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Abstract
Domain adaptive object re-ID aims to transfer the learned knowledge from the
labeled source domain to the unlabeled target domain to tackle the open-class
re-identification problems. Although state-of-the-art pseudo-label-based methods
[11, 54, 10, 55, 14] have achieved great success, they did not make full use of
all valuable information because of the domain gap and unsatisfying clustering
performance. To solve these problems, we propose a novel self-paced contrastive
learning framework with hybrid memory. The hybrid memory dynamically gen-
erates source-domain class-level, target-domain cluster-level and un-clustered
instance-level supervisory signals for learning feature representations. Different
from the conventional contrastive learning strategy, the proposed framework jointly
distinguishes source-domain classes, and target-domain clusters and un-clustered
instances. Most importantly, the proposed self-paced method gradually creates
more reliable clusters to refine the hybrid memory and learning targets, and is shown
to be the key to our outstanding performance. Our method outperforms state-of-
the-arts on multiple domain adaptation tasks of object re-ID and even boosts the
performance on the source domain without any extra annotations. Our general-
ized version on unsupervised object re-ID surpasses state-of-the-art algorithms by
considerable 16.7% and 7.9% on Market-1501 and MSMT17 benchmarks†.

1 Introduction
Unsupervised domain adaptation (UDA) for object re-identification (re-ID) aims at transferring the
learned knowledge from the labeled source domain (dataset) to properly measure the inter-instance
affinities in the unlabeled target domain (dataset). Common object re-ID problems include person
re-ID and vehicle re-ID, where the source-domain and target-domain data do not share the same
identities (classes). Existing UDA methods on object re-ID [38, 11, 54, 10, 55, 45] generally tackled
this problem following a two-stage training scheme: (1) supervised pre-training on the source domain,
and (2) unsupervised fine-tuning on the target domain. For stage-2 unsupervised fine-tuning, a
pseudo-label-based strategy was found effective in state-of-the-art methods [11, 54, 10, 55], which
alternates between generating pseudo classes by clustering target-domain instances and training the
network with generated pseudo classes. In this way, the source-domain pre-trained network can be
adapted to capture the inter-sample relations in the target domain with noisy pseudo-class labels.

Although the pseudo-label-based methods have led to great performance advances, we argue that
there exist two major limitations that hinder their further improvements (Figure 1 (a)). (1) During the
target-domain fine-tuning, the source-domain images were either not considered [11, 54, 10, 55] or
were even found harmful to the final performance [14] because of the limitations of their methodology

⇤Dapeng Chen is the corresponding author.
†Code is available at https://github.com/yxgeee/SpCL.
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Figure 1: State-of-the-arts [11, 10, 55, 54] on UDA object re-ID discarded both the source-domain
data and target-domain un-clustered data for training, while our proposed self-paced contrastive
learning framework fully exploits all available data with hybrid memory for joint feature learning.

designs. The accurate source-domain ground-truth labels are valuable but were ignored during
target-domain training. (2) Since the clustering process might result in individual outliers, to ensure
the reliability of the generated pseudo labels, existing methods [11, 10, 55, 14] simply discarded the
outliers from being used for training. However, such outliers might actually be difficult but valuable
samples in the target domain and there are generally many outliers especially in early epochs. Simply
abandoning them might critically hurt the final performance.

To overcome the problems, we propose a hybrid memory to encode all available information from
both source and target domains for feature learning. For the source-domain data, their ground-truth
class labels can naturally provide valuable supervisions. For the target-domain data, clustering can
be conducted to obtain relatively confident clusters as well as un-clustered outliers. All the source-
domain class centroids, target-domain cluster centroids, and target-domain un-clustered instance
features from the hybrid memory can provide supervisory signals for jointly learning discriminative
feature representations across the two domains (Figure 1 (b)). A unified framework is developed for
dynamically updating and distinguishing different entries in the proposed hybrid memory.

Specifically, since all the target-domain clusters and un-clustered instances are equally treated as
independent classes, the clustering reliability would significantly impact the learned representations.
We thus propose a self-paced contrastive learning strategy, which initializes the learning process by
using the hybrid memory with the most reliable target-domain clusters. Trained with such reliable
clusters, the discriminativeness of feature representations can be gradually improved and additional
reliable clusters can be formed by incorporating more un-clustered instances into the new clusters.
Such a strategy can effectively mitigate the effects of noisy pseudo labels and boost the feature
learning process. To properly measure the cluster reliability, a novel multi-scale clustering reliability
criterion is proposed, based on which only reliable clusters are preserved and other confusing clusters
are disassembled back to un-clustered instances. In this way, our self-paced learning strategy gradually
creates more reliable clusters to dynamically refine the hybrid memory and learning targets.

Our contributions are summarized as three-fold. (1) We propose a unified contrastive learning
framework to incorporate all available information from both source and target domains for joint
feature learning. It dynamically updates the hybrid memory to provide class-level, cluster-level and
instance-level supervisions. (2) We design a self-paced contrastive learning strategy with a novel
clustering reliability criterion to prevent training error amplification caused by noisy pseudo-class
labels. It gradually generates more reliable target-domain clusters for learning better features in
the hybrid memory, which in turn, improves clustering. (3) Our method significantly outperforms
state-of-the-arts [11, 54, 10, 55, 45] on multiple domain adaptation tasks of object re-ID with up
to 5.0% mAP gains. The proposed unified framework could even boost the performance on the
source domain with large margins (6.6%) by jointly training with un-annotated target-domain data,
while most existing UDA methods “forget” the source domain after fine-tuning on the target domain.
Our unsupervised version without labeled source-domain data on object re-ID task significantly
outperforms state-of-the-arts [26, 45, 53] by 16.7% and 7.9% in terms of mAP on Market-1501 and
MSMT17 benchmarks.

2 Related Works
Unsupervised domain adaptation (UDA) for object re-ID. Existing UDA methods for object
re-ID can be divided into two main categories, including pseudo-label-based methods [38, 10, 55, 11,
54, 62, 52, 45] and domain translation-based methods [8, 46, 5, 14]. This paper follows the former
one since the pseudo labels were found more effective to capture the target-domain distributions.
Though driven by different motivations, previous pseudo-label-based methods generally adopted a
two-stage training scheme: (1) pre-training on the source domain with ground-truth IDs, and (2)
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Figure 2: (a) The illustration of the proposed unified framework with a novel hybrid memory. (b) The
proposed reliability criterion for measuring the cluster independence‡ and compactness.

adapting the target domain with pseudo labels. The pseudo labels can be generated by either clustering
instance features [38, 10, 55, 11, 54] or measuring similarities with exemplar features [62, 52, 45],
where the clustering-based pipeline maintains state-of-the-art performance to date. The major
challenges faced by clustering-based methods is how to improve the precision of pseudo labels
and how to mitigate the effects caused by noisy pseudo labels. SSG [10] adopted human local
features to assign multi-scale pseudo labels. PAST [55] introduced to utilize multiple regularizations
alternately. MMT [11] proposed to generate more robust soft labels via the mutual mean-teaching.
AD-Cluster [54] incorporated style-translated images to improve the discriminativeness of instance
features. Although various attempts along this direction have led to great performance advances, they
ignored to fully exploit all valuable information across the two domains which limits their further
improvements, i.e., they simply discarded both the source-domain labeled images and target-domain
un-clustered outliers when fine-tuning the model on the target domain with pseudo labels.

Contrastive learning. State-of-the-art methods on unsupervised visual representation learning [33,
48, 19, 44, 65, 17, 4] are based on the contrastive learning. Being cast as either the dictionary look-up
task [48, 17] or the consistent learning task [44, 4], a contrastive loss was adopted to learn instance
discriminative representations by treating each unlabeled sample as a distinct class. Although the
instance-level contrastive loss could be used to train embeddings that can be generalized well to
downstream tasks with fine-tuning, it does not perform well on the domain adaptive object re-ID
tasks which require to correctly measure the inter-class affinities on the unsupervised target domain.

Self-paced learning. The “easy-to-hard” training scheme is at the core of self-paced learning [21],
which was originally found effective in supervised learning methods, especially with noisy labels [15,
20, 24, 13]. Recently, some methods [41, 16, 6, 56, 67] incorporated the conception of self-paced
learning into unsupervised learning tasks by starting the training process with the most confident
pseudo labels. However, the self-paced policies designed in these methods were all based on the
close-set problems with pre-defined classes, which cannot be generalized to our open-set object re-ID
task with completely unknown classes on the target domain. Moreover, they did not consider how to
plausibly train with hard samples that cannot be assigned confident pseudo labels all the time.

3 Methodology
To tackle the challenges in unsupervised domain adaptation (UDA) on object re-ID, we propose a
self-paced contrastive learning framework (Figure 2 (a)), which consists of a CNN [22]-based encoder
f✓ and a novel hybrid memory. The key innovation of the proposed framework lies in jointly training
the encoder with all the source-domain class-level, target-domain cluster-level and target-domain
un-clustered instance-level supervisions, which are dynamically updated in the hybrid memory to
gradually provide more confident learning targets. In order to avoid training error amplification
caused by noisy clusters, the self-paced learning strategy initializes the training process with the most

‡Throughout this paper, the term independence is used in its idiomatic sense rather than the statistical sense.
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reliable clusters and gradually incorporates more un-clustered instances to form new reliable clusters.
A novel reliability criterion is introduced to measure the quality of clusters (Figure 2 (b)).

Our training scheme alternates between two steps: (1) grouping the target-domain samples into
clusters and un-clustered instances by clustering the target-domain instance features in the hybrid
memory with the self-paced strategy (Section 3.2), and (2) optimizing the encoder f✓ with a unified
contrastive loss and dynamically updating the hybrid memory with encoded features (Section 3.1).

3.1 Constructing and Updating Hybrid Memory for Contrastive Learning
Given the target-domain training samples Xt without any ground-truth label, we employ the self-
paced clustering strategy (Section 3.2) to group the samples into clusters and the un-clustered outliers.
The whole training set of both domains can therefore be divided into three parts, including the
source-domain samples Xs with ground-truth identity labels, the target-domain pseudo-labeled data
Xt

c within clusters and the target-domain instances Xt
o not belonging to any cluster, i.e., Xt = Xt

c[Xt
o.

State-of-the-art UDA methods [11, 54, 10, 55] simply abandon all source-domain data and target-
domain un-clustered instances, and utilize only the target-domain pseudo labels for adapting the
network to the target domain, which, in our opinion, is a sub-optimal solution. Instead, we design
a novel contrastive loss to fully exploit available data by treating all the source-domain classes,
target-domain clusters and target-domain un-clustered instances as independent classes.

3.1.1 Unified Contrastive Learning
Given a general feature vector f = f✓(x), x 2 Xs [ Xt

c [ Xt
o, our unified contrastive loss is

Lf = � log
exp (hf , z+i/⌧)

Pns

k=1 exp (hf ,wki/⌧) +
Pnt

c
k=1 exp (hf , cki/⌧) +

Pnt
o

k=1 exp (hf ,vki/⌧)
, (1)

where z+ indicates the positive class prototype corresponding to f , the temperature ⌧ is empirically
set as 0.05 and h·, ·i denotes the inner product between two feature vectors to measure their similarity.
ns is the number of source-domain classes, nt

c is the number of target-domain clusters and nt
o is the

number of target-domain un-clustered instances. More specifically, if f is a source-domain feature,
z+ = wk is the centroid of the source-domain class k that f belongs to. If f belongs to the k-th
target-domain cluster, z+ = ck is the k-th cluster centroid. If f is a target-domain un-clustered
outlier, we would have z+ = vk as the outlier instance feature corresponding to f . Intuitively, the
above joint contrastive loss encourages the encoded feature vector to approach its assigned classes,
clusters or instances. Note that we utilize class centroids {w} instead of learnable class weights
for encoding source-domain classes to match their semantics to those of the clusters’ or outliers’
centroids. Our experiments (Section 4.4) show that, if the semantics of class-level, cluster-level and
instance-level supervisions do not match, the performance drops significantly.

Discussion. The most significant difference between our unified contrastive loss (Eq. (1)) and
previous contrastive losses [48, 17, 4, 33] is that ours jointly distinguishes classes, clusters, and un-
clustered instances, while previous ones only focus on separating instances without considering any
ground-truth classes or pseudo-class labels as our method does. They target at instance discrimination
task but fail in properly modeling intra-/inter-class affinities on domain adaptive re-ID tasks.

3.1.2 Hybrid Memory
As the cluster number nt

c and outlier instance number nt
o may change during training with the alternate

clustering strategy, the class prototypes for the unified contrastive loss (Eq. (1)) are built in a non-
parametric and dynamic manner. We propose a novel hybrid memory to provide the source-domain
class centroids {w1, · · · ,wns}, target-domain cluster centroids {c1, · · · , cnt

c
} and target-domain

un-clustered instance features {v1, · · · ,vnt
o
}. For continuously storing and updating the above three

types of entries, we propose to cache source-domain class centroids {w1, · · · ,wns} and all the
target-domain instance features {v1, · · · ,vnt} simultaneously in the hybrid memory, where nt is
the number of all the target-domain instances and nt 6= nt

c + nt
o. Without loss of generality, we

assume that un-clustered features in {v} have indices {1, · · · , nt
o}, while other clustered features in

{v} have indices from nt
o + 1 to nt. In other words, {vnt

o+1, · · · ,vnt} dynamically form the cluster
centroids {c} while {v1, · · · ,vnt

o
} remain un-clustered instances.
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Memory initialization. The hybrid memory is initialized with the extracted features by performing
forward computation of f✓: the initial source-domain class centroids {w} can be obtained as the
mean feature vectors of each class, while the initial target-domain instance features {v} are directly
encoded by f✓. After that, the target-domain cluster centroids {c} are initialized with the mean
feature vectors of each cluster from {v}, i.e.,

ck =
1

|Ik|
X

vi2Ik

vi, (2)

where Ik denotes the k-th cluster set that contains all the feature vectors within cluster k and | · |
denotes the number of features in the set. Note that the source-domain class centroids {w} and the
target-domain instance features {v} are only initialized once by performing the forward computation
at the beginning of the learning algorithm, and then can be continuously updated during training.

Memory update. At each iteration, the encoded feature vectors in each mini-batch would be
involved in hybrid memory updating. For the source-domain class centroids {w}, the k-th centroid
wk is updated by the mean of the encoded features belonging to class k in the mini-batch as

wk  mswk + (1�ms) · 1

|Bk|
X

fs
i 2Bk

fs
i , (3)

where Bk denotes the feature set belonging to source-domain class k in the current mini-batch and
ms 2 [0, 1] is a momentum coefficient for updating source-domain class centroids. ms is empirically
set as 0.2.

The target-domain cluster centroids cannot be stored and updated in the same way as the source-
domain class centroids, since the clustered set Xt

c and un-clustered set Xt
o are constantly changing.

As the hybrid memory caches all the target-domain features {v}, each encoded feature vector f t
i in

the mini-batch is utilized to update its corresponding instance entry vi by

vi  mtvi + (1�mt)f t
i , (4)

where mt 2 [0, 1] is the momentum coefficient for update target-domain instance features and is set
as 0.2 in our experiments. Given the updated instance memory vi, if f t

i belongs to the cluster k, the
corresponding centroid ck needs to be updated with Eq. (2).

Discussion. The hybrid memory has two main differences from the memory used in [48, 17]: (1)
Our hybrid memory caches prototypes for both the centroids and instances, while the memory in
[48, 17] only provides instance-level prototypes. Other than the centroids, we for the first time treat
clusters and instances as equal classes; (2) The cluster/instance learning targets provided by our
hybrid memory are gradually updated and refined, while previous memory [48, 17] only supports
fixed instance-level targets. Note that our self-paced strategy (will be discussed in Section 3.2)
dynamically determines confident clusters and un-clustered instances.

The momentum updating strategy is inspired by [17, 43], and we further introduce how to update
hybrid prototypes, i.e., centroids and instances. Note that we employ different updating strategies for
class centroids (Eq. (3)) and cluster centroids (Eq. (4)&(2)) since source-domain classes are fixed
while target-domain clusters are dynamically changed.

3.2 Self-paced Learning with Reliable Clusters
A simple way to split the target-domain data into clusters Xt

c and un-clustered outliers Xt
o is to cluster

the target-domain instance features {v1, · · · ,vnt} from the hybrid memory by a certain algorithm
(e.g., DBSCAN [9]). Since all the target-domain clusters and un-clustered outlier instances are
treated as distinct classes in Eq. (1), the clustering reliability would significantly impact the learned
representations. If the clustering is perfect, merging all the instances into their true clusters would no
doubt improve the final performance (denotes as “oracle” in Table 5). However, in practice, merging
an instance into a wrong cluster does more harm than good. A self-paced learning strategy is therefore
introduced, where in the re-clustering step before each epoch, only the most reliable clusters are
preserved and the unreliable clusters are disassembled back to un-clustered instances. A reliability
criterion is proposed to identify unreliable clusters by measuring the independence and compactness.

5



Independence of clusters. A reliable cluster should be independent from other clusters and in-
dividual samples. Intuitively, if a cluster is far away from other samples, it can be considered as
highly independent. However, due to the uneven density in the latent space, we cannot naïvely
use the distances between the cluster centroid and outside-cluster samples to measure the cluster
independence. Generally, the clustering results can be tuned by altering certain hyper-parameters
of the clustering criterion. One can loosen the clustering criterion to possibly include more samples
in each cluster or tighten the clustering criterion to possibly include fewer samples in each cluster.
We denote the samples within the same cluster of f t

i as I(f t
i ). We propose the following metric to

measure the cluster independence, which is formulated as an intersection-over-union (IoU) score,

Rindep(f
t
i ) =

|I(f t
i ) \ Iloose(f t

i )|
|I(f t

i ) [ Iloose(f t
i )|
2 [0, 1], (5)

where Iloose(f t
i ) is the cluster set containing f t

i when the clustering criterion becomes looser. Larger
Rindep(f t

i ) indicates a more independent cluster for f t
i , i.e., even one looses the clustering criterion,

there would be no more sample to be included into the new cluster Iloose(f t
i ). Samples within the

same cluster set (e.g., I(f t
i )) generally have the same independence score.

Compactness of clusters. A reliable cluster should also be compact, i.e., the samples within the
same cluster should have small inter-sample distances. In an extreme case, when a cluster is most
compact, all the samples in the cluster have zero inter-sample distances. Its samples would not be
split into different clusters even when the clustering criterion is tightened. Based on this assumption,
we can define the following metric to determine the compactness of the clustered point f t

i as

Rcomp(f
t
i ) =

|I(f t
i ) \ Itight(f t

i )|
|I(f t

i ) [ Itight(f t
i )|
2 [0, 1], (6)

where Itight(f t
i ) is the cluster set containing f t

i when tightening the criterion. Larger Rcomp(f t
i )

indicates smaller inter-sample distances around f t
i within I(f t

i ), since a cluster with larger inter-
sample distances is more likely to include fewer points when a tightened criterion is adopted. The
same cluster’s data points may have different compactness scores due to the uneven density.

Given the above metrics for measuring the cluster reliability, we could compute the independence
and compactness scores for each data point within clusters. We set up ↵,� 2 [0, 1] as independence
and compactness thresholds for determining reliable clusters. Specifically, we preserve independent
clusters with compact data points whose Rindep > ↵ and Rcomp > �, while the remaining data
are treated as un-clustered outlier instances. With the update of the encoder f✓ and target-domain
instance features {v} from the hybrid memory, more reliable clusters can be gradually created to
further improve the feature learning. The overall algorithm is detailed in Alg. 1 of Appendix A.

4 Experiments
4.1 Datasets and Evaluation Protocol
Table 1: Statistics of the datasets used for training and evaluation. (*) denotes the synthetic datasets.

Dataset # train IDs # train images # test IDs # query images # cameras # total images
Market-1501 [58] 751 12,936 750 3,368 6 32,217
MSMT17 [46] 1,041 32,621 3,060 11,659 15 126,441
PersonX [39]* 410 9,840 856 5,136 6 45,792
VeRi-776 [28] 575 37,746 200 1,678 20 51,003
VehicleID [27] 13,164 113,346 800 5,693 - 221,763
VehicleX [32]* 1,362 192,150 - - 11 192,150

We evaluate our proposed method on both the mainstream real!real adaptation tasks and the more
challenging synthetic!real adaptation tasks in person re-ID and vehicle re-ID problems. As shown
in Table 1, two real-world person datasets and one synthetic person dataset, as well as two real-world
vehicle datasets and one synthetic vehicle dataset, are adopted in our experiments.

Person re-ID datasets†. The Market-1501 and MSMT17 are widely used real-world person image
datasets in domain adaptive tasks, among which, MSMT17 has the most images and is most challeng-
ing. The synthetic PersonX [39] is generated based on Unity [36] with manually designed obstacles,
e.g., random occlusion, resolution and illumination differences, etc.

†DukeMTMC-reID [37] dataset has been taken down and should no longer be used.
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Table 2: Comparison with state-of-the-art methods on unsupervised domain adaptation for object
re-ID. (*) the implementation is based on the authors’ code.

(a) Real!real adaptation on person re-ID datasets.

Methods Market-1501!MSMT17
mAP top-1 top-5 top-10

PTGAN [46] CVPR’18 2.9 10.2 - 24.4
ECN [62] CVPR’19 8.5 25.3 36.3 42.1
SSG [10] ICCV’19 13.2 31.6 - 49.6
ECN++ [63] TPAMI’20 15.2 40.4 53.1 58.7
MMT-kmeans [11] ICLR’20 22.9 49.2 63.1 68.8
MMCL [45] CVPR’20 15.1 40.8 51.8 56.7
DG-Net++ [66] ECCV’20 22.1 48.4 60.9 66.1
D-MMD [31] ECCV’20 13.5 29.1 46.3 54.1
JVTC [23] ECCV’20 20.3 45.4 58.4 64.3
GPR [29] ECCV’20 20.4 43.7 56.1 61.9
NRMT [57] ECCV’20 19.8 43.7 56.5 62.2
MMT-dbscan [11]* ICLR’20 24.0 50.1 63.5 69.3

Ours 26.8 53.7 65.0 69.8

Methods MSMT17!Market-1501
mAP top-1 top-5 top-10

MAR [52] CVPR’19 40.0 67.7 81.9 -
PAUL [50] CVPR’19 40.1 68.5 82.4 87.4
CASCL [47] ICCV’19 35.5 65.4 80.6 86.2
DG-Net++ [66] ECCV’20 64.6 83.1 91.5 94.3
D-MMD [31] ECCV’20 50.8 72.8 88.1 92.3
MMT-dbscan [11]* ICLR’20 75.6 89.3 95.8 97.5

Ours 77.5 89.7 96.1 97.6

(b) Synthetic!real adaptation on person re-ID datasets.

Methods PersonX!MSMT17
mAP top-1 top-5 top-10

MMT-dbscan [11]* ICLR’20 17.7 39.1 52.6 58.5
Ours 22.7 47.7 60.0 65.5

Methods PersonX!Market-1501
mAP top-1 top-5 top-10

MMT-dbscan [11]* ICLR’20 71.0 86.5 94.8 97.0
Ours 73.8 88.0 95.3 96.9

(c) Real!real and synthetic!real adaptation on vehicle
re-ID datasets.

Methods VehicleID!VeRi-776
mAP top-1 top-5 top-10

MMT-dbscan [11]* ICLR’20 35.3 74.6 82.6 87.0
Ours 38.9 80.4 86.8 89.6

Methods VehicleX!VeRi-776
mAP top-1 top-5 top-10

MMT-dbscan [11]* ICLR’20 35.6 76.0 83.1 87.4
Ours 38.9 81.3 87.3 90.0

Table 3: Comparison with state-of-the-art UDA methods and supervised learning methods when
evaluating on the labeled source domain. (*) the implementation is based on the authors’ code.

Methods MSMT17!Market-1501 Market-1501!MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

MMT-dbscan [11]* ICLR’20 3.2 9.8 16.8 20.7 30.7 59.9 75.7 81.3
Encoder train/test on the source domain 49.9 75.2 86.4 89.8 84.7 94.0 97.7 98.7

Ours test on the source domain 56.5 (+6.6) 79.4 88.7 91.3 86.8 (+2.1) 94.7 97.9 98.6
Supervised learning methods on source MSMT17 Market-1501
FD-GAN [12] NeurIPS’18 - - - - 77.7 90.5 - -
DG-Net [59] CVPR’19 52.3 77.2 87.4 90.5 86.0 94.8 - -
OSNet [64] ICCV’19 52.9 78.7 - - 84.9 94.8 - -
Circle loss [40] CVPR’20 50.2 76.3 - - 84.9 94.2 - -

Vehicle re-ID datasets. Although domain adaptive person re-ID has been long studied, the same
task on the vehicle has not been fully explored. We conduct experiments with the real-world VeRi-
776, VehicleID and the synthetic VehicleX datasets. VehicleX [32] is also generated by the Unity
engine [51, 42] and further translated to have the real-world style by SPGAN [8].

Evaluation protocol. In the experiments, only ground-truth IDs on the source-domain datasets are
provided for training. Mean average precision (mAP) and cumulative matching characteristic (CMC),
proposed in [58], are adopted to evaluate the methods’ performances on the target-domain datasets.
No post-processing technique, e.g., re-ranking [60] or multi-query fusion [58], is adopted.

4.2 Implementation Details
We adopt an ImageNet-pretrained [7] ResNet-50 [18] as the backbone for the encoder f✓. Following
the clustering-based UDA methods [11, 10, 38], we use DBSCAN [9] for clustering before each
epoch. The maximum distance between neighbor points, which is the most important parameter in
DBSCAN, is tuned to loosen or tighten the clustering in our proposed self-paced learning strategy.
We use a constant threshold ↵ and dynamic threshold � for identifying independent clusters with the
most compact points by the reliability criterion. More details can be found in Appendix C.

4.3 Comparison with State-of-the-arts
UDA performance on the target domain. We compare our proposed framework with state-of-
the-art UDA methods on multiple domain adaptation tasks in Table 2, including three real!real and
three synthetic!real tasks. The tasks in Tables 2b & 2c were not surveyed by previous methods, so
we implement state-of-the-art MMT [11] on these datasets for comparison. Our method significantly
outperforms all state-of-the-arts on both person and vehicle datasets with a plain ResNet-50 backbone,
achieving 2-4% improvements in terms of mAP on the common real!real tasks and up to 5.0%
increases on the challenging synthetic!real tasks. An inspiring discovery is that the synthetic!real
task could achieve competitive performance as the real!real task with the same target-domain dataset
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Table 4: Comparison with state-of-the-art methods on the unsupervised object re-ID task without the
labeled source-domain data. (*) the implementation is based on the authors’ code.

Methods Market-1501
mAP top-1 top-5 top-10

OIM [49] CVPR’17 14.0 38.0 58.0 66.3
BUC [25] AAAI’19 38.3 66.2 79.6 84.5
SSL [26] CVPR’20 37.8 71.7 83.8 87.4
MMCL [45] CVPR’20 45.5 80.3 89.4 92.3
HCT [53] CVPR’20 56.4 80.0 91.6 95.2
MoCo [17]* CVPR’20 6.1 12.8 27.1 35.7

Ours w/o source data 73.1 88.1 95.1 97.0

Methods MSMT17
mAP top-1 top-5 top-10

MMCL [45] CVPR’20 11.2 35.4 44.8 49.8
MoCo [17]* CVPR’20 1.6 4.3 9.7 13.5

Ours w/o source data 19.1 42.3 55.6 61.2

Methods VeRi-776
mAP top-1 top-5 top-10

MoCo [17]* CVPR’20 9.5 24.9 40.6 51.8
Ours w/o source data 36.9 79.9 86.8 89.9

Table 5: Ablation studies of our proposed self-paced contrastive learning on individual components.
(a) Experiments on domain adaptive person re-ID.

Methods MSMT!Market-1501
mAP top-1 top-5 top-10

analysis of the unified contrastive learning mechanism:
Src. class 25.3 51.3 69.6 76.6
Src. class + tgt. instance 4.9 12.6 24.8 32.7
Src. class + tgt. cluster (w/o self-paced) 28.9 50.1 64.5 71.0
Src. class + tgt. cluster (w/ self-paced) 69.2 84.9 94.0 96.4
Src. class ! Src. learnable weights 70.7 86.9 94.1 96.3
Ours w/o unified contrast 68.8 84.6 94.1 96.2
analysis of the self-paced learning strategy:
Ours w/o Rcomp&Rindep 74.5 89.1 95.3 96.8
Ours w/o Rcomp 75.4 89.3 95.5 97.1
Ours w/o Rindep 76.6 89.5 95.6 97.3
Oracle 83.5 93.1 97.7 98.6
Ours (full) 77.5 89.7 96.1 97.6

(b) Experiments on unsupervised person re-ID.

Methods Market-1501
mAP top-1 top-5 top-10

analysis of the unified contrastive learning mechanism:
tgt. instance 3.5 9.1 18.7 25.8
tgt. cluster (w/o self-paced) 6.7 16.5 27.9 33.8
tgt. cluster (w/ self-paced) 10.1 23.9 37.3 43.2
Ours w/o unified contrast 57.0 76.2 89.7 93.0
analysis of the self-paced learning strategy:
Ours w/o Rcomp&Rindep 68.2 85.0 93.3 95.3
Ours w/o Rcomp 68.6 86.2 93.9 95.8
Ours w/o Rindep 71.8 87.5 95.0 96.8
Oracle 82.3 92.6 97.2 98.4
Ours (full) w/o source data 73.1 88.1 95.1 97.0

(e.g., VeRi-776), which indicates that we are one more step closer towards no longer needing any
manually annotated real-world images in the future.

Further improvements on the source domain. State-of-the-art UDA methods inevitably forget
the source-domain knowledge after fine-tuning the pretrained networks on the target domain, as
demonstrated by MMT [11] in Table 3. In contrast, our proposed unified framework could effectively
model complex inter-sample relations across the two domains, boosting the source-domain perfor-
mance by up to 6.6% mAP. Note that experiments of “Encoder train/test on the source domain” adopt
the same training objective (Eq. (1)) as our proposed method, except for that only source-domain
class centroids {w} are available. Our method also outperforms state-of-the-art supervised re-ID
methods [12, 59, 64, 40] on the source domain without either using multiple losses or more complex
networks. Such a phenomenon indicates that our method could be applied to improve the supervised
training by incorporating unlabeled data without extra human labor.

Unsupervised re-ID without any labeled training data. Another stream of research focuses on
training the re-ID model without any labeled data, i.e., excluding source-domain data from the
training set. Our method can be easily generalized to such a setting by discarding the source-domain
class centroids {w} from both the hybrid memory and training objective (See Alg. 2 in Appendix
A for details). As shown in Table 4, our method considerably outperforms state-of-the-arts by up
to 16.7% improvements in terms of mAP. We also implement state-of-the-art unsupervised method
MoCo [17], which adopts the conventional contrastive loss, and unfortunately, it is inapplicable on
unsupervised re-ID tasks. MoCo [17] underperforms because it treats each instance as a single class,
while the core of re-ID tasks is to encode and model intra-/inter-class variations. MoCo [17] is good
at unsupervised pre-training but its resulting networks need finetuning with (pseudo) class labels.

4.4 Ablation Studies
We analyse the effectiveness of our proposed unified contrastive loss with hybrid memory and self-
paced learning strategy in Table 5. The “oracle” experiment adopts the target-domain ground-truth
IDs as cluster labels for training, reflecting the maximal performance with our pipeline.

Unified contrastive learning mechanism. In order to verify the necessity of each type of classes
in the unified contrastive loss (Eq. (1)), we conduct experiments when removing any one of the
source-domain class-level, target-domain cluster-level or un-clustered instance-level supervisions
(Table 5a). Baseline “Src. class” adopts only source-domain images with ground-truth IDs for
training. “Src. class + tgt. instance” treats each target-domain sample as a distinct class. It totally fails
with even worse results than the baseline “Src. class”, showing that directly generalizing conventional
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contrastive loss to UDA tasks is inapplicable. “Src. class + tgt. cluster” follows existing UDA
methods [11, 10, 55, 14], by simply discarding un-clustered instances from training. Noticeable
performance drops are observed, especially without the self-paced policy to constrain reliable clusters.
Note that the only difference between “Src. class + tgt. cluster (w/ self-paced)” and “Ours (full)” is
whether using outliers for training and the large performance gaps are due to the facts that: 1) There
are many un-clustered outliers (> half of all samples), especially in early epochs; 2) Outliers serve as
difficult samples and excluding them over-simplifies the training task; 3) “Src. class + tgt. cluster”
doesn’t update outliers in the memory, making them unsuitable to be clustered in the later epochs.

As illustrated in Table 5b, we further verify the necessity of unified training in unsupervised object
re-ID tasks. We observe the same trend as domain adaptive tasks: solving the problem via instance
discrimination (“tgt. instance”) would fail. What is different is that, even with our self-paced strategy,
training with clusters alone (“tgt. cluster”) would fail. That is due to the fact that only a few samples
take part in the training if discarding the outliers, undoubtedly leading to training collapse. Note that
previous unsupervised re-ID methods [25, 53] which abandoned outliers did not fail, since they did
not utilize a memory bank that requires all the entries to be continuously updated.

We adopt the non-parametric class centroids to supervise the source-domain feature learning, however,
conventional methods generally adopt a learnable classifier for supervised learning. “Src. class! Src.
learnable weights” in Table 5a is therefore conducted to verify the necessity of using source-domain
class centroids for training to match the semantics of target-domain training supervisions. We also
test the effect of not extending negative classes across different types of contrasts. For instance,
source-domain samples only treat non-corresponding source-domain classes as their negative classes.
“Ours w/o unified contrast” shows inferior performance in both Table 5a and 5b. This indicates the
effectiveness of the unified contrastive learning between all types of classes in Eq. (1).

Self-paced learning strategy. We propose the self-paced learning strategy to preserve the most
reliable clusters for providing stronger supervisions. The intuition is to measure the stability of
clusters by hierarchical structures, i.e., a reliable cluster should be consistent in clusters at multiple
levels. Rindep and Rcomp are therefore proposed to measure the independence and compactness of
clusters, respectively. To verify the effectiveness of such a strategy, we evaluate our framework when
removing either Rindep or Rcomp, or both of them. Obvious performance drops are observed under all
these settings, e.g., 4.9% mAP drops are shown when removing Rindep&Rcomp in Table 5b.

We illustrate the number of clusters and their corresponding Normalized Mutual Information (NMI)
scores during training on MSMT17!Market-1501 in Figure 3. It can be observed that the quantity
and quality of clusters are closer to the ground-truth IDs with the proposed self-paced learning
strategy regardless of the un-clustered instance-level contrast, indicating higher reliability of the
clusters and the effectiveness of the self-paced strategy.

Figure 3: Ablation study by observing the dynamically changing cluster numbers and their corre-
sponding Normalized Mutual Information (NMI) scores during training on MSMT17!Market-1501.

5 Discussion and Conclusion
Our method has shown considerable improvements over a variety of unsupervised or domain adaptive
object re-ID tasks. The supervised performance can also be promoted labor-free by incorporating
unlabeled data for training in our framework. The core is at exploiting all available data for jointly
training with hybrid supervision. Positive as the results are, there still exists a gap from the oracle,
suggesting that the pseudo-class labels may not be satisfactory enough even with the proposed
self-paced strategy. Further studies are called for. Beyond the object re-ID task, our method has great
potential on other unsupervised learning tasks, which needs to be explored.
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Broader Impact

Our method can help to identify and track different types of objects (e.g., vehicles, cyclists, pedestrians,
etc. ) across different cameras (domains), thus boosting the development of smart retail, smart
transportation, and smart security systems in the future metropolises. In addition, our proposed
self-paced contrastive learning is quite general and not limited to the specific research field of object
re-ID. It can be well extended to broader research areas, including unsupervised and semi-supervised
representation learning.

However, object re-ID systems, when applied to identify pedestrians and vehicles in surveillance
systems, might give rise to the infringement of people’s privacy, since such re-ID systems often rely
on non-consensual surveillance data for training, i.e., it is unlikely that all human subjects even knew
they were being recorded. Therefore, governments and officials need to carefully establish strict
regulations and laws to control the usage of re-ID technologies. Otherwise, re-ID technologies can
potentially equip malicious actors with the ability to surveil pedestrians or vehicles through multiple
CCTV cameras without their consent. The research committee should also avoid using the datasets
with ethics issues, e.g., DukeMTMC [37], which has been taken down due to the violation of data
collection terms, should no longer be used. We would not evaluate our method on DukeMTMC
related benchmarks as well. Furthermore, we should be cautious of the misidentification of the re-ID
systems to avoid possible disturbance. Also, note that the demographic makeup of the datasets used
is not representative of the broader population.
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