.2), and finally (v) how to maximise the information gain in Eq. (3.5) for experimental design.

Model Class and Parametrisation. In the following, we consider nonlinear additive Gaussian noise
models [37] of the form

Xi := fi(Pai) + Ui, with Ui ∼ N (0, σ2
i ) for i ∈ {1, . . . , d}, (4.1)

where the fi’s are smooth, nonlinear functions and the Ui’s are assumed to be mutually independent.
The latter corresponds to the assumption of causal sufficiency, or no hidden confounding. Any
modelM in this model class can be parametrised as a tripleM = (G,f ,σ2), where G is a causal
DAG, f = (f1, . . . , fd) is a vector of functions defined over the parent sets implied by G, and
σ2 = (σ2

1 , . . . , σ
2
d) contains the Gaussian noise variances. Provided that the fi are nonlinear and

not constant in any of their arguments, the model is identifiable almost surely [37, 62].

Interventional Likelihood. We support the realistic setting where only a subset W ⊆ X of all
variables are actionable, that is, can be intervened upon.5 We consider hard interventions of the form
do(at) = do(XI = xI) that fix a subsetXI ⊆W to a constant xI . Due to causal sufficiency, the
interventional likelihood under such hard interventions at factorises over the causal graph G and
is given by the g-formula [64] or truncated factorisation [75]:

pdo(at)(X |G,f ,σ2) = I{XI = xI}
∏
j ̸∈I

p(Xj | fj(PaGj ), σ
2
j ). (4.2)

4Note that restricting to at = ∅ amounts to learning from observational data as a special case.
5In principle, the set of actionable variables might even change over time, in which case they are denotedWt.
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The last term in Eq. (4.2) is given by N (Xj | fj(PaGj ), σ
2
j ), due to the Gaussian noise assumption.

Let x1:t be the entire dataset, collected up to time t. The likelihood of x1:t is then given by

p(x1:t |G,f ,σ2) =

t∏
τ=1

pdo(aτ )(xτ |G,f ,σ2) =

t∏
τ=1

Nt∏
n=1

pdo(aτ )(xτ,n |G,f ,σ2). (4.3)

Structured Model Prior. To specify our prior, we distinguish between root nodes Xi, for which
Pai = ∅ and thus fi = const, and non-root nodes Xj . For a given causal graph G, we denote
the index set of root nodes by R(G) = {i ∈ [d] : PaGi = ∅} and that of non-root nodes by
NR(G) = [d] \R(G). We then place the following structured prior over SCMsM = (G,f ,σ2):

p(M) = p(G) p(f ,σ2 |G) = p(G)
∏

i∈R(G)

p(fi, σ
2
i |G)

∏
j∈NR(G)

p(fj |G)p(σ2
j |G) . (4.4)

Here, p(G) is a prior over graphs and p(f ,σ2 |G) is a prior over the functions and noise variances.
We factorise our prior conditional on G as in Eq. (4.4) not only to allow for a separate treatment
of root vs. non-root nodes, but also to share priors across similar graphs. Whenever PaG1

i = PaG2
i ,

we set p(fi, σ2
i |G1) = p(fi, σ

2
i |G2). As a consequence, the posteriors are also shared, which

substantially reduces the computational cost in practice (see Appx. E.2 for details). Our prior
also encodes the beliefs that {fi, σ2

i } ⊥⊥ {fi′ , σ2
i′} |G for i ̸= i′ ∈ [d] and that fj ⊥⊥ σ2

j |G for
j ∈ NR(G) which is motivated by the principle of independent causal mechanisms [61] and the
causal sufficiency assumption. Our specific choices for the different factors on the RHS of Eq. (4.4)
are guided by ensuring tractable inference and described in more detail below.

Model Posterior. Given collected data x1:t, we can update our beliefs and quantify our uncertainty
inM⋆ by inferring the posterior p(M|x1:t) over SCMsM = (G,f ,σ2), which can be written as6

p(M|x1:t) = p(G |x1:t)
∏

i∈R(G)

p(fi, σ
2
i |x1:t, G)

∏
j∈NR(G)

p(fj , σ
2
j |x1:t, G) . (4.5)

For root nodes i ∈ R(G), posterior inference given the graph is straightforward. We have
fi = const, so fi can be viewed as the mean of Ui. We thus place conjugate normal-inverse-gamma
N-Γ−1(µi, λi, α

R
i , β

R
i ) priors on p(fi, σ2

i |G), which allows us to analytically compute the root node
posteriors p(fi, σ2

i |x1:t, G) in Eq. (4.5) given the hyperparameters (µ,λ,αR,βR) [51].

The posteriors over graphs and non-root nodes j ∈ NR(G) are given by

p(G |x1:t) =
p(x1:t |G) p(G)

p(x1:t)
, p(fj , σ

2
j |x1:t, G) =

p(x1:t |G, fj , σ2
j ) p(fj , σ

2
j |G)

p(x1:t |G)
. (4.6)

Computing these posteriors is more involved and discussed in the following.

4.1 Addressing Challenges for Posterior Inference with GPs and DiBS

The posterior distributions in Eq. (4.6) are intractable to compute in general due to the marginal
likelihood and evidence terms p(x1:t |G) and p(x1:t), respectively. In the following, we will address
these challenges by means of appropriate prior choices and approximations.

Challenge 1: Marginalising out the Functions. The marginal likelihood p(x1:t |G) reads

p(x1:t |G) =
∫
p(x1:t |G, fj , σ2

j ) p(fj |G) p(σ2
j |G) dfj dσ2

j (4.7)

and requires evaluating integrals over the function domain. We use Gaussian processes (GPs) [82] as
an elegant way to solve this problem, as GPs flexibly model nonlinear functions while offering conve-
nient analytical properties. Specifically, we place a GP(0, kGj (·, ·)) prior on p(fj |G), where kGj (·, ·)
is a covariance function over the parents of Xj with kernel parameters κj . As is common, we refer to
(κj , σ

2
j ) as the GP-hyperparameters. In addition, we place Gamma(ασj , β

σ
j ) and Gamma (ακj ,β

κ
j )

priors on p(σ2
i |G) and p(κi |G) and collect their parameters in (αGP,βGP).

6To avoid further complicating the notation, we write all posteriors and likelihoods in terms of the full
data x1:t. However, only observations of Xi and Xj |PaGj matter for i ∈ R(G) and j ∈ NR(G).
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Figure 2: Graphical model of GP-DiBS-ABCI.

The graphical model underlying all variables and hyper-
parameters is shown in Fig. 2. For our model class, GPs
provide closed-form expressions for the GP-marginal
likelihood p(x1:t |G, σ2

j ,κj), as well as for the GP
posteriors p(fj |x1:t, G, σ2

j ,κj) and the predictive pos-
teriors over observations p(X |x1:t, G,σ2,κ) [82],
see Appx. B for details.

Challenge 2: Marginalising out the GP-
Hyperparameters. While GPs allow for exact
posterior inference conditional on a fixed in-
stance of (σ2

j ,κj), evaluating expressions such
as p(fj |x1:t, G) requires marginalising out these
GP-hyperparameters from the GP-posterior. In general,
this is intractable to do exactly, as there is no analytical expression for p(σ2

j ,κj |x1:t, G). To tackle
this, we approximate such terms using a maximum a posteriori (MAP) point estimate (σ̂2

j , κ̂j)
obtained by performing gradient ascent on the unnormalised log posterior

∇ log p(σ2
j ,κj |x1:t, G) = ∇ log p(x1:t |G, σ2

j ,κj) +∇ log p(σ2
j ,κj |G) (4.8)

according to a predefined update schedule, see Alg. 1. More specifically,

p(fj |x1:t, G) =
∫
p(fj |x1:t, G, σ2

j ,κj)p(σ
2
j , κj |x1:t, G) dσ2

j dκj ≈ p(fj |x1:t, G, σ̂2
j , κ̂j)

Challenge 3: Marginalising out the Causal Graph. The evidence p(x1:t) is given by

p(x1:t) =
∑
G

p(x1:t |G) p(G) (4.9)

and involves a summation over all possible DAGs G. This becomes intractable for d ≥ 5 variables
as the number of DAGs grows super-exponentially in the number of variables [65]. To address this
challenge, we employ the recently proposed DiBS framework [45]. By introducing a continuous prior
p(Z) that models G via p(G |Z) and simultaneously enforces acyclicity of G, Lorch et al. [45] show
that we can efficiently infer the discrete posterior p(G |x1:t) via p(Z |x1:t) as

EG |x1:t [ϕ(G)] = EZ |x1:t

[
EG |Z [ p(x

1:t |G)ϕ(G)]
EG |Z [ p(x1:t |G)]

]
(4.10)

where ϕ is some function of the graph. Since p(Z |x1:t) is a continuous density with tractable gradient
estimators, we can leverage efficient variational inference methods such as Stein Variational Gradient
Descent (SVGD) for approximate inference [44]. Additional details on DiBS are given in Appx. D.

4.2 Approximate Bayesian Experimental Design with Bayesian Optimisation

Following § 3, our goal is to perform experiments at that are maximally informative about our target
query Y = q(M) by maximising the information gain from Eq. (3.5) given our hitherto collected data
D := x1:t−1. In Appx. C, we show that this is equivalent to maximising the following utility function:

U(a) = H(Xt | D) + EM|D
[
EXt,Y |M

[
logEM′ | D

[
p(Xt, Y |M′)

]]]
, (4.11)

where

H(Xt | D) = EM|D
[
EXt |M

[
logEM′ | D

[
p(Xt |M′)

]]]
denotes the differential entropy of the experiment outcome which depends on a and is distributed
as in Eq. (3.6). This surrogate objective can be estimated using a nested Monte Carlo estimator
as long as we can sample from and compute p(Y |M), or alternatively, p(Y |Xt, G,D). Refer
to Appx. C for further details. For example, for qCR(M) = X

do(Xi=ψ)
j with ψ ∼ p(ψ) a distribution

over intervention values, we obtain:

UCR(a) = EG | D
[
EXt |G,D

[
− logEG′ | D

[
p(Xt | D, G′)

]
(4.12)

+ Eψ
[
Edo(Xi=ψ)
Xj |Xt,G,D

[
logEG′ | D

[
p(Xt | D, G) pdo(Xi=ψ)(Xj |Xt, G,D)

]]]]]
.
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Algorithm 1: GP-DiBS-ABCI for nonlinear additive Gaussian noise models

Input: # of experiments T , batch sizes {Nt}Tt=1, # of latent particles M , # of MC samples K,
particle resampling schedule {rt}Tt=1, hyperparameter update schedule {st}Tt=1

Output: Posterior over target causal query p(Y |x1:T )

z0 ∼ p(Z) ▷sample initial particles; Eq. (D.12)
for t = 1 to T do

at ← argmaxa=(I,xI) U(a,x1:t−1) ▷design experiment; Eq. (4.11)
xt ← {x(t,n) ∼ pdo(at)(X |M⋆)}Nt

n=1 ▷perform experiment; Eq. (3.4)
zt ← zt−1

if rt then
zt ← resample_particles (zt) ▷see Appx.E

end
repeat

G← {G(k,m) ∼ p(G | ztm)}Kk=1
M
m=1 ▷sample graphs; Eq. (D.11)

κκκ, σσσ2 ← estimate_hyperparameters(x1:st ,G) ▷see Eq. (4.8)
zt ← svgd_step(zt,x1:t,G,κκκ,σσσ2) ▷update latent particles

until svgd_convergence ▷zt now approximate p(Z |x1:t)
end

Importantly, for specific instances of the query function q(·) discussed in § 3, we can derive simpler
utility functions than Eq. (4.11). For example, for qCD(M) = G and qCML(M) =M, we arrive at

UCD(a) = EG | D
[
EXt |G,D

[
log p(Xt | D, G)− logEG′ | D

[
p(Xt | D, G′)

]]]
, (4.13)

UCML(a) = EM|D
[
EXt |M

[
log p(Xt |M)− logEG′ | D

[
p(Xt | D, G′)

]]]
, (4.14)

where the entropy EXt |M [log p(Xt |M)] can again be efficiently computed given our modelling
choices. For brevity, we defer derivations and estimation details to Appxs. C and D.

Finding the optimal experiment a∗t = (I∗,x∗
I) requires jointly optimising the utility function cor-

responding to our query with respect to (i) the set of intervention targets I and (ii) the corresponding
intervention values xI . This lends itself naturally to a nested, bi-level optimisation scheme [80]:

I∗ ∈ argmaxI U(I,x∗
I) , where ∀I : x∗

I ∈ argmaxxI
U(I,xI) , (4.15)

In the above, we first estimate the optimal intervention values for all candidate intervention targets I
and then select the intervention target that yields the highest utility. The intervention target I may
contain multiple variables, which would yield a combinatorial problem. For simplicity, we consider
only single-node interventions, |I| = 1. To find x∗

I , we employ Bayesian optimisation [46, 47, 73]
to efficiently estimate the most informative intervention value x∗

I , see Appx. D.

5 Experiments

Setup. We evaluate ABCI by inferring the query posterior on synthetic ground-truth SCMs using
several different experiment selection strategies. Specifically, we design experiments w.r.t.UCD (causal
discovery), UCML (causal model learning), and UCR (causal reasoning); see § 4.2. We compare against
baselines which (i) only sample from the observational distribution (OBS) or (ii) pick an intervention
target j uniformly at random from [d] ∪ {∅} and set Xj = 0 (RAND FIXED, a weak random baseline
used in prior work) or draw Xj ∼ U(−7, 7) (RAND) if Xj ̸= ∅. All methods follow our Bayesian
GP-DiBS-ABCI approach from § 4. We sample ground truth SCMs over random scale-free graphs [6]
of size d = 20, with mechanisms and noise variances drawn from our model prior in Eq. (4.4).
In Appx. G, we report additional results for both scale-free and Erdős Renyi random graphs over
d = 10 resp. d = 20 variables. For specific prior choices and simulation details, see Appx. D.

Metrics. As ABCI infers a posterior over the target query Y , a natural evaluation metric is
the Kullback-Leibler divergence (KLD) between the true query distribution and the inferred
query posterior, KL(p(Y |M⋆)|| p(Y |x1:t)). We report Query KLD, a KLD estimate for target
interventional distributions (qCR). As a proxy for the KLD of the SCM posterior (qCML),7 we report

7The SCM KLD is either zero, if the SCM posterior collapses onto the true SCM, or infinite, otherwise.
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Figure 3: Causal Discovery and SCM Learning. Comparison of experimental design strategies for causal
discovery (UCD) and causal model learning (UCML) with random and observational baselines on simulated
ground truth models with 20 nodes. We initialise all methods with 50 observational samples, and then perform
experiments with a batch size of Nt = 5. Lines and shaded areas show means and 95% confidence intervals
(CIs) across 15 runs (5 randomly sampled ground-truth SCMs with 3 restarts per SCM). CIs for OBS and RAND

FIXED baselines are not shown to aid readability; see Fig. 6 in Appx. G for the full figure. (a) ESHD. Both
our objectives significantly outperform the observational and random baselines. (b) Average I-KLD. UCD

significantly outperforms the baselines, whereas UCML performs only marginally better than RAND. (c) AUPRC.
Both our strategies perform consistently better than the uninformed selection strategies.
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5 10 15 20 25 30 35 40 45 50
0.0

0.2

0.4

0.6

0.8

1.0
Query KLD

X1 X2

X3 X4

X5

Figure 4: Learning Interventional Distributions. (left) Comparison of different methods w.r.t. learning a set
of interventional variables X5

do(X3=ψ) with ψ ∼ U [2, 5] on simulated ground truth models with fixed causal
graph (right). We initialise all methods with 5 observational samples, and then perform experiments with a
batch size of Nt = 3. Lines and shaded areas show means and 95% confidence intervals (CIs) across 30 runs
(10 randomly sampled ground truth SCMs with 3 restarts each). CIs for OBS and RAND FIXED baselines are
not shown to aid readability; see Figs. 9 and 10 in Appx. G for the full figure. (a) All nodes actionable. UCR

significantly outperforms all other methods as expected. UCML performs second best which, in conjunction with
the results from Fig. 3, suggests that UCML yields a solid base model for performing downstream causal inference
tasks. (b) X3 not actionable. In this setting, where we cannot directly intervene on the treatment variable
of interest, UCR clearly outperforms all other methods for ≥ 10 experiments.

the average KLD across all single node interventional distributions {pdo(Xi=ψ)(X)}di=1, with
ψ ∼ U(−7, 7) (Average I-KLD). We also report the expected structural Hamming distance [13],
ESHD = EG |x1:t [SHD(G,G⋆)], a commonly used causal discovery metric, and the area under
the precision recall curve (AUPRC). See Appx. F for further details.

Causal Discovery and SCM Learning (Fig. 3). In our first experiment, we find that all ABCI-based
methods are able to meaningfully learn from small amounts of data, which validates our Bayesian
approach. Moreover, performing targeted interventions using experimental design indeed improves
performance compared to uninformed experimentation (OBS, RAND FIXED, RAND). Notably, the
stronger random baseline (RAND), which also randomises over intervention values, performs well
in the considered setting. As expected by the theoretical grounding of the information gain utilities,
UCD identifies the true graph the fastest (as measured by ESHD), whereas UCML exhibits good scores
across all metrics. Further details are given in the caption of Fig. 3.
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Learning Interventional Distributions (Fig. 4). In our second experiment, we investigate ABCI’s
causal reasoning capabilities by randomly sampling ground-truth SCMs as described above over
the fixed graph shown in Fig. 4 (right), which is not known to the methods. Our target query is the set
of interventional random variables, or “distributional treatment effects”, Xdo(X3=ψ)

5 for treatments
ψ ∼ U [2, 5]. The results show that our informed experiment selection strategies significantly
outperform the baselines at causal reasoning as measured by the Query KLD. In accordance with
the results from Fig. 3 and considering that, once we know the true SCM, we can compute any causal
quantity of interest, UCML seems to provide a reasonable experimental strategy in case the causal
query of interest is not known a priori. However, our results indicate that if we do know our query
of interest, then UCR provides a more efficient experiment design strategy for its estimation, even
when the treatment variable of interest is not directly intervenable. In this case, the task is indeed
more difficult, as highlighted by the larger Query KLD values across all considered methods.

6 Discussion

Assumptions, Limitations, and Extensions. In § 4, we have made several assumptions to facilitate
tractable inference and showcase the ABCI framework in a relatively simple data-generating process.
In particular, our assumptions exclude heteroscedastic noise, unobserved confounding, and cyclic
relationships. On the experimental design side, we only considered hard interventions, but for
some applications soft interventions [18] are more plausible. On the query side, we only considered
interventional distributions. However, SCMs also naturally lend themselves to counterfactual
reasoning, so one could also consider counterfactual queries such as the effect of the treatment on
the treated [34, 72]. In principle, the ABCI framework as presented in § 3 extends directly to such
generalisations. In practice, however, these can be non-trivial to implement, especially with regard
to model parametrisation and tractable inference. Since actively performed interventions allow for
causal learning even under causal sufficiency violations, we consider this a promising avenue for
future work and believe the ABCI framework to be particularly well-suited for exploring it.

Reflections on the ABCI Framework. The main conceptual advantages of the ABCI framework
are that it is flexible and principled. By considering general target causal queries, we can precisely
specify what aspects of the causal model we are interested in. This conceptual framework offers a
fresh perspective on the classical divide between causal discovery and reasoning: sometimes, the
main objective may be to foster scientific understanding by uncovering the qualitative causal structure
underlying real-world systems; other times, causal discovery may only be a means to an end to support
causal reasoning. Of particular interest in the context of actively selecting interventions is the setting
in which we cannot directly intervene on variables whose causal effect on others we are interested
in (see Fig. 4), which connects to concepts such as transportability and external validity [7, 57]. ABCI
is also flexible in that it easily allows for incorporating available domain knowledge: if we know
some aspects of the model a priori (as assumed in conventional causal reasoning) [53] or have access
to a large observational sample (from which we can infer the MEC of DAGs) [1], we can encode this
in our prior and only optimise over a smaller model class. The principled Bayesian nature of ABCI
comes at a significant computational cost: most integrals are intractable and approximating them
with Monte-Carlo sampling is computationally expensive and can introduce bias when resources are
limited, though cf. [85] for recent efforts to address such intractability. We discuss the computational
complexity of our implementation in more detail in Appx. E.3. On the other hand, in many real-world
applications, such as in the context of biological networks, active interventions are possible but only
at a significant cost [11, 53]. In such cases in particular, a careful and computationally-heavy experi-
mental design approach as presented in the present work is warranted and could be easily amortised.
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