
1

Handbook of Information Security Management (1994-95 Yearbook), Auerbach Pub-
lishers, 1994, pages 145-160.

RELATIONAL DATABASE

ACCESS CONTROLS

Prof. Ravi S. Sandhu

Center for Secure Information Systems
&

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

Telephone: 703-993-1659

1 INTRODUCTION

This chapter discusses access controls in relational database management systems.

Access controls have been built into relational systems ever since the �rst products

emerged. Over the years standards have developed, and these are continuing to evolve.

In recent years products incorporating mandatory controls for multilevel security have

started to appear.

The chapter begins with a review of the relational data model and the SQL lan-

guage. Traditional discretionary access controls provided in various dialects of SQL

are then discussed. Limitations of these controls, and the need for mandatory access

controls, are illustrated by means of an example. Three architectures for building

multilevel databases are presented. The chapter concludes with a brief discussion of

role-based access control as an emerging technique for for providing better controls

than traditional discretionary access controls, without going to the extreme rigidity

of traditional mandatory access controls.

Sandhu 2

2 RELATIONAL DATABASES

A relational database stores data in relations which are expected to satisfy some

simple mathematical properties. Roughly speaking, a relation can be thought of as

a table, and is often shown as such. The columns of the table are called attributes

and the rows are called tuples. There is no signi�cance to the order of the columns or

rows. Duplicate rows with identical values for all columns are not allowed. There is an

important distinction between relation schemes and relation instances. The relation

scheme gives us the names of the attributes as well as the permissible values for each

attribute. The set of permissible values for an attribute is said to be the attribute's

domain. The relation instance gives us the tuples of the relation at a given instant.

For example, consider the following relation scheme for the EMPLOYEE relation

EMPLOYEE(NAME, DEPT, RANK, OFFICE, SALARY, SUPERVISOR)

Let the domain of the NAME, DEPT, RANK, OFFICE, and SUPERVISOR at-

tributes be character strings, and the domain of the SALARY attribute be integers.

A particular instance of the EMPLOYEE relation, re
ecting the employees who are

currently employed, is shown below.

NAME DEPT RANK OFFICE SALARY SUPERVISOR
Rao Electrical Engg Professor KH252 50,000 Jones
Kaplan Computer Sci Researcher ST125 35,000 Brown
Brown Computer Sci Professor ST257 55,000 Black
Jones Electrical Engg Chairman KH143 45,000 Black
Black Administration Dean ST101 60,000 NULL

The relation instance of EMPLOYEE will change from moment to moment due to

arrival of new employees, changes to data for existing employees and their departure.

Sandhu 3

The relation scheme, however, remains �xed. The NULL value in place of Black's

supervisor signi�es that Black's supervisor has not been de�ned.

2.1 Primary Key

A candidate key of a relation is a minimal set of attributes on which all other attributes

are functionally dependent. In other words, it is forbidden to have two tuples with the

same values of the candidate key in a relation instance. A candidate key is minimal,

meaning that no attribute can be discarded without destroying this property. A

candidate key always exists, since in the extreme case it consists of all the attributes.

In general, there can be more than one candidate key for a relation. In the EM-

PLOYEE relation above, for sake of example, let us assume that duplicate names

can never occur. NAME is therefore a candidate key. Suppose also that there are

no shared o�ces, so each employee has an unique o�ce. In that case OFFICE is an-

other candidate key. In the particular relation instance above there are no duplicate

salary values. But that does not mean that salary is a candidate key. Identi�ca-

tion of the candidate key is a property of the relation scheme and applies to every

possible instance; not merely to the particular one that happens to exist at a given

moment. SALARY would qualify as a candidate key only in the unlikely event that

the organization forbids duplicate salaries.

The primary key of a relation is one of its candidate keys which has been speci�-

cally designated as such. In our example NAME is probably more appropriate than

OFFICE as the primary key. Realistically one would use a truly unique identi�er

such as social security number or employee identity number, rather than NAME, as

the primary key.

Sandhu 4

2.2 Entity and Referential Integrity

The primary key serves the purpose of uniquely identifying a speci�c tuple from

a relation instance. It also serves the purpose of linking relations together. The

relational model incorporates two application independent integrity rules, called entity

integrity and referential integrity respectively, to ensure these purposes are properly

served.

Entity integrity simply requires that no tuple in a relation instance can have NULL

(unde�ned) values for any of the primary key attributes. This property guarantees

that each tuple is uniquely identi�able by the value of the primary key.

Referential integrity is concerned with references from one relation to another.

To understand this property in context of the EMPLOYEE relation above, let us

suppose there is a second relation with the scheme

DEPARTMENT(DEPT, LOCATION, PHONE NUMBER)

Let DEPT be the primary key of DEPARTMENT. The DEPT attribute of the EM-

PLOYEE relation is said to be a foreign key from EMPLOYEE to DEPARTMENT.

In general a foreign key is an attribute (or set of attributes) in one relation R1 whose

values are required to match those of the primary key of a tuple in some other relation

R2. R1 and R2 need not be distinct. In fact, since supervisors are employees, the SU-

PERVISOR attribute in EMPLOYEE is a foreign key with R1 = R2 = EMPLOYEE.

Referential integrity stipulates that if a foreign key FK of relation R1 is the

primary key PK of R2, then for every tuple in R1 the value of FK must either be

NULL or equal to the value of PK of a tuple in R2. In context of the above discussion,

Sandhu 5

referential integrity requires the following.

� Due to the DEPT foreign key, there should be tuples for the Electrical Engg,

Computer Sci and Administration departments in the DEPARTMENT relation.

� Due to the SUPERVISOR foreign key, there should be tuples for Jones, Brown

and Black in the EMPLOYEE relation.

The motivation of referential integrity is to prevent employees from being assigned to

departments or supervisor who do not exist in the database. Note that it is all right

for employee Black to have a NULL supervisor. It would similarly be acceptable for

an employee to have a NULL department.

3 THE SQL LANGUAGE

Every Database Management System (DBMS) needs a language for de�ning, storing,

retrieving, and manipulating data. SQL is the de facto standard, for this purpose,

in relational DBMSs. SQL emerged from several projects at the IBM San Jose (now

called Almaden) Research Center in the mid-1970s. The name SQL was originally

an abbreviation for Structured Query Language. The o�cial name now is Database

Language SQL.

There is an o�cial standard for SQL approved by the American National Stan-

dards Institute (ANSI), and accepted by the International Standards Organization

(ISO) and the National Institute of Standards and Technology (NIST) as a Federal

Information Processing Standard (FIPS). The standard has evolved and continues

to do so. The base standard is generally known as SQL'89 and refers to the 1989

Sandhu 6

ANSI standard. SQL'92 is an enhancement of SQL'89 and refers to the 1992 ANSI

standard. A third version of SQL, commonly known as SQL3, is being developed

under ANSI and ISO aegis.

Most relational DBMSs support some dialect of SQL. It is important to understand

that SQL-compliance does not guarantee portability of a data base from one DBMS to

another. This is because DBMS vendors typically include enhancements not required

by the SQL standard, but not ruled out by the standard either. Most products are

also not completely compliant with the standard.

We will explain SQL in just enough detail to understand the examples and issues

discussed in this chapter. Unless otherwise noted, our description is of SQL'89.

3.1 The CREATE Statement

Consider the EMPLOYEE relation discussed earlier. The relation scheme is de�ned

in SQL by the following command.

CREATE TABLE EMPLOYEE
(NAME CHARACTER NOT NULL,

DEPT CHARACTER,
RANK CHARACTER,
OFFICE CHARACTER,
SALARY INTEGER,
SUPERVISOR CHARACTER,
PRIMARY KEY (NAME),
FOREIGN KEY (DEPT) REFERENCES DEPARTMENT,
FOREIGN KEY (SUPERVISOR) REFERENCES EMPLOYEE)

This statement creates a table called EMPLOYEE with six columns. The NAME,

DEPT, RANK, OFFICE and SUPERVISOR columns have character strings (of un-

speci�ed length) as values, whereas the SALARY column has integer values. NAME

Sandhu 7

is the primary key. DEPT is a foreign key which reference the primary key of table

DEPARTMENT. SUPERVISOR is a foreign key which references the primary key

(i.e., NAME) of the EMPLOYEE table itself.

3.2 INSERT and DELETE Statements

The EMPLOYEE table is initially empty. Tuples are inserted into it by means of

the SQL INSERT statement. For example, the last tuple of the relation instance

discussed above is inserted by the following statement.

INSERT
INTO EMPLOYEE(NAME, DEPT, RANK, OFFICE, SALARY, SUPERVISOR)
VALUES VALUES(`Black, `Administration', `Dean', `ST101', 60000, NULL)

The remaining tuples can be similarly inserted. Insertion of the tuples for Brown

and Jones must respectively precede insertion of the tuples for Kaplan and Rao, so

as to maintain referential integrity. Alternately, these tuples can be inserted in any

order with NULL managers which are later updated to their actual values. There is

a DELETE statement to delete tuples from a relation.

3.3 The SELECT Statement

Retrieval of data is e�ected in SQL by the SELECT statement. For example, the

NAME, SALARY and SUPERVISOR data for employees in the Computer Sci de-

partment is extracted as follows.

SELECT NAME, SALARY, SUPERVISOR
FROM EMPLOYEE
WHERE DEPT = `Computer Sci'

This query applied to instance of EMPLOYEE given above returns the data shown

below.

Sandhu 8

NAME SALARY SUPERVISOR
Kaplan 35,000 Brown
Brown 55,000 Black

The WHERE clause in a SELECT statement is optional. SQL also allows the

retrieved records to be grouped together for statistical computations by means of

built-in statistical functions. For example, the following query gives the average

salary for employees in each department.

SELECT DEPT, AVG(SALARY)
FROM EMPLOYEE
GROUP BY DEPT

Data from two or more relations can be retrieved and linked together in a SELECT

statement. For example, the location of employees can be retrieved by linking the

data in EMPLOYEE with that in DEPARTMENT, as follows.

SELECT NAME, LOCATION
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT = DEPARTMENT.DEPT

This query will attempt to match every tuple in EMPLOYEE with every tuple in

DEPARTMENT, but will select only those pairs for which the DEPT attribute in the

EMPLOYEE tuple matches the DEPT attribute in the DEPARTMENT tuple. Since

DEPT is a common attribute to both relations, every use of it is explicitly identi�ed

as occurring with respect to one of the two relations. Queries involving two relations

in this manner are known as joins.

3.4 The UPDATE Statement

Finally the UPDATE statement allows one or more attributes of existing tuples in a

relation to be modi�ed. For example, the following statement gives all employees in

the ComputerSci department a raise of $1000.

Sandhu 9

UPDATE EMPLOYEE
SET SALARY = SALARY + 1000
WHERE DEPT = `Computer Sci'

This statement selects those tuples in EMPLOYEE which have the value of Com-

puter Sci for the DEPT attribute. It then increases the value of the SALARY at-

tribute for all these tuples by $1000 each.

4 BASE RELATIONS AND VIEWS

The concept of a view has important security application in relational systems. A

view is a virtual relation which is derived by an SQL de�nition from base relations

and other views. The database stores the view de�nitions and materializes the view

as needed. In contrast, a base relation is actually stored in the database.

For example, consider the EMPLOYEE relation discussed earlier. This is a base

relation. The following SQL statement de�nes a view called COMPUTER SCI DEPT.

CREATE VIEW COMPUTER SCI DEPT
AS SELECT NAME, SALARY, SUPERVISOR

FROM EMPLOYEE
WHERE DEPT = `Computer Sci'

This de�nes the virtual relation shown below.

NAME SALARY SUPERVISOR
Kaplan 35,000 Brown
Brown 55,000 Black

A user who has permission to access COMPUTER SCI DEPT is thereby restricted

to retrieving information about employees in the Computer Science Department. To

illustrate the dynamic aspect of views suppose that a new employee Turing is inserted

in base relation EMPLOYEE, modifying it as follows.

Sandhu 10

NAME DEPT RANK OFFICE SALARY SUPERVISOR
Rao Electrical Engg Professor KH252 50,000 Jones
Kaplan Computer Sci Researcher ST125 35,000 Brown
Brown Computer Sci Professor ST257 55,000 Black
Jones Electrical Engg Chairman KH143 45,000 Black
Black Administration Dean ST101 60,000 NULL
Turing Computer Sci Genius ST444 95,000 Black

The view COMPUTER SCI DEPT will be automatically modi�ed to include Turing,

as shown below.

NAME SALARY SUPERVISOR
Kaplan 35,000 Brown
Brown 55,000 Black
Turing 95,000 Black

In general views can be de�ned in terms of other base relations and views.

Views can also be used to provide access to statistical information. For example,

the following view gives the average salary for each department.

CREATE VIEW AVSAL(DEPT, AVG)
AS SELECT DEPT, AVG(SALARY)

FROM EMPLOYEE
GROUP BY DEPT

For retrieval purposes there is no distinction between views and base relations.

Views, therefore, provide a very powerful mechanism for controlling what informa-

tion can be retrieved. When updates are considered views and base relations must

be treated quite di�erently. In general views cannot be updated directly by users,

particularly when they are constructed by joining two or more relations. Instead the

base relations must be updated, with views being updated indirectly through this

means. This limits the usefulness of views for authorizing update operations.

Sandhu 11

5 DISCRETIONARY ACCESS CONTROLS

We now describe the access control facilities included in the SQL standard. The

standard is incomplete and does not address several important issues. Some of these

de�ciencies are being addressed in the evolving standard. Di�erent vendors have also

provided more comprehensive facilities than called for by the standard.

5.1 SQL Privileges

The creator of a relation in an SQL database becomes its owner. The owner has

the intrinsic ability to grant other users access to that relation. The access priv-

ileges or modes recognized in SQL correspond directly to the CREATE, INSERT,

SELECT, DELETE and UPDATE SQL statements discussed earlier. There is also a

REFERENCES privilege to control the establishment of foreign keys to a relation.

5.2 The CREATE Statement

SQL does not require explicit permission for a user to create a relation, unless the

relation is de�ned to have a foreign key to another relation. In the latter case the

user must have the REFERENCES privilege for appropriate columns of the referenced

relation. To create a view a user must have the SELECT privilege on every relation

mentioned in de�nition of the view. If a user has INSERT, DELETE or UPDATE

privileges on these relations, corresponding privileges will be obtained on the view (if

it is updatable).

Sandhu 12

5.3 The GRANT Statement

The owner of a relation can grant one or more access privileges to another user. This

can be done with or without the GRANT OPTION. If the owner grants, say, SELECT

with the GRANT OPTION the user receiving this grant can further grant SELECT

to other users. The latter GRANT can be done in turn with or without the GRANT

OPTION at the granting user's discretion.

The general format of a grant operation in SQL is as follows.

GRANT privileges
[ON relation]
TO users
[WITH GRANT OPTION]

The GRANT command applies to base relations as well as views. The brackets on

the ON and WITH clauses denote that these are optional and may not be present

in every GRANT command. Note that it is not possible to grant a user the grant

option on a privilege, without allowing the grant option itself to be further granted.

INSERT, DELETE and SELECT privileges apply to the entire relation as a unit.

INSERT and DELETE are operations on entire rows so this is appropriate. SELECT,

however, implies the ability to select on all columns. Selection on a subset of the

columns can be achieved by de�ning a suitable view, and granting SELECT on the

view. This is somewhat awkward, and there have been proposals to allow SELECT to

be granted on a subset of the columns of a relation. The UPDATE privilege in general

applies to a subset of the columns. For example, a user could be granted the authority

to update the OFFICE but not the SALARY of an EMPLOYEE. SQL'92 extends

the INSERT privilege to apply to a subset of the columns. This can be used, for

instance, to allow a clerical user to insert a tuple for a new employee with the NAME,

Sandhu 13

DEPARTMENT and RANK data. The OFFICE, SALARY and SUPERVISOR data

can then be updated in this tuple by a suitably authorized supervisory user.

SQL'89 has several omissions in its access control facilities. These omissions have

been addressed by di�erent vendors in di�erent ways. We will identify the major

omissions here and illustrate how they have been addressed in products and in the

evolving standard.

5.4 The REVOKE Statement

One major shortcoming of SQL'89 is the lack of a REVOKE statement to take away

a privilege that has been granted by a GRANT. IBM's DB2 product provides a

REVOKE statement for this purpose.

It is often required that revocation should cascade. In a cascading revoke, not

only is the revoked privilege taken away, but also all GRANTs based on the revoked

privilege are e�ectively revoked. For example say that user Tom grants Dick SELECT

on relation R with the GRANT OPTION. Furthermore, Dick subsequently grants

Harry SELECT on R. Now suppose Tom revokes SELECT on R from Dick. The

SELECT on R privilege is taken away not only from Dick, but also from Harry. The

precise mechanics of a cascading revoke is somewhat complicated. Suppose Dick had

received the SELECT on R privilege (with GRANT OPTION) not only from Tom,

but also from Jane before Dick granted the SELECT to Harry. In this case Tom's

revocation of the SELECT from R privilege from Dick will not cause either Dick or

Tom to loose this privilege. This is because the GRANT from Jane remains valid.

Cascading revocation is not always desirable. A user's privileges to a given table

Sandhu 14

are often revoked because the user's job functions and responsibilities have changed.

Thus the Head of a Department, say Mary, may move on to a di�erent assignment.

Mary's privileges to that Department's data should be revoked. However, a cascading

revoke could cause lots of employees of that Department to loose their privileges.

These privileges would then need to be re-granted to keep the Department functioning.

SQL'92 allows revocation to be cascading or not cascading as speci�ed by the

revoker. The is a partial solution to the more general problem of how to reassign

responsibility for managing access to data from one user to another as their job

assignments change.

5.5 Other Privileges

Another major shortcoming of SQL'89 is the lack of control over who can create

relations. In SQL'89 every user is authorized to create relations. The Oracle DBMS

requires possession of a RESOURCE privilege in order to create new relations. SQL'89

also does not include a privilege to DROP a relation. Such a privilege is included in

DB2.

SQL'89 does not address the issue of how new users are enrolled in a database.

Several products take the approach that a database is always created with a single

user, usually called the DBA (Data Base Administrator), to begin with. The DBA es-

sentially has all privileges with respect to this database. The DBA is then responsible

for enrolling users and creating relations. Some systems recognize a special privilege

(called DBA in Oracle and DBADM in DB2) which can be granted to other users at

the original DBA's discretion, and allows these users to e�ectively act as the DBA.

Sandhu 15

6 LIMITATIONS OF DISCRETIONARY CON-

TROLS

The standard access controls of SQL are said to be discretionary, because the granting

of access is under user control. Discretionary controls have a fundamental weakness.

Even if access to a relation is strictly controlled, it is possible for a user with SE-

LECT access to create a copy of the relation thereby circumventing these controls.

Furthermore, even if users are trusted not to deliberately engage in such mischief it

is possible for Trojan Horse infected programs to do so.

To illustrate the basic limitation of discretionary access controls, consider the

following grant operation.

TOM: GRANT SELECT ON EMPLOYEE TO DICK

Tom has not conferred the grant option on Dick. Tom's intention is that Dick should

not be allowed to further grant SELECT access on EMPLOYEE to other users.

However, this intent is easily subverted as follows. Dick creates a new relation, call it

COPY-OF-EMPLOYEE, into which he copies all the rows of EMPLOYEE. As the

creator of COPY-OF-EMPLOYEE, Dick has the authority to grant any privileges for

it to any user. Dick can therefore grant Harry access to COPY-OF-EMPLOYEE as

follows.

DICK: GRANT SELECT ON COPY-OF-EMPLOYEE TO HARRY

At this point Harry has access to all the information in the original EMPLOYEE

relation. For all practical purposes Harry has SELECT access to EMPLOYEE, so

Sandhu 16

long as Dick keeps COPY-OF-EMPLOYEE reasonably up to date with respect to

EMPLOYEE.

The situation is actually worse than the above scenario indicates. So far, we have

portrayed Dick as a cooperative participant in this process. Now suppose that Dick

is a trusted con�dant of Tom and would not deliberately subvert Tom's intentions

regarding the EMPLOYEE relation. However, Dick uses a fancy text editor supplied

to him by Harry. This editor provides all the editing services that Dick needs. In

addition Harry has also programmed it to create the COPY-OF-EMPLOYEE relation

and execute the above grant operation. Such software is said to be a Trojan Horse,

because in addition to the normal functions expected by its user it also engages in

surreptitious actions to subvert security. Note that a Trojan Horse executed by Tom

could actually grant Harry the privilege to SELECT on EMPLOYEE.

In summary, even if the users are trusted not to deliberately breach security we

have to contend with Trojan Horses which have been programmed to deliberately

do so. We can require that all software that is run on the system is free of Trojan

Horses. But this is generally not considered to be a practical option. The solution is

to impose mandatory controls which cannot be violated, even by Trojan Horses.

7 MANDATORY ACCESS CONTROLS

Mandatory access controls are based on security labels associated with each data item

and each user. A label on a data item is called a security classi�cation, while a label

on a user is called a security clearance. In a computer system every program run by

a user inherits the user's security clearance.

Sandhu 17

Security labels in general form a lattice structure. For purpose of our discussion

we will assume the simplest situation where there are only two labels: S for Secret

and U for Unclassi�ed. It is forbidden for S information to
ow into U data items.

There are two mandatory access controls rules to achieve this objective.

� Simple Security Property: A U-user cannot read S-data.

� Star Property: A S-user cannot write U-data.

There are some important points that should be clearly understood in this context.

Firstly, the rules assume that a human being with Secret clearance can login to the

system as a S-user or a U-user. Otherwise the star property will prevent top executives

from writing publicly readable data. Secondly, these rules only prevent information

ow due to overt reading and writing of data. It remains possible for Trojan Horses

to leak Secret data using devious means of communication called covert channels.

Finally, mandatory access controls in relational databases usually enforce a stronger

star property given below.

� Strong Star Property: A S-user cannot write U-data and a U-user cannot

write S-data.

The strong star property limits each user to writing at their own level. It is motivated

by integrity considerations. The (weak) star property allows a U-user to write S-data.

This can result in overwriting, and therefore destruction, of S-data by U-users. In

the remainder of this chapter we will require the strong star property.

Sandhu 18

7.1 Labeling Granularity

Security labels can be assigned to data at di�erent levels of granularity in relational

databases. Assigning labels to entire relations can be useful but is in general incon-

venient. For example, if some salaries are secret but others are not, we will be forced

these salaries in di�erent relations. Assigning labels to entire column of a relation is

similarly inconvenient in the general case.

The �nest granularity of labeling is at the level of individual attributes of each

tuple (row) or element-level labeling. This o�ers considerable
exibility. Most of the

products emerging in this arena o�er labeling at the level of a tuple. Although not

so
exible as element-level labeling, this approach is more convenient than relation

or column-level labels. It can be expected that products in the short term will o�er

tuple-level labeling.

8 MULTILEVEL DATABASEARCHITECTURES

A multilevel system is one in which users and data with di�erent security labels coex-

ist. Multilevel systems are said to be trusted because they can keep data with di�erent

labels separated, and ensure that the simple security and (strong) star properties are

enforced. Over the past �fteen years or so, considerable research and development has

been devoted to the construction of multilevel databases. Three viable architectures

have emerged as follows.

1. Integrated data architecture (also known as the trusted subject architecture).

2. Fragmented data architecture (also known as the kernelized architecture).

Sandhu 19

3. Replicated data architecture (also known as the distributed architecture).

The relational database products which are initially emerging in this arena are

basically integrated data architectures. This approach requires considerable modi�-

cation of an existing relational DBMS. It can be supported by DBMS vendors because

they own the source code for their DBMS's, and are in a position to modify it in new

products.

The fragmented and replicated architectures have been demonstrated in labora-

tory projects. They o�er possibly greater assurance of security than the integrated

data architecture. Moreover, they can be constructed by using commercial o�-the-

shelf (COTS) DBMS's as components. This allows non-DBMS vendors to build these

by integrating COTS trusted operating systems and non-trusted DBMS's. We now

describe these three architectures in turn.

8.1 Integrated Data Architecture

The integrated data architecture is illustrated in �gure 1. In all of our diagrams the

solid lines show
ow of U-data, the dashed lines show
ow of S-data and the dotted

lines show
ow of mixed U and S-data.

The bottom of �gure 1 shows three kinds of data coexisting in the disk storage of

the system, as follows.

� U-non-DBMS-data: unclassi�ed data �les managed directly by the trusted Op-

erating System (OS).

� S-non-DBMS-data: secret data �les managed directly by the trusted OS.

Sandhu 20

� U+S-DBMS-data: unclassi�ed and secret data stored in �les managed cooper-

atively by the trusted OS and the trusted DBMS.

At the top of the diagram, on the left hand side, there is a U-user and S-user

interacting directly with the trusted OS. The trusted OS only allows these users to

access non-DBMS data in this manner. As per the simple security and strong star

properties, the U-user is allowed to read and write U-non-DBMS data, while the

S-user is allowed to read U-non-DBMS data and read and write S-non-DBMS data.

The right hand side of the diagram shows a U-user and S-user interacting with the

trusted DBMS. The trusted DBMS is responsible for enforcing the simple security and

strong star properties with respect to the DBMS data. The trusted DBMS relies on

the trusted OS to make sure that DBMS data cannot be accessed without intervention

of the trusted DBMS.

8.2 Fragmented Data Architecture

The fragmented data architecture is shown in �gure 2. In this architecture only the

OS is multilevel and trusted. The DBMS is untrusted and interacts with users at a

single level. The bottom of �gure 2 shows two kinds of data coexisting in the disk

storage of the system, as follows.

� U-data: unclassi�ed data �les managed directly by the trusted OS.

� S-data: secret data �les managed directly by the trusted OS.

The trusted OS does not distinguish between DBMS and non-DBMS data in this

architecture. It supports two copies of the DBMS, one which can interact only with

Sandhu 21

U-users and another which can interact only with S-users. These two copies run the

same code but with di�erent security labels. The U-DBMS is restricted by the trusted

OS to reading and writing U-data. The S-DBMS, on the other hand, can read and

write S-data as well as read (but not write) U-data.

This architecture has great promise, but its viability is dependent on availability

of usable good-performance trusted Operating Systems. So far, there are few trusted

OS's and these lack many of the facilities that users expect modern OS's to provide.

Development of trusted OS's continues to be an active area, but one in which progress

has been slow. Emergence of strong products in this arena could make the fragmented

data architecture attractive in the future.

8.3 Replicated Data Architecture

The replicated data architecture is shown in �gure 3. This architecture requires

physical separation on backend database servers to separate U and S users of the

database. The bottom half of the diagram shows two physically separated computers,

each running a DBMS. The computer on the left hand side manages U data, whereas

the computer on the right hand side manages a mix of U and S data. The U data on

the left hand side is replicated on the right hand side.

The trusted OS serves as a front end. It has two objectives. Firstly, it is respon-

sible for ensuring that a U-user can directly access only the U-backend (left hand

side), and a S-user can directly access only the S-backend (right hand side). Sec-

ondly, the trusted OS is the sole means for communication from the U-backend to

the S-backend. This communication is required so that updates to the U-data can be

propagated to the U-data stored in the S-backend. Correct and secure propagation of

Sandhu 22

these updates has been a major obstacle to this architecture, but recent research has

provided viable solutions to this problem. The replicated architecture is viable for a

small number of security labels, perhaps a few dozen, but it does not scale gracefully

to hundreds or thousands of labels.

9 ROLE-BASED ACCESS CONTROLS

It is generally agreed that traditional discretionary access controls are proving to be

inadequate for the security needs of many organizations. At the same time, mandatory

access controls based on security labels are also perceived as being inappropriate for

many situations. In recent years the notion of role-based access control (RBAC) has

emerged as a candidate for �lling the gap between traditional DAC and MAC.

One of weaknesses of DAC in SQL is that it does not facilitate management of

access rights. Each user must be explicitly granted every privilege that they need

to accomplish their tasks. Often groups of users need similar or identical privileges.

Thus all Supervisors in a Department might require identical privileges. Similarly

all Clerks might require identical privileges, which are di�erent from those of the

Supervisors. RBAC allows the creation of roles for Supervisors and Clerks. Privileges

appropriate to these roles are explicitly assigned to the role. Individual users are then

enrolled in appropriate roles from where they inherit these privileges. This separates

two concerns: (i) what privileges should a role get, and (ii) which user should be

authorized to each role. With RBAC it becomes easier to reassign users from one

role to another, or to alter the privileges for an existing role.

Current e�orts at evolving SQL, commonly called SQL3, have included proposals

Sandhu 23

for RBAC based on vendor implementations such as in Oracle. In future consensus

on a standard approach to RBAC in relational databases should emerge. However,

this is a relatively new area, and a number of questions remain to be addressed before

consensus on standards is obtained.

10 SUMMARY

Access controls have been an integral part of relational database management systems

from the start. There are, however, major weaknesses in the traditional discretionary

access controls built into the standards and products. SQL'89 is incomplete and

omits revocation of privileges and control over creation of new relations and views.

SQL'92 �xes some of these shortcomings. In the meantime vendors such as Oracle

have developed new concepts such as role-based access control. Others such as In-

formix have started delivering products incorporating mandatory access controls for

multilevel security. There is a recognition that SQL needs to be further evolved to

take some of these developments into considerations. This activity will hopefully lead

to stronger and better access controls in future products.

Sandhu 24

U-user U-userS-user S-user

Trusted Database Management System

Trusted Operating System

U-non-DBMS data S-non-DBMS data U+S-DBMS data

Figure 1: Integrated Data Architecture

Sandhu 25

S-Database Management System

Trusted Operating System

S-data

S-user

U-Database Management System

U-data

U-user

Figure 2: Fragmented Data Architecture

Sandhu 26

U-Database Management System S-Database Management System

Trusted Operating System

S-user

U+S-data

U-user

U-data

Figure 3: Replicated Data Architecture

